MAT2410: Mandatory assignment #1, autumn 2013

To be handed in by September 19, 14:30

Exercise 1.

- (a) Solve the equation 1/z + z = i.
- (b) Write the complex number i^i in Cartesian form.
- (c) Use DeMoivre's formula to find an expression for $\cos(5\theta)$ in terms of $\cos\theta$ and $\sin\theta$.
- (d) Find all solutions of $z^4 = 2\sqrt{2} + 2\sqrt{2}i$.

Exercise 2.

Find the limits

 (\mathbf{a})

 (\mathbf{c})

(b)
$$\lim_{n \to \infty} \left(\frac{i}{2}\right)^n,$$
$$\lim_{n \to \infty} \frac{z^2 + 1}{z + i},$$

$$\lim_{z \to -i} \frac{z^2 + 1}{z + i}$$

$$\lim_{n \to \infty} \left(1 + \frac{i}{n} \right)^{n\pi}.$$

Exercise 3.

- (a) Find the real and imaginary parts of the function $f(z) = z^2$.
- (b) Let $P: \mathbb{C} \cup \{\infty\} \to S^2$ be the stereographic projection of the extended complex plane to the Riemann sphere, see Section 1.7 in Saff & Snider for an explanation. The complex function $f(z) = z^2$ induces a map $g: S^2 \to S^2$ by

$$g(x_1, x_2, x_3) = P\left(\left(P^{-1}(x_1, x_2, x_3)\right)^2\right).$$

Show that

$$g(x_1, x_2, x_3) = \frac{1}{x_3^2 + 1} \left(x_1^2 - x_2^2, 2x_1 x_2, 2x_3 \right).$$

(c) Let $l(t) = (0, \sin(t), \cos(t)) \subset S^2$, $t \in \mathbb{R}$. Describe the set $\{g(l(t)) \mid t \in \mathbb{R}\}$.

Exercise 4.

Let f(z) be defined as

$$f(z) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} + i\frac{x^3 + y^3}{x^2 + y^2} & z \neq 0, \\ 0 & z = 0. \end{cases}$$

- (a) Show that f is continuous at z = 0. Hint: You can use that $|x^3 \pm y^3| \le 2(|x| + |y|)(x^2 + y^2)$. (b) Is f analytic?