MAT2410: Mandatory assignment \#1, autumn 2013

To be handed in by September 19, 14:30

Exercise 1.

(a) Solve the equation $1 / z+z=i$.
(b) Write the complex number i^{i} in Cartesian form.
(c) Use DeMoivre's formula to find an expression for $\cos (5 \theta)$ in terms of $\cos \theta$ and $\sin \theta$.
(d) Find all solutions of $z^{4}=2 \sqrt{2}+2 \sqrt{2} i$.

Exercise 2.

Find the limits
(a)

$$
\lim _{n \rightarrow \infty}\left(\frac{i}{2}\right)^{n}
$$

(b)

$$
\lim _{z \rightarrow-i} \frac{z^{2}+1}{z+i}
$$

(c)

$$
\lim _{n \rightarrow \infty}\left(1+\frac{i}{n}\right)^{n \pi}
$$

Exercise 3.

(a) Find the real and imaginary parts of the function $f(z)=z^{2}$.
(b) Let $P: \mathbb{C} \cup\{\infty\} \rightarrow S^{2}$ be the stereographic projection of the extended complex plane to the Riemann sphere, see Section 1.7 in Saff \& Snider for an explanation. The complex function $f(z)=z^{2}$ induces a map $g: S^{2} \rightarrow S^{2}$ by

$$
g\left(x_{1}, x_{2}, x_{3}\right)=P\left(\left(P^{-1}\left(x_{1}, x_{2}, x_{3}\right)\right)^{2}\right) .
$$

Show that

$$
g\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{x_{3}^{2}+1}\left(x_{1}^{2}-x_{2}^{2}, 2 x_{1} x_{2}, 2 x_{3}\right) .
$$

(c) Let $l(t)=(0, \sin (t), \cos (t)) \subset S^{2}, t \in \mathbb{R}$. Describe the set $\{g(l(t)) \mid t \in \mathbb{R}\}$.

Exercise 4.

Let $f(z)$ be defined as

$$
f(z)= \begin{cases}\frac{x^{3}-y^{3}}{x^{2}+y^{2}}+i \frac{x^{3}+y^{3}}{x^{2}+y^{2}} & z \neq 0 \\ 0 & z=0\end{cases}
$$

(a) Show that f is continuous at $z=0$. Hint: You can use that $\left|x^{3} \pm y^{3}\right| \leq 2(|x|+$ $|y|)\left(x^{2}+y^{2}\right)$.
(b) Is f analytic?

