MAT2410: Mandatory assignment \#2, autumn 2013

To be handed in by October 24., 14:30

Exercise 1.

Let $g: \mathbb{C} \rightarrow \mathbb{C}$ be defined by

$$
g(z)= \begin{cases}\frac{z}{e^{z}-1} & z \neq 0 \\ 1 & z=0\end{cases}
$$

(a) Is g continuous in the disc $|z|<2 \pi$?
(b) Show that $\cot (z)=i+g(2 i z) / z$, and hence that $g(z)=(z / 2 i) \cot (z / 2 i)-z / 2$, and also that $z \mapsto g(z)+z / 2$ is even.
(c) Find $g^{\prime}(0)$ and show that g is analytic for $|z|<2 \pi$. Hint: Use L'Hopital's rule.
(d) We write the Taylor series for g around zero as

$$
g(z)=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} z^{n}
$$

The numbers B_{n} are called the Bernoulli numbers. We have that $B_{0}=1$ and $B_{1}=-1 / 2$, why? In this notation

$$
g(z)+\frac{z}{2}=1+\sum_{n=2}^{\infty} \frac{B_{n}}{n!} z^{n} .
$$

Why does this imply that $B_{2 n+1}=0$ for all $n \geq 1$?
(e) Derive the relation

$$
\binom{n}{0} B_{0}+\binom{n}{1} B_{1}+\binom{n}{2} B_{2}+\cdots+\binom{n}{n-2} B_{n-2}+\binom{n}{n-1} B_{n-1}=0,
$$

where $\binom{n}{j}=n!/((n-j)!j!)$ are the binomial numbers.
Hint: use that $1=\left(\left(e^{z}-1\right) / z\right) g(z)$ and develop the Taylor series for the product.
(f) Find B_{2} and B_{4} ? Are the Bernoulli numbers bounded?

Exercise 2.

(a) Find all complex numbers w such that $w^{4}=-1$.
(b) Find a branch of $\left(1-z^{4}\right)^{1 / 4}$ which is analytic outside the unit circle centered at 0 .

Hint: Let w be as in a, write $1-z^{4}=(w z)^{4}-w^{4}$.

Exercise 3.

Let γ be the circle $|z|=2$, traversed once in the counterclockwise direction. Determine the integral

$$
\int_{\gamma} \frac{\cos (z)}{1-z^{3}} d z
$$

