MAT2410 - Introduction to Complex Analysis

Assignment 2

To be returned no later than the 27th October 2016 at 14:30.

Problem 1. Find complex numbers a, b, c, d with $a d \neq b c$ such that the Möbius transformation

$$
f(z)=\frac{a z+b}{c z+d}
$$

satisfies $f(\infty)=i, f(i)=\infty, f(1)=2$.
Problem 2. Let

$$
\gamma(t):=\pi t+\left(t^{2}-t\right) i, \quad 0 \leq t \leq 1
$$

Compute the line integral

$$
\int_{\gamma} z \sin z d z
$$

Problem 3. Let

$$
f(z):=\frac{z^{2}+3 z}{e^{z}-1}
$$

(i) Show that $f(z)$ can be expressed as a power series in some punctured disk around the origin, i.e. for some $r>0$ one has

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k} \quad \text { for } 0<|z|<r
$$

(ii) Compute the coefficients a_{0}, a_{1}, a_{2}.
(iii) Determine the radius of convergence of the series $\sum_{k=0}^{\infty} a_{k} z^{k}$.

Problem 4. Let $f(z)$ be an entire function.
(i) Show that the function $g(z):=\overline{f(\bar{z})}$ is analytic.
(ii) Suppose f maps \mathbb{R} into \mathbb{R}. Show that

$$
f(\bar{z})=\overline{f(z)} \quad \text { for all } z \in \mathbb{C}
$$

Problem 5. Use the Cauchy integral formula to compute the line integral

$$
\int_{|z|=4} \frac{\cos z}{z^{3}+\pi z^{2}} d z
$$

