MAT2410: Mandatory assignment \#1, autumn 2016

To be handed in by September 29, 14:30

Exercise 1.

(a) Find all solutions of

$$
z^{6}=\frac{1+i}{\sqrt{3}+i} .
$$

Possible solution: We have that $(1+i) /(\sqrt{3}+i)=(1 / \sqrt{2}) e^{i \pi / 12}$. Hence the roots are

$$
z=\frac{1}{\sqrt[12]{2}} e^{i \frac{\pi}{12}} e^{i k \frac{\pi}{3}}, \quad k=0,1, \ldots, 5
$$

(b) Find the two values of $(7+24 i)^{1 / 2}$.

Possible solution: By trial \& error we observe that $7+24 i=(4+3 i)^{2}$, thus the two roots are $\pm(4+3 i)$.
(c) Sketch the set $\left\{z \mid z^{2}+\bar{z}^{2}=2\right\}$.

Possible solution: Let $z=x+i y$, we have that $z^{2}+\bar{z}^{2}=2 \operatorname{Re}\left(z^{2}\right)$, thus we must have $x^{2}-y^{2}=1$, or $y= \pm \sqrt{x^{2}-1}$, which are hyperbola.

(d) Solve the equation

$$
z^{2}-(1+i) z+\frac{1}{4} i=0
$$

Possible solution:

$$
\begin{aligned}
z & =\frac{1}{2}(1+i+\sqrt{i}), \quad\left(\sqrt{i}= \pm e^{i \pi / 4}= \pm(1+i) / \sqrt{2}\right) \\
& =\frac{1}{2}\left(1 \pm \frac{1}{\sqrt{2}}\right)(1+i)
\end{aligned}
$$

(e) Let $f(z)=\alpha z+\beta$, where α and β are complex numbers. Prove that if $|\alpha|=1$, then $\left|z_{1}-z_{2}\right|=\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|$.

Possible solution:

$$
\begin{aligned}
& f\left(z_{1}\right)-f\left(z_{2}\right)=\alpha\left(z_{1}-z_{2}\right), \\
\text { hence }\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|= & |\alpha|\left|z_{1}-z_{2}\right|=\left|z_{1}-z_{2}\right| \text { if }|\alpha|=1 .
\end{aligned}
$$

Exercise 2.

Recall that a set $U \subseteq \mathbb{C}$ is called convex if the straight line between any two points z_{1} and z_{2} in U also lies in U, i.e., we have for $t \in[0,1]$,

$$
t z_{1}+(1-t) z_{2} \in U
$$

Show that
(a) If U and V are convex, then $U \cap V$ is convex.

Possible solution: Choose z_{1} and z_{2} in $U \cap V$, and write $\gamma(t)=t z_{1}+(1-t) z_{2}$, we have that since U is convex, $\gamma(t) \in U$ and since V is convex, $\gamma(t) \in V$. Hence, $\gamma(t) \in U \cap V$.
(b) If U is convex, then also $U \cup \partial U$ is convex. (You can use that $z \in U \cup \partial U$ iff there is a sequence $\left\{w_{k}\right\} \subset U$ such that $w_{k} \rightarrow z$.)

Possible solution: We find sequences $\left\{\omega_{k, 1}\right\}$ and $\left\{\omega_{k, 2}\right\}$ such that $\omega_{k, j} \in U$ for $j=1,2$ and $k \geq 1$ and $\omega_{k, j} \rightarrow z_{j}$. Write $\gamma(\alpha, \beta, t)=t \alpha+(1-t) \beta$ for $\alpha, \beta \in \mathbb{C}$. We have that γ is continuous in all variables. Fix t, and consider the sequence $\left\{\gamma_{k}\right\}=\left\{\gamma\left(\omega_{k, 1}, \omega_{k, 2}, t\right)\right\}$. This sequence is a Cauchy sequence since

$$
\begin{aligned}
\left|\gamma_{k}-\gamma_{l}\right| & =\left|\gamma\left(\omega_{k, 1}, \omega_{k, 2}, t\right)-\gamma\left(\omega_{l, 1}, \omega_{l, 2}, t\right)\right| \\
& =\left|t\left(\omega_{k, 1}-\omega_{l, 1}\right)+(1-t)\left(\omega_{k, 2}-\omega_{l, 2}\right)\right| \\
& \leq t\left|\omega_{k, 1}-\omega_{l, 1}\right|+(1-t)\left|\omega_{k, 2}-\omega_{l, 2}\right| \\
& \leq \max \left\{\left|\omega_{k, 1}-\omega_{l, 1}\right|,\left|\omega_{k, 2}-\omega_{l, 2}\right|\right\} .
\end{aligned}
$$

Hence γ_{k} converges to a point in $U \cup \partial U$.

Exercise 3.

Let the (Euclidean) inner product between two complex numbers z and w be defined as

$$
\langle z, w\rangle=\operatorname{Re}(z \bar{w}) .
$$

(a) Show that $|z|=\langle z, z\rangle^{1 / 2}$, the Cauchy-Schwartz inequality $|\langle z, w\rangle| \leq|z||w|$ and the triangle inequality.

Possible solution: The norm follows by expanding $\operatorname{Re}(z \bar{w})$. Since we have $|\operatorname{Re}(z)|=|\operatorname{Re}(\bar{z})| \leq|z|$, we get $|\langle z, w\rangle| \leq|z||w|$. For the triangle inequality, we have

$$
|z+w|^{2}=|z|^{2}+2\langle z, w\rangle+|w|^{2} \leq|z|^{2}+|w|^{2} .
$$

(b) Show that $\langle z, w\rangle=0$ iff z / w is pure imaginary (has zero real part).

Possible solution: We have that $\bar{w}=|w| / w$, and thus

$$
\langle z, w\rangle=\operatorname{Re}(z \bar{w})=\operatorname{Re}(|w| z / w)=|w| \operatorname{Re}(z / w) .
$$

Exercise 4.

Find the limits
(a)

$$
\lim _{n \rightarrow \infty}\left(\frac{i}{2}\right)^{n}
$$

Possible solution: 0
(b)

$$
\lim _{z \rightarrow-i} \frac{z^{2}+1}{z+i}
$$

Possible solution: $-2 i$
(c)

$$
\lim _{n \rightarrow \infty}\left(1+\frac{i}{n}\right)^{n \pi}
$$

Possible solution: $e^{i \pi}=-1$

Exercise 5.

Let $z=x+i y$ and $f=f(z)=u(x, y)+i v(x, y)$. We define the "partial derivatives"

$$
\begin{array}{cl}
\frac{\partial f}{\partial x}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}, & \frac{\partial f}{\partial y}=\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}, \\
\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right), & \frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right) .
\end{array}
$$

(a) Find $\frac{\partial f}{\partial z}$ and $\frac{\partial f}{\partial z}$, for the following functions: i) $f(z)=z^{2}$, ii) $f(z)=e^{z}$, iii) $f(z)=$ $|z|^{2}$, iv) $f(z)=\operatorname{Im}(z)$.

Possible solution:

i) $f_{z}=2 z, f_{\bar{z}}=0$,
ii) $f_{z}=e^{z}, f_{\bar{z}}=0$,
iii) $f(z)=z \bar{z}$, so that $f_{z}=\bar{z}, f_{\bar{z}}=z$.
iv) $f(z)=(z-\bar{z}) / 2 i$, so that $f_{z}=1 / 2 i, f_{\bar{z}}=-1 /(2 i)$.
(b) Show that inverse formulas

$$
\begin{array}{cl}
\frac{\partial u}{\partial x}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+\frac{\overline{\partial f}}{\partial x}\right), & \frac{\partial u}{\partial y}=\frac{1}{2}\left(\frac{\partial f}{\partial y}+\frac{\overline{\partial f}}{\partial y}\right), \\
\frac{\partial v}{\partial x}=\frac{1}{2 i}\left(\frac{\partial f}{\partial x}-\frac{\overline{\partial f}}{\partial x}\right), & \frac{\partial v}{\partial y}=\frac{1}{2 i}\left(\frac{\partial f}{\partial y}-\frac{\overline{\partial f}}{\partial y}\right), \\
\frac{\partial f}{\partial x}=\frac{\partial f}{\partial z}+\frac{\partial f}{\partial \bar{z}}, & \frac{\partial f}{\partial y}=i\left(\frac{\partial f}{\partial z}-\frac{\partial f}{\partial \bar{z}}\right) .
\end{array}
$$

Possible solution: This follows by inverting the formulas above.
(c) Let $D(f)=\frac{\partial f}{\partial z}$ or $D(f)=\frac{\partial f}{\partial \bar{z}}$. Show that $D(\alpha f+\beta g)=\alpha D(f)+\beta D(g)$ for any complex constants α and β, and that the Leibnitz and quotient rules hold:

$$
D(f g)=D(f) g+f D(g), \quad D(f / g)=(D(f) g-f D(g)) / g^{2}
$$

Possible solution: D is a linear combination of operators for which these rules hold.

We can now view a complex function f as a function of z and \bar{z} instead of (x, y).
(d) Show that the Cauchy-Riemann equations hold iff $\frac{\partial f}{\partial \bar{z}}=0$, and that in this case $f^{\prime}(z)=\frac{\partial f}{\partial z}$.

Possible solution:

$$
\begin{aligned}
\frac{\partial f}{\partial \bar{z}} & =\frac{i}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right) \\
& =\frac{i}{2}\left(\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right)+i\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)\right),
\end{aligned}
$$

so CR hold iff $f_{\bar{z}}=0$. We also have that if f is analytic,

$$
\begin{aligned}
f^{\prime}(z) & =\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \\
& =\frac{1}{2}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial x}+\frac{\partial f}{\partial x}-\frac{\overline{\partial f}}{\partial x}\right) \\
& =\frac{\partial f}{\partial x}=\frac{\partial f}{\partial z}+\frac{\partial f}{\partial \bar{z}}=\frac{\partial f}{\partial z},
\end{aligned}
$$

since $f_{\bar{z}}=0$.
(e) Use this to determine if the following functions are analytic: i) $\operatorname{Re}(z)$, ii) $\left(x^{2}-y^{2}\right)+$ $2 x y i$, iii) $e^{i y}$, iv) $z\left(z+\bar{z}^{2}\right)$.

Possible solution:

i) $\operatorname{Re}(z)=(z+\bar{z}) / 2$, not analytic.
ii) $f(z)=z^{2}$, analytic.
iii) $f(z, \bar{z})=e^{(z-\bar{z}) / 2}$, not analytic.
iv) $\frac{\partial f}{\partial \bar{z}}=2 z \bar{z}$, not differentiable for $\bar{z} \neq 0$.

Exercise 6.

Let $f(z)$ be defined as

$$
f(z)= \begin{cases}\frac{x^{3}-y^{3}}{x^{2}+y^{2}}+i \frac{x^{3}+y^{3}}{x^{2}+y^{2}} & z \neq 0 \\ 0 & z=0\end{cases}
$$

(a) Show that f is continuous at $z=0$. Hint: You can use that $\left|x^{3} \pm y^{3}\right| \leq 2(|x|+$ $|y|)\left(x^{2}+y^{2}\right)$.

Possible solution:

$$
\begin{aligned}
\lim _{z \rightarrow 0}|f(z)| & \leq \lim _{(x, y) \rightarrow(0,0)}\left|\frac{x^{3}-y^{3}}{x^{2}+y^{2}}\right|+\left|\frac{x^{3}+y^{3}}{x^{2}+y^{2}}\right| \\
& \leq 4 \lim _{(x, y) \rightarrow(0,0)}|x|+|y|=0=f(0) .
\end{aligned}
$$

(b) Is f analytic?

Possible solution:

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{x\left(x^{3}+3 x y^{2}+2 y^{3}\right)}{\left(x^{2}+y^{2}\right)^{2}}, \\
\frac{\partial u}{\partial y} & =-\frac{y\left(2 x^{3}+3 x^{2} y+y^{3}\right)}{\left(x^{2}+y^{2}\right)^{2}}, \\
\frac{\partial v}{\partial x} & =\frac{x\left(x^{3}+3 x y^{2}-2 y^{3}\right)}{\left(x^{2}+y^{2}\right)^{2}}, \\
\frac{\partial v}{\partial y} & =\frac{y\left(-2 x^{3}+3 x^{2} y+y^{3}\right)}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

We have that

$$
\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}=4 \frac{x y^{3}}{\left(x^{2}+y^{2}\right)^{2}} \neq 0, \quad \text { for } x \neq 0, y \neq 0 .
$$

For $(x, y)=(0,0), \lim \left(u_{x}-v_{y}\right)$ can be any number in $[-1,1]$. Hence f is not analytic.

