MAT2410: Mandatory assignment #1, autumn 2016 To be handed in by September 29, 14:30

Exercise 1.

(a) Find all solutions of

$$z^6 = \frac{1+i}{\sqrt{3}+i}.$$

- (b) Find the two values of $(7 + 24i)^{1/2}$.
- (c) Sketch the set $\{z \mid z^2 + \overline{z}^2 = 2\}$.
- (d) Solve the equation

$$z^2 - (1+i)z + \frac{1}{4}i = 0.$$

(e) Let $f(z) = \alpha z + \beta$, where α and β are complex numbers. Prove that if $|\alpha| = 1$, then $|z_1 - z_2| = |f(z_1) - f(z_2)|$.

Exercise 2.

Recall that a set $U \subseteq \mathbb{C}$ is called *convex* if the straight line between any two points z_1 and z_2 in U also lies in U, i.e., we have for $t \in [0, 1]$,

$$tz_1 + (1-t)z_2 \in U.$$

Show that

- (a) If U and V are convex, then $U \cap V$ is convex.
- (b) If U is convex, then also $U \cup \partial U$ is convex. (You can use that $z \in U \cup \partial U$ iff there is a sequence $\{w_k\} \subset U$ such that $w_k \to z$.)

Exercise 3.

Let the (Euclidean) inner product between two complex numbers z and w be defined as

$$\langle z, w \rangle = \operatorname{Re}(z\bar{w}).$$

- (a) Show that $|z| = \langle z, z \rangle^{1/2}$, the Cauchy-Schwartz inequality $|\langle z, w \rangle| \le |z| |w|$ and the triangle inequality.
- (b) Show that $\langle z, w \rangle = 0$ iff z/w is pure imaginary (has zero real part).

Exercise 4.

Find the limits

(a)

$$\lim_{n \to \infty} \left(\frac{i}{2}\right)^n,$$
(b)

$$\lim_{z \to -i} \frac{z^2 + 1}{z + i},$$
(c)

$$\lim_{n \to \infty} \left(1 + \frac{i}{n}\right)^{n\pi}.$$

Exercise 5.

Let z = x + iy and f = f(z) = u(x, y) + iv(x, y). We define the "partial derivatives"

$$\frac{\partial f}{\partial x} = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}, \quad \frac{\partial f}{\partial y} = \frac{\partial u}{\partial y} + i\frac{\partial v}{\partial y},$$
$$\frac{\partial f}{\partial z} = \frac{1}{2}(\frac{\partial f}{\partial x} - i\frac{\partial f}{\partial y}), \quad \frac{\partial f}{\partial \bar{z}} = \frac{1}{2}(\frac{\partial f}{\partial x} + i\frac{\partial f}{\partial y})$$

- (a) Find $\frac{\partial f}{\partial z}$ and $\frac{\partial f}{\partial z}$, for the following functions: i) $f(z) = z^2$, ii) $f(z) = e^z$, iii) $f(z) = e^z$, iiii) $f(z) = e^z$, iii) $f(z) = e^z$, $|z|^2$, iv) f(z) = Im(z).
- (b) Show that inverse formulas

$$\begin{split} \frac{\partial u}{\partial x} &= \frac{1}{2} (\frac{\partial f}{\partial x} + \overline{\frac{\partial f}{\partial x}}), \quad \frac{\partial u}{\partial y} = \frac{1}{2} (\frac{\partial f}{\partial y} + \overline{\frac{\partial f}{\partial y}}), \\ \frac{\partial v}{\partial x} &= \frac{1}{2i} (\frac{\partial f}{\partial x} - \overline{\frac{\partial f}{\partial x}}), \quad \frac{\partial v}{\partial y} = \frac{1}{2i} (\frac{\partial f}{\partial y} - \overline{\frac{\partial f}{\partial y}}), \\ \frac{\partial f}{\partial x} &= \frac{\partial f}{\partial z} + \frac{\partial f}{\partial \bar{z}}, \quad \frac{\partial f}{\partial y} = i (\frac{\partial f}{\partial z} - \frac{\partial f}{\partial \bar{z}}). \end{split}$$

(c) Let $D(f) = \frac{\partial f}{\partial z}$ or $D(f) = \frac{\partial f}{\partial \overline{z}}$. Show that $D(\alpha f + \beta g) = \alpha D(f) + \beta D(g)$ for any complex constants α and β , and that the Leibnitz and quotient rules hold:

$$D(fg) = D(f)g + fD(g), \quad D(f/g) = (D(f)g - fD(g))/g^2.$$

We can now view a complex function f as a function of z and \overline{z} instead of (x, y).

- (d) Show that the Cauchy-Riemann equations hold iff $\frac{\partial f}{\partial \bar{z}} = 0$, and that in this case
- $f'(z) = \frac{\partial f}{\partial z}$. (e) Use this to determine if the following functions are analytic: i) $\operatorname{Re}(z)$, ii) $(x^2 y^2) + \frac{\partial f}{\partial z}$ 2xyi, iii) e^{iy} , iv) $z(z + \bar{z}^2)$.

Exercise 6.

Let f(z) be defined as

$$f(z) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} + i\frac{x^3 + y^3}{x^2 + y^2} & z \neq 0, \\ 0 & z = 0. \end{cases}$$

- (a) Show that f is continuous at z = 0. Hint: You can use that $|x^3 \pm y^3| \le 2(|x| + |y|)(x^2 + y^2)$. (b) Is f analytic?