MAT2410: Mandatory assignment \#1, autumn 2016

To be handed in by September 29, 14:30

Exercise 1.

(a) Find all solutions of

$$
z^{6}=\frac{1+i}{\sqrt{3}+i}
$$

(b) Find the two values of $(7+24 i)^{1 / 2}$.
(c) Sketch the set $\left\{z \mid z^{2}+\bar{z}^{2}=2\right\}$.
(d) Solve the equation

$$
z^{2}-(1+i) z+\frac{1}{4} i=0
$$

(e) Let $f(z)=\alpha z+\beta$, where α and β are complex numbers. Prove that if $|\alpha|=1$, then $\left|z_{1}-z_{2}\right|=\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|$.

Exercise 2.

Recall that a set $U \subseteq \mathbb{C}$ is called convex if the straight line between any two points z_{1} and z_{2} in U also lies in U, i.e., we have for $t \in[0,1]$,

$$
t z_{1}+(1-t) z_{2} \in U
$$

Show that
(a) If U and V are convex, then $U \cap V$ is convex.
(b) If U is convex, then also $U \cup \partial U$ is convex. (You can use that $z \in U \cup \partial U$ iff there is a sequence $\left\{w_{k}\right\} \subset U$ such that $w_{k} \rightarrow z$.)

Exercise 3.

Let the (Euclidean) inner product between two complex numbers z and w be defined as

$$
\langle z, w\rangle=\operatorname{Re}(z \bar{w}) .
$$

(a) Show that $|z|=\langle z, z\rangle^{1 / 2}$, the Cauchy-Schwartz inequality $|\langle z, w\rangle| \leq|z||w|$ and the triangle inequality.
(b) Show that $\langle z, w\rangle=0$ iff z / w is pure imaginary (has zero real part).

Exercise 4.

Find the limits
(a)

$$
\lim _{n \rightarrow \infty}\left(\frac{i}{2}\right)^{n}
$$

(b)

$$
\lim _{z \rightarrow-i} \frac{z^{2}+1}{z+i}
$$

(c)

$$
\lim _{n \rightarrow \infty}\left(1+\frac{i}{n}\right)^{n \pi}
$$

Exercise 5.

Let $z=x+i y$ and $f=f(z)=u(x, y)+i v(x, y)$. We define the "partial derivatives"

$$
\begin{array}{cl}
\frac{\partial f}{\partial x}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}, & \frac{\partial f}{\partial y}=\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}, \\
\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right), & \frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right) .
\end{array}
$$

(a) Find $\frac{\partial f}{\partial z}$ and $\frac{\partial f}{\partial \bar{z}}$, for the following functions: i) $f(z)=z^{2}$, ii) $f(z)=e^{z}$, iii) $f(z)=$ $|z|^{2}$, iv) $f(z)=\operatorname{Im}(z)$.
(b) Show that inverse formulas

$$
\begin{array}{cl}
\frac{\partial u}{\partial x}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+\frac{\overline{\partial f}}{\partial x}\right), & \frac{\partial u}{\partial y}=\frac{1}{2}\left(\frac{\partial f}{\partial y}+\frac{\overline{\partial f}}{\partial y}\right), \\
\frac{\partial v}{\partial x}=\frac{1}{2 i}\left(\frac{\partial f}{\partial x}-\frac{\overline{\partial f}}{\partial x}\right), & \frac{\partial v}{\partial y}=\frac{1}{2 i}\left(\frac{\partial f}{\partial y}-\frac{\overline{\partial f}}{\partial y}\right), \\
\frac{\partial f}{\partial x}=\frac{\partial f}{\partial z}+\frac{\partial f}{\partial \bar{z}}, & \frac{\partial f}{\partial y}=i\left(\frac{\partial f}{\partial z}-\frac{\partial f}{\partial \bar{z}}\right) .
\end{array}
$$

(c) Let $D(f)=\frac{\partial f}{\partial z}$ or $D(f)=\frac{\partial f}{\partial \bar{z}}$. Show that $D(\alpha f+\beta g)=\alpha D(f)+\beta D(g)$ for any complex constants α and β, and that the Leibnitz and quotient rules hold:

$$
D(f g)=D(f) g+f D(g), \quad D(f / g)=(D(f) g-f D(g)) / g^{2}
$$

We can now view a complex function f as a function of z and \bar{z} instead of (x, y).
(d) Show that the Cauchy-Riemann equations hold iff $\frac{\partial f}{\partial \bar{z}}=0$, and that in this case $f^{\prime}(z)=\frac{\partial f}{\partial z}$.
(e) Use this to determine if the following functions are analytic: i) $\operatorname{Re}(z)$, ii) $\left(x^{2}-y^{2}\right)+$ $2 x y i$, iii) $e^{i y}$, iv) $z\left(z+\bar{z}^{2}\right)$.

Exercise 6.

Let $f(z)$ be defined as

$$
f(z)= \begin{cases}\frac{x^{3}-y^{3}}{x^{2}+y^{2}}+i \frac{x^{3}+y^{3}}{x^{2}+y^{2}} & z \neq 0 \\ 0 & z=0\end{cases}
$$

(a) Show that f is continuous at $z=0$. Hint: You can use that $\left|x^{3} \pm y^{3}\right| \leq 2(|x|+$ $|y|)\left(x^{2}+y^{2}\right)$.
(b) Is f analytic?

