Exercises

(Translation from Sydsæter, Seierstad and Strøm's book)

Ex. 1 p. 341

Consider the problem of minimizing $\int_0^1 (t\dot{x} + \dot{x}^2) dt$, x(0) = 1, x(1) = 0.

a) Set up the Euler-Lagrange equation and solve it.

b) Find the only solution of the Euler-Lagrange equation which satisfies the boundary conditions.

Ex. 3 p. 341

Find the Euler-Lagrange equations for $J(x) = \int_{t_0}^{t_1} F(t,x,\dot{x}) \, dt$ when

- a) $F(t, x, \dot{x}) = x^2 + \dot{x}^2 + 2xe^t$
- b) $F(t, x, \dot{x}) = -e^{\dot{x} ax}$
- c) $F(t, x, \dot{x}) = ((x \dot{x})^2 + x^2) e^{-at}$
- d) $F(t, x, \dot{x}) = 2tx + 3x\dot{x} + t\dot{x}^2$

Ex. 6 p. 341

Consider the variational problem

$$\max \int_0^T U(\bar{c} - \dot{x}e^{rt}), \quad x(0) = x_0, \quad x(T) = 0$$

where x = x(t) is the unknown function, T, \bar{c} , r and x_0 are positive constants and U is a given differentiable function.

a) Set up the Euler-Lagrange equation for this problem.

b) Solve the Euler-Lagrange equation when $U(c) = c^{1-v}/(1-v)$ where v is a constant in [0, 1].

Ex. 8 p. 341

Solve the variational problem

$$\min \int_0^1 (x^2 + tx + tx\dot{x} + \dot{x}^2) \, dt, \quad x(0) = 0, \quad x(1) = 1.$$

Show that the integrand is convex, that is, show that the function $F:\mathbb{R}^2\to\mathbb{R}$ given by

$$F(x_1, x_2) = x_1^2 + tx_1 + x_1x_2 + x_2^2$$

is convex for all $t \in [0, 1]$.