Exercises

(Translation from Sydsæter, Seierstad and Strøm's book)

Ex. 1 p. 341

Consider the problem of minimizing $\int_{0}^{1}\left(t \dot{x}+\dot{x}^{2}\right) d t, x(0)=1, x(1)=0$.
a) Set up the Euler-Lagrange equation and solve it.
b) Find the only solution of the Euler-Lagrange equation which satisfies the boundary conditions.

Ex. 3 p. 341

Find the Euler-Lagrange equations for $J(x)=\int_{t_{0}}^{t_{1}} F(t, x, \dot{x}) d t$ when
a) $F(t, x, \dot{x})=x^{2}+\dot{x}^{2}+2 x e^{t}$
b) $F(t, x, \dot{x})=-e^{\dot{x}-a x}$
c) $F(t, x, \dot{x})=\left((x-\dot{x})^{2}+x^{2}\right) e^{-a t}$
d) $F(t, x, \dot{x})=2 t x+3 x \dot{x}+t \dot{x}^{2}$

Ex. 6 p. 341

Consider the variational problem

$$
\max \int_{0}^{T} U\left(\bar{c}-\dot{x} e^{r t}\right), \quad x(0)=x_{0}, \quad x(T)=0
$$

where $x=x(t)$ is the unknown function, T, \bar{c}, r and x_{0} are positive constants and U is a given differentiable function.
a) Set up the Euler-Lagrange equation for this problem.
b) Solve the Euler-Lagrange equation when $U(c)=c^{1-v} /(1-v)$ where v is a constant in $[0,1]$.

Ex. 8 p. 341

Solve the variational problem

$$
\min \int_{0}^{1}\left(x^{2}+t x+t x \dot{x}+\dot{x}^{2}\right) d t, \quad x(0)=0, \quad x(1)=1
$$

Show that the integrand is convex, that is, show that the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
F\left(x_{1}, x_{2}\right)=x_{1}^{2}+t x_{1}+x_{1} x_{2}+x_{2}^{2}
$$

is convex for all $t \in[0,1]$.

