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Problem 1.

For each of the two following market models analyse whether it admits arbi-
trage opportunities and whether it is complete.
State your conclusions clearly and prove them in full detail.

1. Single period market model:

• Probability space (Ω,F , P ) with sample space Ω = {ω1, ω2, ω3}
and probability measure P (ω) > 0, ω ∈ Ω.

• Interest rate in the bank account: r = 1/10.

• Two risky securities with prices given by

S1(t, ω) S2(t, ω)
S1(0, ω) S1(1, ω) S2(0, ω) S2(1, ω)

ω1 5 33/5 10 66/5
ω2 5 33/5 10 44/5
ω3 5 22/5 10 44/5

(Continued on page 2.)
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2. Multi period binomial market model with one risky security the price
of which is

S(t) = S(0)uNtdt−Nt , t = 1, ..., T,

where the size of an upward movement is u = 2, the size of a downward
movement is d = 1/2 and the initial price is S(0) = 5. Here Nt,
t = 0, 1, ..., T (N0 ≡ 0), is the stochastic process counting the number
of upward movements occurring in the price.
Let p = 3/4 be the probability of the single upward movement.
(Remember that

P
{
Nt = m

}
=

(
t
m

)
pm(1− p)t−m, m = 0, 1, ..., T.)

Let the interest rate in the bank account be constant r = 1/10.

Problem 2.

1. Give the definition of replicable contingent claim in a multi period mar-
ket model.

2. Let us consider the following multi period market model:

• Probability space (Ω,F , P ) with sample space Ω = {ω1, ω2, ω3, ω4},
F = P(Ω) and probability measure P (ω) > 0, ω ∈ Ω.

• Trading dates: t = 0, 1, 2

• Interest rate in the bank account: r ≡ 0

• One risky security with price process given by

S(t, ω) S(0, ω) S(1, ω) S(2, ω)
ω1 5 6 10
ω2 5 6 4
ω3 5 4 8
ω4 5 4 2

• The filtration F generated by the price process S(t), t = 0, 1, 2.
Namely, F0 trivial, F1 = {∅, {ω : S(1, ω) = 6}, {ω : S(1, ω) =
4}, Ω} and F2 = P(Ω).

The unique risk neutral probability measure for this model is

Q(ω) =


1/6, ω = ω1,

1/3, ω = ω2,

1/6, ω = ω3,

1/3, ω = ω4,

(you are not required to prove this). With the above data,

(Continued on page 3.)
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2a. find the replicating trading strategy and the price of the European
call option

Xcall =
(
S(2)− 5

)+
;

2b. find the price of the European put option

Xput =
(
5− S(2)

)+
.

Problem 3.

Let (Ω,F , Q) be a probability space equipped with a filtration F = {Ft : t =
0, 1, ..., T} where F0 is trivial and FT = F = P(Ω).

1. Give the definition of martingale with respect to the filtration F under
the measure Q.

2. Let V ∗
t , t = 0, 1, ..., T , be the discounted value process of a replicable

contingent claim X, i.e.

V ∗
t = EQ

[ X

BT

|Ft

]
, t = 0, 1, ..., T,

(here Bt, t = 0, 1, ..., T , is the bank account process and Q is a risk
neutral probability measure).
Prove that V ∗

t , t = 0, 1, ..., T , is a martingale with respect to the filtra-
tion F under the measure Q.

Problem 4.

Let us consider the following complete single period market model:

• Probability space (Ω,F , P ) with sample space Ω = {ω1, ω2, ω3} and
probability measure

P (ω) =


1/3, ω = ω1,

1/3, ω = ω2,

1/3, ω = ω3,

• Interest rate in the bank account: r = 0

• Two risky securities with price processes given by

S1(t, ω) S2(t, ω)
S1(0, ω) S1(1, ω) S2(0, ω) S2(1, ω)

ω1 5 6 5 5
ω2 5 8 5 3
ω3 5 2 5 6

(Continued on page 4.)
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The unique risk neutral probability measure in this model is:

Q(ω) =


1/2, ω = ω1,

1/6, ω = ω2,

1/3, ω = ω3,

(you are not required to prove this). With the above data, solve the following
optimization problem {

maxH∈H E
[
u(V1)]

V0 = v

for the utility function

u(w) = ln w, w > 0.

Here H is the set of all trading strategies and Vt, t = 0, 1, is the value process
corresponding to the strategy H ∈ H. Let V0 = v = 1 be the initial value.

END


