UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in:	MAT2700 — Introduction to mathematical finance and investment theory
Day of examination:	Monday, December 12, 2011.
Examination hours:	14.30 - 18.30.
This problem set con	sists of 3 pages.
Appendices:	None.
Permitted aids:	None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Remember to give reasons for your answers.

Problem 1.

Consider a one period financial market with N = 2 securities, K = 3 scenarios, interest rate r = 0 and return processes R_n and probability measure \mathbb{P} as given in the table below:

ω	$R_1(\omega)$	$R_2(\omega)$	$P(\omega)$
ω_1	0.2	0.15	1/3
ω_2	-0.2	0	1/3
ω_3	0.05	-0.1	1/3

Let $F_n = \frac{H_n S_n(0)}{V_0}$ be the fraction of the total wealth invested in security n at time 0. Then

$$V_1 = \nu \left(1 + \sum_{n=1}^2 F_n R_n \right)$$

is the value at time T = 1 corresponding to F_1 , F_2 when the initial value is $\nu > 0$.

Suppose shortselling is not allowed. This means that we are required to have

$$F = (F_1, F_2) \in \mathbb{K},$$

where $\mathbb{K} = \{(x_1, x_2) \in \mathbb{R}^2, x_1 \ge 0, x_2 \ge 0\}.$

We want to maximize the expected utility of the terminal wealth under this constraint, i.e., solve the problem

$$J_0(F) = \max_{F \in \mathbb{K}} \mathbb{E}[-\exp(-V_1)], \qquad (1)$$

where $V_1 = \nu \left(1 + \sum_{n=1}^2 F_n R_n \right)$ is wealth at time T = 1 and $u(x) = -\exp(-x), \qquad x \in \mathbb{R},$

is the exponential utility. To this end, we proceed as follows:

(Continued on page 2.)

1a) (Step 1) Find the support function δ of \mathbb{K} , defined by

$$\delta(\kappa) = \sup_{F \in \mathbb{K}} \{-F \cdot \kappa\}, \qquad \kappa \in \mathbb{R}^2,$$

where $F \cdot \kappa = F_1 \kappa_1 + F_2 \kappa_2$ is the scalar product of F and κ .

1b) (Step 2) For $\kappa \in \tilde{\mathbb{K}} = \{\kappa; \delta(\kappa) < \infty\}$ define the auxiliary market \mathcal{M}_{κ} by specifying the new interest rate to be

$$r_{\kappa} := r + \delta(\kappa) = \delta(\kappa)$$

and the new returns to be

$$R_n^{\kappa} := R_n + \delta(\kappa) + \kappa_n, \ n = 1, 2.$$

Verify that

$$Q_{\kappa} = (Q_{\kappa}(\omega_1), Q_{\kappa}(\omega_2), Q_{\kappa}(\omega_3))$$

:= $\frac{1}{31}(8 - 40\kappa_1 - 100\kappa_2, 11 + 100\kappa_1 - 60\kappa_2, 12 - 60\kappa_1 + 160\kappa_2)$

is a risk neutral probability measure for \mathcal{M}_{κ} , provided that $\kappa \in \mathbb{K}$ and $40\kappa_1 + 100\kappa_2 < 8$.

1c) (Step 3) In the following we assume that the markets \mathcal{M}_{κ} , with $\kappa \in \tilde{\mathbb{K}}$ and $40\kappa_1 + 100\kappa_2 < 8$, are complete.

For each $\kappa \in \tilde{\mathbb{K}}$ we proceed to solve the *unconstrained* problem

$$J_{\kappa}(\nu) = \max_{F \in \mathbb{R}^2} \mathbb{E}[-\exp(-V_1^{(\kappa)})],$$

where

$$V_1^{(\kappa)} = \nu \left(1 + r_{\kappa} + \sum_{n=1}^2 F_n (R_n^{(\kappa)} - r_{\kappa}) \right)$$

is the value at T = 1 in the market \mathcal{M}_{κ} corresponding to the portfolio $F = (F_1, F_2) \in \mathbb{R}^2$.

Use the risk neutral probability approach to find the optimal terminal wealth

$$\hat{W}_{\kappa} = \hat{V}_1^{(\kappa)}$$

for this problem, in terms of $L_{\kappa}(\omega) = \frac{Q_{\kappa}(\omega)}{\mathbb{P}(\omega)}, \ \omega = \omega_1, \omega_2, \omega_3.$

1d) (Step 4) Finally, we proceed to find the optimal terminal wealth $\hat{W}_{\kappa} = \hat{V}_1^{(\kappa)}$ of the original unconstrained problem (1) by minimizing

$$J_{\kappa}(\nu) = \mathbb{E}[-\exp(-\hat{W}_{\kappa})]$$

over all $\kappa = (\kappa_1, \kappa_2) \in \tilde{\mathbb{K}}$. Write down the first order equations for the minimizing $\kappa_1 = \hat{\kappa}_1, \kappa_2 = \hat{\kappa}_2$.

(Continued on page 3.)

Page 3

Problem 2.

Consider the following 2-period market, with N = 1, K = 4, interest rate r = 0, probability measure $\mathbb{P} = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$ and prices $S(t, \omega_i)$ given by the table below:

ω	S(0)	$S(1,\omega)$	$S(2,\omega)$
ω_1	3	4	7
ω_2	3	2	3
ω_3	3	4	3
ω_4	3	2	1

Let \mathcal{F}_t be the σ -algebra generated by $S(u, \cdot), u \leq t$.

- 2a) Find \mathcal{F}_1 and \mathcal{F}_2 .
- 2b) Let $Q = (Q(\omega_1), Q(\omega_2), Q(\omega_3), Q(\omega_4)) = (\frac{1}{8}, \frac{1}{4}, \frac{3}{8}, \frac{1}{4})$. Show that Q is a martingale measure for this market.
- 2c) Find $\mathbb{E}_Q[Y|\mathcal{F}_1]$ when $Y(\omega_1) = 36$, $Y(\omega_2) = 9$, $Y(\omega_3) = 4$, $Y(\omega_4) = 9$.
- 2d) Find all martingale measures for this market.
- 2e) Find a (self-financing, predictable) replicating portfolio $H = (H_0(t), H_1(t)), t = 1, 2$, for the contingent claim Y given in 2c) above.

We want to use the martingale method to solve the following optimal portfolio problem:

$$\begin{cases} \text{maximize} & \mathbb{E}[u(V_2^{(H)})] \quad \text{over all } H \in \mathbb{H}, \\ \text{subject to} & V_0^{(H)} = \nu, \text{ a given real number.} \end{cases}$$
(2)

Here $u(x) = 2x^{\frac{1}{2}}$ and $V_2^{(H)}$ is the value process at time T = 2 obtained by using the portfolio $H \in \mathbb{H}$, where \mathbb{H} is the set of all self-financing predictable portfolios. Let \hat{H} denote an optimal portfolio for this problem.

2f) Explain why the optimal value $V_2^{(\hat{H})}$ at time 2 is given as the solution $\hat{W} = (\hat{W}(\omega_1), \hat{W}(\omega_2), \hat{W}(\omega_3), \hat{W}(\omega_4))$ of the following problem

$$\begin{cases} \text{maximize} & \mathbb{E}[u(W)] \\ \text{over all} & W = (W(\omega_1), W(\omega_2), W(\omega_3), W(\omega_4)) \\ \text{subject to} & \mathbb{E}_Q[W] = \nu, \end{cases}$$
(3)

where Q is the measure in 2b).

- 2g) Solve the problem (3) by using Lagrange multipliers.
- 2h) Find the optimal portfolio \hat{H} for the problem (2). (Hint: You may use the result of 2e) above.)