UNIVERSITY OF OSLO
 Faculty of Mathematics and Natural Sciences

Examination in: MAT2700 - Introduction to mathematical finance and investment theory.
Day of examination: Monday, December 12, 2011.
Examination hours: 14.30-18.30.
This problem set consists of 3 pages.
Appendices: None.
Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Remember to give reasons for your answers.

Problem 1.

Consider a one period financial market with $N=2$ securities, $K=3$ scenarios, interest rate $r=0$ and return processes R_{n} and probability measure \mathbb{P} as given in the table below:

ω	$R_{1}(\omega)$	$R_{2}(\omega)$	$P(\omega)$
ω_{1}	0.2	0.15	$1 / 3$
ω_{2}	-0.2	0	$1 / 3$
ω_{3}	0.05	-0.1	$1 / 3$

Let $F_{n}=\frac{H_{n} S_{n}(0)}{V_{0}}$ be the fraction of the total wealth invested in security n at time 0 . Then

$$
V_{1}=\nu\left(1+\sum_{n=1}^{2} F_{n} R_{n}\right)
$$

is the value at time $T=1$ corresponding to F_{1}, F_{2} when the initial value is $\nu>0$.
Suppose shortselling is not allowed. This means that we are required to have

$$
F=\left(F_{1}, F_{2}\right) \in \mathbb{K}
$$

where $\mathbb{K}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, x_{1} \geq 0, x_{2} \geq 0\right\}$.
We want to maximize the expected utility of the terminal wealth under this constraint, i.e., solve the problem

$$
\begin{equation*}
J_{0}(F)=\max _{F \in \mathbb{K}} \mathbb{E}\left[-\exp \left(-V_{1}\right)\right] \tag{1}
\end{equation*}
$$

where $V_{1}=\nu\left(1+\sum_{n=1}^{2} F_{n} R_{n}\right)$ is wealth at time $T=1$ and

$$
u(x)=-\exp (-x), \quad x \in \mathbb{R}
$$

is the exponential utility. To this end, we proceed as follows:

1a) (Step 1) Find the support function δ of \mathbb{K}, defined by

$$
\delta(\kappa)=\sup _{F \in \mathbb{K}}\{-F \cdot \kappa\}, \quad \kappa \in \mathbb{R}^{2}
$$

where $F \cdot \kappa=F_{1} \kappa_{1}+F_{2} \kappa_{2}$ is the scalar product of F and κ.
1b) (Step 2) For $\kappa \in \tilde{\mathbb{K}}=\{\kappa ; \delta(\kappa)<\infty\}$ define the auxiliary market \mathcal{M}_{κ} by specifying the new interest rate to be

$$
r_{\kappa}:=r+\delta(\kappa)=\delta(\kappa)
$$

and the new returns to be

$$
R_{n}^{\kappa}:=R_{n}+\delta(\kappa)+\kappa_{n}, \quad n=1,2 .
$$

Verify that

$$
\begin{aligned}
Q_{\kappa} & =\left(Q_{\kappa}\left(\omega_{1}\right), Q_{\kappa}\left(\omega_{2}\right), Q_{\kappa}\left(\omega_{3}\right)\right) \\
& :=\frac{1}{31}\left(8-40 \kappa_{1}-100 \kappa_{2}, 11+100 \kappa_{1}-60 \kappa_{2}, 12-60 \kappa_{1}+160 \kappa_{2}\right)
\end{aligned}
$$

is a risk neutral probability measure for \mathcal{M}_{κ}, provided that $\kappa \in \tilde{\mathbb{K}}$ and $40 \kappa_{1}+100 \kappa_{2}<8$.

1c) (Step 3) In the following we assume that the markets \mathcal{M}_{κ}, with $\kappa \in \tilde{\mathbb{K}}$ and $40 \kappa_{1}+100 \kappa_{2}<8$, are complete.
For each $\kappa \in \tilde{\mathbb{K}}$ we proceed to solve the unconstrained problem

$$
J_{\kappa}(\nu)=\max _{F \in \mathbb{R}^{2}} \mathbb{E}\left[-\exp \left(-V_{1}^{(\kappa)}\right)\right]
$$

where

$$
V_{1}^{(\kappa)}=\nu\left(1+r_{\kappa}+\sum_{n=1}^{2} F_{n}\left(R_{n}^{(\kappa)}-r_{\kappa}\right)\right)
$$

is the value at $T=1$ in the market \mathcal{M}_{κ} corresponding to the portfolio $F=\left(F_{1}, F_{2}\right) \in \mathbb{R}^{2}$.
Use the risk neutral probability approach to find the optimal terminal wealth

$$
\hat{W}_{\kappa}=\hat{V}_{1}^{(\kappa)}
$$

for this problem, in terms of $L_{\kappa}(\omega)=\frac{Q_{\kappa}(\omega)}{\mathbb{P}(\omega)}, \omega=\omega_{1}, \omega_{2}, \omega_{3}$.
1d) (Step 4) Finally, we proceed to find the optimal terminal wealth $\hat{W}_{\kappa}=\hat{V}_{1}^{(\kappa)}$ of the original unconstrained problem (1) by minimizing

$$
J_{\kappa}(\nu)=\mathbb{E}\left[-\exp \left(-\hat{W}_{\kappa}\right)\right]
$$

over all $\kappa=\left(\kappa_{1}, \kappa_{2}\right) \in \tilde{\mathbb{K}}$. Write down the first order equations for the minimizing $\kappa_{1}=\hat{\kappa}_{1}, \kappa_{2}=\hat{\kappa}_{2}$.
(Continued on page 3.)

Problem 2.

Consider the following $2-$ period market, with $N=1, K=4$, interest rate $r=0$, probability measure $\mathbb{P}=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$ and prices $S\left(t, \omega_{i}\right)$ given by the table below:

ω	$S(0)$	$S(1, \omega)$	$S(2, \omega)$
ω_{1}	3	4	7
ω_{2}	3	2	3
ω_{3}	3	4	3
ω_{4}	3	2	1

Let \mathcal{F}_{t} be the σ-algebra generated by $S(u, \cdot), u \leq t$.
2a) Find \mathcal{F}_{1} and \mathcal{F}_{2}.
2b) Let $Q=\left(Q\left(\omega_{1}\right), Q\left(\omega_{2}\right), Q\left(\omega_{3}\right), Q\left(\omega_{4}\right)\right)=\left(\frac{1}{8}, \frac{1}{4}, \frac{3}{8}, \frac{1}{4}\right)$. Show that Q is a martingale measure for this market.

2c) Find $\mathbb{E}_{Q}\left[Y \mid \mathcal{F}_{1}\right]$ when $Y\left(\omega_{1}\right)=36, Y\left(\omega_{2}\right)=9, Y\left(\omega_{3}\right)=4, Y\left(\omega_{4}\right)=9$.
2d) Find all martingale measures for this market.
2e) Find a (self-financing, predictable) replicating portfolio
$H=\left(H_{0}(t), H_{1}(t)\right), t=1,2$, for the contingent claim Y given in 2c) above.
We want to use the martingale method to solve the following optimal portfolio problem:

$$
\begin{cases}\text { maximize } & \mathbb{E}\left[u\left(V_{2}^{(H)}\right)\right] \quad \text { over all } H \in \mathbb{H}, \tag{2}\\ \text { subject to } & V_{0}^{(H)}=\nu, \text { a given real number }\end{cases}
$$

Here $u(x)=2 x^{\frac{1}{2}}$ and $V_{2}^{(H)}$ is the value process at time $T=2$ obtained by using the portfolio $H \in \mathbb{H}$, where \mathbb{H} is the set of all self-financing predictable portfolios. Let \hat{H} denote an optimal portfolio for this problem.

2f) Explain why the optimal value $V_{2}^{(\hat{H})}$ at time 2 is given as the solution $\hat{W}=\left(\hat{W}\left(\omega_{1}\right), \hat{W}\left(\omega_{2}\right), \hat{W}\left(\omega_{3}\right), \hat{W}\left(\omega_{4}\right)\right)$ of the following problem

$$
\left\{\begin{array}{cl}
\text { maximize } & \mathbb{E}[u(W)] \tag{3}\\
\text { over all } & W=\left(W\left(\omega_{1}\right), W\left(\omega_{2}\right), W\left(\omega_{3}\right), W\left(\omega_{4}\right)\right) \\
\text { subject to } & \mathbb{E}_{Q}[W]=\nu
\end{array}\right.
$$

where Q is the measure in 2 b).
2 g) Solve the problem (3) by using Lagrange multipliers.
2h) Find the optimal portfolio \hat{H} for the problem (2). (Hint: You may use the result of 2 e) above.)

