Timeplan, pensum og eksamensdato

Velg semester

Kort om emnet

Målet for emnet er å gjøre deg bedre i stand til å forstå og forklare matematikken på videregående skole. Vi vil diskutere ting fra skolematematikken fra et avansert synspunkt, og drøfte avanserte matematiske begreper som har en klar sammenheng med skolematematikken, slik at det vil gjøre deg tryggere når du underviser. Det legges vekt på formidling og kommunikasjon.

Hva lærer du?

Etter å ha fullført emnet:

  • har du en god forståelse av tallsystemer og desimalutviklingen til rasjonale tall
  • har du lært sentrale setninger i elementær tallteori
  • kan du bevise formler for overflateareal og volum av romfigurer uten bruk av integraler og begrunne formlene på en elementær måte
  • har du en god forståelse av elementær kombinatorikk og sannsynlighet og kan forklare ulike sannsynlighetsparadokser
  • har du en god forståelse av elementær analyse og kjenner relevante moteksempler
  • kan du forklare definisjonen av tallet e på mange måter
  • kjenner du de grunnleggende ideer som romgeometri og trigonometri er basert på
  • har du lært eksempler på emner du kan bruke i klasserommet for å vise at matematikk er en sentral del av den globale kulturarv 
  • Vil du mestre LaTex som elektronisk verktøy for skriftliggjøring av matematikk.

 

Opptak og adgangsregulering

Studenter må hvert semester søke og få plass på undervisningen og melde seg til eksamen i Studentweb.

Dersom du ikke allerede har studieplass ved UiO, kan du søke opptak til våre studieprogrammer, eller søke om å bli enkeltemnestudent.

Forkunnskaper

Obligatoriske forkunnskaper

Fra og med våren 2019 vil følgende obligatoriske forkunnskaper gjelde: 

Anbefalte forkunnskaper

Det anbefales en bakgrunn med minst 40 studiepoeng matematikk, inkludert MAT1140 - Strukturer og argumenter eller MAT2400 - Reell analyse.

Overlappende emner

10 studiepoeng overlapp mot MAT3010 - Matematikk, skole og kultur

* Vi gjør oppmerksom på at informasjon om overlapp mot gamle og nye emner ikke er fullstendig. Ta eventuelt kontakt med matematisk institutt.

Undervisning

4 timer forelesning/regneøvelse hver uke hele semesteret.

Eksamen

Innlevering av 1 prosjektoppgave innen en gitt frist. Det gis veiledning underveis. Oppgaven må gjøres ved hjelp av et presentasjonsverktøy for matematikk (Latex). Målet er at studenten skal bli kjent med og mestre elektronisk verktøy for skriftliggjøring av matematikk og bli i stand til å presentere eget, matematisk arbeid i elektronisk format. Vurdering av prosjektoppgave vektes 10% når karakter i emnet settes.

Muntlig eksamen som vektes 90% når karakter i emnet settes.

Hjelpemidler

Ingen hjelpemidler er tillatt.

Eksamensspråk

Dersom emnet undervises på engelsk vil det bare tilbys eksamensoppgavetekst på engelsk.

Du kan besvare eksamen på norsk, svensk, dansk eller engelsk.

Karakterskala

Emnet bruker karakterskala fra A til F, der A er beste karakter og F er stryk. Les mer om karakterskalaen.

Begrunnelse og klage

Adgang til ny eller utsatt eksamen

Studenter som dokumenterer gyldig fravær fra ordinær eksamen, kan ta utsatt eksamen i starten av neste semester.

Det tilbys ikke ny eksamen til studenter som har trukket seg under ordinær eksamen, eller som ikke har bestått.

Trekk fra eksamen

Det er mulig å ta eksamen i emnet inntil tre ganger. Dersom du trekker deg fra eksamen etter fristen eller under eksamen, bruker du et eksamensforsøk.

Tilrettelagt eksamen

Søknadskjema, krav og frist for tilrettelagt eksamen.

Evaluering av emnet

Vi gjennomfører fortløpende evaluering av emnet, og med jevne mellomrom ber vi studentene delta i en mer omfattende evaluering.

Fakta om emnet

Studiepoeng

10

Nivå

Master

Undervisning

Hver vår

Eksamen

Hver vår

Undervisningsspråk

Norsk