Homework 1 - Number Theory

Exercise 1. For each of the following algebraic numbers α,

$$
\frac{1+\sqrt{8}}{2}, \cos \left(\frac{2 \pi}{5}\right), \exp \left(\frac{\pi i}{3}\right)
$$

find the minimal polynomial of α over \mathbb{Q} and show that it is irreducible in $\mathbb{Q}[X]$.
Which of these numbers are algebraic integers? For each α which is not an algebraic integer, find the smallest natural number N such that $N \alpha$ is an algebraic integer.

Exercise 2. This exercise shows there is an infinite number of non-isomorphic quadratic number fields. (In contrast, there are only 7 non-isomorphic quadratic extensions of the 2 -adic numbers \mathbb{Q}_{2}.)
a) If F is a quadratic number field, show $F=\mathbb{Q}(\sqrt{m})$ for some square-free integer m.
b) Show uniqueness of m in a) in the following precise sense: If m and m^{\prime} are squarefree integers not equal to 0 or 1 and $\phi: \mathbb{Q}(\sqrt{m}) \rightarrow \mathbb{Q}\left(\sqrt{m^{\prime}}\right)$ is a field isomorphism, then $m=m^{\prime}$.

Exercise 3. The only integer solution of the equation

$$
X^{3}=Y^{2}+1
$$

is given by $X=1$ and $Y=0$.
Exercise 4. a) Determine the units in $\mathbb{Z}\left[\zeta_{3}\right]$ where ζ_{3} is a primitive third root of unity.
b) Let $p>3$ be a prime number and ζ_{p} is a primitive p th root of unity. Show that $1+\zeta_{p}$ is a unit in $\mathbb{Z}\left[\zeta_{p}\right]$. Is it a root of unity?

Exercise 5. a) Let $\overline{\mathbb{Z}}_{M}^{d}$ be the set of algebraic integers α of degree at most d over \mathbb{Q} such that all conjugates of α have absolute value bounded by M. Show that $\# \overline{\mathbb{Z}}_{M}^{d}<\infty$.
b) Suppose α is a nonzero algebraic integer all of whose conjugates lie on or inside the unit circle. Show that α is a root of unity.

