Homework 10 - Number Theory

Exercise 1. Let p be a prime number.

a) The rationals \mathbb{Q} is dense in the *p*-adic numbers \mathbb{Q}_p .

b) The integers \mathbb{Z} is dense in the *p*-adic integers \mathbb{Z}_p .

c) (Weak Approximation.) Suppose K a field with pairwise inequivalent nontrivial valuations $|\cdot|_1, \ldots, |\cdot|_n$ (a.k.a. absolute values). Show that K is dense in $\prod \widehat{K}_i$.

Exercise 2. (Local-to-global.)

a) Show that $x \in \mathbb{Q}$ is a square if and only if it is a square in all completions \mathbb{Q}_v for $v \in M_{\mathbb{Q}}$.

b) The equation

$$(X^2 - 2)(X^2 - 14)(X^2 - 34) = 0$$

has a zero in \mathbb{Q}_v for $v \in M_{\mathbb{Q}}$, but no zero in \mathbb{Q} .

Exercise 3. (Structure of the multiplicative group \mathbb{Q}_2^{\times} .)

a) Show there exist isomorphisms

$$U^{(1)} \cong \mathbb{Z}/2 \times \mathbb{Z}_2$$
 and $U^{(2)} \cong \mathbb{Z}_2$.

Conclude that \mathbb{Q}_2^{\times} is isomorphic to $\mathbb{Z} \times \mathbb{Z}/2 \times \mathbb{Z}_2$.

b) The classes of 2, -1 and 5 generate the group of square classes

$$\mathbb{Q}_2^{\times}/(\mathbb{Q}_2^{\times})^2 \cong (\mathbb{Z}/2)^3$$

c) Tabulate the distinct quadratic extensions of \mathbb{Q}_2 .

Exercise 4. (Continuity of roots.) Let K_v be a local number field and $\alpha, \beta \in \overline{K_v}$. Then we say that β belongs to α if $|\alpha - \beta| < |\sigma(\alpha) - \alpha|$ for every $\sigma \in \text{Gal}(\overline{K_v}/K_v)$ for which $\sigma(\alpha) \neq \alpha$. For $h(X) = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_0 \in K_v[X]$ define $|h| = \max\{|a_i|\}$.

Now suppose $f(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0 \in K_v[X]$ is irreducible and $\alpha \in \overline{K_v}$ is a zero of f. There exists a constant c(f) > 0 such that if $g(X) \in K_v[X]$ is any monic polynomial for which $|g - f| \leq c(f)$, then g has a zero β that belongs to α . Moreover, gis irreducible, deg(f) = deg(g), and $K_v(\alpha) = K_v(\beta)$.