Homework 10 - Number Theory

Exercise 1. Let p be a prime number.
a) The rationals \mathbb{Q} is dense in the p-adic numbers \mathbb{Q}_{p}.
b) The integers \mathbb{Z} is dense in the p-adic integers \mathbb{Z}_{p}.
c) (Weak Approximation.) Suppose K a field with pairwise inequivalent nontrivial valuations $|\cdot|_{1}, \ldots,|\cdot|_{n}$ (a.k.a. absolute values). Show that K is dense in $\prod \widehat{K}_{i}$.

Exercise 2. (Local-to-global.)
a) Show that $x \in \mathbb{Q}$ is a square if and only if it is a square in all completions \mathbb{Q}_{v} for $v \in M_{\mathbb{Q}}$.
b) The equation

$$
\left(X^{2}-2\right)\left(X^{2}-14\right)\left(X^{2}-34\right)=0
$$

has a zero in \mathbb{Q}_{v} for $v \in M_{\mathbb{Q}}$, but no zero in \mathbb{Q}.
Exercise 3. (Structure of the multiplicative group \mathbb{Q}_{2}^{\times}.)
a) Show there exist isomorphisms

$$
U^{(1)} \cong \mathbb{Z} / 2 \times \mathbb{Z}_{2} \text { and } U^{(2)} \cong \mathbb{Z}_{2}
$$

Conclude that \mathbb{Q}_{2}^{\times}is isomorphic to $\mathbb{Z} \times \mathbb{Z} / 2 \times \mathbb{Z}_{2}$.
b) The classes of $2,-1$ and 5 generate the group of square classes

$$
\mathbb{Q}_{2}^{\times} /\left(\mathbb{Q}_{2}^{\times}\right)^{2} \cong(\mathbb{Z} / 2)^{3} .
$$

c) Tabulate the distinct quadratic extensions of \mathbb{Q}_{2}.

Exercise 4. (Continuity of roots.) Let K_{v} be a local number field and $\alpha, \beta \in \overline{K_{v}}$. Then we say that β belongs to α if $|\alpha-\beta|<|\sigma(\alpha)-\alpha|$ for every $\sigma \in \operatorname{Gal}\left(\overline{K_{v}} / K_{v}\right)$ for which $\sigma(\alpha) \neq \alpha$. For $h(X)=a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0} \in K_{v}[X]$ define $|h|=\max \left\{\left|a_{i}\right|\right\}$.

Now suppose $f(X)=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0} \in K_{v}[X]$ is irreducible and $\alpha \in \overline{K_{v}}$ is a zero of f. There exists a constant $c(f)>0$ such that if $g(X) \in K_{v}[X]$ is any monic polynomial for which $|g-f| \leq c(f)$, then g has a zero β that belongs to α. Moreover, g is irreducible, $\operatorname{deg}(f)=\operatorname{deg}(g)$, and $K_{v}(\alpha)=K_{v}(\beta)$.

