Homework 12 - Number Theory

Exercise 1. (Hilbert symbols, continued.) Denote by

$$
(-,-)_{p}: \mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2} \times \mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2} \rightarrow \mu_{2}
$$

the Hilbert symbol for square classes of p-adic numbers.
a) For $a \in \mathbb{Z}_{p}$, let

$$
N_{a}=\left\{z \in \mathbb{Q}_{p}^{\times} \mid z=x^{2}-a y^{2} \text { for some } x, y \in \mathbb{Z}_{p}\right\} .
$$

Show there is an equality $N_{a}=\mathbb{Q}_{p}^{\times}$if and only if $a \in\left(\mathbb{Q}_{p}^{\times}\right)^{2}$.
b) The Hilbert symbol $(-,-)_{p}$ is a symmetric nondegenerate bilinear form.

If v is a discrete valuation on a field F, the associated tame symbol is the map

$$
\tau_{v}: F^{\times} \times F^{\times} \rightarrow k_{v}^{\times}
$$

defined by

$$
(a, b) \mapsto(-1)^{v(a) v(b)} a^{v(b)} b^{-v(a)}+\mathfrak{m}_{v} .
$$

(This defines an element of k_{v}^{\times}because $v\left(\pm a^{v(b)} b^{-v(a)}\right)=0$.)
c) Suppose p is an odd prime and $a, b \in \mathbb{Q}_{p}^{\times}$. Identify $\{ \pm \overline{1}\}$ in the residue field $\mathbb{Z}_{p} / p \mathbb{Z}_{p} \cong$ \mathbb{F}_{p} with $\mu_{2}=\mathbb{Z}^{\times}$. Verify the formula

$$
(a, b)_{p}=\tau_{p}(a, b)^{\frac{p-1}{2}}
$$

where $\tau_{p}(-,-)$ is the tame symbol associated to the p-adic valuation on \mathbb{Q}_{p}.
If $a \in \mathbb{Q}_{2}^{\times}$there is a unique expression $a=2^{i}(-1)^{j} 5^{k} r$ where $i \in \mathbb{Z}, j, k \in\{0,1\}$ and $r \in 1+8 \mathbb{Z}_{2}=\left(\mathbb{Z}_{2}^{\times}\right)^{2}$. Likewise, if $b \in \mathbb{Q}_{2}^{\times}$, write $a=2^{I}(-1)^{J} 5^{K} s$.
d) Verify the formula

$$
(a, b)_{2}=(-1)^{i K+j J+k I} .
$$

e) Compute the Hilbert symbols of \mathbb{R} and \mathbb{C}.

Exercise 2. (Group (co)homology.)
a) (Shapiro's lemma.) Let H be a subgroup of G. For any H-module N, there is a canonical isomorphism

$$
H^{r}\left(G, \operatorname{Ind}_{H}^{G} N\right) \cong H^{r}(H, N)
$$

for all $r \geq 0$. Conclude that if M is an induced G-module, then $H^{r}(G, M)=0$ for $r>0$.
b) (Cup-products.) For classes $m \in H^{r}(G, M)$ and $n \in H^{r}(G, N)$ represented by cocycles ϕ and ρ, respectively, the cup-product $m \cup n$ is represented by the cocycle

$$
\left(g_{1}, \ldots, g_{r+s}\right) \mapsto \phi\left(g_{1}, \ldots, g_{r}\right) g_{1} \cdots g_{r} \rho\left(g_{r+1}, \ldots, g_{r+s}\right)
$$

Show that the cup-product is well-defined and verify the formulas

$$
(k \cup m) \cup n=k \cup(m \cup n), \quad m \cup n=(-1)^{r s} n \cup m .
$$

c) If there is an exact sequence of G-modules

$$
0 \rightarrow M^{\prime} \rightarrow \underset{1}{M} \rightarrow M^{\prime \prime} \rightarrow 0
$$

and two of the Herbrand quotients $h(M), h\left(M^{\prime}\right), h\left(M^{\prime \prime}\right)$ are defined, then is is the third, and

$$
h(M)=h\left(M^{\prime}\right) h\left(M^{\prime \prime}\right) .
$$

d) Read Chapter II of J. Milne's notes on class field theory:
http : //www.jmilne.org/math/CourseNotes/CFT.pdf

Exercise 3. Let $m>0$ be a square-free integer and $K=\mathbb{Q}(\sqrt{m})$.
a) Show there is an isomorphism

$$
\mathcal{O}_{K}^{\times} \cong \mathbb{Z} / 2 \times \mathbb{Z}
$$

Conclude that the equation $x^{2}-m y^{2}=1$ has infinitely many integer solutions when $m \equiv 2,3 \bmod 4$, while the equation $x^{2}-m y^{2}=4$ has infinitely many integer solutions when $m \equiv 1 \bmod 4$.
b) If $m \equiv 2,3 \bmod 4$, let b be the smallest positive integer such that one of $m b^{2} \pm 1$ is a square a^{2} for $a>0$. Show that $a+b \sqrt{m}$ is a fundamental unit of K. Determine the fundamental unit of K when $m=2$ and $m=3$.
c) Devise an algorithm computing the fundamental unit of K when $m \equiv 1 \bmod 4$. Determine the fundamental unit for $\mathbb{Q}(\sqrt{5})$.

