Homework 14 - Number Theory

Exercise 1. (Adeles, ideles.) Let K be a number field.

a) Suppose *H* is a discrete subgroup of a Hausdorff topological group *G*. Show that *H* is closed in *G*. Deduce that *K* is a closed additive subgroup of \mathbb{A}_K .

b) The $\mathbb{A}_{\mathbb{Q}}$ -subspace topology on $\mathbb{I}_{\mathbb{Q}}$ does not coincide with the usual topology on the rational ideles.

c) Show that \mathbb{A}_K is a topological ring.

d) Show the equality

$$\mathbb{Q} + \left(\left[-\frac{1}{2}, \frac{1}{2} \right] \times \prod_{p \in \operatorname{Max}(\mathbb{Z})} \mathbb{Z}_p \right) = \mathbb{A}_{\mathbb{Q}}.$$

e) The volume map $\mathbb{I}_K \to \mathbb{R}_{>0}$ is continuous.

Exercise 2. a) Identify $\mathbb{I}_{\mathbb{O}}$ with

$$\mathbb{Q}^{\times} \times \mathbb{R} \times \widehat{\mathbb{Z}}^{\times}$$

and the idele class group $C_{\mathbb{Q}}$ of the rationals with

$$\mathbb{R} \times \mathbb{Z}^{\times}$$
.

b) Conclude there is an isomorphism

$$C^0_{\mathbb{Q}} \cong \widehat{\mathbb{Z}}^{\times}.$$

Identify $C^0_{\mathbb{Q}}$ with the Galois group of a certain field extension of the rationals.

Exercise 3. (Tate's computation of the second K-group of the rationals.)

By the universal property of K_2 , restricting the tame symbol τ_p for p odd and the Hilbert symbol $(-, -)_2$ to the rationals \mathbb{Q} induce maps

$$\overline{\lambda_p} \colon K_2(\mathbb{Q}) \to R_p$$

for each $p \in Max(\mathbb{Z})$. Here $R_p = (\mathbb{Z}/p)^{\times}$ if p is odd, and $R_2 = \mathbb{Z}/2$. Show that

$$\prod_{p \in \operatorname{Max}(\mathbb{Z})} \overline{\lambda_p} \colon K_2(\mathbb{Q}) \to \prod_{p \in \operatorname{Max}(\mathbb{Z})} R_p$$

is an isomorphism.

(Hint: Consider the subgroup Λ_n of $K_2(\mathbb{Q})$ generated by symbols $\{a, b\}$, where a and b are units or primes less or equal to n. With this definition, $K_2(\mathbb{Q})$ is the direct limit of the groups Λ_n . Use induction to show there is an isomorphism

$$\Lambda_p \cong \prod_{2 \le q \le p} R_q.)$$