Homework 2 - Number Theory

Exercise 1. Let $F=\mathbb{Q}(\alpha)$ where α is the unique positive fourth root of 3 in \mathbb{R}.
a) Find the matrix φ_{β} of the multiplication by $\beta=\alpha^{2}-2 \alpha-1$ map on F. Compute $N_{F / \mathbb{Q}}(\beta)$ and $\operatorname{Tr}_{F / \mathbb{Q}}(\beta)$.
b) Find the zeros of the minimal polynomial $p_{\alpha, \mathbb{Q}}(X)$ of α in \mathbb{C} and the images of β under the four embeddings of F into \mathbb{C}.
c) Determine the characteristic polynomials $\chi_{\alpha, \mathbb{Q}}(X), \chi_{\alpha^{2}, \mathbb{Q}}(X)$ and $\chi_{\alpha-1, \mathbb{Q}}(X)$.
d) Compute $\operatorname{Tr}\left(\alpha^{i}\right)$ for $0 \leq i \leq 3$, the 4×4-matrix with entries $\operatorname{Tr}\left(\alpha^{i-1} \alpha^{j-1}\right)$ and the discriminant $\Delta_{F / \mathbb{Q}}\left(1, \alpha, \alpha^{2}, \alpha^{3}\right)$.

Exercise 2. a) Show that $\overline{\mathbb{Q}}$ is not a number field.
b) Let F be a number field. Its multiplicative group of roots of unity is defined by

$$
\mu(F)=\left\{\alpha \in F \mid \alpha^{n}=1 \text { for some } n \in \mathbb{N}\right\}
$$

Show that $\mu(F)$ is a finite group. (It follows that $\mu(F)$ is cyclic.)
c) Show that the ring $\overline{\mathbb{Z}}$ of all algebraic integers is not Noetherian.
d) Let $\overline{\mathbb{Z}}_{d}^{M}$ be the set of algebraic integers α of degree at most d over \mathbb{Q} such that α has absolute value bounded by M. Is it true that $\# \overline{\mathbb{Z}}_{d}^{M}<\infty$?

Exercise 3. Let F be a number field and $L=F(\alpha)$ with minimal polynomial $p_{\alpha}(X)$ of degree m.
a) Verify the formula $\Delta_{L / K}\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{m-1}\right)=(-1)^{\frac{m(m-1)}{2}} N_{L / K}\left(p_{\alpha}^{\prime}(\alpha)\right)$.
b) Compute $\Delta_{L / K}\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{m-1}\right)$ when $p_{\alpha}(X)=X^{m}+a X+b$.
(Answer: $(-1)^{\frac{m(m-1)}{2}}\left(m^{m} b^{m-1}+(-1)^{m-1}(m-1)^{m-1} a^{m}\right)$).
c) Let $L=\mathbb{Q}(\alpha)$ where $\alpha^{3}-\alpha=1$. Show that $\mathcal{O}_{L}=\mathbb{Z}[\alpha]$.

Exercise 4. a) Read the statement and proof of Proposition 2.11 in the textbook.
b) Identify \mathcal{O}_{F} for $F=\mathbb{Q}(\sqrt{2}+\sqrt{5})$.
c) Prove Proposition 2.12 in the textbook.
d) If $\alpha^{3}=\alpha+4$, show that $\mathcal{O}_{\mathbb{Q}(\alpha)}=\mathbb{Z}\{1\} \oplus \mathbb{Z}\{\alpha\} \oplus \mathbb{Z}\left\{\frac{\alpha^{2}+\alpha}{2}\right\}$ as abelian groups.

Exercise 5. Let F be a number field.
a) Prove Stickelberger's theorem (1897): The discriminant $\Delta_{F} \equiv 0,1 \bmod 4$.
b) Prove Kronecker's theorem (1882): The sign of Δ_{F} equals $(-1)^{c}$ where c is the number of pairs of complex embeddings of $F(\sigma: F \hookrightarrow \mathbb{C}$ with image not contained in $\mathbb{R})$.

Exercise 6. a) If L / K is inseparable, show that $\operatorname{Tr}_{L / K}=0$.
b) Explicate the proof in a) for your favorable inseparable field extension.

