Homework 3 - Number Theory

Exercise 1. Let F be a number field and $\alpha \in F$ a nonzero algebraic integer of degree $n=[F: \mathbb{Q}]$. Suppose the minimal polynomial $p_{\alpha, \mathbb{Q}}(X)=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}$ is Eisenstein with respect to the rational prime $p\left(p \mid a_{i}\right.$ for $0 \leq i \leq n-1$ and $\left.p^{2} X a_{0}\right)$.
a) Show that $p \mid\left[\mathcal{O}_{F}: \mathbb{Z}[\alpha]\right]$ implies there exists an element $\xi \in \mathcal{O}_{F}$ such that $p \xi \in \mathbb{Z}[\alpha]$ and $\xi \notin \mathbb{Z}[\alpha]$.
b) Write $p \xi=b_{0}+b_{1} \alpha+\cdots+b_{n-1} \alpha^{n-1}$ where $b_{i} \in \mathbb{Z}$ and let j be the smallest index $0 \leq j \leq n-1$ for which $p \nmid b_{j}$. Show that

$$
\frac{b_{j}}{p} \alpha^{j}+\cdots+\frac{b_{n-1}}{p} \alpha^{n-1} \in \mathcal{O}_{F} .
$$

Deduce that $N_{F / \mathbb{Q}}\left(\frac{b_{j}}{p} \alpha^{n-1}\right) \in \mathbb{Z}$.
c) Prove that $p X\left[\mathcal{O}_{F}: \mathbb{Z}[\alpha]\right]$.
d) Show that (p) is totally ramified in \mathcal{O}_{F} (only one prime lies above (p) in \mathcal{O}_{F} and it has ramification index n).
e) Show that $\mathcal{O}_{\mathbb{Q}(\sqrt[3]{2})}=\mathbb{Z}[\sqrt[3]{2}]$.
f) Find the prime factorizations of (5), (7), (29) and (31) in $\mathbb{Z}[\sqrt[3]{2}]$. Compare the residue class degrees of the prime ideals lying above (5).

Exercise 2. Let α be a zero of $f(X)=X^{3}+10 X+1$ and β a zero of $g(X)=$ $X^{3}-8 X+15$. Set $F=\mathbb{Q}(\alpha)$ and $E=\mathbb{Q}(\beta)$.
a) Show that $\mathcal{O}_{F}=\mathbb{Z}[\alpha]$ and $\mathcal{O}_{E}=\mathbb{Z}[\beta]$.
b) Find the prime factorizations of (17) in \mathcal{O}_{F} and \mathcal{O}_{E}.
c) Conclude there exist non-isomorphic cubic number fields with the same discriminant.
d) Examples of non-isomorphic quadratic number fields with the same discriminant?

Exercise 3. a) Verify that $\mathbb{Z}[\sqrt{-13}]$ is not a unique factorization domain by finding two distinct factorizations of the same element.
b) In $\mathbb{Z}[\sqrt{-5}]$ let $\mathfrak{p}_{1}=(2,1+\sqrt{-5}), \mathfrak{p}_{2}=(2,1-\sqrt{-5}), \mathfrak{p}_{3}=(3,1+\sqrt{-5}), \mathfrak{p}_{4}=$ $(3,1-\sqrt{-5})$. Show that \mathfrak{p}_{i} is a maximal ideal and identify its residue field (for $1 \leq i \leq 4$). Verify the factorizations $(2)=\mathfrak{p}_{1} \mathfrak{p}_{2},(3)=\mathfrak{p}_{3} \mathfrak{p}_{4},(1+\sqrt{-5})=\mathfrak{p}_{1} \mathfrak{p}_{3},(1-\sqrt{-5})=\mathfrak{p}_{2} \mathfrak{p}_{4}$.
c) In $\mathbb{Z}[\sqrt{-3}]$ let $\mathfrak{p}=(2,1+\sqrt{-3})$. Show that $\mathfrak{p}^{2}=(2) \mathfrak{p}, \mathfrak{p} \neq(2)$. Does this contradict the result that in Dedekind rings every ideal admits a unique factorization into prime ideals?

Exercise 4. a) Suppose $\mathfrak{a} \neq 0$ is an ideal in a Dedekind ring R. Then R / \mathfrak{a} has only finitely many prime ideals $\overline{\mathfrak{p}}_{i}$ (say $1 \leq i \leq n$) and there exist uniquely determined natural numbers e_{i} with the following property: For all natural numbers $e_{1}^{\prime}, \ldots, e_{n}^{\prime}, \overline{\mathfrak{p}}_{1}^{e_{1}^{\prime}} \cdots \overline{\mathfrak{p}}_{n}^{e_{n}^{\prime}}=0$ if and only if $e_{i}^{\prime} \geq e_{i}$ for all i. Moreover, for the prime ideals $\mathfrak{p}_{i} \in \operatorname{Spec}(R)$ (here \mathfrak{p}_{i} is the inverse image of $\overline{\mathfrak{p}}_{i}$ under the natural surjection $\left.R \rightarrow R / \mathfrak{a}\right), \mathfrak{a}=\prod \mathfrak{p}_{i}^{e_{i}}$.
b) Learn the main ideas in the proofs of Propositions 8.2, 8.3, and Theorem 8.6.

