Homework 4 - Number Theory

Exercise 1. Let \mathfrak{a} be a non-zero ideal in \mathcal{O}_{F} for a number field F. The norm $N(\mathfrak{a})$ of \mathfrak{a} is the number of elements in $\mathcal{O}_{F} / \mathfrak{a}$.
a) If $\alpha \in \mathcal{O}_{F}$ show the equality $N\left((\alpha) \mathcal{O}_{F}\right)=\left|N_{F / \mathbb{Q}}(\alpha)\right|$.
b) If $\mathfrak{p} \cap \mathbb{Z}=(p)$, then $N(\mathfrak{p})=p^{f(\mathfrak{p} / p)}$ where $f(\mathfrak{p} / p)$ is the residue class degree.
c) If $\mathfrak{p} \in \operatorname{Spec}\left(\mathcal{O}_{F}\right)$, then $N\left(\mathfrak{p}^{m}\right)=N(\mathfrak{p})^{m}$ for all $m \geq 1$.
d) Prove the ideal norm is multiplicative; that is, $N(\mathfrak{a b})=N(\mathfrak{a}) N(\mathfrak{b})$ for all non-zero ideals \mathfrak{a} and \mathfrak{b} of \mathcal{O}_{F}.

Exercise 2. Let F be a number field of degree n over the rationals.
a) Show that $n=r+2 c$ where r is the number of real embeddings of F and c is the number of pairs of complex embeddings of F.

In what follows, F is the splitting field of $f(X) \in \mathbb{Q}[X]$ with zeros $\alpha_{1}, \ldots, \alpha_{m}$ in \mathbb{C}.
b) Suppose $\sigma: F \hookrightarrow \mathbb{C}$ is an embedding of F into \mathbb{C}. Show that $\sigma\left(\alpha_{i}\right)$ is a zero of $f(X)$ for all $1 \leq i \leq m$. Deduce that σ permutes the zeros of $f(X)$, i.e. $\sigma\left(\alpha_{i}\right)=\alpha_{\pi(i)}$ for some $\pi \in \Sigma_{m}$ and all i, and $\sigma(F)=F$.
c) If $\alpha_{i} \in \mathbb{R}$ for $1 \leq i \leq m$, show that $r=n$ and $c=0$.
d) If $\alpha_{i} \in \mathbb{C} \backslash \mathbb{R}$ for some $1 \leq i \leq m$, show that $r=0$ and $2 c=n$.

Exercise 3. Show that the degree 2 extension $\mathbb{Q}(\sqrt{-1}, \sqrt{5})$ of $\mathbb{Q}(\sqrt{-5})$ is unramified.
(In conjunction with class field theory, the above implies $\mathbb{Q}(\sqrt{-1}, \sqrt{5})$ is the only abelian unramified extension of $\mathbb{Q}(\sqrt{-5})$ since the ideal class group of $\mathbb{Z}[\sqrt{-5}]$ has order 2.)

Exercise 4. Read $\S 10$. Cyclotomic Fields in the textbook and solve the following exercises.
a) If $n \mid m$ then $\mathbb{Q}\left(\zeta_{n}\right) \subseteq \mathbb{Q}\left(\zeta_{m}\right)$. If n is odd then $\mathbb{Q}\left(\zeta_{n}\right)=\mathbb{Q}\left(\zeta_{2 n}\right)$.

In the following, let $n \geq 3$ and $\mathbb{Q}\left(\zeta_{n}\right)^{+}$be the subfield $\mathbb{Q}\left(\zeta_{n}\right) \cap \mathbb{R}$ of $\mathbb{Q}\left(\zeta_{n}\right)$.
b) Show that $\theta_{n}=\zeta_{n}+\zeta_{n}^{-1}=2 \cos \left(\frac{2 \pi}{n}\right)$ and deduce $\mathbb{Q}\left(\theta_{n}\right) \subseteq \mathbb{Q}\left(\zeta_{n}\right)^{+}$.
c) Show that ζ_{n} is a zero of a quadratic polynomial with coefficients in $\mathbb{Q}\left(\theta_{n}\right)$. Deduce that $\left[\mathbb{Q}\left(\zeta_{n}\right): \mathbb{Q}\left(\theta_{n}\right)\right]=2$ and $\mathbb{Q}\left(\theta_{n}\right)=\mathbb{Q}\left(\zeta_{n}\right)^{+}$.
d) For which values of n is $\mathbb{Q}\left(\zeta_{n}\right)^{+}$a quadratic number field? Write each of these fields on the form $\mathbb{Q}(\sqrt{d})$ for $d \neq 0,1$ square-free.

Exercise 5. a) Suppose $f(X) \in \mathbb{Z}[X]$ is non-constant. Prove that there exist infinitely many rational primes p for which $f(X)$ has a zero modulo p.
b) Suppose F is a number field with rings of integers $\mathcal{O}_{F}=\mathbb{Z}[\alpha]$ for some α. Prove that there exist infinitely many prime ideals \mathfrak{p} of \mathcal{O}_{F} such that $f(\mathfrak{p} / p)=1$, where $\mathfrak{p} \cap \mathbb{Z}=(p)$.
c) There exist infinitely many rational primes congruent to 1 modulo n for every natural number n.

