Homework 5 - Number Theory

Exercise 1. Let L / K be a Galois extension of number fields with Galois group G and suppose $\mathfrak{q} \in \operatorname{Spec}\left(\mathcal{O}_{L}\right)$ lies above $\mathfrak{p} \in \operatorname{Spec}\left(\mathcal{O}_{K}\right)$. If K^{\prime} is an intermediate field between K and L, define $\mathfrak{p}^{\prime}=\mathfrak{q} \cap \mathcal{O}_{K^{\prime}} \in \operatorname{Spec}\left(\mathcal{O}_{K^{\prime}}\right)$. Denote the corresponding decomposition groups by $G_{\mathfrak{q} / \mathfrak{p}}$ and $G_{\mathfrak{q} / \mathfrak{p}^{\prime}}$ and likewise for the inertia groups.
a) Let H be a subgroup of G and set $K^{\prime}=L^{H}$. Show that $G_{\mathfrak{q} / \mathfrak{p}^{\prime}}=G_{\mathfrak{q} / \mathfrak{p}} \cap H$ and $I_{\mathfrak{q} / \mathfrak{p}^{\prime}}=I_{\mathfrak{q} / \mathfrak{p}} \cap H$.
b) The decomposition field $Z_{\mathfrak{q}}$ is the largest intermediate field K^{\prime} for which $e\left(\mathfrak{p}^{\prime} / \mathfrak{p}\right)=$ $f\left(\mathfrak{p}^{\prime} / \mathfrak{p}\right)=1$.
c) The inertia field $T_{\mathfrak{q}}$ is the largest intermediate field K^{\prime} for which $e\left(\mathfrak{p}^{\prime} / \mathfrak{p}\right)=1$.
d) Suppose L_{1} and L_{2} are finite extensions of K. Then \mathfrak{p} is unramified (resp. totally split) in both L_{1} and L_{2} if and only if \mathfrak{p} is unramified (resp. totally split) in $L_{1} L_{2}$.
e) The Galois group G is generated by the Frobenius elements $\mathfrak{F r} \mathfrak{r}_{\mathfrak{q}}$ of all unramified prime ideals \mathfrak{q} of $\operatorname{Spec}\left(\mathcal{O}_{L}\right)$. (Hint: Use Corollary 13.7 in the textbook: If almost every prime ideal in a finite field extension K^{\prime} / K is totally split, then $K=K^{\prime}$.)

Exercise 2. Suppose F / \mathbb{Q} is a Galois extension with Galois group Σ_{3}. Let K be the unique quadratic number field contained in F and L a cubic extension of the rationals contained in F. Denote by $\mathfrak{q} \in \operatorname{Spec}\left(\mathcal{O}_{F}\right)$ an unramified prime lying above the rational prime p with corresponding Frobenius element $\mathfrak{F r}_{\mathfrak{q}} \in \Sigma_{3}$. Determine the factorization of p in F, L and K if
a) $\mathfrak{F r} \mathfrak{r}_{\mathfrak{q}}=1$,
b) $\mathfrak{F r} \mathfrak{r}_{\mathfrak{q}}$ has order 2 ,
c) $\mathfrak{F r}_{\mathfrak{q}}$ has order 3 .

Give an example of a number field F as above.
Exercise 3. Let p be an odd prime number and assume $p \nmid a b$ for $a, b \in \mathbb{Z}$.
a) Show the formulas

$$
\begin{gathered}
\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) \\
\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \bmod p
\end{gathered}
$$

for the Legendre symbol mod p.
b) Is 59 a quadratic residue modulo 97 ?
c) Show the supplementary quadratic reciprocity law

$$
\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}= \begin{cases}1 & p \equiv \pm 1 \bmod 8 \\ -1 & p \equiv \pm 3 \bmod 8\end{cases}
$$

by computing in $\mathbb{Q}\left(\zeta_{8}\right)$ and its subfield $\mathbb{Q}(\sqrt{2})$.
d) For $p>3$,

$$
\left(\frac{6}{p}\right)= \begin{cases}1 & p \equiv \pm 1, \pm 5 \bmod 24 \\ -1 & p \equiv \pm 7, \pm 11 \bmod 24\end{cases}
$$

Exercise 4. Suppose F is a number field. Define the codifferent of F by

$$
\mathfrak{c}_{F}=\left\{\beta \in F \mid \operatorname{Tr}_{F / \mathbb{Q}}(\alpha \beta) \in \mathbb{Z} \text { for all } \alpha \in \mathcal{O}_{F}\right\}
$$

a) Show that $\mathcal{O}_{F} \subseteq \mathfrak{c}_{F}$.
b) Let $\alpha_{1}, \ldots \alpha_{n}$ be an integral \mathbb{Q}-basis of F with dual basis elements $\beta_{1}, \ldots, \beta_{n}$ for the non-degenerate symmetric bilinear form $\langle,\rangle_{F / \mathbb{Q}}$ defined by $\operatorname{Tr}_{F / \mathbb{Q}}$. Show that \mathfrak{c}_{F} is a fractional ideal of F contained in the fractional ideal generated by β_{i} for $1 \leq i \leq n$.
c) The different $\mathfrak{d}_{F}=\mathfrak{c}_{F}^{-1}$ of F is an integral ideal.
d) Write $\beta_{i}=\Sigma_{j} c_{i, j} \alpha_{j}$ where $c_{i, j} \in \mathbb{Q}$. Then $\mathfrak{c}_{F}=\mathbb{Z}\left\{\beta_{1}\right\}+\cdots+\mathbb{Z}\left\{\beta_{n}\right\}$ and $N\left(\mathfrak{c}_{F}\right)=$ $\left|\operatorname{det}\left(c_{i, j}\right)\right|$. Use duality of the basis elements to deduce that $N\left(\mathfrak{d}_{F}\right)=\left|\Delta_{F}\right|$.

Let \mathfrak{p} be a prime ideal of \mathcal{O}_{F} lying above the rational prime p. Write $(p) \mathcal{O}_{F}=\mathfrak{p}^{e(\mathfrak{p} / p)-1} \mathfrak{a}$ for an integral ideal \mathfrak{a} of F.
e) Verify the inclusion $\operatorname{Tr}_{F / \mathbb{Q}}(\mathfrak{a}) \subseteq(p)$.
f) Verify that $p^{-1} \mathcal{O}_{F}=\left((p) \mathcal{O}_{F}\right)^{-1},\left((p) \mathcal{O}_{F}\right)^{-1} \mathfrak{a} \subseteq \mathfrak{c}_{F}$ and $\mathfrak{p}^{e(\mathfrak{p} / p)-1} \mid \mathfrak{d}_{F}$.
g) Conclude that p ramifies in F if and only if p divides Δ_{F}.

