Homework 6 - Number Theory

Exercise 1. a) Let $r, c \geq 0$ be integers such that $r+2 c=n \geq 1$ and let $t>0 \in \mathbb{R}$. Show that the region

$$
R_{t}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}| | x_{1}\left|+\cdots+\left|x_{r}\right|+2 \sqrt{x_{r+1}^{2}+x_{r+2}^{2}}+\cdots+2 \sqrt{x_{n-1}^{2}+x_{n}^{2}} \leq t\right\}\right.
$$

is compact, convex, symmetric about the origin, and of volume $2^{r}\left(\frac{\pi}{2}\right)^{c t} \frac{t^{n}}{n!}$.
b) Let K be a number field of degree n with r real embeddings and c pairs of complex embeddings. Define the map

$$
\varphi: K \rightarrow \mathbb{R}^{n}
$$

by

$$
\alpha \mapsto\left(\sigma_{1}(x), \ldots, \sigma_{r+c}(x)\right)
$$

via the usual identification $\mathbb{C} \cong \mathbb{R}^{2}$. If $\psi(x) \in R_{t}$ show that $\left|N_{K / \mathbb{Q}}(x)\right| \leq \frac{t^{n}}{n^{n}}$.
c) Let R be a bounded region of \mathbb{R}^{n} and Γ a full lattice with fundamental domain of volume V. If all translates of R under Γ are disjoint, then $\operatorname{vol}(R) \leq V$. The intersection $\Gamma \cap R$ comprises only a finite number of points.
d) Suppose $R \subseteq \mathbb{R}^{n}$ compact, convex and symmetric about the origin and $\Gamma \subseteq \mathbb{R}^{n}$ as in c). If $\operatorname{vol}(R) \geq 2^{n} V$, then $(\Gamma \backslash\{0\}) \cap R \neq \emptyset$.

Exercise 2. Dirichlet's unit theorem for orders in number fields.
a) Read $\S 12$ in the textbook.

Let R be an order in a number field K. Define the map

$$
\Psi: K^{\times} \rightarrow \mathbb{R}^{r+c}
$$

by

$$
\alpha \mapsto\left(\log \left|\sigma_{1}(\alpha)\right|, \ldots, \log \left|\sigma_{r}(\alpha)\right|, 2 \log \left|\sigma_{r+1}(\alpha)\right|, \ldots, 2 \log \left|\sigma_{r+c}(\alpha)\right|\right)
$$

(This is a group homomorphism from the group of units K^{\times}under multiplication to the additive group \mathbb{R}^{r+c}.) Consider the claim:

The image $\Psi\left(R^{\times}\right) \subseteq \mathbb{R}^{r+c}$ is a lattice of rank $r+c-1$, spanning the hyperplane $H: x_{1}+\cdots+x_{r+c}=0$.
b) The claim (1) implies

$$
R^{\times} \cong \mu(R) \times \mathbb{Z}^{r+c-1}
$$

c) Show that $\Psi\left(R^{\times}\right)$is a lattice contained in the hyperplane H.
(Hint: If $A \subseteq \mathbb{R}^{n}$ is an additive subgroup such that $A \cap B$ is a finite set for every bounded region $B \subseteq \mathbb{R}^{n}$, then A is a lattice.)
d) For any set of $r+c$ positive real numbers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r+c}\right)$ let P_{λ} be the region of \mathbb{R}^{n} comprising elements $\left(x_{1}, \ldots, x_{n}\right)$ with $\left|x_{i}\right| \leq \lambda_{i}$ for $1 \leq i \leq r$ and $x_{r+2 i-1}^{2}+x_{r+2 i}^{2} \leq \lambda_{r+i}$ for $1 \leq i \leq c$. Show that P_{λ} is compact, convex and symmetric about the origin, and has volume $2^{r} \pi^{c} \prod_{i=1}^{r+c} \lambda_{i}$.
e) Show that $\Psi\left(R^{\times}\right)$spans the hyperplane H.
(Hint: There exists a bounded region S of the hyperplane H such that its translates under $\Psi\left(R^{\times}\right)$cover H.)

Exercise 3. a) Read $\S 7$ in the textbook.
b) Show the regulator of a number field does not dependent on any choices.
c) Discuss the regulator of a real quadratic number field.

Exercise 4. Let $d>0$ be a square-free positive integer such that (i) $d \equiv 1,2 \bmod 4$, (ii) $d \neq 3 a^{2} \pm 1$ for any integer a, (iii) 3 does not divide the class number of $\mathbb{Q}(\sqrt{-d})$.
a) Give examples of integers satisfying conditions (i)-(iii).
b) The equation $y^{2}=x^{3}-d$ has no integer solutions.
c) All of the assumptions on d are required for the conclusion in \mathbf{b}).

Exercise 5. Compute the ideal class groups of $\mathbb{Q}(\sqrt{-14})$ and $\mathbb{Q}(\sqrt{-21})$.

