Homework 6 - Number Theory

Exercise 1. a) Let $r, c \ge 0$ be integers such that $r + 2c = n \ge 1$ and let $t > 0 \in \mathbb{R}$. Show that the region

$$R_t = \{(x_1, \dots, x_n) \in \mathbb{R}^n | |x_1| + \dots + |x_r| + 2\sqrt{x_{r+1}^2 + x_{r+2}^2} + \dots + 2\sqrt{x_{n-1}^2 + x_n^2} \le t\}$$

is compact, convex, symmetric about the origin, and of volume $2^r (\frac{\pi}{2})^c \frac{t^n}{n!}$.

b) Let K be a number field of degree n with r real embeddings and c pairs of complex embeddings. Define the map $\varphi \colon K \to \mathbb{R}^n$

by

$$\alpha \mapsto (\sigma_1(x), \dots, \sigma_{r+c}(x))$$

via the usual identification $\mathbb{C} \cong \mathbb{R}^2$. If $\psi(x) \in R_t$ show that $|N_{K/\mathbb{Q}}(x)| \leq \frac{t^n}{n^n}$.

c) Let R be a bounded region of \mathbb{R}^n and Γ a full lattice with fundamental domain of volume V. If all translates of R under Γ are disjoint, then $\operatorname{vol}(R) \leq V$. The intersection $\Gamma \cap R$ comprises only a finite number of points.

d) Suppose $R \subseteq \mathbb{R}^n$ compact, convex and symmetric about the origin and $\Gamma \subseteq \mathbb{R}^n$ as in **c**). If $\operatorname{vol}(R) \geq 2^n V$, then $(\Gamma \setminus \{0\}) \cap R \neq \emptyset$.

Exercise 2. Dirichlet's unit theorem for orders in number fields. **a**) Read §12 in the textbook.

Let R be an order in a number field K. Define the map

$$\Psi\colon K^{\times} \to \mathbb{R}^{r+c}$$

by

$$\alpha \mapsto (\log |\sigma_1(\alpha)|, \dots, \log |\sigma_r(\alpha)|, 2\log |\sigma_{r+1}(\alpha)|, \dots, 2\log |\sigma_{r+c}(\alpha)|)$$

(This is a group homomorphism from the group of units K^{\times} under multiplication to the additive group \mathbb{R}^{r+c} .) Consider the claim:

(1) The image $\Psi(R^{\times}) \subseteq \mathbb{R}^{r+c}$ is a lattice of rank r+c-1, spanning the hyperplane $H: x_1 + \dots + x_{r+c} = 0$.

b) The claim (1) implies

$$R^{\times} \cong \mu(R) \times \mathbb{Z}^{r+c-1}$$

c) Show that $\Psi(R^{\times})$ is a lattice contained in the hyperplane H.

(Hint: If $A \subseteq \mathbb{R}^n$ is an additive subgroup such that $A \cap B$ is a finite set for every bounded region $B \subseteq \mathbb{R}^n$, then A is a lattice.)

d) For any set of r + c positive real numbers $\lambda = (\lambda_1, \ldots, \lambda_{r+c})$ let P_{λ} be the region of \mathbb{R}^n comprising elements (x_1, \ldots, x_n) with $|x_i| \leq \lambda_i$ for $1 \leq i \leq r$ and $x_{r+2i-1}^2 + x_{r+2i}^2 \leq \lambda_{r+i}$ for $1 \leq i \leq c$. Show that P_{λ} is compact, convex and symmetric about the origin, and has volume $2^r \pi^c \prod_{i=1}^{r+c} \lambda_i$.

e) Show that $\Psi(R^{\times})$ spans the hyperplane H.

(Hint: There exists a bounded region S of the hyperplane H such that its translates under $\Psi(R^{\times})$ cover H.)

Exercise 3. a) Read §7 in the textbook.

- **b**) Show the regulator of a number field does not dependent on any choices.
- c) Discuss the regulator of a real quadratic number field.

Exercise 4. Let d > 0 be a square-free positive integer such that (i) $d \equiv 1, 2 \mod 4$, (ii) $d \neq 3a^2 \pm 1$ for any integer a, (iii) 3 does not divide the class number of $\mathbb{Q}(\sqrt{-d})$.

- **a**) Give examples of integers satisfying conditions (i)-(iii).
- **b**) The equation $y^2 = x^3 d$ has no integer solutions.

c) All of the assumptions on d are required for the conclusion in b).

Exercise 5. Compute the ideal class groups of $\mathbb{Q}(\sqrt{-14})$ and $\mathbb{Q}(\sqrt{-21})$.