Homework 7 - Number Theory

Please hand in your solution of Exercise 2 in my mailbox on the 7th floor.

Exercise 1. Let $d \ge 1$ be a square-free integer and denote by h(-d) the class number of the totally imaginary quadratic number field $\mathbb{Q}(\sqrt{-d})$.

a) If h(-d) = 1, then d = 1, 2 or d = p, where $p \equiv 3 \mod 4$ is a prime number.

- **b**) Let $p \equiv 3 \mod 4$ be a prime number. Show that the following are equivalent.
- (a) The Legendre symbol $\left(\frac{-p}{\ell}\right) = -1$ for every prime number $\ell < \frac{2}{\pi}\sqrt{p}$.
- (b) The class number h(-p) = 1.
- (c) The Legendre symbol $\left(\frac{-p}{\ell}\right) = -1$ for every prime number $\ell < \frac{p}{4}$.
- c) Suppose $p \ge 7$ and $p \equiv 3 \mod 4$. Prove that (c) implies
- (d) The polynomial $f(X) = X^2 + X + \frac{p+1}{4}$ takes prime number values for $0 \le X \le \frac{p-7}{4}$ an integer. Note that (d) implies
- (e) The polynomial $f(X) = X^2 + X + \frac{p+1}{4}$ takes prime number values for $0 \le X \le [\frac{1}{2}(\frac{2}{\pi}\sqrt{p}-1)]$ an integer.
- **d**) Prove that (e) implies (a).

e) The polynomial $f(X) = X^2 + X + 41$ takes prime number values for $0 \le X \le 39$ an integer. (This was first noticed by Euler.)

Exercise 2. Give explicit computations of the discriminant, ring of integers, group of units, and class group of your favorite number field F of degree 3 or 4.

Exercise 3. Review §1-§12 in the textbook. Read §13-§14 in order to enhance your understanding of Chapter 1.