Homework 8 - Number Theory

Exercise 1. Let $(K,|\cdot|)$ be a nonarchimedean valued field.
a) If $|x| \neq|y|$ then $|x+y|=\max \{|x|,|y|\}$.
b) Every triangle in K is isosceles (two of the three sides are equal).
c) Every point inside an open ball is a center of the same ball.
d) Any two open balls are either disjoint or contained in one another.

Exercise 2. a) For any prime p there are $p-1$ distinct $(p-1)$ th roots of unity in \mathbb{Z}_{p}.
b) Let m be a square-free integer and p a prime such that $p \nmid 2 m$. When is m a square in \mathbb{Z}_{p} ?
c) Let $N>1$ be an integer and define $R_{N} \equiv \lim \mathbb{Z} / N^{n}$ with respect to the canonical transition maps $\pi_{n}: \mathbb{Z} / N^{n+1} \rightarrow \mathbb{Z} / N^{n}$. Then there is a ring isomorphism

$$
R_{N} \cong \prod_{p \mid N} \mathbb{Z}_{p}
$$

Now define

$$
\widehat{\mathbb{Z}} \equiv\left\{\left(x_{m}\right)_{m \geq 1} \mid x_{n} \in \mathbb{Z} / n, \pi_{m, n}\left(x_{m n}\right)=x_{m} \text { for all } m, n\right\}
$$

for the canonical maps $\pi_{m, n}: \mathbb{Z} / m n \rightarrow \mathbb{Z} / m$. There is a ring isomorphism

$$
R_{N} \cong \prod_{p \in \operatorname{Max}(\mathbb{Z})} \mathbb{Z}_{p} .
$$

d) For $n \geq 0$ there is a short exact sequence

$$
0 \rightarrow \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p} \rightarrow \mathbb{Z} / p^{n} \rightarrow 0
$$

e) Show that 16 is an 8 th power in \mathbb{Q}_{p} for every odd prime p.

Exercise 3. In this exercise we employ the geometry of numbers to show that every positive integer can be written as a sum of four integer squares (theorem attributed of Lagrange). Enjoy!
a) Let p be an odd prime. Show that the congruence $u^{2}+v^{2} \equiv-1 \bmod p$ has a solution in integers u and v.
b) Fix u and v as in $\mathbf{a})$. Let $\Gamma \subseteq \mathbb{R}^{4}$ consist of all (a, b, c, d) such that $c \equiv u a+v b \bmod p$ and $d \equiv u b-v \bmod p$. Show that Γ is a full lattice in \mathbb{R}^{4} and compute its covolume.
c) Compute the volume of the sphere of radius r in \mathbb{R}^{4}.
d) Prove that p can be written as a sum of four integer squares.
e) A quaternion is an expression of the form $z=a+b i+c j+d k$ where i, j, k are formal symbols satisfying $i^{2}=j^{2}=k^{2}=-1$ and $i j k=-1$. Its conjugate is given by $\bar{z}=a-b i-c j-d k$. Look up the definition of the non-commutative ring structure on the quaternions on the world wide web. Show that $z \bar{z}$ is a non-negative real number and define the norm of z as $\sqrt{z \bar{z}}$. Show that the norm defined in this way is multiplicative.
f) Use \mathbf{d}) and \mathbf{e}) to show Lagrange's theorem.

