Homework 9 - Number Theory

Exercise 1. In this exercise we patch the proof of one result presented in the lecture on $10 / 13 / 2009$.

Let $(K,|\cdot|)$ be a discrete and complete nonarchimedean valued field and L / K a finite separable extension. Then $|\cdot|$ extends uniquely to a discrete and nonarchimedean valuation $|\cdot|_{L}$ on L such that for all $y \in L$,

$$
|y|_{L}=\left|N_{L / K}(y)\right|^{\frac{1}{[L: K]}}
$$

Moreover, $\left(L,|\cdot|_{L}\right)$ is a complete field.
The proof can be divided into the following steps.
a) Let \mathcal{O}_{L} denote the integral closure of \mathcal{O}_{K} in L. Show that \mathcal{O}_{L} is a Dedekind domain and a finite free \mathcal{O}_{K}-module.
b) Show that \mathcal{O}_{L} has a unique maximal ideal.
c) The valuation $|\cdot|$ extends to a discrete valuation on L.
d) For $y \in L,|y|_{L}=\left|N_{L / K}(y)\right|^{\frac{1}{[L: K]}}$.
e) The field L is complete with respect to $|\cdot|_{L}$.
f) If $|\cdot|$, extends the valuation $|\cdot|$ to L and $x \in \mathcal{O}_{L}$, then $|x| \leq 1$ (with equality if x is a unit). Conclude the $|\cdot|=|\cdot|_{L}$.

Exercise 2. The purpose of the following is to clarify and finish off the proofs presented in the lecture on $10 / 13 / 2009$.
a) (Extending valuations and irreducible factors) Suppose $L=K(\alpha)$ is a finite extension of number fields and let $f(X)$ be the minimal polynomial of α in $K[X]$. There is a one-toone correspondence between the extensions to L of a valuation $|\cdot|$ on K and the irreducible factors of $f(X)$ in $\widehat{K}[X]$.
b) Suppose $|\cdot|$ is a valuation on $K=\mathbb{Q}(\alpha)=\mathbb{Q}[X] /(f)$ that restricts to the p-adic valuation $|\cdot|_{p}$ on the rationals. Factor $f(X)=f_{1}(X) \cdots f_{r}(X)$ into irreducible polynomials in $\mathbb{Q}_{p}[X]$ and write $K \otimes_{\mathbb{Q}} \mathbb{Q}_{p} \cong \prod_{i=1}^{r} \widehat{K_{i}}$, where $\widehat{K_{i}}=\widehat{K}[X] /\left(f_{i}\right)$. Let $|\cdot|_{i}$ be the unique extension of $|\cdot|$ to \widehat{K}_{i} (these give the possible extensions of $|\cdot|_{p}$ to K). Show that $|\cdot|_{i}$ is equivalent to $|\cdot|_{\mathfrak{p}}$ for some prime $\mathfrak{p} \in \operatorname{Spec}\left(\mathcal{O}_{F}\right)$.

Exercise 3. a) For a p-adic number $x \in \mathbb{Q}_{p}$, use the power series representation of x to show there exists a decomposition

$$
x=[x]+\langle x\rangle \in \mathbb{Z}_{p}+\mathbb{Z}\left[\frac{1}{p}\right] .
$$

Can you give a similar decomposition of any rational number?
b) Use a) to define the group homomorphism $\phi: \mathbb{Q}_{p} \rightarrow \mathbb{C}^{\times}, x \mapsto \exp (2 \pi i\langle x\rangle)$, and show the additive group $\mathbb{Q}_{p} / \mathbb{Z}_{p}$ is isomorphic to the multiplicative group $\mu_{p^{\infty}}=\cup_{k \geq 1} \mu_{p^{k}}$ of all p th power roots of unity contained in \mathbb{C}.
c) The only \mathbb{Q}-isomorphism of the p-adic numbers \mathbb{Q}_{p} is the identity map.

