
Notes 9: Eli Cartan’s theorem on maximal tori.

Version 1.00 — still with misprints, hopefully fewer

Tori Let T be a torus of dimension n. This means that there is an isomorphism
T � S1 × S1 × . . . × S1. Recall that the Lie algebra Lie T is trivial and that the
exponential map is a group homomorphism, so there is an exact sequence of Lie
groups

0 �� N �� Lie T
expT �� T �� 1

where the kernel NT of expT is a discrete subgroup Lie T called the integral lattice
of T .

The isomorphism T � S1 × S1 × . . . × S1 induces an isomorphism Lie T � Rn

under which the exponential map takes the form

exp(t1, . . . , tn) = (e2πit1 , e
2πit2 , . . . , e

2πitn).

Irreducible characters. Any irreducible representation V of T is one dimensio-
nal and hence it is given by a multiplicative character; that is a group homomorphism
χ : T → Aut(V ) = C∗. It takes values in the unit circle S1 — the circle being the
only compact and connected subgroup of C∗ — hence we may regard χ as a Lie
group map χ : T → S1.

The character χ has a derivative at the unit which is a map θ = deχ : Lie T →
Lie S1 of Lie algebras. The two Lie algebras being trivial and Lie S1 being of di-
mension one, this is just a linear functional on Lie T . The tangent space TeS1⊆TeC∗ =
C equals the imaginary axis iR, which we often will identify with R. The derivative
θ fits into the commutative diagram

0 �� NT
��

θ|NT

��

Lie T
exp

��

θ

��

T

χ

��

�� 1

0 �� NS1
�� Lie S1

exp
�� S1 �� 1

The linear functional θ is not any linear functional, the values it takes on the discrete
subgroup NT are all in NS1 . Choosing 2πi ∈ Lie S1 as the basis, the elements of NS1
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will be just the integers, and we may phrase the behavior of θ as taking integral
values on the integral lattice.

On the other hand, any such linear functional passes to the quotients and induces
a group homomorphisms T → S1, that is, a multiplicative character on T . Hence we
have
Proposition 1 Let T be a torus. The irreducible characteres of T correspond to the
linear functionals on Lie T taking integral values on NT .

In the case T = S1 × S1 × . . . × S1, the discrete subgroup NT is, when we use
the basis 2πi for Lie S1, just the subgroup NT = Zn⊆Rn of points having integral
coordinates, and a linear functional c(t1, . . . , tn) =

�
αiti takes integral values on

NT if and only if all the coefficients αi are integral.

Real representations. Let T be a torus, and let V be a real irreducible repre-
sentation of T , i.e., V is a real vector space and the representation is given by
ρ : T → AutR(V ).

Lemma 1 Assume that V is a real, non trivial-representation of T , then dimR V =
2, and there is basis for V and a character χ of T such that

ρ(t) =

�
Re χ(t) Im χ(t)

− Im χ(t) Re χ(t)

�

Proof: This is standard. Let W = V ⊗R C be the complexification of V .It has the
natural conjugation map w �→ w defined as v⊗ z �→ v⊗ z. Then V = V ⊗ 1⊆W

is the subspace of real vectors characterized by v = v. Furthermore the induces
representation ρ⊗ idC : T → AutC(V ) — which we still will denote ρ — is real, i.e.,
ρ(t)w = ρ(t)w.

Let w ∈ W be an eigenvector of T with character χ. Then the representation
being real, w is an eigenvector with χ as character, and if χ �= χ, the two are linearly
independent. If χ = χ, then χ is real, hence χ(t) = 1 for all t ∈ T , and V is the
trivial representation. So we assume that χ is not real.

With this assumption, the two vectors v+ = w + w and v− = i(w − w) are real
and linearly independent. One checks that

ρ(t)v+ = χ w + χ w = Re χ (w + w) + Im χ i(w − w) = Re χ v+ + Im χ v−

and

ρ(t)v− = χ iw − χ iw = − Im χ(w + w) + Re χi(w − w) = − Im χ v+ + Re χ v−

— 2 —
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Hence v+ and v1 form a basis for an invariant subspace of V of dimension two, which
must be the whole of V since V was assumed to be irreducible, and the matrix of χ

in this basis is as stated. ❏

Of course, if θ is a linear functional on the Lie algebra Lie T taking integral
values on the integral lattice and is such that χ(t) = e

2πiθ(t), e.g., θ = (2πi)−1
deχ,

the matrix takes the form

ρ(t) =

�
cos 2πθ(t) sin 2πθ(t)

− sin 2πθ(t) cos 2πθ(t)

�
.

Topological generators. Recall that en element t ∈ T is called a topological
generator for T if the group � t � consisting of the powers of t is dense in T . i.e., if
� t � = T .

In the one dimensional case, a closed subgroup of S1 being either finite or the
whole circle, we see that the powers of e

2πit are dense if and only if t is not a
rational number. This has a straight forward generalization to tori of any dimension,
normally contributed to Kronecker:

Proposition 2 Let v = (t1, . . . , tn) ∈ Rn. Then exp v is a topological generator
for T = S1 × . . . × S1 if and only if 1, t1, . . . , tn are linearly independent over the
rationals.

Proof: Let H denote the closure of the group � t � generated by t = exp v. Assume
that H is not the whole of T . Then he quotient T/H being a compact, non-trivial,
abelian Lie group, is a torus of positive dimension and has a non-trivial character.

If χ is the composition of that character with the projection T → T/H, the
map χ is a non-trivial character on T taking the value one on H. But the derivative
θ = deχ is a linear functional θ(u1, . . . , un) =

�
αiui with the αi’s being integers,

since it takes integral values on the integral lattice. Now χ takes the value one on
Lie H, and we obtain θ(v) =

�
αiti ∈ Z as v ∈ H. This shows that the ti’s are

linearly dependent over Q.
On the other hand, if such a linear relation c(v) = 1 exists over Q, for some

integer β, the functional θ = βc has integral coefficients and satisfies θ(v) ∈ Z. Then
θ defines a non-trivial character χ whose kernel is a proper subgroup of T containing
H. ❏

Corollary 1 The topological generators are dense in T .

— 3 —
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Proof: We use induction on n, and we have seen that for n = 1, the element t1 has
to avoid Q. In general if (t1, .., tn−1) is linearly independent over Q, there is only a
countable number of ways to chose of bad tn. ❏

It is also worthwhile recalling that Aut(T ) � Gl(2, Z). This implies that the
automorphisms of T are rigid in the sense that if φt is a family of automorphisms a
priori depending continuously on the parameter t from a connected parameter space
(e.g., R), then in fact, it does not depend on t. That is φt = φt� for all parameter
values t and t

�.

Maximal tori. As usual G denotes a compact, connected Lie group. A torus T⊆G

is called maximal torus if it maximal among the subtori of G ordered by inclusion;
that is if T

�⊆G is another torus containing T , then T
� = T .

Lemma 2 In any compact, connected Lie group, there are maximal tori.

Proof: There are tori in every group, e.g., {e}. Let T1⊆T2⊆ . . .⊆Ti⊆ . . . be an
ascending sequence of tori. The corresponding ascending sequence of the dimensions
dim Ti is bounded by dim G, hence eventually constant, which implies that the
sequence of tori is eventually constant. ❏

Before proceeding with the theory, we describe a maximal torus for each of the four
classes of the classical groups. It is not difficult to see that in each of these cases,
any maximal torus is conjugate to the one we exhibit, illustrating a general and
fundamental phenomena for compact groups, that we’ll prove in later on.

Example �. — U(n). The subgroup T of the unitary group U(n) whose members
are all the diagonal matrices





e
it1 0 . . . 0

0 e
it2 . . . 0

...
...

. . .
...

0 . . . 0 0
0 . . . 0 e

itn





with ti ∈ R, clearly is a torus of dimension n. It is maximal, since if a matrix g

commutes with all of T , it has the same eigenvectors as T , hence is diagonal. For
the case of the special unitary group SU(n), we get a maximal torus by imposing
the condition that the determinant be one, i.e., that

�m
i=1 ti = 0. ❅

— 4 —
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Example �. — SO(n) with n even. Assume n = 2m. A maximal torus is in this
case the subgroup T of matrices of the form





cos t1 sin t1 0 . . . 0
− sin t1 cos t1 0 . . . 0

...
...

. . .
...

...
0 . . . 0 cos tm sin tm

0 . . . 0 − sin tm cos tm




(✙)

Clearly T is a torus. To see that it indeed is maximal, let Rn = V1⊕V2⊕ · · ·⊕Vm be
the decomposition of Rn into mutually orthogonal two dimensional subspaces corre-
sponding to the blocks in the matrix. This decomposition is in fact the decomposition
of Rn into irreducible T -modules, and the summands are mutually nonisomorphic
since their characters are different.

If g is an element in SO(n) commuting with the whole of T , it is a T -module
homomorphism, and respects thence the decomposition. The restriction g|Vi of g to
any factor Vi is an orthogonal map, and therefore lies in the orthogonal group O(2)
of that factor. This group has two components, SO(2) and r SO(2) where r is any
reflection. As g|Vi commutes with the whole of SO(2), it lies in SO(2). This means
that g has a block structure like the one in ✙. ❅

Example �. — SO(n) with n odd. In this case, with n = 2m + 1, a maximal
torus is constituted of the matrices of the form





cos t1 sin t1 0 . . . 0 0

− sin t1 cos t1 0 . . .
...

...
...

...
. . .

... 0 0
0 . . . 0 cos tn sin tm 0
0 . . . 0 − sin tn cos tm 0
0 . . . 0 0 0 1





Indeed, any g in SO(n) commuting with the elements in T , must share the eigenvec-
tor v corresponding to the eigenvalue one with the members of T . The orthogonal
complement v

⊥ is invariant under both the torus T and the element g, and we are
reduced to the even case. ❅

Example �. — Sp(2m). Recall that the compact, symplectic group Sp(2m) consists

— 5 —
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of the unitary 2m× 2m-matrices which are of the form

�
a −b

b a

�
(✥)

where a, b ∈ Gl(m, C). It has the subtorus T whose members are the matrices on
the form 



e
it1 . . . 0 0 0 0

...
. . . 0

... . . .
...

0 . . . e
itm 0 . . . 0

0 . . . 0 e
−it1 . . . 0

0 . . . 0 0
. . . 0

0 . . . 0 0 . . . e
−itm





This is clearly a m-dimensional torus, and it is maximal. Indeed, any unitary matrix
commuting with all its elements must have the same eigenvectors, hence is diagonal,
and being of the form ✥, it belongs to T . ❅

The adjoint representation A torus T in G acts via the adjoint representation
Ad� on Te = Lie G.

aaaa
Proposition 3 Under the adjoint action, the Lie algebra Lie G decomposes as a
T -module as

Lie G = V0 ⊕
r�

i=1

Vθi

where each θi : Lie T → R is a non-trivial linear functional taking integral values on
the integral lattice NT , and where T acts trivially on V0.

The torus T is maximal if and only of V0 = Lie T .

Proof: The first statement is just the description in lemma 1 of the real represen-
tations of T . Let us prove the second. Clearly Lie T⊆V0.

If T⊆T
�, then Lie T⊆ Lie T

�⊆V
�
0⊆V0, where V

�
0 is the part of Lie G where T

�

acts trivially. If T �= T
�, it follows that Lie T �= Lie T

� and hence Lie T �= V0.
Assume that Lie T �= V0 and pick a vector v i V0, but not in Lie T . The one-

parameter subgroup H = { exp uv | u ∈ R } is invariant under conjugation by T ,
indeed

x(exp uv)x−1 = exp Adxuv = exp uv

— 6 —
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since Adxv = v. It follows that the closure of H · T is a compact, connected and
abelian group, hence a torus containing T . ❏

An immediate corollary is:

Corollary 2 dim G− dim T is even.

The normalizer of T and the Weyl group Let for a while T⊆G be any
torus contained in G. Recall from the theory of groups that the normalizer of T is
the subgroup NGT = { g ∈| gTg

−1⊆T }.
This a closed subgroup. Indeed, if t is a topological generator for T , and {gi} is

a sequence from NGT converging to g, then all the gitg
−1
i are in T , and therefore

gtg
−1 ∈ T since T is closed. It follows that gTg

−1⊆T , the virtue of t being it is a
topological generator.

The torus it self is a closed and normal subgroup of NGT . In fact the normalizer
is the largest group containing T in which T is normal. In the case T is maximal,
the quotient W = NG(T )/T does not depend on T , as we shall see, and it is called
the Weyl group of G. The most important property it has is

Theorem 1 If T⊆G is a maximal torus, then the Weyl group W = NGT/T is
finite

Proof: This is direct consequence of the ridgity of the automorphisms of T . The
normalizer NGT acts on T by conjugation in a continuous way as seen from the
commutative diagram

G×G

������������

G×NGT ��

��

G

T ×NGT ��

��

T

��

where the maps either are conjugation maps or inclusions. The one we want to be
continuous is the bottom one, and all the others are continuous. Hence the action is
given by a continuous homomorphism ψ : NGT → Aut(T ) � Gl(n, Z).

Now, let N0 be the connected component of NGT . We claim that N0 = T . The
theorem follows then, since NGT/N0 is compact and discrete, hence finite.

— 7 —
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The image ψN0⊆ Gl(n, Z) is connected, and it is therefore reduced to the identity
element, Gl(n, Z) being discrete. It follows that all elements in N0 commute with
T .

Let H be the image of any one-parameter-group in N0. Then H · T is a commu-
tative, connected group, hence a torus containing T , and therefore H · T = T and
H⊆T as T is a maximal torus. It follows that N0⊆T since an open neigbourhood
of the unit element in N0 is covered by one-parameter-groups. ❏

Eli Cartan’s theorem on maximal tori The fundamental results that underlies
the whole theory of representations of compact Lie groups is the one we shall treat
in this paragraph. Is goes back to Eli Cartan. The theorem appears in any text
on representation theory of compact Lie groups, and there is a multitude of proofs
around. The one we present, was found by André Weil and depends on a fixed point
theorem from algebraic topology.

Eli Cartan’s theorem has two parts, the first stating that given a maximal torus
T⊆G, the different conjugates g

−1
Tg cover G. That is, any element x is contained

in a conjugate of T .
The second part says that any two maximal tori are conjugate, so as far as

representation theory goes, one is as good as another.

Theorem 2 Let G be a compact, connected Lie group. Assume that T is a maximal
torus and let g ∈ G be any element. Then g is contained in a conjugate of T .

Corollary 3 Any two maximal tori in a compact, connected Lie group G are con-
jugate. That is, if T, T

� are two such, then T = x
−1

T
�
x for some x in G.

Proof of the corollary.: Chose any generator t ∈ T . By the theorem t is
conjugate to some element in T

�, that is x
−1

tx ∈ T
� for a suitable element x ∈ G.

But as conjugation is a continuous group isomorphism, it maps the closure of the
group � t � generated by t, to the closure of �x−1

tx �, and as the closure of � t � equals
T and that of �x−1

tx � equals T
�, we are done. ❏

The proof we shall present of Eli Cartan’s theorem, is the one discovered by
Andre Weil, and for clarity we split it in several lemmas. The main idea is to search
for fixed points of the map

lg : G/T → GT

— 8 —
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which we know is a diffeomorpism of the compact manifold G/T . The motivation
for this search is

Lemma 3 A coset xT is a fixed point for lg if and only if g ∈ x
−1

Tx.

Proof: We have gxT = xT if and only if x
−1

gxT = T which occurs exactly when
x
−1

gx ∈ T . ❏

Several tools for exhibiting fixed points are available in the setting of algebraic
topology, but there is one underlying principle. The number of fixed points — at
least if they are finite in number, and they must counted in the right way — is a
topological quantity, only depending on the homotopy class of the map.

As usual the counting takes orientations into account. If f : X → X is our
map, which we assume is a diffeomorphism having finitely many fixed points, and
x ∈ X is a fixed point of f , then the derivative dxf maps the tangent space TxX

into itself. Hence det(id − dxF ) has meaning, and we assume that it is non-zero in
any of the fixed points. Then the fixed point x contribute to the number with 1 if
det(id − dxF ) > 0 and with −1 if det(id − dxF ) < 0. The correct count of fixed
points is then N(f) =

�
x sign(det(id − dxF )) .

Since G is connected, left translation lh : G/T → G/T by any other element h in
G is homotopic to lg, and once we exhibit an h with N(h) �= 0, we are through. It
appears that the appropriate choice for h is a topological generator t for T . Certainly
it has at least one fixed point, as does any element in T , namely the coset T , but
we need to control all the fixed points to do the counting in the proper way:

Lemma 4 Let t ∈ T be a generator for T . Then a coset xT is a fixed point for the
left translation lt : G/T → G/T if and only if x belongs to the normalizer NGT . The
fixed points of the left translation lh are finite in number.

Proof: This is clear: txT = xT if and only if x
−1

tx ∈ T , but, t being a topological
generator for T , this happens if and only if x

−1
Tx = T , that is when and only

when x normalizes T . The cosets fixed by lx are therefore those in the Weyl group
W = NGT/T , and they are finite in number by theorem 1 on page 7. ❏

It remains to determine the contribution of each of the fixed points, and this leads
us to computing the derivative of lh at the fixed points. Luckily, they all behave in
the same way:

Lemma 5 Let n ∈ NGT be an element that normalizes T . Then

det(id − delh) = det(id − dnlh)

— 9 —
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Proof: Indeed, if n normalizes T , then Tn = nT . Since xTn = xnT , the right
translation rn : G/T → G/T is well defined, it takes T to nT , and it commutes with
any left action. The following diagram, where we by slight abuse of language refer
to the coset nT as n to simplify the notation, is therefore commutative

TeG/T
dern ��

delh
��

TnG/T

dnlh
��

TeG/T
dern

�� TnG/T

and this shows that delh and dnlh are conjugate maps, hence det(id−delh) = det(id−
dnlh). ❏

To prepare the ground for the final computation at the unit element, recall that
by lemma 1 Lie G can decomposed under the adjoint action as a direct sum of
irreducible T -modules:

Lie G = Lie H ⊕
�

i

Vi.

On each component Vi the action of an element t ∈ T is, in an appropriate basis,
given by the matrix �

cos 2πθi(t) sin 2πθi(t)
− sin 2πθi(t) cos 2πθi(t)

�

where the θi’s are non-trivial linear functionals on Lie T taking integral values on
the integral lattice of T .

Lemma 6 For any element t ∈ T we have the identity

det(id − delt) =
�

i

(2− 2 cos 2πθi(t)).

If t is a topological generator, then det(id − delt) > 0.

Proof: The left translation lt : G/T → G/T lifts to the conjugation map ct−1 : G →
G given by ct−1(x) = txt

−1, indeed txT = txt
−1

T . As dect−1 = Adt−1 , we therefore
have the commutative diagram of T -equivariant maps which is the key to the proof

0 �� Lie T ��

Adt

��

Lie G ��

Adt

��

TeG/T ��

delt
��

0

0 �� Lie T �� Lie G �� TeG/T �� 0

— 10 —
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It follows that as a T -module TeG/T =
�

i Vi. On each component Vi, the action of
id − Adt−1 is given by the matrix

�
1− cos 2πθi(t) sin 2πθi(t)
− sin 2πθi(t) 1− cos 2πθi(t)

�

whose determinant is 2−2 cos 2πθi(h). We have proved that det(id−Adh) =
�

i(2−
2 cos 2πθi(t)).

Obviously 2− 2 cos 2πθi(t) ≥ 0. Now θi(tn) ≡ nθi(t) mod the integral lattice, so
if 2πθi(t) is an integral multiple of π, the same holds for θi(x) for any x ∈ T , the
element t being a generator. This is impossible since the character is non trivial, so
2− 2 cos 2πθi(t) > 0. ❏

The classical groups Recall that an n×n permutation matrix is an n×n-matrix
with just one one in each column (or row) and the rest of the entries being zeros.
They form a subgroup Γn⊆ Gl(n, K) isomorphich to Sn.

If v1, . . . , vn is a basis for a vector space V , any linear map A that permutes
the basis vectors — that is A(vi) = vα(i) for some permutation α of [1, n] — has a
permutation matrix as matrix relative to that basis, and vice versa.

There is also a group Gn of so called signed permutations, whose elements are
permutations σ of the set

{−n, . . . ,−2,−1, 1, 2, . . . , n}

satisfying
σ(−i) = −σ(i)

for all i ∈ [1, n]. Thus there is an exact sequence

0 �� Z/2Zn �� Gn
�� Sn

�� 0

where the map Gn → Sn is the forgetful map forgetting the sign.
One may check that Gn can be realized as the set matrices in Gl(n, K) whose

columns (or rows) have exactly one non zero element and that element being either
1 or −1.

We let G
0
m be the subgroup of even permutations.

Example �. — The Weyl group of U(n). Recall from example 1 on page 4

— 11 —
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that a maximal torus T of the unitary group U(n) is given as the subgroup of all
the matrices diagonal in some orthonormal basis v1, . . . , vn for Cn:

D(t) =





e
it1 0 . . . 0
0 e

it2 . . . 0
...

...
. . . 0

0 . . . 0 e
itn





where the ti’s are in R and t = (t1, . . . , tn). The elements of T are characterized
among the elements in U(n) by having the basis vectors v1, . . . , vn as eigenvectors.

As a matter of notation we let χi(t) = e
iti = e

iθi(t).

The Weyl group of U(n) is isomorphic to the full symmetric group Sn

Let α be a permutation of [1, n] and define the linear map a : V → V by a(vi) =
vα−1(i), so that a just permutes the basis vectors according to the permutation α

−1.
Then a ∈ U(n), the basis being orthonormal. We claim that a normalizes T , indeed

ata
−1

vi = atvαi = aχαi(t)vαi = χαi(t)avαi = χαi(t)vi

and each vi is an eigenvector for a
−1

ta, and ata
−1 ∈ T . On the other hand, in case

an element b ∈ U(n) normalizes T , each bvi is an eigenvector for all T . Indeed

tbvi = bb
−1

tbvi = bχi(b
−1

tb)vi = bχi(b
−1

tb)vi = χi(b
−1

tb)bvi

This means that bvi = uivαi for some permutation α of [1, n] and some scalars
ui. These scalars must all be of modulus one, b being unitary, and it follows that if
p is the permutation matrix corresponding to α, then b = up, where u ∈ T is the
matrix having the ui’s along the diagonal.

❅

Example �. — The Weyl group of SO(2m).
Let n = 2m, and decompose V = Rn = V1 ⊕ · · · ⊕ Vm as an orthogonal sum of

two dimensional subspaces. Then the set of matrices of the form ✙ in example 2 on
page 5 form a maximal torus in SO(n). Call it T . Let v1, . . . , vn be an orthonormal
basis for V with v2i−1, v2i being a basis for Vi.

The Weyl group of SO(2m) is the group G
0
m of even, signed permutations .

For any permutation α of [1, m] let aα be the orthogonal transformation of V

defined on the basis above by aα(v2i−1) = v2α−1(i)−1 and aα(v2i) = v2α−1(i). One

— 12 —
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checks easily that aαaβ = aαβ, and the set of the aα’s constitute a subgroup Γm of
SO(2m) isomorphic to Sm. This subgroup normalizes T : Since aαVi = Vα−1(i), the
conjugate aαtaα−1 has a block structure like the matrix in ✙ in example 2 on page
5, and on each of the subspaces Vi it acts through the matrix

�
cos tα(i) sin tα(i)

− sin tα(i) cos tα(i)

�

Hence the matrix of ata is just the matrix 2 with the blocks permuted.
However, we can produce another elements in the normalizer. Let the map ιj

be defined by ιj(v2j) = v2j and ιj(v2j+1) = −v2j+1, and ι(vk) = vk for the other
basis vectors with k �= j. On the component Vj it acts as the reflection through
the line spanned by e2i, and it leaves all the other components untouched. Clearly
ιj is an orthogonal transformation of determinant −1. It normalizes T since the
reflections in O(2) normalize SO(2). All the ιj’s are involutions, i.e., ι

2
j = 1, and

clearly they commute. They constitute thus a subgroup of O(2m) isomorphic to
Z/2Zm. One also easily checks that the symmetric subgroup Γm permutes the ιj’s.
Hence together they constitute a group isomorphic to Gn.

For any even number 2r, we thus get elements ι1ι2 . . . ι2r in SO(2m) normalizing
T , and this gives us the group G

0
m.

Assume now that a normalizes T . It must permute the factors Vi since aVi is
invariant under T ; indeed taV = a(a−1

ta)V = aV . Call the corresponding permuta-
tion of [1, m] for α. Then the element b = a

−1
α a in SO(2m) normalizes T and leaves

each of the factors Vi invariant. Being orthogonal, its restriction to Vi is either a
rotation or a reflection, so after multiplying b by a suitable element from T , we see
that b acts on each factor Vi either as the identity or the reflection

�
1 0
0 −1

�

and we are done. ❅

Example �. — The Weyl group of SO(2m + 1). Finally if n = 2m + 1,
the restriction in the previous example on the number of ι’s being even is no longer
necessary, but a slight modification of the ι’s is needed. They must be defined on the
additional basis vector v2m+1, and we do that by letting ιjv2m+1 = −v2m+1. Then
they are all of determinant one, and still they are commuting involutions being
permuted by Γm. Hence
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j j+m

j+m

j 0

−1

1

0

Figur 1: The placement of the 2× 2 symplectic matrix in ιj

The Weyl group of SO(2m + 1) is Gm.

❅

Example �. — The Weyl group of Sp(2m). We shall check the following:

The Weyl group of Sp(2m) is isomorphic to group Gm of signed. permutations.

However we will be leaving most details to the reader. They can be checked analogous
to what we did in the previous examples. We refer to example 4 on page 5, and let
v1, . . . , v2m be the basis of C2m of eigenvectors for the matrix in example 4. The
maximal torus T is the the set of matrices





e
it1 . . . 0 0 0 0

...
. . . 0

... . . .
...

0 . . . e
itm 0 . . . 0

0 . . . 0 e
−it1 . . . 0

0 . . . 0 0
. . . 0

0 . . . 0 0 . . . e
−itm





with t = (t1, . . . , tm) ∈ Rm, Let C2m = V1 ⊕ · · · ⊕ Vm be the decomposition of
V = C2m in two dimensional complex subspaces, each having basis vi, vi+m.

The permutations of those subspaces constitute a subgroup of Sp(2m) isomorphic
to Sm, normalizing T .

To get hold of the involutions we use a model that is the 2×2 symplectic matrix

�
0 1
−1 0

�
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It is not an involution, but has square equal to −id, and it has for us the important
property that �

0 1
−1 0

� �
λ 0
0 λ

� �
0 −1
1 0

�
=

�
λ 0
0 λ

�

So placing its entries in the appropriate positions in the matrix, as is illustrated
in figure 1, gives us commuting elements ιj. However they are not involutions, but
ι
2
j is diagonal, so their images in W = NSp(2m)T/T are involutions, and therefore

their images generate a subgroup of W isomorphic to (Z/2Z)m on which Sm acts by
conjugation. So, the elements from Sm together with the involutions we just defined,
generate a subgroup of W isomorphic to Gm. It is left to the reader to verify that
that is all of the Weyl group.

❅
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