
2 The pleasures of counting.

Additional Material

Problems

2.22. For A0
j , A

1
j ⊂ X, j ∈ N, we have

⋃

j∈N
(A0

j ∩A1
j ) =

⋂

i=(i(k))k∈N∈{0,1}N

⋃

k∈N
A

i(k)
k .

Solution to 2.22: Since for A,A′, B, B′ ⊂ X we have the ‘multiplication
rule’

(A ∩B) ∪ (A′ ∩B′) = (A ∪ A′) ∩ (A ∪B′) ∩ (B ∪ A′) ∩ (B ∪B′)

and since this rule carries over to the infinite case, we get the formula
from the problem by ‘multiplying out’ the countable union

(A0
1 ∩ A1

1) ∪ (A0
2 ∩ A1

2) ∪ (A0
3 ∩ A1

3) ∪ (A0
4 ∩ A1

4) ∪ · · · .

More formally, one argues as follows:

x ∈
⋃

j∈N
(A0

j ∩ A1
j) ⇐⇒ ∃ j0 : x ∈ A0

j0
∩ A1

j0
(*)

while

x ∈
⋂

i=(i(k))k∈N∈{0,1}N

⋃

k∈N
A

i(k)
k

⇐⇒ ∀i = (i(k))k∈N ∈ {0, 1}N : x ∈
⋃

k∈N
A

i(k)
k

⇐⇒ ∀i = (i(k))k∈N ∈ {0, 1}N ∃ k0 ∈ N : x ∈ A
i(k0)
k0

(**)

Clearly, (*) implies (**). On the other hand, assume that (**) holds
but that (*) is wrong, i.e. suppose that for every j we have that either
x ∈ A0

j or x ∈ A1
j or x is in neither of A0

j , A
1
j . Thus we can construct a

uniquely defined sequence i(j) ∈ {0, 1}, j ∈ N, by setting

i(j) =





0 if x ∈ A0
j ;

1 if x ∈ A1
j ;

0 if x 6∈ A0
j and x 6∈ A1

j .

1



2 Schilling: Measures, Integrals & Martingales

Define by i′(j) := 1− i(j) the ‘complementary’ 0-1-sequence. Then

x ∈
⋃
j

A
i(j)
j but x 6∈

⋃
j

A
i′(j)
j

contradicting our assumption (**).



4 Measures.

Additional Material

Problems

4.16. Let (X, A, µ) be a measure space, F ⊂ A be a sub-σ-algebra and denote by N =
{N ∈ A : µ(N) = 0} the collection of all µ-null sets. Then

σ(F,N) =
{
F 4N : F ∈ F, N ∈ N

}

where F 4N := (F \N)∪(N\F ) denotes the symmetric difference, cf. also Problems
2.2, 2.6.

4.17. Let A∗ denote the completion of A as in Problem 4.13 and write N := {N ⊂ X :
∃M ∈ A, N ⊂ M, µ(M) = 0} for the family of all subsets of A-measurable null
sets. Show that

A∗ = σ(A, N) =
{
A4N : A ∈ A, N ∈ N}.

Conclude that for every set A∗ ∈ A∗ there is some A ∈ A such that A4A∗ ∈ N.

4.18. Consider on (Rn, B(Rn)) the Dirac measure δx for some fixed x ∈ Rn. Find the
completion of B(Rn) with respect to δx.

4.19. Regularity. Let X be a metric space and µ be a finite measure on the Borel sets
B = B(X) and denote the open sets by O and the closed sets by F. Define a family
of sets

Σ := {A ⊂ X : ∀ ε > 0 ∃U ∈ O, F ∈ F s.t. F ⊂ A ⊂ U, µ(U \ F ) < ε}.

(i) Show that A ∈ Σ =⇒ Ac ∈ Σ and that F ⊂ Σ.

(ii) Show that Σ is stable under finite intersections.

(iii) Show that Σ is a σ-algebra containing the Borel sets B.

(iv) Conclude that µ is regular, i.e. for all Borel sets B ∈ B

µ(B) = sup
F⊂B, F∈F

µ(F ) = inf
U⊃B, U∈O

µ(U).

(v) Assume that there exists an increasing sequence of compact (cpt, for short)
sets Kj such that Kj ↑ X. Show that µ satisfies

µ(B) = sup
F⊂B, K cpt

µ(K).

(vi) Extend µ(B) = supF⊂B, F∈F µ(F ) to a σ-finite measure µ.

3
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4.20. Regularity on Polish spaces. A Polish space X is a complete metric space which
has a countable dense subset D ⊂ X.
Let µ be a finite measure on (X, B(X)). Then µ is regular in the sense that

µ(B) = sup
K⊂B, K compact

µ(K) = inf
U⊃B, U open

µ(U).

[Hint: Use Problem 4.19 and show that the set K :=
⋂

n

⋃k(n)
j=1 K1/n(dk(n)), Kε(x) is

a closed ball of radius ε and centre x and {dk}k is an enumeration of D, is compact.
Choosing k(n) sufficiently large, we can achieve that µ(X \K) < ε.]

4.21. Find a measure µ on (R, B1) which is σ-finite but assigns to every interval [a, b)
with b− a > 2, finite mass.

Solution to 4.16: Set

Σ :=
{
F 4N : F ∈ F, N ∈ N

}
.

and denote, without further mentioning, by F, Fj resp. N, Nj sets from
F resp. N. Since F 4∅ = F , ∅4N = N and F 4N ∈ σ(F,N) we get

F, N ⊂ Σ ⊂ σ(F,N) (*)

and the first assertion follows if we can show that Σ is a σ-algebra. In
this case, we can apply the σ-operation to the inclusions (*) and get

σ(F,N) ⊂ σ(Σ) ⊂ σ(σ(F,N))

which is just

σ(F, N) ⊂ Σ ⊂ σ(F,N).

To see that Σ is a σ-algebra, we check conditions (Σ1)–(Σ3).

(Σ1): Clearly, X ∈ F and N ∈ N so that X = X4∅ ∈ Σ;

(Σ2): We have, using de Morgan’s identities over and over again:

[F 4N ]c = [(F \N) ∪ (N \ F )]c

= (F ∩N c)c ∩ (N ∩ F c)c

= (F c ∪N) ∩ (N c ∪ F )

= (F c ∩N c) ∪ (Gc ∩G) ∪ (N ∩N c) ∪ (N ∩ F )

= (F c ∩N c) ∪ (N ∩ F )

= (F c \N) ∪ (N \ F c)

= F c︸︷︷︸
∈F

4N

∈ Σ;
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(Σ3): We begin by a few simple observations, namely that for all F ∈ F

and N, N ′ ∈ N

F ∪N = F 4 (N \ F )︸ ︷︷ ︸
∈N

∈ Σ; (a)

F \N = F 4 (N ∩ F )︸ ︷︷ ︸
∈N

∈ Σ; (b)

N \ F = N 4 (F ∩N)︸ ︷︷ ︸
∈N

∈ Σ; (c)

(F 4N) ∪N ′ =
(
F 4N

)4 (
N ′ \ (F 4N)

)

= F 4
(
N 4 (N ′ \ (F 4N))

)

︸ ︷︷ ︸
∈N

∈ Σ, (d)

where we used Problem 2.6 and part (a) for (d).

Now let (Fj)j∈N ⊂ F and (Nj)j∈N ⊂ N and set F :=
⋃

j Fj ∈ F

and, because of σ-subadditivity of measures N :=
⋃

j Nj ∈ N.
Then

F \N =
⋃

j∈N
(Fj \N) ⊂

⋃

j∈N
(Fj \Nj) ⊂

⋃

j∈N
Fj = F

as well as

∅ ⊂
⋃

j∈N
(Nj \ Fj) ⊂

⋃

j∈N
Nj = N

which shows that

F \N ⊂
⋃

j∈N
(Fj 4Nj) ⊂ F ∪N. (**)

Since F, N ⊂ A, and consequently
⋃

j∈N(Fj 4Nj) ∈ A, and since
A-measurable subsets of null sets are again in N, the inclusions
(**) show that there exists some N ′ ∈ N so that

⋃

j∈N
(Fj 4Nj) = (F \N)︸ ︷︷ ︸

∈Σ, cf. (b)

∪N ′ ∈ Σ

where we used (d) for the last inclusion.
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Solution to 4.17: By definition,

A∗ =
{
A ∪N : A ∈ A, N ∈ N

}
.

Since
A ∪N = A4 (N \ A)︸ ︷︷ ︸

∈N

and since by an application of Problem 4.16 to (X, A∗, µ̄),A,N (instead
of (X, A, µ),G, N) we get

σ(A, N) =
{
A4N : A ∈ A, N ∈ N

}

and we conclude that
A∗ ⊂ σ(A,N).

On the other hand,

A ⊂ A∗ and N ⊂ A∗

so that, since A∗ is a σ-algebra,

σ(A,N) ⊂ σ(A∗) = A∗ ⊂ σ(A,N).

Finally, assume that A∗ ∈ A∗ and A ∈ A. Then A = A∗4N and we
get

A∗4A = A4N 4A = (A4A)4N = N.

Note that this result would also follow directly from 4.13 since we know
from there that A∗ = A ∪N so that

A∗4A = (A ∪N)4A = A4 (N \ A)4A = N \ A

Solution to 4.18: Denote the completion by B∗ and write Nx for all subsets
of Borel null sets of δx. Clearly,

Nx = {A ⊂ Rn : x 6∈ A}.
Recall from Problem 4.13(i) that B∗ contains all sets of the form B∪N
with B ∈ B and N ∈ Nx. Now let C ⊂ Rn be any set. If x ∈ C, then
write

C = {x}︸︷︷︸
∈B

∪ (C \ {x})︸ ︷︷ ︸
∈Nx

∈ B∗;

Otherwise, x 6∈ C and

C = C \ {x} = ∅︸︷︷︸
∈B

∪ (C \ {x})︸ ︷︷ ︸
∈Nx

∈ B∗.

This shows that B∗ = P(Rn) is the power set of Rn.
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Solution to 4.19: (i) Fix ε > 0 and choose for A ∈ Σ sets U ∈ O, F ∈ F

such that F ⊂ A ⊂ U and µ(U \ F ) < ε. Set U ′ := F c ∈ O and
F ′ := U c ∈ F. Then we have

F ′ ⊂ Ac ⊂ U ′ and U ′ \ F ′ = F c \ U c = F c ∩ U = U \ F

and so µ(U ′ \ F ′) = µ(U \ F ) < ε. This means that Ac ∈ Σ.

Denote by d(x, y) the distance of two points x, y ∈ X and write
B1/n(0) for the open ball {y ∈ X : d(y, 0) < 1

n
}. As in the solution

of Problem 3.12(ii) we see that Un := F +B1/n(0) is a sequence of
open sets such that Un ↓ F . Because of the continuity of measures
we get µ(Un \ F )

n→∞−−−→ 0 and since F 3 F ⊂ F ⊂ Un ∈ O, this
means that F ⊂ Σ.

(ii) Fix ε > 0 and pick for Aj ∈ Σ, j = 1, 2, open sets Uj and closed
sets Fj such that Fj ⊂ A ⊂ Uj and µ(Uj \ Fj) < ε. Then F1 ∩ F2

and U1∩U2 are again closed resp. open, satisfy F1∩F2 ⊂ A1∩A2 ⊂
U1 ∩ U2 as well as

µ
(
(U1 ∩ U2) \ (F1 ∩ F2)

)
= µ

(
(U1 ∩ U2) ∩ (F c

1 ∪ F c
2 )

)

= µ
(
[(U1 ∩ U2) \ F1] ∪ [(U1 ∩ U2) \ F2]

)

6 µ
(
(U1 ∩ U2) \ F1

)
+ µ

(
(U1 ∩ U2) \ F2

)

< 2ε.

This shows that Σ is ∩-stable.

(iii) Fix ε and pick for a given sequence (Aj)j∈N ⊂ Σ open sets Uj and
closed sets Fj such that

Fj ⊂ Aj ⊂ Uj and µ(Uj \ Fj) < ε2−j.

Set A :=
⋃

j Aj. Then U :=
⋃

j Uj ⊃ A is an open set wile
F :=

⋃
j Fj is contained in A but it is only an increasing limit of

closed sets Φn := F1 ∪ . . . ∪ Fn. Using Problem 4.9 we get

µ(U \ F ) 6
∑

j

µ(Uj \ Fj) 6
∑

j

ε2−j 6 ε.

Since Φn ⊂ A ⊂ U and U \Φn ↓ U \ F , we can use the continuity
of measures to conclude that infn µ(U \ Φn) = µ(U \ F ) 6 ε, i.e.
µ(U \ΦN) 6 2ε if N = Nε is sufficiently large. This shows that Σ
contains all countable unions of its members. Because of part (i)
it is also stable under complementation and contains the empty
set. Thus, Σ is a σ-algebra.

As F ⊂ Σ and B = σ(F), we have B ⊂ Σ.
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(iv) For any Borel set B ∈ Σ and any ε > 0 we can find open and
closed sets Uε and Fε, respectively, such that Fε ⊂ B ⊂ Uε and

µ(B \ Fε) 6 µ(Uε \ Fε) < ε =⇒ µ(B) 6 ε + µ(Fε),

µ(Uε \B) 6 µ(Uε \ Fε) < ε =⇒ µ(B) > µ(Uε)− ε.

Thus,

sup
F⊂B, F∈F

µ(F ) 6 µ(B) 6 ε + µ(Fε) 6 ε + sup
F⊂B, F∈F

µ(F )

inf
U⊃B, U∈O

µ(U)− ε 6 µ(Uε)− ε 6 µ(b) 6 inf
U⊃B, U∈O

µ(U).

(v) For every closed F ∈ F the intersections Kj ∩ F , j ∈ N, will be
compact and Kj ∩ F ↑ F . By the continuity of measures we get

µ(F ) = sup
j

µ(Kj ∩ F ) 6 sup
K⊂F,K cpt

µ(K) 6 µ(F ).

Thus,

µ(F ) = sup
K⊂F,K cpt

µ(K) ∀F ∈ F. (*)

Combining (iv) and (*) we get

µ(B)
(iv)
= sup

F⊂B, F∈F
µ(F )

(*)
= sup

F⊂B, F∈F
sup

K⊂F,K cpt
µ(K)

6 sup
F⊂B, F∈F

sup
K⊂B,K cpt

µ(K)

︸ ︷︷ ︸
note: independent of F⊂B

= sup
K⊂B,K cpt

µ(K)

and since µ(K) 6 µ(B) for K ⊂ B and supK⊂B,K cpt µ(K) 6 µ(B)
are obvious, we are finished.

(vi) Assume now that µ is σ-finite. Let (Bn)n∈N ⊂ B be an exhaust-
ing sequence for X such that µ(Bn) < ∞. Then the measures
µn(B) := µ(B ∩Bn) defined on B are finite and regular according
to part (iv). Since we may interchange any two suprema (cf. the
solution of Problem 4.6) we get

µ(B) = sup
n

µn(B) = sup
n

sup
F⊂B, F∈F

µn(F )
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= sup
F⊂B, F∈F

sup
n

µn(F )

= sup
F⊂B, F∈F

µ(F ).

Solution to 4.20: First of all, Problem 4.19 (iv) shows that

µ(B) = sup
F⊂B,F closed

µ(F ). (*)

Let (dk)k be an enumeration of the dense set D ⊂ X and write ρ for
the metric in X and Kr(x) := {y ∈ X : ρ(x, y) 6 r} for the closed ball
with centre x and radius r.

Since, for any fixed n ∈ N the sets

K1/n(d1) ∪ · · · ∪K1/n(dm) ↑ X for m →∞

we get from (*)

∀ ε > 0 ∃ k(n) ∈ N : µ(Fn) +
ε

2n
> µ(X)

if Fn := K1/n(d1) ∪ · · · ∪K1/n(dk(n)). Setting

K := Kε :=
⋂
n

Fn

it is clear that K is closed. Moreover, since K is, for every 1/n, covered
by finitely many balls of radius 1/n, to wit,

K ⊂ K1/n(d1) ∪ · · · ∪K1/n(dk(n)),

we see that K is compact. Indeed, if (xj)j ⊂ K is a sequence, there is
a subsequence (xn

j )j which is completely contained in one of the balls
K1/n(d1), . . . , K1/n(dk(n)). Passing iteratively to sub-sub-etc. sequences
we find a subsequence (yj)j ⊂ (xj)j which is contained in a sequence
of closed balls K1/n(cn) (cn is a suitable element from D). Thus (yj)j

is a Cauchy sequence and converges, because of completeness, to an
element x∗ which is, as the Fn are closed, in every Fn, hence in K.
Thus K is (sequentially) compact.

Since

µ(X \K) = µ

( ⋃
n

X \ Fn

)
6

∑
n

µ(X \ Fn) 6
∑

n

ε

2n
= ε,
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we have found a sequence of compact sets Kn such that µ(Kn) → µ(X)
(note that the Kn need not ‘converge’ X as a set!). Obviously, Kn ∩F
is compact for every closed F and we have µ(Kn ∩ F ) → µ(F ), hence

µ(F ) = sup
K⊂F,K cpt

µ(K) ∀F ∈ F.

Now we can use the argument from the proof of Problem 4.20(v).

Solution to 4.21: Define a measure µ which assigns every point n − 1
2k

,
n ∈ Z, k ∈ N the mass 1

2k
:

µ =
∑

n∈Z

∑

k∈N

1

2k
δn− 1

2k
.

(Since Z×N is countable, Problem 4.6 shows that this object is indeed
a measure!) Obviously, any interval [a, b) of length b− a > 2 contains
some integer, say m ∈ [a, b) so that [m− 1/2,m) ⊂ [a, b), thus

µ[a, b) > µ[m− 1/2,m) =
∑

k∈N

1

2k
= ∞.

On the other hand, the sequence of sets

Bn :=
n⋃

k=−n

[
k − 1, k − 1

2n

)

satisfies µ(Bn) < ∞ and
⋃

n Bn = R.



7 Measurable mappings.

Additional Material

Problems

7.12. Let E, F ⊂ P(X) be two families of subsets of X. One usually uses the notation (as
we do in this book)

E ∪ F =
{
A : A ∈ E or A ∈ F

}
and E ∩ F =

{
A : A ∈ E and A ∈ F

}
.

Let us, for this problem, also introduce the families

E d F =
{
E ∪ F : E ∈ E, F ∈ F

}
and E e F =

{
E ∩ F : E ∈ E, F ∈ F

}
.

Assume now that E and F are σ-Algebras.

(i) Show that E d F ⊃ E ∪ F and E e F ⊃ E ∪ F;

(ii) Show that, in general, we have no equality in (i);

(iii) Show that σ(E d F) = σ(E e F) = σ(E ∪ F).

Solution to 7.12: (i) Since ∅ ∈ E and ∅ ∈ F we get

∀E ∈ E : E ∪ ∅ ∈ E d F =⇒ E ⊂ E d F

and

∀F ∈ F : ∅ ∪ F ∈ E d F =⇒ F ⊂ E d F

so that E∪F ⊂ EdF. A similar argument, using that X ∈ E and
X ∈ F, shows E ∪ F ⊂ E e F.

(ii) Let A,B ⊂ X such that A ∩ B 6= ∅, A ∪ B 6= X and that
A 6⊂ B, B 6⊂ A. Then we find for E := {∅, A,Ac, X} and
F := {∅, B,Bc, X} that

E ∪ F = {∅, A, B, Ac, Bc, X}

while

E d F = {∅, A, B, Ac, Bc, A ∪B,Ac ∪Bc, A ∪Bc, Ac ∪B, X}.

A similar example works for E e F.

11
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(iii) Part (i) shows immediately that

σ(E d F) ⊃ σ(E ∪ F) and σ(E e F) ⊃ σ(E ∪ F).

Conversely, it is obvious that

E d F ⊂ σ(E ∪ F) and E e F ⊂ σ(E ∪ F)

so that

σ(E d F) ⊂ σ(E ∪ F) and σ(E e F) ⊂ σ(E ∪ F)

which proves

σ(E d F) = σ(E ∪ F) = σ(E e F).



9 Integration of positive functions.

Additional Material

Problems

9.13. Let (X, A, µ) be a measure space and A1, . . . , AN ∈ A such that µ(Aj) < ∞. Then

µ

( N⋃

j=1

Aj

)
>

N∑

j=1

µ(Aj) −
∑

16j<k6N

µ(Aj ∩Ak).

[Hint: show first an inequality for indicator functions.]

9.14. Let (X, A, µ) be a measure space. Show the following variant of Theorem 9.6: If
uj > 0 are measurable functions such that for some u we have

∃K ∈ N : ∀x : uj+K(x) ↑ u(x) as j →∞,

then u > 0 is measurable and
∫

uj dµ ↑ ∫
u dµ.

Show that we cannot replace the above condition with

∀x ∃K ∈ N uj(x) ↑ u(x) as j →∞.

Solution to 9.13: We use indicator functions. Note that any fixed x can
be contained in k ∈ {0, 1, . . . , N} of the sets Aj. Then x is contained
in A1 ∪ · · · ∪AN as well as in

(
k
2

)
of the pairs Aj ∪Ak where j < k; as

usual:
(

m
n

)
= 0 if m < n. This gives

∑
j

1Aj
= k 6 1 +

(
k

2

)
= 1A1∪···AN

+
∑

j<k

1Aj
1Ak

= 1A1∪···AN
+

∑

j<k

1Aj∩Ak
.

Integrating this inequality w.r.t. µ yields the result.

Solution to 9.14: The first part is trivial since it just says that the sequence
becomes only from index K onwards. This K does not depend on x but
is uniform for the whole sequence. Since we are anyway only interested
in u = limj→∞ uj = supj>K uj, we can neglect the elements u1, . . . , uK

and consider only the then increasing sequence (uj+K)j. Then we can
directly apply Beppo Levi’s theorem, Theorem 9.6.

13
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The other condition says that the sequence uj+K(x) is increasing for
some K = K(x). But since K may depend on x, we will never get
some overall increasing behaviour of the sequence of functions. Take,
for example, on (R,B(R), λ := λ1),

uj(x) = j2(x + 1
j
)1(−1/j,0)(x)− j2(x− 1

j
)1(0,1/j)(x).

This is a sequence of symmetric tent-like functions of tents with base
(−1/j, 1/j) and tip at j2 (which we take out and replace by the value
0). Clearly:

uj(x)
j→∞−−−→ 0 and

∫
uj(x) dx = 1 ∀ j.

Moreover, if j > K = K(x) with K(x) defined to be the smallest
integer > 1/|x|, then uj(x) = 0 so that the second condition is clearly
satisfied, but

∫
uj(x) dx = 1 cannot converge to

∫
0 dx =

∫
u(x) dx = 0.



10 Integrals of measurable functions and

null sets.

Additional Material

Problems

10.17. Prove Lemma 10.8.

Solution to 10.17: Clearly, ν is defined on A and takes values in [0,∞].
Since 1∅ ≡ 0 we have

ν(∅) =

∫
1∅ · u dµ =

∫
0 dµ = 0.

If (Aj)j∈N ⊂ A are pairwise disjoint measurable sets, we get

ν
( ∞

·⋃
j=1

Aj

)
=

∫
1 ·S∞

j=1 Aj
· u dµ

=

∫ ∞∑
j=1

1Aj
· u dµ

=
∞∑

j=1

∫
1Aj

· u dµ =
∞∑

j=1

ν(Aj)

which proves σ-additivity.

15



13 Product measures and Fubini’s

theorem

Additional Material

Problems

13.15. Let (Ω, A, P ) be a probability space, i.e. a measure space such that P (Ω) = 1.
Show that for a measurable function T : Ω → [0,∞) and every λ > 0 the following
formula holds: ∫

e−λT dP = 1− λ

∫ ∞

0

e−λs P (T > s) ds.

What happens if we also allow negative values of λ?

Solution to 13.15: Assume first that λ > 0. The point here is that Corol-
lary 13.13 does not apply to the function s 7→ e−λs since this func-
tion is decreasing and has the value 1 for s = 0. Consider therefore
φ(s) := 1− e−λs. This φ is admissible in 13.13 and we get

∫
φ(T ) dP =

∫ (
1− e−λT

)
dP =

∫ ∞

0

λe−λs P (T > s) ds.

Rearranging this equality then yields

∫
e−λT dP = 1− λ

∫ ∞

0

e−λs P (T > s) ds.

If λ < 0 the formula remains valid if we understand it in the sense that
either both sides are finite or both sides are infinite. The above argu-
ment needs some small changes, though. First, e−λs is now increasing
(which is fine) but still takes the value 1 if s = 0. So we should change
to φ(s) := e−λs − 1. Now the same calculation as above goes through.
If one side is finite, so is the other; and if one side is infinite, then the
other is infinite, too. The last statement follows from Theorem 13.11
or Corollary 13.13.

16



14 Integrals with respect to image mea-

sures

Additional Material

Problems

14.12. A general Young inequality. Generalize Young’s inequality given in Problem
14.9 and show that

‖f1 ? f2 ? · · · ? fN‖r 6
N∏

j=1

‖fj‖p, p =
Nr

(N − 1)r + 1
,

for all N ∈ N, r ∈ [1,∞) and fj ∈ Lp(λn).

Solution to 14.12: For N = 1 the inequality is trivial, for N = 2 it is in
line with Problem 14.9 with p = q.

Let us, first of all, give a heuristic derivation of this result which ex-
plains how one arrives at the particular form for the value of p =
p(r,N). We may assume that N > 2. Set Fj := fj ? . . . ? fN for
j = 1, 2, . . . N − 1. Then

‖f1 ? · · · ? fN‖r

6 ‖f1‖p‖F2‖q2 = ‖f1‖p‖f2 ? F3‖q2

by Pr. 14.9 where 1
r

+ 1 = 1
p

+ 1
q2

=
(

1
p
− 1

)
+ 1

q2
+ 1

6 ‖f1‖p‖f2‖p‖F3‖q3 = ‖f1‖p‖f2‖p‖f3 ? F4‖q3

by Pr. 14.9 where 1
r

+ 1 =
(

1
p
− 1

)
+ 1

p
+ 1

q3︸ ︷︷ ︸
=

1
q2

+1

= 2
(

1
p
− 1

)
+ 1 + 1

q3

and repeating this procedure N − 2 times we arrive at

‖f1 ? · · · ? fN‖r 6 ‖f1‖p · · · ‖fN−2‖p · ‖fN−1 ? fN‖qN−1

6 ‖f1‖p · · · ‖fN−2‖p · ‖fN−1‖p · ‖fN‖qN

with the condition

1

r
+ 1 = (N − 2)

(1

p
− 1

)
+ 1 +

1

qN−1

= (N − 2)
(1

p
− 1

)
+

1

p
+

1

qN

17
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and since we need qN = p we get

1

r
+ 1 = (N − 2)

(1

p
− 1

)
+

2

p
=

N

p
−N + 2

and rearranging this identity yields

p =
Nr

(N − 1)r + 1
.

If you do not like this derivation of if you got lost counting the repeti-
tions, here’s the formal proof using induction—but with the drawback
that one needs a good educated guess what p = p(N, r) should look
like. The start of the induction N = 2 is done in Problem 14.9 (starting
at N = 1 won’t help much as we need Young’s inequality for N = 2
anyway...).

The induction hypothesis is, of course,

‖f1 ? · · · ? fM‖t 6
M∏

j=1

‖fj‖τ for all M = 1, 2, . . . , N − 1

where t > 0 is arbitrary and τ = Mt
(M−1)t+1

.

The induction step uses Young’s inequality:

‖f1 ? f2 ? · · · ? fN‖r 6 ‖f1‖p · ‖f2 ? · · · ? fN‖q

where p = Nr
(N−1)r+1

and q is given by

1

r
+ 1 =

1

q
+

1

q
=

(N − 1)r + 1

Nr
+

1

q
= 1 +

1

q
− 1

N
+

1

Nr

so that

q =
Nr

N + r − 1
.

Using the induction hypothesis we now get

‖f1 ? · · · ? fN‖r 6 ‖f1‖p · ‖f2 ? · · · ? fN‖q 6 ‖f1‖p ·
(‖f2‖s · · · ‖fN‖s

)

where s is, because of the induction assumption, given by

s =
(N − 1)q

(N − 2)q + 1
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=
(N − 1) Nr

N+r−1

(N − 2) Nr
N+r−1

+ 1

=
(N − 1)Nr

(N − 2)Nr + N + r − 1

=
(N − 1)Nr

N2r − 2Nr + r + (N − 1)

=
(N − 1)Nr

(N − 1)2r + (N − 1)

=
Nr

(N − 1)r + 1
= p

and we are done.



16 Uniform integrability and Vitali’s

convergence theorem.

Additional Material

This is an extended version of Lemma 16.4, page 164 of the printed text

16.4 Lemma. Let (uj)j∈N ⊂ Lp(µ), p ∈ [1,∞), and (wk)k∈N ⊂ M(A).
Then

(i) lim
j→∞

‖uj − u‖p = 0 implies uj
µ−→ u;

(ii) lim
k→∞

wk(x) = w(x) a.e. implies wk
µ−→ w.

Let f : R→ R be a continuous function. If µ({|u| = ∞}) = 0, then

(iii) uj
µ−→ u implies f ◦ uj

µ−→ f ◦ u.

Proof. (i) follows immediately from the Markov inequality P10.12,

µ ({|uj − u| > ε} ∩ A) 6 µ ({|uj − u| > ε}) = µ ({|uj − u|p > εp})
6 1

εp
‖uj − u‖p

p.

(ii) Observe that for all ε > 0

{|wk − w| > ε} ⊂ {ε ∧ |wk − w| > ε}.

An application of the Markov inequality P10.12 yields

µ({|wk − w| > ε} ∩ A) 6 µ({ε ∧ |wk − w| > ε} ∩ A)

6 1

ε

∫

A

ε ∧ |wk − w| dµ =
1

ε

∫ (
ε ∧ |wk − w|)1A dµ.

If µ(A) < ∞, the function ε1A ∈ L1
+(µ) is integrable, dominates the inte-

grand
(
ε∧|wk−w|)1A, and Lebesgue’s dominated convergence theorem 11.2

implies that limk→∞
∫

A
(ε ∧ |wk − w|) dµ = 0.

(iii) Let R > 0 and ε, δ ∈ (0, 1). Clearly

{|f ◦ u− f ◦ uj| > ε}
⊂ ({|f ◦ u− f ◦ uj| > ε} ∩ {|u− uj| 6 δ} ∩ {|u| 6 R})

20
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∪ {|u− uj| > δ} ∪ {|u| > R}.

Since {|u− uj| 6 δ} ∩ {|u| 6 R} ⊂ {|uj| 6 R + 1} ∩ {|u| 6 R}, and since f
is uniformly continuous on the closed interval [−R− 1, R+1], we can choose
δ = δε so small that the first set on the right hand side is empty, i.e.

{|f ◦ u− f ◦ uj| > ε} ⊂ {|u− uj| > δ} ∪ {|u| > R}.

This shows that for all A ∈ A with µ(A) < ∞

µ
({|f ◦ u− f ◦ uj| > ε} ∩ A

)
6 µ

({|u− uj| > δ} ∩ A
)

+ µ
({|u| > R} ∩ A

)
.

Using uj
µ−→ u, we find

lim sup
j→∞

µ
({|f ◦ u− f ◦ uj| > ε} ∩ A

)
6 µ

({|u| > R} ∩ A
) R→∞−−−−→ 0

since µ({|u| = ∞}) = 0.

This is an extended version of the Proof of (iii)⇒(i) of Theorem 16.8, pages
165-6 of the printed text

Proof (of Theorem 16.8). (iii)⇒(ii): Fix ε ∈ (0, 1). We have

∫

{ε|uj |>|u|}

|uj|p dµ 6
∫

{ε|uj |>|u|}

|u|p dµ +

∫

{ε|uj |>|u|}

(|uj|p − |u|p
)
dµ

=

∫

{ε|uj |>|u|}

|u|p dµ +

∫ (|uj|p − |u|p
)
dµ +

∫

{ε|uj |6|u|}

(|uj|p − |u|p
)
dµ.

Denote the three integrals I1, I2 and I3, respectively. Because of assumption
(iii) we know that

I2 6 εp, for all j > Nε

for some Nε ∈ N. Moreover, (iii) shows that supj∈N
∫ |uj| dµ 6 C < ∞ which

means that

I1 6
∫

{ε|uj |>|u|}

|u|p dµ 6 εp

∫

{ε|uj |>|u|}

|uj|p dµ 6 εp

∫
|uj|p dµ 6 C εp.

Finally, the inclusion

{
ε|uj| 6 |u|} ⊂ {||uj|p − |u|p| 6 (ε−p + 1)|u|p}
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yields with κ := ε−p + 1 and ∆p
j :=

∣∣|uj|p − |u|p
∣∣

|I3| 6
∫

{∆p
j 6κ|u|p}

∆p
j dµ.

Splitting the integration domain into three parts,

{
∆p

j 6 (κ|u|p) ∧ η
}
,

{
η 6 ∆p

j 6 κ|u|p} ∩ {|u|p > R
}
,

and
{
η 6 ∆p

j 6 κ|u|p} ∩ {|u|p 6 R
}
,

we get

|I3| 6
∫

η ∧ (κ|u|p) dµ +

∫

{|u|p>R}
κ|u|p dµ + κR µ

({
∆p

j > η
} ∩ {|u|p > η

κ

})
.

By dominated convergence, the two integrals on the right hand side tend to
0 as η → 0 resp. R →∞. Thus, we may choose η = ηε and R = Rε such that

|I3| 6 εp + κ R µ
({

∆p
j > η

} ∩ {|u|p > η
κ

})
.

Since the set {|u|p > η/κ} has finite µ-measure[X] and since |uj|p µ−→ |u|p,
i.e. ∆p

j

µ−→ 0, see Lemma 16.4(iii), we can find some Mε > Nε such that

|I3| 6 2εp for all j > Mε.

Setting wε := max{|u1|, . . . , |uMε|, |u|} we have wε ∈ L
p
+(µ)[X] and see

sup
j∈N

∫
{
|uj |> 1

ε
wε

} |uj| dµ 6 sup
j>Mε

∫

{ε|uj |6|u|}
|uj| dµ 6 (C + 3) εp.

Since

wε ∈ L
p
+(µ) ⇔ wp

ε ∈ L1
+(µ) and

{|uj| > 1
ε
wε

}
=

{|uj|p > 1
εp wp

ε

}
,

(16.3)

we have established the uniform integrability of (|uj|p)j∈N.

This is a streamlined version of the proof of Theorem 16.8(vi)⇒(vii), pages
171-3 of the printed text

(vi)⇒(vii): For u ∈ F we set αn := αn(u) := µ({|u| > n}) and define

Φ(t) :=

∫

[0,t)

φ(s) λ(ds), φ(s) :=
∞∑

n=1

γn 1[n,n+1)(s).
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We will now determine the numbers γ1, γ2, γ3, . . .. Clearly,

Φ(t) =
∞∑

n=1

γn

∫

[0,t)

1[n,n+1)(s) λ(ds) =
∞∑

n=1

γn [(t− n)+ ∧ 1]

and

∫
Φ(|u|) dµ =

∞∑
n=1

γn

∫ [
(|u| − n)+ ∧ 1

]
dµ 6

∞∑
n=1

γn µ(|u| > n). (16.6)

If we can construct (γn)n∈N such that it increases to ∞ and (16.6) is finite
(uniformly for all u ∈ F), then we are done: φ(s) will increase to ∞, Φ(t)
will be convex1 and satisfy

Φ(t)

t
=

1

t

∫

[0,t)

φ(s) λ(ds) > 1

t

∫

[t/2,t)

φ(s) λ(ds) > 1
2
φ
(

t
2

) ↑ ∞.

By assumption we can find an increasing sequence (rj)j∈N ⊂ R such that
limj→∞ rj = ∞ and

∫
{rj<|u|} |u| dµ 6 2−j. Now2

∞∑

k=rj

1{k<|u|} 6
[|u|]∑

k=rj

1{k<|u|} 6
[|u|]∑

k=rj

1{rj<|u|} 6 |u|1{rj<|u|}.

If we integrate both sides of this inequality and use Beppo Levi’s theorem in
the form of Corollary 9.9 on the left-hand side, we get

∞∑

k=rj

µ({|u| > k}) =
∞∑

k=rj

∫
1{k<|u|} dµ 6

∫
|u|1{rj<|u|} dµ 6 2−j.

1Usually one argues that Φ′′ > 0 a.e., but for this we need to know that the mono-
tone function φ = Φ′ is almost everywhere differentiable—and this requires Lebesgue’s
differentiation theorem 19.20. Here is an alternative elementary argument: it is not hard
to see that Φ : (a, b) → R is convex if, and only, if Φ(y)−Φ(x)

y−x 6 Φ(z)−Φ(x)
z−x holds for

all a < x < y < z < b, use e.g. the technique of the proof of Lemma 12.13. Since
Φ(x) =

∫ x

0
φ(s) ds (by L13.12 and T11.8), this is the same as

1
y − x

∫ y

x

φ(s) ds 6 1
z − x

∫ z

x

φ(s) ds ⇐⇒ 1
y − x

∫ y

x

φ(s) ds 6 1
z − y

∫ z

y

φ(s) ds

⇐⇒
∫ 1

0

φ(s(y − x) + x) ds 6
∫ 1

0

φ(s(z − y) + y) ds.

The latter inequality follows from the fact that φ is increasing and s(y − x) + x ∈ [x, y]
while s(z − y) + y ∈ [y, z] for 0 6 s 6 1.

2for x ∈ R we will denote by [x] the Gauß bracket, i.e. the largest integer 6 x.



24 Schilling: Measures, Integrals & Martingales

Summing over j ∈ N finally yields

∞∑
j=1

∞∑

k=rj

µ({|u| > k}) 6
∞∑

j=1

2−j = 1.

and a simple interchange in the order of the summation gives

∞∑
j=1

∞∑

k=rj

µ({|u| > k}) =
∞∑

k=1

( ∞∑
j=1

1[1,k](rj)

)

︸ ︷︷ ︸
=: γk

µ({|u| > k}) 6 1.

This finishes the construction of the sequence (γk)k∈N.

Problems

16.15. Let (fi)i∈I be a family of uniformly integrable functions and let (ui)i∈I ⊂ L1(µ) be
some further family such that |ui| 6 |fi| for every i ∈ I. Then (ui)i∈I is uniformly
integrable. In particular, every family of functions (ui)i∈I with |ui| 6 g for some
g ∈ L1

+ is uniformly integrable.

16.16. Let (X, A, µ) be an arbitrary measure space. Show that a family F ⊂ L1(µ) is
uniformly integrable if, and only if the following condition holds:

∀ ε > 0 ∃ gε ∈ L1
+(µ) : sup

u∈F

∫
(|u| − gε ∧ |u|) dµ < ε.

Give a simplified version of this equivalence for finite measure spaces.

Solution to 16.15: Fix ε > 0. By assumption there is some w = wε ∈ L1
+

such that

sup
i

∫

{|fi|>w}
|fi| dµ 6 ε.

Consider now
∫

{|ui|>2w}
|ui| dµ 6

∫

{|ui|>2w}
|fi| dµ

=

∫

{|ui|>2w}∩{|fi|6w}
|fi| dµ +

∫

{|ui|>2w}∩{|fi|>w}
|fi| dµ

6
∫

{|ui|>2w}∩{|fi|6w}

1

2
|ui| dµ +

∫

{|ui|>2w}∩{|fi|>w}
|fi| dµ

6
∫

{|ui|>2w}

1

2
|ui| dµ +

∫

{|fi|>w}
|fi| dµ
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Thus,

1

2

∫

{|ui|>2w}
|ui| dµ 6

∫

{|fi|>w}
|fi| dµ

6 sup
i

∫

{|fi|>w}
|fi| dµ 6 ε

uniformly for all i ∈ I.

Solution to 16.16: Let g ∈ L1
+(µ). Then

0 6
∫

(|u| − g ∧ |u|) dµ =

∫

{|u|>g}
(|u| − g) dµ 6

∫

{|u|>g}
|u| dµ.

This implies that uniform integrability of the family F implies that the
condition of Problem 16.16 holds. On the other hand,

∫

{|u|>g}
|u| dµ =

∫

{|u|>g}
(2|u| − |u|) dµ

6
∫

{|u|>g}
(2|u| − g) dµ

6
∫

{2|u|>g}
(2|u| − g) dµ

= 2

∫

{|u|> 1
2

g}

(|u| − 1
2
g
)
dµ

= 2

∫

{|u|> 1
2

g}

(|u| − [
1
2
g
] ∧ |u|) dµ

and since g ∈ L1 if, and only if, 1
2
g ∈ L1, we see that the condition

given in Problem 16.16 entails uniform integrability.

In finite measure spaces this conditions is simpler: constants are in-
tegrable functions in finite measure spaces; thus we can replace the
condition given in Problem 16.16 by

lim
R→∞

sup
u∈F

∫
(|u| −R ∧ |u|) dµ = 0.



18 Martingale convergence theorems.

Additional Material

This is a streamlined version of (i)⇒(ii) of the proof of 18.6, pages 194-5
of the printed text

Proof. (i)⇒(ii): Since µ|A0 is σ-finite, we can fix an exhausting sequence
(Ak)k∈N ⊂ A0 with Ak ↑ X and µ(Ak) < ∞. It is not hard to see that
the function w :=

∑∞
k=1 2−k (1 + µ(Ak))

−1 1Ak
is strictly positive w > 0 and

integrable w ∈ L1(A0, µ). Example 17.3(iv) shows that (u+
j )j∈N∪{∞} is still a

submartingale, so that for every L > 0
∫

{u+
j >Lw}

u+
j dµ 6

∫

{u+
j >Lw}

u+
∞ dµ

6
∫
{

u+
j >Lw

}
∩
{

u+∞> 1
2
Lw

} u+
∞ dµ +

∫
{

u+
j >Lw

}
∩
{

u+∞6 1
2
Lw

} u+
∞ dµ

6
∫
{

u+∞> 1
2
Lw

} u+
∞ dµ +

1

2

∫
{

u+
j >Lw

}
∩
{

u+∞6 1
2
Lw

} u+
j dµ.

For the last estimate we used that on the set {u+
j > Lw} ∩ {u+

∞ 6 1
2
Lw}

the integrand of the second integral satisfies u+
∞ 6 1

2
Lw < 1

2
u+

j . Now we

subtract 1
2

∫
{u+

j >Lw} u+
j dµ on both sides and get, uniformly for all j ∈ N,

1

2

∫

{u+
j >Lw}

u+
j dµ 6

∫
{

u+∞> 1
2
Lw

} u+
∞ dµ

L→∞−−−→ 0.

This follows from the dominated convergence theorem, Theorem 11.2, since

|u∞| ∈ L1(A∞, µ) dominates u+
∞1{u+∞> 1

2
Lw}

L→∞−−−→ 0. Thus, (u+
j )j∈N is uni-

formly integrable. From limj→∞ uj = u∞ a.e., we conclude limj→∞ u+
j = u+

∞,
and Vitali’s convergence theorem 16.6 shows that limj→∞

∫
u+

j dµ =
∫

u+
∞ dµ.

Thus∫
|uj| dµ =

∫
(2u+

j − uj) dµ
j→∞−−−→

∫
(2u+

∞ − u∞) dµ =

∫
|u∞| dµ,

and another application of Vitali’s theorem proves that (uj)j∈N is uniformly

integrable.

This is a streamlined version of the second part of Example 18.8, page 199
of the printed text

26
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18.8 Example (continued). We can now continue with the proof of the
necessity part of Kolmogorov’s strong law of large numbers. Since the a.e.
limit exists, we get

Xn

n
=

Sn

n
− n− 1

n

Sn−1

n− 1

n→∞−−−→ 0,

which shows that ω ∈ An := {|Xn| > n} happens only for finitely many n.
In other words, P (

∑∞
j=1 1Aj

= ∞) = 0; since the An are all independent, the

Borel-Cantelli lemma T18.9 shows that
∑∞

j=1 P (Aj) < ∞. Thus1

|X1| 6
[|X1|

]
+ 1 = 1 +

|X1|∑
n=1

1 = 1 +
∞∑

n=1

1{n6|X1|}.

If we integrate this inequality w.r.t. P and use Beppo Levi’s theorem, we
arrive at

∫
|X1| dP 6 1 +

∞∑
n=1

P ({|X1| > n}) = 1 +
∞∑

n=1

P ({|Xn| > n})

since X1 and Xn have the same distribution.

We will see more applications of the martingale convergence theorems in
the following chapters.

1for x ∈ R we will denote by [x] the Gauß bracket, i.e. the largest integer 6 x.



19 The Radon-Nikodým Theorem and

Other Applications of Martingales.

Additional Material

Problems

19.19. Let µ and ν be measures on the measurable space (X, A). Show that the absolute
continuity condition (19.1) is equivalent to

µ(A4B) = 0 =⇒ ν(A) = ν(B) for all A, B ∈ A.

Solution to 19.19: “⇒”: Assume first that (19.1) holds, i.e. that ν ¿ µ. If
µ(A4B) = 0 for some A,B ∈ A we get ν(A4B) = 0. By definition,

ν(A4B) = ν(A\B)+ν(B \A) = ν(A\ (A∩B))+ν(B \ (A∩B)) = 0

so that
ν(A \ (A ∩B)) = ν(B \ (A ∩B)) = 0.

Assume that ν(A) < ∞. Then ν(A ∩B) 6 ν(A) < ∞ and we see that

ν(A) = ν(A ∩B) and ν(B) = ν(A ∩B)

which means that ν(A) = ν(B).

If ν(A) = ∞ the condition ν(A\(A∩B)) = 0 shows that ν(A∩B) = ∞,
otherwise 0 = ν(A\(A∩B)) = ν(A)−ν(A∩B) = ∞ which is impossible.
Again we have ν(A) = ∞ = ν(B).

“⇐”: Assume now that the condition stated in the problem is satisfied.
If N ∈ A is any µ-null set, we choose A := N and B := ∅ and observe
that A4B = N . Thus,

µ(N) = µ(A4B) = 0 =⇒ ν(A) = ν(B)

but this is just ν(N) = ν(A) = ν(∅) = 0. Condition (19.1) follows.
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22 Conditional expectations in L2

Additional Material

Problems

22.4. Let (X, A, µ) be a measure space and G ⊂ A be a sub-σ-algebra. such that µ|G
is σ-finite. Let p, q ∈ (1,∞) be conjugate numbers, i.e. 1/p + 1/q = 1, and let
u,w ∈ ⋂

p∈[1,∞] L
p(A, µ). Show that

∣∣EG(uw)
∣∣ 6

[
EG(|u|p)]1/p[

EG(|w|q)]1/q
.

[Hint: use Young’s inequality 12.1 with A = |u|/[
EG(|u|p)]1/p and B = |w|/[

EG(|w|q)]1/q

whenever the numerator is not 0.]

Solution to 22.4: Let Gu := {EG|u|p > 0}, Gw := {EG|w|q > 0} and G :=
Gu ∪Gw. Following the hint we get

|u|[
EG(|u|p)]1/p

|w|[
EG(|w|q)]1/q

1G 6 |u|p
pEG(|u|p) 1G +

|u|q
q EG(|w|q) 1G

Since 1G is bounded and G-measurable, we can apply EG on both sides
of the above inequality and get

EG(|u||w|)[
EG(|u|p)]1/p[

EG(|w|q)]1/q
1G 6 EG(|u|p)

pEG(|u|p) 1G +
EG(|u|q)

q EG(|w|q) 1G = 1G

or

EG(|u||w|)1G 6
[
EG(|u|p)]1/p[

EG(|w|q)]1/q
1G

6
[
EG(|u|p)]1/p[

EG(|w|q)]1/q
.

Denote by Gn an exhaustion of X such that Gn ∈ G, Gn ↑ X and
µ(Gn) < ∞. Then

∫

Gc
u

|u|p dµ = sup
n

∫

Gc
u∩Gn

|u|p dµ

= sup
n
〈1Gc

u∩Gn , |u|p〉

= sup
n
〈EG1Gc

u∩Gn , |u|p〉
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= sup
n
〈1Gc

u∩Gn ,EG(|u|p)〉
= 0

which means that 1Guu = u almost everywhere. Thus,

EG(|u||w|)1G = EG(|u||w|1G) = EG(|u|1Gu|w|1Gw) = EG(|u||w|)

and the inequality follows since

∣∣EG(uw)
∣∣ 6 EG(|uw|).



23 Conditional expectations in Lp

Additional Material

Problems

23.13. Let (X, A, Aj , µ) be a finite filtered measure space, let uj ∈ L1(Aj) be a sequence
of measurable functions such that for some f ∈ L1(A)

|uj | 6 EAj f

holds true. Show that the family (uj)j∈N is uniformly integrable.

Solution to 23.13: (Compare this problem with Problem 16.15.) Recall
that in finite measure spaces uniform integrability follows from (and is
actually equivalent to)

lim
R→∞

sup
j

∫

{|uj |>R}
|uj| dµ = 0;

this is true since in a finite measure space the constant function w ≡ R
is integrable.

Observe now that
∫

{|uj |>R}
|uj| dµ 6

∫

{|uj |>R}
EAjf dµ

=

∫

{|uj |>R}
f dµ

=

∫

{|uj |>R}∩{f6R/2}
f dµ +

∫

{|uj |>R}∩{f>R/2}
f dµ

6
∫

{|uj |>R}∩{f6R/2}

1

2
|uj| dµ +

∫

{|uj |>R}∩{f>R/2}
f dµ

6
∫

{|uj |>R}

1

2
|uj| dµ +

∫

{f>R/2}
f dµ

This shows that

1

2

∫

{|uj |>R}
|uj| dµ 6

∫

{f>R/2}
f dµ

R→∞−−−−−−−−−−→
uniformly for all j

0.
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24 Orthonormal systems and their con-

vergence behaviour

Additional Material

This is a streamlined and corrected version of the Epilogue 24.29, pages
309-12 of the printed text

24.29 Epilogue. The combination of martingale methods and orthogonal
expansions opens up a whole new world. Let us illustrate this by a rapid
construction of one of the most prominent stochastic processes: the Wiener
process or Brownian motion.

Choose in Theorem 24.27 (X, A, P ) = ([0, 1],B[0, 1], λ) where λ is one-
dimensional Lebesgue measure on [0, 1]; denoting points in [0, 1] by ω, we will
often write dω instead of λ(dω). Assume that the independent, identically
distributed random variables ej are all standard normal Gaussian random
variables, i.e.

P (ej ∈ B) =
1√
2π

∫

B

e−x2/2 dx, B ∈ B(R),

and consider the series expansion

Wt(ω) :=
∞∑

n=0

en(ω)〈1[0,t], Hn〉, ω ∈ [0, 1].

Here t ∈ [0, 1] is a parameter, 〈u, v〉 =
∫ 1

0
u(x)v(x) dx, and Hn, n = 2k + j,

0 6 j < 2k, denote the lexicographically ordered Haar functions (24.16). A
short calculation confirms for n > 1

〈1[0,t], Hn〉 =

∫ t

0

Hn(x) dx = 2k/2

∫ t

0

H1(2
kx− j) dx = Fn(t),

where F1(t) =
∫ t

0
H1(x) dx1[0,1](t) = t1[0, 1

2
)(t) − (t − 1)1[ 1

2
,1](t) and Fn(t) =

2−k/2F1(2
kt−j) are tent-functions which have the same supports as the Haar

functions. Since the Haar functions are a complete orthonormal system, cf.
Theorem 24.17, we may apply Bessel’s inequality, 21.11(iii), to get

∞∑
n=0

〈1[0,t], Hn〉2 6 〈1[0,t],1[0,t]〉 = t 6 1.
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Thus, Theorem 24.27(ii) guarantees that Wt(ω) exists, for each t ∈ [0, 1],
both in L2(dω)-sense and λ(dω)-almost everywhere.

More is true. Since the en are independent Gaussian random variables,
so are their finite linear combinations (e.g. Bauer [?, §24]) and, in particular,
the partial sums

SN(t; ω) :=
N∑

n=0

en(ω)〈1[0,t], Hn〉.

Gaussianity is preserved under L2-limits;6 we conclude that Wt(ω) has a
Gaussian distribution for each t. The mean is given by

∫ 1

0

Wt(ω) dω =
∞∑

n=0

∫ 1

0

en(ω) dω 〈1[0,t], Hn〉 = 0

(to change integration and summation use that L2(dω)-convergence entails
L1(dω)-convergence on a finite measure space). Since

∫
enem dω = 0 or 1

according to n 6= m or n = m, we can calculate for 0 6 s < t 6 1 the
variance by

∫ 1

0

(Wt(ω)−Ws(ω))2 dω

=
∞∑

n,m=0

∫ 1

0

en(ω)em(ω) dω 〈1[0,t] − 1[0,s], Hn〉〈1[0,t] − 1[0,s], Hm〉

=
∞∑

n=0

〈1(s,t], Hn〉2 24.17,21.13
= 〈1(s,t],1(s,t]〉 = t− s.

In particular, the increment Wt −Ws has the same probability distribution
as Wt−s. In the same vein we find for 0 6 s < t 6 u < v 6 1 that

∫ 1

0

(Wt(ω)−Ws(ω))(Wv(ω)−Wu(ω)) dω = 〈1(s,t],1(u,v]〉 = 0.

Since Wt −Ws is Gaussian, this proves already the independence of the two
increments Wt −Ws and Wv −Wu, cf. [?, §24]. By induction, we conclude
that

Wtn −Wtn−1 , . . . , Wt1 −Wt0 ,

6(cf. [?, §§23, 24]) if Xn is normal distributed with mean 0 and variance σ2
n, its Fourier

transform is
∫

eiξXn dP = e−σ2
nξ2/2. If Xn

n→∞−−−−→ X in L2-sense, we have σ2
n → σ2 and,

by dominated convergence,
∫

eiξX dP = limn

∫
eiξXn dP = limn e−σ2

nξ2/2 = e−σ2ξ2/2; the
claim follows from the uniqueness of the Fourier transform.
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are independent for all 0 6 t0 6 · · · 6 tn 6 1.

Let us finally turn to the dependence of Wt(ω) on t. Note that for m < n

∫ 1

0

sup
t∈[0,1]

∣∣S2n−1(t; ω)− S2m−1(t; ω)
∣∣4 dω

=

∫ 1

0

sup
t∈[0,1]

( n−1∑

k=m

2k−1∑
j=0

e2k+j(ω)〈1[0,t], H2k+j〉
)4

dω

=

∫ 1

0

sup
t∈[0,1]

( n−1∑

k=m

2−
k
8

[ 2k−1∑
j=0

2
k
8 e2k+j(ω)〈1[0,t], H2k+j〉

])4

dω

6
∫ 1

0

sup
t∈[0,1]

[ n−1∑

k=m

2−
k
6

]

︸ ︷︷ ︸
6 10

·
n−1∑

k=m

[ 2k−1∑
j=0

2
k
8 e2k+j(ω)〈1[0,t], H2k+j〉

]4

dω

where we used Hölder’s inequality for the outer sum with p = 4
3

and q = 4.
Since the functions F2k+j(t) = 〈1[0,t], H2k+j〉 with 0 6 j < 2k have disjoint
supports and are bounded by 2−k/2, we find

∫ 1

0

sup
t∈[0,1]

∣∣S2n−1(t; ω)− S2m−1(t; ω)
∣∣4 dω

6 10

∫ 1

0

sup
t∈[0,1]

n−1∑

k=m

2k−1∑
j=0

2
k
2 e4

2k+j(ω)〈1[0,t], H2k+j〉4 dω

6 10
n−1∑

k=m

2k−1∑
j=0

2
k
2

∫ 1

0

e4
2k+j(ω) dω

︸ ︷︷ ︸
= (2π)−1/2

R
R y4 e−y2/2 dy ∀ j,k

2−2k

= C

n−1∑

k=m

2
k
2 · 2k · 2−2k 6 2C 2−

m
2

which means that the partial sums S2n−1(t; ω) of Wt(ω) converge in L4(dω)
uniformly for all t ∈ [0, 1]. By C12.8 we can extract a subsequence, which
converges (uniformly in t) for λ(dω)-almost all ω to Wt(ω); since for fixed ω
the partial sums t 7→ S2n−1(t; ω) are continuous functions of t, this property
is inherited by the a.e. limit Wt(ω).

The above construction is a variation of a theme by Lévy [?, Chap. I.1,
pp. 15–20] and Ciesielski [?]. In one or another form it can be found in many
probability textbooks, e.g. Bass [?, pp. 11–13] or Steele [?, pp. 35–39]. A
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related construction of Wiener, see Paley and Wiener [?, Chapter XI], using
random Fourier series, is discussed in Kahane [?, §16.1–3].



Appendix E

A summary of the Riemann integral.

Additional Material

This is a streamlined and extended version of Theorem E.11, pages 344-5
of the printed text

E.11 Theorem. The Riemann integral is a positive linear form on the vec-
tor lattice R[a, b], that is, for all α, β ∈ R and u,w ∈ R[a, b] one has

(i) αu+βw ∈ R[a, b] and

∫ b

a

(αu+βw) dt = α

∫ b

a

u dt+β

∫ b

a

w dt;

(ii) u 6 w =⇒
∫ b

a

u dt 6
∫ b

a

w dt;

(iii) u ∨ w, u ∧ w, u+, u−, |u| ∈ R[a, b] and

∣∣∣∣
∫ b

a

u dt

∣∣∣∣ 6
∫ b

a

|u| dt;

(iv) |u|p, uw ∈ R[a, b], 1 6 p < ∞.

(v) If φ : R2 → R is a Lipschitz continuous function1 then φ ◦ (u,w) ∈
R[a, b].

Proof. (i) follows immediately from the linearity of the limit criterion in
Theorem E.5(iv).

(ii): In view of (i) it is enough to show that v := w − u > 0 entails∫ b

a
v dt > 0. This, however is clear since v ∈ R[a, b] and

0 6
b∫
∗
a

v =

∫ b

a

v dt.

(iii), (iv) follow at once from (v) since the functions (x, y) 7→ x ∨ y,
(x, y) 7→ x ∧ y, x 7→ x ∨ 0, x 7→ (−x) ∨ 0 and x 7→ |x| are clearly Lipschitz
continuous.

1i.e. for every ball Br(0) ⊂ R2 there is a (so-called Lipschitz ) constant L = L(r) < ∞
such that

|φ(x, x′)− φ(y, y′)| 6 L
(|x− y|+ |x′ − y′|)

holds for all (x, x′), (y, y′) ∈ Br(0).
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The estimate in part (iii) can be derived from (i) and (ii) by observing

that ±u 6 |u| entails ± ∫ b

a
u dt 6

∫ b

a
|u| dt which implies

∣∣∣
∫ b

a
u dt

∣∣∣ 6
∫ b

a
|u| dt.

(v): Let u,w ∈ R[a, b]. Since any Riemann integrable function is, by
definition, bounded, there is some r < ∞ such that −r 6 u(x), w(x) 6 r;
write L = L(r) for the corresponding Lipschitz constant of φ|Br(0). Observe
that for any partition π = {a = t0 < t1 < · · · < tk = b} of [a, b] we have

Sπ[φ ◦ (u,w)
]− Sπ[φ ◦ (u, w)]

=
k∑

j=1

[
sup

s∈[tj−1,tj ]

φ(u(s), w(s))− inf
t∈[tj−1,tj ]

φ(u(t), w(t))
]
(tj − tj−1)

=
k∑

j=1

sup
s,t∈[tj−1,tj ]

[
φ(u(s), w(s))− φ(u(t), w(t))

]
(tj − tj−1)

6 L

k∑
j=1

sup
s,t∈[tj−1,tj ]

[|u(s)− u(t)|+ |w(s)− w(t)|](tj − tj−1).

Because of the symmetric rôles of s and t,

sup
s,t
|u(s)− u(t)| = sup

s,t
max{u(s)− u(t), u(t)− u(s)} = sup

s,t
(u(s)− u(t)),

and this proves

Sπ[φ ◦ (u,w)
]− Sπ[φ ◦ (u,w)]

6 L

k∑
j=1

sup
s,t∈[tj−1,tj ]

(
u(s)− u(t)

)
(tj − tj−1)

+ L

k∑
j=1

sup
s,t∈[tj−1,tj ]

(
w(s)− w(t)

)
(tj − tj−1)

= L
(
Sπ[u]− Sπ[u]

)
+ L

(
Sπ[w]− Sπ[w]

)
.

Thus, if both u and w are Riemann integrable, so is φ ◦ (u,w).


