MAT4510: Sugested solutions Fall 2010

Problem 1

Here, $a=d=\sqrt{2}$ and $b=c=1$. So $a d-b c=1$ and $(a+d)^{2}=8>4$, so f is of hyperbolic type.

$$
f(z)=z \Leftrightarrow \sqrt{2} z+1=z^{2}+\sqrt{2} z \Leftrightarrow z^{2}=1 \Leftrightarrow z= \pm 1
$$

So f has fixpoints ± 1. Let $g(z)=\frac{z+1}{1-z}$. Then $g \in \operatorname{Möb}^{+}(\mathbb{H})$ and $g(-1)=0$, $g(1)=\infty$. Matrices associated to f, g and g^{-1} are

$$
\left[\begin{array}{cc}
\sqrt{2} & -1 \\
1 & \sqrt{2}
\end{array}\right], \quad\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

respectively. So a matrix associated to $h=g \circ f \circ g^{-1}$ is consequently

$$
\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
\sqrt{2} & 1 \\
1 & \sqrt{2}
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
2(\sqrt{2}+1) & 0 \\
0 & 2(\sqrt{2}-1)
\end{array}\right] .
$$

f is consequently conjugate to the map $h(z)=g \circ f \circ g^{-1}(z)=\frac{2(\sqrt{2}+1) z}{2(\sqrt{2}-1)}=(3+2 \sqrt{2}) z$, which a hyperbolic map of normal form.

Problem 2

a) Since $E=G=\frac{1}{y^{2}}$ and $F=0$, the equations for $\Gamma_{i j}^{k}$ becomes (with $u=x$ and $v=y)$

$$
\left[\begin{array}{ccc}
\Gamma_{11}^{1} & \Gamma_{12}^{1} & \Gamma_{22}^{1} \\
\Gamma_{11}^{2} & \Gamma_{12}^{2} & \Gamma_{22}^{2}
\end{array}\right]=\left[\begin{array}{cc}
y^{2} & 0 \\
0 & y^{2}
\end{array}\right]\left[\begin{array}{ccc}
0 & -\frac{1}{y^{3}} & 0 \\
\frac{1}{y^{3}} & 0 & -\frac{1}{y^{3}}
\end{array}\right]=\left[\begin{array}{ccc}
0 & -\frac{1}{y} & 0 \\
\frac{1}{y} & 0 & -\frac{1}{y}
\end{array}\right] .
$$

This gives $\Gamma_{11}^{1}=\Gamma_{22}^{1}=\Gamma_{12}^{2}=0$, and $\Gamma_{12}^{1}=-\Gamma_{11}^{2}=\Gamma_{22}^{2}=-\frac{1}{y}$. We thus get that

$$
D \beta^{\prime \prime}(s)=\left(x^{\prime \prime}-2 \frac{x^{\prime} y^{\prime}}{y}\right)+\left(y^{\prime \prime}+\frac{\left(x^{\prime}\right)^{2}}{y}-\frac{\left(y^{\prime}\right)^{2}}{y}\right) i
$$

(Here $T_{z} \mathbb{H}$ is identified with \mathbb{C} and \mathbf{x}_{x} and \mathbf{x}_{y} are identified with 1 and i respectively.) parameterization b) For any two points on $C_{y_{0}}$ there is a Möbius transformation of
type $f(z)=z+a, a \in \mathbb{R}$ mapping one to the other. Since such transformations are isometries preserving the normal orientation, and the geodesic curvature is preserved under such isometries, k_{g} must be constant along $C_{y_{0}}$.

Let $z(t)=t+y_{0} i, s(t)=\int_{0}^{t}\left\|z^{\prime}(\tau)\right\| d \tau=\int_{0}^{t} \frac{d \tau}{y_{0}}=\frac{t}{y_{0}}$. So $t=y_{0} s$ and $\beta(s)=$ $y_{0} s+y_{0} i$ is a parameterization of $C_{y_{0}}$ by (hyperbolic) arc-length. From the solution of a) we see that $D^{\prime \prime} \beta(s)=y_{0} i$. Since $y_{0} i$ is a the unit-normal vector along $C_{y_{0}}$, we get that $k_{g}=1$ along $C_{y_{0}}$.
c) $\partial R=\alpha_{1} \cup \alpha_{2}$ where α_{1} is contained in the circle $\{|z|=1\}$, hence α_{1} is a geodesic in \mathbb{H}, and α_{2} is contained in $C_{\frac{\sqrt{2}}{2}}$. Since $e^{i \frac{\pi}{4}}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$, it easy to see that the inner angles $\eta_{i}, i=1,2$ at the vertices $\pm \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$ are equal $\frac{\pi}{4}$ hence the outer angles ϵ_{i} are both equal $\frac{3 \pi}{4}$. The arc-length of α_{2} is by the calculation in b) equal
$l=\frac{\sqrt{2}}{\frac{\sqrt{2}}{2}}=2$, and we consequently get that $\int_{\alpha_{2}} k_{g} d s=k_{g} l=2$. Now Gauss-Bonnet Theorem give us

$$
\iint_{R} K d A+\int_{\partial R} k_{g} d s+\epsilon_{1}+\epsilon_{2}=-A(R)+2+\frac{3 \pi}{2}=2 \pi \chi(R)=2 \pi
$$

We thus get that $A(R)=2-\frac{\pi}{2}$. (Here we use that R obviously is homemorphic to a disc, hence $\chi(R)=1$.)
d) Using that $d A=\frac{d x d y}{y^{2}}$, we get that

$$
\begin{aligned}
A(R) & =\iint_{R} d A=\int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \int_{\frac{\sqrt{2}}{2}}^{\sqrt{1-x^{2}}} \frac{d y d x}{y^{2}}=\int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \sqrt{2} d x-\int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \frac{1}{\sqrt{1-x^{2}}} d x . \\
& =2-\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} d \theta=2-\frac{\pi}{2} .
\end{aligned}
$$

Problem 3

Let α, β, γ be the angles at the vertices $r i,-r, r$ respectively. From the symmetry properties of T, it is easy to see that $\frac{\alpha}{2}=\beta=\gamma$. So we must have that $4 \beta=\frac{2 \pi}{3}$, and we get that $\alpha=\frac{\pi}{3}$ and $\beta=\gamma=\frac{\pi}{6}$. From the second law of cosine, we thus get that

$$
\frac{1}{2}=-\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2} \cosh \left(d_{\mathbb{D}}(-r, r)\right) \Rightarrow \cosh \left(d_{\mathbb{D}}(-r, r)\right)=5
$$

and we get that $\cosh a=\cosh \left(d_{\mathbb{D}}(-r, r)\right)=1+\frac{2|r-(-r)|^{2}}{\left(1-r^{2}\right)^{2}}=1+\frac{8 r^{2}}{\left(1-r^{2}\right)^{2}}=5$, $r^{4}-4 r^{2}+1=0$ which implies that $r^{2}=2 \pm \sqrt{3}$. Here we must have $r^{2}<1$, and we get that $r=\sqrt{2-\sqrt{3}}$.

Problem 4

a) Let the given parameterization be $\alpha(u, v)$ then

$$
\alpha_{u}=(-a \sin u \cos v,-a \sin u \sin v, b \cos u), \alpha_{v}=(-a \cos u \sin v, a \cos u \cos v, 0)
$$

and we get that $E=a^{2} \sin ^{2} u+b^{2} \cos ^{2} u, F=0$ and $G=a^{2} \cos ^{2} u$.
b) We get that $\alpha_{u} \times \alpha_{v}=\left(-a b \cos ^{2} u \cos v,-a b \cos ^{2} u \sin v,-a^{2} \cos u \sin u\right)$, and we get that the unit surface-normal is equal

$$
N(u, v)=\frac{(-b \cos u \cos v,-b \cos u \sin v,-a \sin u)}{\sqrt{b^{2} \cos ^{2} u+a^{2} \sin ^{2} u}} .
$$

Moreover we get that
$e=\alpha_{u u} \cdot N=\left((-a \cos u \cos v,-a \cos u \sin v,-b \sin u) \cdot N=\frac{a b}{\sqrt{b^{2} \cos ^{2} u+a^{2} \sin ^{2} u}}\right.$
$f=\alpha_{u v} \cdot N=(a \sin u \sin v,-a \sin u \cos v, 0) \cdot N=0$
$g=\alpha_{v v} \cdot N=(-a \cos u \cos v,-a \cos u \sin v, 0) \cdot N=\frac{a b \cos ^{2} u}{\sqrt{b^{2} \cos ^{2} u+a^{2} \sin ^{2} u}}$.
The curvature of the surface is given by

$$
K=\frac{e g-f^{2}}{E G-F^{2}}=\frac{b^{2}}{\left(b^{2} \cos ^{2} u+a^{2} \sin ^{2} u\right)^{2}} .
$$

c) The surface is a regular surface of rotation, obtained by rotating the ellipse $\frac{x^{2}}{a^{2}}+$ $\frac{z^{2}}{b^{2}}=1$ around the z-axis. Such a surface is obviously homeomorphic to a sphere, and S has consequently Euler characteristic equal 2. Letting $(u, v) \in[0,2 \pi] \times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ we get a parameterization of the whole of S, and this parameterization is one-to-one on the interior of $\in[0,2 \pi] \times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. The Gauss-Bonnet Theorem implies that

$$
\begin{gathered}
\iint_{S} K d A=\int_{0}^{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} K \sqrt{E G-F^{2}} d u d v= \\
2 \pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{a b^{2} \cos u d u}{\left(b^{2} \cos ^{2} u+a^{2} \sin ^{2} u\right)^{\frac{3}{2}}}=2 \pi \chi(S)=4 \pi,
\end{gathered}
$$

and consequently that

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{a b^{2} \cos u d u}{\left(b^{2} \cos ^{2} u+a^{2} \sin ^{2} u\right)^{\frac{3}{2}}}=2 .
$$

d) In general, when $\alpha(t)$ is a parametrized curve on a regular surface, α is a geodesic if and only if $\alpha^{\prime \prime}(t)$ is a vector in the plane spanned by $\alpha^{\prime}(t)$ and $N(\alpha(t))$ for each t (where $N(\alpha(t))$ is the surface normal along α). When the curve is a plane curve and the curve is not a line, α^{\prime} and $\alpha^{\prime \prime}$ are always linearly independent and will therefore (for each t) span this plane (or more precise, span the plane through the origin we get by a suitable translation), and α is consequently a geodesic if and only if $N(\alpha(t))$ is a vector in this plane for each t. The curves given by $v=$ constant is the intersection of the plane, $y=(\tan v) x$ and the the surface. Calculating, we get that $\mathbf{x}_{u} \times \mathbf{x}_{v}=\left(-g(u) h^{\prime}(u) \cos v,-g(u) h^{\prime}(u) \sin v, g(u) g^{\prime}(u)\right)$. Since this vector is parallel to N, and we se that for all u this vector is a vector in the plane $y=(\tan v) x$, the curve is consequently a geodesic. When $u=$ constant the curve is the intersection of the plane $z=h(u)$ and the surface. Then $\mathbf{x}_{u} \times \mathbf{x}_{v}$ is a vector in this plane and the curve is a geodesic, if and only if $g(u) g^{\prime}(u)=0$, if and only if $g^{\prime}(u)=0$ (since $g(u)>0)$.

