
MAT4510: Sugested solutions Fall 2010

Problem 1

Here, a = d =
√

2 and b = c = 1. So ad− bc = 1 and (a+ d)2 = 8 > 4, so f is of
hyperbolic type.

f(z) = z ⇔
√

2z + 1 = z2 +
√

2z ⇔ z2 = 1⇔ z = ±1.

So f has fixpoints ±1. Let g(z) = z+1
1−z . Then g ∈ Möb+(H) and g(−1) = 0,

g(1) =∞. Matrices associated to f , g and g−1 are[√
2 −1

1
√

2

]
,

[
1 1
−1 1

]
and

[
1 −1
1 1

]

respectively. So a matrix associated to h = g ◦ f ◦ g−1 is consequently[
1 1
−1 1

] [√
2 1

1
√

2

] [
1 −1
1 1

]
=

[
2(
√

2 + 1) 0
0 2(

√
2− 1)

]
.

f is consequently conjugate to the map h(z) = g◦f◦g−1(z) = 2(
√

2+1)z

2(
√

2−1)
= (3+2

√
2)z,

which a hyperbolic map of normal form.

Problem 2
a) Since E = G = 1

y2 and F = 0, the equations for Γkij becomes (with u = x and
v = y) [

Γ1
11 Γ1

12 Γ1
22

Γ2
11 Γ2

12 Γ2
22

]
=

[
y2 0
0 y2

] [
0 − 1

y3 0
1
y3 0 − 1

y3

]
=

[
0 − 1

y 0
1
y 0 − 1

y

]
.

This gives Γ1
11 = Γ1

22 = Γ2
12 = 0, and Γ1

12 = −Γ2
11 = Γ2

22 = − 1
y . We thus get that

Dβ′′(s) = (x′′ − 2
x′y′

y
) + (y′′ +

(x′)2

y
− (y′)2

y
)i.

(Here TzH is identified with C and xx and xy are identified with 1 and i respectively.)
parameterization b) For any two points on Cy0 there is a Möbius transformation of

type f(z) = z+ a, a ∈ R mapping one to the other. Since such transformations are
isometries preserving the normal orientation, and the geodesic curvature is preserved
under such isometries, kg must be constant along Cy0 .

Let z(t) = t + y0i, s(t) =
∫ t
0
||z′(τ)||dτ =

∫ t
0
dτ
y0

= t
y0
. So t = y0s and β(s) =

y0s+y0i is a parameterization of Cy0 by (hyperbolic) arc-length. From the solution
of a) we see that D′′β(s) = y0i. Since y0i is a the unit-normal vector along Cy0 , we
get that kg = 1 along Cy0 .

c) ∂R = α1∪α2 where α1 is contained in the circle {|z| = 1}, hence α1 is a geodesic
in H, and α2 is contained in C√2

2
. Since ei

π
4 =

√
2

2 +
√

2
2 i, it easy to see that the

inner angles ηi, i = 1, 2 at the vertices ±
√

2
2 +

√
2

2 i are equal π
4 hence the outer

angles εi are both equal 3π
4 . The arc-length of α2 is by the calculation in b) equal

1



2

l =
√

2√
2

2

= 2, and we consequently get that
∫
α2
kgds = kgl = 2. Now Gauss-Bonnet

Theorem give us∫ ∫
R

KdA+
∫
∂R

kgds+ ε1 + ε2 = −A(R) + 2 +
3π
2

= 2πχ(R) = 2π.

We thus get that A(R) = 2− π
2 . (Here we use that R obviously is homemorphic to

a disc, hence χ(R) = 1.)

d) Using that dA = dxdy
y2 , we get that

A(R) =
∫ ∫

R

dA =
∫ √

2
2

−
√

2
2

∫ √1−x2

√
2

2

dydx

y2
=

∫ √
2

2

−
√

2
2

√
2dx−

∫ √
2

2

−
√

2
2

1√
1− x2

dx

= 2−
∫ π

4

−π
4

dθ = 2− π

2
.

.

Problem 3

Let α, β, γ be the angles at the vertices ri,−r, r respectively. From the symmetry
properties of T , it is easy to see that α

2 = β = γ. So we must have that 4β = 2π
3 ,

and we get that α = π
3 and β = γ = π

6 . From the second law of cosine, we thus get
that

1
2

= −(
√

3
2

)2 + (
1
2

)2 cosh(dD(−r, r))⇒ cosh(dD(−r, r)) = 5,

and we get that cosh a = cosh(dD(−r, r)) = 1 + 2|r−(−r)|2
(1−r2)2 = 1 + 8r2

(1−r2)2 = 5,
r4 − 4r2 + 1 = 0 which implies that r2 = 2 ±

√
3. Here we must have r2 < 1, and

we get that r =
√

2−
√

3.

Problem 4

a) Let the given parameterization be α(u, v) then

αu = (−a sinu cos v,−a sinu sin v, b cosu), αv = (−a cosu sin v, a cosu cos v, 0),

and we get that E = a2 sin2 u+ b2 cos2 u, F = 0 and G = a2 cos2 u.

b) We get that αu ×αv = (−ab cos2 u cos v,−ab cos2 u sin v,−a2 cosu sinu), and we
get that the unit surface-normal is equal

N(u, v) =
(−b cosu cos v,−b cosu sin v,−a sinu)√

b2 cos2 u+ a2 sin2 u
.

Moreover we get that

e = αuu ·N = ((−a cosu cos v,−a cosu sin v,−b sinu) ·N =
ab√

b2 cos2 u+ a2 sin2 u

f = αuv ·N = (a sinu sin v,−a sinu cos v, 0) ·N = 0

g = αvv ·N = (−a cosu cos v,−a cosu sin v, 0) ·N =
ab cos2 u√

b2 cos2 u+ a2 sin2 u
.

The curvature of the surface is given by

K =
eg − f2

EG− F 2
=

b2

(b2 cos2 u+ a2 sin2 u)2
.



3

c) The surface is a regular surface of rotation, obtained by rotating the ellipse x2

a2 +
z2

b2 = 1 around the z− axis. Such a surface is obviously homeomorphic to a sphere,
and S has consequently Euler characteristic equal 2. Letting (u, v) ∈ [0, 2π]×[−π2 ,

π
2 ]

we get a parameterization of the whole of S , and this parameterization is one-to-one
on the interior of ∈ [0, 2π]× [−π2 ,

π
2 ]. The Gauss-Bonnet Theorem implies that∫ ∫

S

KdA =
∫ 2π

0

∫ π
2

−π
2

K
√
EG− F 2dudv =

2π
∫ π

2

−π
2

ab2 cosu du
(b2 cos2 u+ a2 sin2 u)

3
2

= 2πχ(S) = 4π,

and consequently that ∫ π
2

−π
2

ab2 cosu du
(b2 cos2 u+ a2 sin2 u)

3
2

= 2.

d) In general, when α(t) is a parametrized curve on a regular surface, α is a geodesic
if and only if α′′(t) is a vector in the plane spanned by α′(t) and N(α(t)) for each t
(where N(α(t)) is the surface normal along α). When the curve is a plane curve and
the curve is not a line, α′ and α′′ are always linearly independent and will therefore
(for each t ) span this plane (or more precise, span the plane through the origin
we get by a suitable translation), and α is consequently a geodesic if and only if
N(α(t)) is a vector in this plane for each t. The curves given by v = constant is the
intersection of the plane, y = (tan v)x and the the surface. Calculating, we get that
xu×xv = (−g(u)h′(u) cos v,−g(u)h′(u) sin v, g(u)g′(u)). Since this vector is parallel
to N , and we se that for all u this vector is a vector in the plane y = (tan v)x , the
curve is consequently a geodesic. When u = constant the curve is the intersection
of the plane z = h(u) and the surface. Then xu × xv is a vector in this plane and
the curve is a geodesic, if and only if g(u)g′(u) = 0, if and only if g′(u) = 0 (since
g(u) > 0).


