MAT4510: Sugested solutions Fall 2010

Problem 1

Here,a =d=+v2andb=c=1. Soad —bc =1 and (a +d)? =8 > 4, so f is of
hyperbolic type.

fR)=zeV2z+1=224+V2z2022=1&2=+1.

So f has fixpoints £1. Let g(z) = #:L. Then g € Méb" (H) and g(—1) = 0,
1

g(1) = co. Matrices associated to f, g and g~* are

V2 -1 1 1 d1f1
1\/5’—11an11

1

respectively. So a matrix associated to h = go f o g™ is consequently

o1 vz 1|1 -1  |2(vV2+1) 0
-1 1|1 V2|1 1| 0 22 - 1) |

f is consequently conjugate to the map h(z) = gofog=1(z) = 22((\\/;%11))2 = (34+2V/2)z,

which a hyperbolic map of normal form.

Problem 2
a) Since £ = G = 2% and F = 0, the equations for F?j becomes (with v = z and

y2
v=y)
Pl Thy Th| _[¥° 0|0 —5 0| _0 — 0
ry, I, I3 0 4 yLa 0 _yis % 0 _i
This gives I'}; =3, =%, =0, and '}, = -T%, =T%, = —%. We thus get that
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(Here T, H is identified with C and x, and x,, are identified with 1 and ¢ respectively.)

parameterization b) For any two points on Cy, there is a Mobius transformation of

type f(z) = 2+ a, a € R mapping one to the other. Since such transformations are
isometries preserving the normal orientation, and the geodesic curvature is preserved

under such isometries, k, must be constant along Cy,.

, t t

Let z(t) = t 4+ yoi, s(t) = [y ||Z/(7)|ldT = [; ‘;—Z = yLo So t = yps and fF(s) =
YoS + Yot is a parameterization of Cy, by (hyperbolic) arc-length. From the solution
of a) we see that D" ((s) = yoi. Since yoi is a the unit-normal vector along C,,, we

get that k£, = 1 along Cy,.

¢) OR = a3 Uag where o is contained in the circle {|z| = 1}, hence o is a geodesic

in H, and a3 is contained in C' 3. Since e'7 = % + gi, it easy to see that the
2

inner angles n;, ¢ = 1,2 at the vertices j:g + gl are equal 7 hence the outer

angles ¢; are both equal ?jf. The arc-length of as is by the calculation in b) equal
1



=2 =

s —

and we consequently get that fa2 kyds = kg4l = 2. Now Gauss-Bonnet
Theorem give us

//KdAJr/ kgds + €1 + €2 =
R R

ol

3

—AR)+2+ g = 2mx(R) = 2.
We thus get that A(R) =2 — Z. (Here we use that R obviously is homemorphic to
a disc, hence x(R) = 1.)

d) Using that dA = dxdy

, we get that
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Problem 3

Let «, 3, be the angles at the vertices ri
properties of T, it is easy to see that
and we get that « = %
that

r,r respectively. From the symmetry
= = . So we must have that 40 = %’T,
and 0 =+ = Z. From the second law of cosine, we thus get
5= ()7 + (5 cosh(dn(~
2 2 2

r,r)) = cosh(dp(—r,1))

= 5’
and we get that cosha

_ _oq g A=)

= cosh(dp(—r,7)) =2 1+ o ')"2)2 = b5,
4r< + 1 = 0 which implies that r?2 = 2 + /3. Here we must have r2 < 1, and
we get that r =

2 —/3.
Problem 4

) Let the given parameterization be a(u,v) then

oy, = (—asinucosv, —asinusinv, beosu), a, = (—acosusinv, acosucosv,0)

and we get that £ = a?sin® u + b? cos®> u, F = 0 and G = a? cos? u.
b) We get that ., x o, = (—abcos? ucosv, —abcos? usinv, —a? cosusinu), and we
get that the unit surface-normal is equal

N(u,v) = (—bcosucosv, —bcosusinv, —asinu)

\/b2 cos?2u + a?sin?u
Moreover we get that

e =y - N = ((—acosucosv, —acosusinv

ab
,—bsinu) - N =
\/b2 cos?u + a?sin®u
f=oauy N = (asinusinv, —asinucosv,0)- N =0
abcos? u
g = Quy - N = (—acosucosv, —acosusinv,0) .
\/b2 cos?2u + a?sin?u
The curvature of the surface is given by
2 2
eg — b
K- 9= _
EG — F?

(b2 cos? u + a? sin® u)?’



3

) The surface is a regular surface of rotation, obtained by rotating the ellipse 5 -+
}TZ = 1 around the z — axis. Such a surface is obviously homeomorphic to a sphere,
and S has consequently Euler characteristic equal 2. Letting (u,v) € [0, 27]x[-F, T]
we get a parameterization of the whole of S, and this parameterization is one-to-one

on the interior of € [0,27] x [-%, ]. The Gauss-Bonnet Theorem implies that

27
//KdA / / KV EG — F2dudv =

ab?
27r/ cos udu = = 2mx(S) = 4,
(b2 cos? u + a2 sin? u)z

and consequently that

=2.

jus
/ 2 ab? cos u du

: 3
= (b2cos?u + a?sin®u)?

d) In general, when «(t) is a parametrized curve on a regular surface, « is a geodesic
if and only if /() is a vector in the plane spanned by o/(t) and N(«(t)) for each ¢
(where N («(t)) is the surface normal along o). When the curve is a plane curve and
the curve is not a line, o’ and o’ are always linearly independent and will therefore
(for each t ) span this plane (or more precise, span the plane through the origin
we get by a suitable translation), and « is consequently a geodesic if and only if
N(«(t)) is a vector in this plane for each t. The curves given by v = constant is the
intersection of the plane, y = (tanv)z and the the surface. Calculating, we get that
Xy XXy = (—g(u)h/ (u) cosv, —g(uw)h'(u) sinv, g(u)g'(u)). Since this vector is parallel
to N, and we se that for all u this vector is a vector in the plane y = (tanwv)x , the
curve is consequently a geodesic. When u = constant the curve is the intersection
of the plane z = h(u) and the surface. Then x,, X x, is a vector in this plane and
the curve is a geodesic, if and only if g(u)g’(u) = 0, if and only if ¢’(u) = 0 (since
g(u) > 0).



