Hand in by November 7th.

Exercise 48. For each function $f: \Omega \to \mathbb{C}$ holomorphic on a *connected* open set $\Omega \subseteq \mathbb{C}$ prove the following statements.

- (48.1) If f'(z) = 0 for every $z \in \Omega$, then f is constant.
- (48.2) If there exists $c \in \mathbb{C}$ such that $f(z) = c \cdot \overline{f(z)}$ for every $z \in \Omega$, then f is constant.
- (48.3) If $f(\Omega) \subseteq \mathbb{R}$, then f is constant.
- (48.4) If |f| is constant, then f is constant.
- (48.5) If $g: \mathbb{C} \to \mathbb{C}$ is holomorphic and $g \circ f$ is constant, then f or g is constant.
- (48.6) If f_1, \ldots, f_N are holomorphic on Ω , and if $|f_1|^2 + \cdots + |f_n|^2$ is constant, then each f_j is constant.

Exercise 112. Prove that if $P:\mathbb{C}\to\mathbb{C}$ is a polynomial, if $f:\mathbb{C}\to\mathbb{C}$ is holomorphic on all of \mathbb{C} , and if there exists a real C>0 such that $|f(z)|\leq C\cdot |P(z)|$ for every $z\in\mathbb{C}$, then $f=c\cdot P$ for some $c\in\mathbb{C}$. Is there an analogous statement with P replaced by an arbitrary holomorphic function on all of \mathbb{C} ?

Exercise 220. Prove that if f and g are entire and $e^f + e^g = 1$, then f and g are constant.

Exercise 242. Show that for some compactly supported differentiable function φ , none of the solutions u of $\partial_{\bar{z}}u = \varphi$ has a compact support.

Exercise 279. With the notation as in the text, prove that for each open subset $\Omega \subseteq \mathbb{C}$ and for all compact subsets K and L of Ω such that

 $K \subset L^{\circ} \subset \Omega$,

the following inclusion holds:

 $\widehat{K}_{\Omega} \subset (\widehat{L}_{\Omega})^{\circ}$.

Exercise 297. Prove that there is *no* proper holomorphic map from the open unit disc into the complex plane.