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1. THE LONG EXACT SEQUENCE OF A PAIR
Let (X, A) be a pair of spaces. The relationship between the homology groups H,.(A4), H,(X) and
H.(X,A) is expressed by the long exact sequence
- H(A) 5 Ho(X) 25 Hoy (X, A) -5 Hy 1 (X, A) 5
Exactness at H,,(X) amounts to the condition that
im(is: Hy(A) = Hy (X)) = ker(ju: Ho(X) = Hy(X, A)).
The homomorphism ¢, induces a canonical isomorphism from
Hy(A)
im(9: Hy41(X, A) — H,(A))
H,(A)
ker(iy: H,(A) = Hp(X))

cok(@: Hn+1(X, A) — Hn(A)) =




to im(i,: Hp(A) — Hp(X)). Exactness at H,(A) and at H, (X, A) amounts to similar conditions, and
0 and j, induce similar isomorphisms.

We can use the long exact sequence to get information about H,(X) from information about H,(A)
and H,(X, A), if we can compute the kernel ker(9) = im(j.) = cok(i.) and the cokernel cok(9) = im(i.)
of the boundary homomorphism 0, and determine the extension

0 — im(ix) — H.(X) — cok(ix) = 0

of graded abelian groups.

Let us carefully spell this out in a manner that generalizes from long exact sequences to spectral
sequences.

We are interested in the graded abelian group H,(X). The map i: A — X induces the homomorphism
ix: Hi(A) = H.(X), and we may consider the subgroup of H,(X) given by its image, im(é,). We get a
short increasing filtration

0 Cim(is) C Ho(X).
More elaborately, we can let
0 for s < —1
Fs=4im(i,) fors=0
H.(X) fors>1

for all integers s. We call s the filtration degree.
The possibly nontrivial filtration quotients are

im(i, | ik |
M = im(i4) and ( ) — cok(i.).
0 im(iy)
We find
0 for s < —1
fracF,Fy_ = im(i,) fors=0

cok(iy) for s=1
0 for s > 2.

The short exact sequence
0 — im(ix) — Hi(X) — cok(ix) = 0

expresses H,(X) as an extension of two graded abelian groups. This does not in general suffice to
determine the group structure of H.(X), but it is often a tractable problem. More generally we have
short exact sequences
0_>Fs—1 —>Es —>F3/Fs—1 —0

for each integer s. If we can determine the previous filtration group Fs_1, say by induction on s, and
if we know the filtration quotient Fy/Fs_;, then the short exact sequence above determines the next
filtration group Fs, up to an extension problem.

In the present example F_1 = 0, Fy = im(¢,) and F; = H.(X), so there is only one extension problem,
from Fy to Fy, given the quotient Fy/Fy = cok(iy).

We therefore need to understand im(i,) and cok(i,). By definition and exactness

im(,) = cok(9) and cok(ix) = im(j.) = ker(9),
so both of these graded abelian groups are determined by the connecting homomorphism
0: Hoy1(X,A) — H.(A).

If we assume that we know H,(A) and H,41(X, A), we must therefore determine this homomorphism 9,
and compute its cokernel cok(0) = H,(A)/im(0) and its kernel ker(9) C H.11(X, A).
In view of the short exact sequences

0 — im(9) — H.(A) — cok(d) = 0
and
0 — ker(0) — H.y1(X,A) — im(9) — 0
we can say that the original groups H,(A) and H,;1(X, A) have been reduced to the subquotient groups
cok(9) and ker(0), respectively, and that both groups have been reduced by the same factor, namely by

im(9). This makes sense in terms of orders of groups if all of these groups are finite, but must be more
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carefully interpreted in general. The change between the old groups and the new groups is in each case
created by the non-triviality of the homomorphism 0.

1.1. E"-terms and d"-differentials. We can present the steps in this approach to calculating H, (X)
using the following chart. First we place the known groups H.(A) and H.(X, A) in two columns of the
(s, t)-plane:

t=9 Hy(A) Hs(X, A)
t=1 Hi(A) Hy (X, A)
t=0 Ho(A) Hy(X, 4)
t=—1 0 Hy(X, A)
s=0 s=1

We call t the internal degree, even if this is not particularly meaningful in this example. The sum s+t is
called the total degree, and corresponds to the usual homological grading of H,(A), H.(X) and H.(X, A).
This first page is called the E'-term. It is a bigraded abelian group Ei*, with

E§, = Hy(A) and Ei, = Hi4(X,A)

for all integers t. We extend the notation by setting Eslt =0 for s < —1 and for s > 2. This appears as
follows

Ell’z E(%,z E%,Q E%,2
Ell,l Eé,l Ell,l E21,1
Ell,o E(%,O Ell,O E21,0
E', E(%,fl Ell,fl E;

)

with nonzero groups only in the two central columns.
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We next introduce the boundary homomorphism 9. In the (s,¢)-plane it has bidegree (—1,0), i.e.,
maps one unit to the left. We can display it as follows:

t=2 Hy(A) 2 — H3(X, A)
t=1 Hi(A) 2 Hy(X, A)
t=0 Ho(A) +—2— Hi(X, A)
t=—1 0 Ho(X, A)
s=0 s=1

In spectral sequence parlance, this homomorphism is called the d'-differential. It extends trivially to a
homomorphism
di,ﬁ E;,t — E;fl,t
for all integers s and ¢. In all other cases than those displayed above, this homomorphism is zero, since
for s < 0 the target is zero, for s > 2 the source is zero, and for s = 1 and t < —1 the target is also zero.
We now replace each group Ef ; = Hy(A) by its quotient group

COk(aI Hl+t(X7 A) — Ht(A)) = COk(d%,t)
and replace each group E11,t = Hy4+4(X, A) by its subgroup
ker(0: Hy4(X, A) — Hy(A)) = ker(dy ).

This leaves the following diagram

t=2 cok(d} ,) ker(d} 2)
t=1 cok(dj ;) ker(di ;)
t=0 cok(d] () ker(dj o)
t=—-1 0 Ho(X,A)
s=0 s=1

We call this second page the E2-term. It is a bigraded abelian group E2 ., with

Eg}t = cok(dit) and Eit = ker(dit)

for all integers ¢. As before, we extend the notation by setting E2, = 0 for s < —1 and for s > 2.
5



What is the relation between the E'-term and the E?-term? This may be easier to see if we expand the
diagram consisting of the E'-term and the d'-differential to also include the trivial groups surrounding
the two interesting columns.

00— Hy(A) 22— Hy(X,A)+——0

0 Hi(A) 22— Hy(X,A) +—0

0¢— Ho(A) 22— H{(X,A) +——0

0 02 Hy(X,A) +——0
In the other notation, this appears as follows:
02 B}, ik B, L
0 B}, ik B}, T
et g e g B
T BT

Now notice that each row (Ei,u di)t) of the E'-term with the d!-differentials forms a chain complex,
and the E%-term is the homology of that chain complex:
ker(d;t)

E2 = —— " = Hs El dl
s,t iIH(di+17t) ( *,t) *,t)

for all integers s and ¢. For s = 0 this is clear because
ker(dy,) = By, = Hi(A)  and  im(d},) =im(9: H14(X, A) — Hy(A)).
For s =1 it is also clear, because
ker(dy ;) = ker(9: Hy¢(X,A) — Hi(A))  and  im(dy,) =0.

For the remaining values of s, all groups are trivial.
Having obtained the E2-term as the homology of the E'-term with respect to the d'-differentials, we
can now locate the short exact sequence

0 — cok(d},,) — Hn(X) — ker(dj,, ;) — 0
6



within the diagram, for each n. This is nothing but the degree n part of the short exact sequences
previously denoted

0 — cok(0) — H.(X) — ker(d) — 0
and

0 — im(ix) — Hi(X) — cok(ix) = 0,
and is now written

0 Ey, — Hy(X)— Ef,,_; —0.

These extensions appear along anti-diagonals in the E?-term, or equivalently, along lines of slope —1:

Eg,z Eiz
Hs(X)
\
2 Ef,
Hy(X)
\
Eg,o E%,o
Ho(X)

/

0 E?

In other words, the filtration quotients (Fs/Fs_1)n associated to the increasing filtration
0 C im(i.) C Hp(X)

appear along the line in the (s, ¢)-plane where the total degree is s+t = n, starting with (Fp),, = im(i,)
at Ej,,, and continuing with the filtration quotient (Fy/Fy), = cok(i.) at E?, ;. The group we are
interested in, H,(X), is realized as an extension of the two parts of the E?-term in bidegrees (0,n) and
(I,n—1).

This indexing system is standard for the Serre spectral sequence.

1.2. Adams indexing. In some cases it is more convenient to collect the terms contributing to a single
degree in the answer, in our case the terms Egﬁn and E%,nq contributing to H, (X), in a single column.
This means that the terms E(%,n and Einfl are also placed in a single column, and the d'-differential will
map diagonally to the left and upwards. The E'-term is then displayed as follows, in the (n, s)-plane:

s=1 Ho(A) Hy(A) H»(A) H3(A)
s=0 Hy(X,A) Hy(X,A) Hy(X, A) H;(X, A)
n=20 n=1 n=2 n=23



The orientation of the s-axis has also been switched, so that Hy(X, A) rather than Hy(A) sits at the
origin, and the total degree n is related to the filtration degree s and the internal degree t by n =t — s
instead of n = s +t. We will discuss this more precisely later. The d'-differential is still the connecting

homomorphism 0:
3(X, A\

The E%-term is the homology of the E'-term with respect to the d'-differential:

cok()o cok(9)1 cok(d)a cok(d)3

Hy(X,A) ker(0)1 ker(0)2 ker(0)3

The end product, known as the abutment, of the spectral sequence, is now determined up to an extension
problem, by the following vertical short exact sequences:

cok(90)o cok(9)1 cok(0)2 cok(0)3

Hy(X) Hy(X) Hy(X) H3(X)

|
Ho(X

This indexing system is standard for the Adams spectral sequence, and we refer to it as Adams
indexing.

,A) ker(0)1 ker ()9 ker(0)3

2. SPECTRAL SEQUENCES

Definition 2.1. A homological spectral sequence is a sequence (E",d"), of bigraded abelian groups and
differentials, together with isomorphisms

ker(d")

ET+1 ~ H E’r‘ r
(B",d") = im(dr) ’

for all natural numbers . Each E" = EY , = (EY ), is a bigraded abelian group, called the E"-term of
the spectral sequence. The r-th differential is a homomorphism d": EY , — Ef , of bidegree (—r,r — 1),
satisfying d” o d" = 0. We write

TR O S O
for the component of d” starting in bidegree (s,t). The isomorphism

ker(dg e By — E;nfr,tJrrfl)

+1 -
Eg,t = HS,t(E77d7) dr - ET ET
( s+rt—r+1° Hstrt—r+1 — s,t)

is part of the data.



Here is the typical El-term and d!-differential, depicted in the (s, )-plane:

E£172 E&Z E11,2 E21,2 Eé,Q

E£171 E(%,1 Ell,l E21,1 Eé,l

—— B, B, El, E3 g E3o
'~'<;E£1,71 Ecl),—l E%,—l <7E%7,1 E;:)l-771

Each row is a chain complex, and the homology of this chain complex is isomorphic to the E?-term.
That E2-term, together with the d2-differentials, appears as follows:

.. E? E§, E?, E3, E3, ...
T R
.. E?) E§, E? | E3, E3, -
e E? E3, E%, E3, E3, .
x B2, E§ 4 Ef 4 E3 E5

(The differentials entering or leaving the displayed part are not shown.) Each line of slope —1/2 is a chain
complex, with homology isomorphic to the E3-term. That E3-term, together with the d3-differentials,
appears as follows:

3 3 3
E1,2 E2,2 E3,2

3
E3,1

3
ElO

)

3 3 3 3 3
E% 4 Ey 4 E7 4 E;5 4 Es 4

Each line of slope —2/3 is a chain complex, with homology isomorphic to the E4-term:

4 4 4 4 4
EZ, Ep.- Ei, E5, Es,

4 4
E2,1 E3,1

4
ES,O

4 4 4 4 4
E 1,—-1 EO,fl El -1 E2 -1 ES -1

) )



Each line of slope —3/4 is a chain complex, with homology isomorphic to the E°-term:

E?, Eg EY, E3, E3,
E%) By EY, E3, E3,
EELO an Eio ES,O E?E:,O
E%y E§ EY 4 E3 B3

At this point there is not room for any further differentials within the finite part of the spectral sequence
that is displayed. There may of course always be longer differentials that enter or leave the displayed
region.

2.1. E°°-terms. We now want to give sense to the limiting term, the F*°-term E*° = EZ°,, of a spectral

sequence. This is a bigraded abelian group, and we would like to make sense of EJ5 as an’algebraic limit
of the abelian groups E¢, as r — oo.

In many cases the spectral sequence is locally eventually constant, in the sense that for each fixed
bidegree (s,t) there is a natural number m(s,t) such that the homomorphisms

d": E;.,t — E;“fr,t+r71 and d": E§+r,t7r+1 — E;,t
are zero for all r > m(s,t). Then E:Tl = B, for all r > m(s,t), and we define

m(s,t
EX = EY

to be this common value. If there is a fixed bound m that works for each bidegree (s,t), so that d" =0
for all » > m and E"T! = E7 for all » > m, we say that the spectral sequence collapses at the E™-term.
In this case E*° = E™.

In general, a spectral sequence determines a descending sequence of r-cycles

ecz ez c 2 =ker(dh) c Z' = E*
and an increasing sequence of r-boundaries
0=B'Ccim(d)=B*c---cB"cBc...CcFE',

with B" C Z" and E" = Z"/B" for all r > 1. (This is Boardman’s indexing convention. Other authors
like Mac Lane (1963) have E"+! = Z"/B".) We then define the bigraded abelian groups of infinite cycles
and infinite boundaries to be

7*=(12"=lmZz" and B*=|JB" =colimB",
respectively, and set E> = Z°/B°. This definition is reasonable if the limit system of r-cycles is
well-behaved, i.e., if the left derived limit Rlim, Z" vanishes. In the case of a locally eventually constant

spectral sequence, the general definition agrees with the previous definition, since 235 = Z;, and By, =
B for all 7 > m(s,t) — 1. [[More about this later.]]

2.2. Filtrations.
Definition 2.2. An increasing filtration of an abelian group G is a sequence {F}s of subgroups
..CF, ,CF,C---CQG.
The filtration is exhaustive if the canonical map
coLim F, — G
is an isomorphism. The filtration is Hausdorff if
limFy, =0,
s
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and it is complete if
Rlim F, = 0.

Here colimg F = | J, Fs, so the filtration is exhaustive precisely if each element in G lies in some F,. We
can think of the Fy as specifying neighborhoods of 0 in a (linear) topology on G. Since (), F = lim, Fj,
this topology is Hausdorff if and only if the filtration is Hausdorff. An Cauchy sequence is an element
in lims G/ Fy, so the topology is complete exactly when the canonical map G — lim; G/F} is surjective,
i.e., when Rlimg Fy = 0. [[More about this later.]]

In the case of a finite filtration, these conditions are easily verified. If there are integers a < b such
that Fs =0 for s < a and Fs; = G for s > b, then the filtration has the form

0OCF,C---Ck=G.

Clearly colimg Fs = G, lim, Fy; = 0 and Rlimg Fy; = 0. In this case, the only nontrivial filtration quotients
are the Fy/F,_; for integers s in the finite interval [a, b].

In the case of a finite filtration, the group G appears as the filtration subquotient F},/F,_1. Under the
three conditions above, G is also algebraically determined by the finite filtration subquotients Fs/F_,.

Lemma 2.3. If {F,}; is an ezhaustive complete Hausdorff filtration of G, then
G = colimlim F, /F,_,
so that G can be recovered from the subquotients Fs/Fs_, of a filtration.

Proof. For each s, there is a tower of short exact sequences

0 F,, F, F,/Fs_y ——0

0 Fo_4 F FS/FS_1*>0
giving rise to the six-term exact sequence

0—limF,_, - Fs = limF,/Fs_, — Rlim F,_, - 0 — Rlim F/F;_, — 0.
By the complete Hausdorff assumption, lim, F_, = 0 and Rlim, F;_, = 0, so
Fy =5 limF,/F,_,

is an isomorphism. Passing to the colimit over s, and using the exhaustive assumption, we get the
asserted formula. O

A filtration of a graded abelian group is a filtration in each degree.

Definition 2.4. A homological spectral sequence (E”,d"), converges to a (graded) abelian group G if
there is an increasing exhaustive Hausdorff filtration {F,}s of G, and isomorphisms of (graded) abelian
groups

EX = F,/F,
for all integers s. The spectral sequence converges strongly if the filtration is also complete. In these
cases we write

EFr—G.

We call G the target, or the abutment, of the spectral sequence.
11



If it is necessary to emphasize the filtration degree s, we write E” =, G. We may also make the
bigrading explicit, as in £} , = G or By, = Ggyq.

A strongly convergent spectral sequence determines its abutment, up to questions about differentials
and extensions. If we know the E™-term for some m > 1, and can determine the d"-differentials for all
r > m, then we know the E"-terms for all » > m, and can pass to the limit to determine the E°-term.
[[Elaborate on how the Z" and B" are found, and how they specify Z°° and B*.]]

By convergence, this determines the filtration quotients ESS, = F,/F,_; for each s. There are short
exact sequences

0— str/strfl — Fs/strfl — Fs/str —0

for all » > 1 and integers s, so if we inductively have determined Fy/Fs_,, and know Fs_,/Fs_,_1 =
EZ2, ., then only an extension problem of abelian groups remains in our quest to determine Fj JFs_r_q.
This gives the input for the next inductive step, over r.

In the case of a finite filtration, this process gives us G after a finite number of steps. In the general

case, assuming strong convergence, passing to limits over r and colimits over s recovers the abutment G.

3. THE SPECTRAL SEQUENCE OF A TRIPLE

To illustrate the general definitions in the first case that does not reduce to a long exact sequence, let
us consider a triple (X, B, A) of spaces, and aim to understand the relationship between the homology
groups H,.(A), H.(B,A), H.(X,B) and H.(X). The essential pairs and maps appear in the diagram

A—" sp_* X

Lok

(B,4) (X, B),

but can be more systematically embedded in the larger diagram

DA

(0,0) (A, 0) (B, A) (X, B) (X,X).

We have two long exact sequences, associated to the pairs (B, A) and (X, A), respectively:
L HL(A) S Hy(B) L Hy (B, A) =S H,_1(A) 25
and
L HL(B) 4 Hy(X) 2 Hy(X,B) -% Hy_y(B) 2 ..

We can also display these two long exact sequences together, as follows, where 0 has degree —1 and each
triangle is exact.

(=

Ho(A) —" 5 H.(B) —"— H.(X)
\ Jj* \ Jj :
H.(B,A) H.(X,B)
Again, this is the essential part of the bigger diagram

Ho(A) —"  H(B) —" 5 H,(X) — = H,(X) ———— ..

. Tx

0 =

o JJ’X _lj* x J«j* ’\ Jj* \P* \
0 H,.(A) H.(B,A) H.(X,B) 0
Our aim is to construct a spectral sequence starting with an E'-term given by the homology groups in

the lower row of this diagram, namely, H,(A4), H.(B, A) and H.(X, B), and converging to the homology
group G = H,(X), equipped with the finite filtration

OCFOCF1CF2=G
12



where

To emphasize the grading we may write (Fy),, for the part of Fy in degree n. Convergence means that
there should be isomorphisms

E&Ot = (FO)t , Elo’(% = (FI/FO)lth and E2o‘it = (Fg/Fl)Qth .

In fact, this spectral sequence will collapse at the E3-term, so that there are nonzero d'- and d?-
differentials, but d” = 0 for r > 3 and E3 = E*.
First, the E'-term is given by

Ey,=H,(4A) , Ej,=H_4(BA) and E;, =Hy (X, B),
and the d!-differential is defined to be the composite d' = j, o 8. More explicitly,
di,=0: H4(B,A) — Hy(A)  and  dy, =j.0: Hyy(X,B) — Hi14(B, A)

are visible in the diagrams above. Note that di_,; ; o d}, = 0 for all s and ¢, since 5. = 0.
The (E*,d')-chart appears as follows:
Ho(A) 2 Hy(B, A) +=2 Hy(X, B)
Hy(A) «2— Hy(B, A) <22 Hy(X, B)
Ho(A) «2— Hy(B, A) «22 Hy(X, B)
0 Ho(B, A) <%~ H,(X, B)

0 0 Ho(X, B)

Passing to homology, we get to the E2-term.
In column s = 0, we compute

2 ker(d(l)’t) . H(A)
08 im(dl,)  im(0: Hipe(B, A) — Hy(A))
Hy(A)

- ker(iy: Hy(A) — Hy(B)) =im(is: Hy(A) — Hy(B)) = im(i.);

using exactness at Hy(A). The right hand isomorphism is induced by ..
In column s = 1, we find

9 ker(dit) B ker(0: Hiy¢(B,A) — H(A))
M im(ds,) T im(j0: Hape(X, B) = Hi4(B, A))

_im(je: Hip(B) = Hi(B, A))

©im(5,0: Hat(X, B) = Hy (B, A))

Hi(B)
ker(j.: Hi4+(B) = Hi44(B, A)) +1im(9: Ha4+(X, B) = H14+(B))
using exactness at Hyy+(B, A). The last isomorphism is induced by j.. To verify it, it is clear that j,
induces a surjection from Hj,¢(B) to the quotient im(j,)/im(;.0) (on the preceding line). Its kernel
13
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consists of the elements that map under j, to elements in the image of j,0. These differ by elements
in ker(j.) from elements in im(9), hence are in the sum ker(j.) + im(9). This is an internal sum of
subgroups of Hi¢(B), not necessarily a direct sum. Using exactness at Hy4(B) in two different exact
sequences, we can rewrite this as follows:
Hy4(B)
1m(2* H1+t(A) — H1+t(B)) + ker(i*: H1+t(B) — H1+t(X))
im(is : Hipe(B) = Hipe(X))
= (F1/F
(2 Hraa(A) = (X)) /o
The second isomorphism is induced by i, and is formally of the same type as the one we just discussed:
The homomorphism i, induces a surjection from H; ¢(B) to im(i.)/im(i2), with kernel given by the
internal sum of ker(i,: Hy44(B) = H14+(X)) and im(is: H11:(A) = Hi14(B)).
In column s = 2, we calculate

o _ ker(dy,) _ ker(j.0: Horo(X, B) — Hi14(B, A))
20 im(d},) 0
=0 ' ker(ju: Hyt(B) — Hi14(B, A))
= 871 nn(z* H1+t(A) — H1+t(B)) = 871(im(i*)1+t)

~

I

~

using exactness at Hi14(B). This is the subgroup of Ha; (X, B) consisting of elements z with d(z) €
Hy44+(B) lying in the image of i,: H14+(A) — Hi44(B).
The d?-differential acting on the E?-term is now defined to be the homomorphism
d%,ﬁ Eg,t = 07 (im(is)14¢) — im(i )14 = Eg,t+1

induced by 9, mapping a class « € E3 , with 0(z) € im(ix)14¢ to the class d*(z) = d(z) € Ej | .
The (E?,d?)-chart appears as follows:

im(is)2 (F1/Fy)s O~ (im(ix)3)
d3
im(i. )1 (F1/Fo)2 91 (im(ix)2)
d3 o
im(i.)o (F1/Fo) 91 (im(ix)1)
a3
0 (F1/Fo)o O~ (im(ix)o)
0 0 HO(Xa B)

Passing to homology once more, we get to the E3-term.
In column s = 0, the E3-term is

5 ker(di,) _  im(i.: H,(A) — Hy(B))

0" im(d3, ;) im(9: 0~ 1(imi.); — im(is),)
im(i,: Hi(A) — Hy(B))
im(9: Hy4(X,B) — Hy(B)) Nim(i.: H(A) — Hy(B))
_ im(i.: Hy(A) — Hy(B))
ker(i.: Hy(B) — Hy(X)) Nim(iy: Hi(A) — He(B))
= im(if: Hy(A) = Hy(X)) = (Fo)s
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using the definition of al%’tf1 and exactness at H;(B). The last isomorphism is induced by i,: H¢(B) —
H(X).
Column s = 1 is not affected by the d?-differentials, so
ker(d%,t) . E%,t
im(dg,tfl) B

Eit = = (F1/Fo)1+4t -

In column s = 2, the E3-term is

_ ker(d3 ;) _ ker(d3 ;- 071 (im(iw)14¢) = im(is)14¢)
2 im(di,tfl) B 0
= ker(9: Hoyt(X,B) = H14+(B))
=im(ju: Hapt(X) = Hopt(X, B))
Ha14(X)

= im (i : Hoye(B) = Hapt (X)) = (F2/F1)2+¢

3

by the definition of the d?-differential, and exactness at Ha (X, B) and at Hoyy(X).
The E3-term appears as follows:

(Fo)2 (F1/Fo)s (Fa2/F1)a
(Fo)1 (F1/Fo)e (F2/F1)s
(Fo)o (F1/Fo) (Fa2/F1)2
0 (F1/Fo)o (F2/Fi)h
0 0 (Fo/Fy)o

There is no room for further nonzero differentials, since d” for r > 3 must involve columns three or more
units apart. Hence this spectral sequence collapses at the E3-term, and E> = E3 is as displayed above.
In view of our calculations, we have isomorphisms

5035 = (Fs/Fs—l)s-i-t

in all bidegrees (s,t), which proves that the spectral sequence we have constructed, with the given
El'-term, d'-differential and d?-differential, indeed converges strongly to the abutment H,(X), with the
finite filtration given by

0 for s < —1
im(i2: Hy,(A) = H,(X)) fors=0
im(iy: Hy(B) = Hp(X)) fors=1
H,(X) for s > 2.

(Fs)n =

Hence we can conclude that there is a strongly convergent spectral sequence

By =5 Hopy(X)
15



with three nonzero columns

0 for s < —1
H(A) for s=0
El,={H _,(BA) fors=1
Hy 4 (X,B) fors=2
0 for s > 3.
[Mlustrate with an example?]]

[[The K-theory based Adams spectral sequence is an interesting three-line spectral sequence (Adams—
Baird, Bousfield, Dwyer—Mitchell).]]

4. COHOMOLOGICAL SPECTRAL SEQUENCES

So far we have focused on so-called homological spectral sequences, where the differentials reduce total
degrees and filtration indices. If one applies cohomology to the same diagrams of spaces, one instead
obtains a cohomological spectral sequence.

Definition 4.1. A cohomological spectral sequence is a sequence (E,,d.), of bigraded abelian groups
and differentials, together with isomorphisms

E7'+1 = H(Era d’f)

for all r > 1. Each E,-term is a bigraded abelian group E, = E* = (E$'),;, and each d"-differential
is a homomorphism d,.: Ef* — E** of bidegree (r,1 — r), satisfying d, o d, = 0.

Definition 4.2. A decreasing filtration of an abelian group G is a sequence {F*}, of subgroups
GD---DF DOFt 5. ..
It is exhaustive if colimg F'* = G, Hausdorff if limgs F'* = 0 and complete if Rlimg F* = 0.

Definition 4.3. A cohomological spectral sequence (E",d"), converges to a graded abelian group G if
there is a decreasing exhaustive Hausdorff filtration {F*}, of G, and isomorphisms of (graded) abelian
groups

Es,* ~ Fs/Fs+1
o0
for all integers s. The spectral sequence converges strongly if the filtration is also complete.

The algebraic structure in a cohomological spectral sequence is really the same as in a homological
spectral sequence; the difference only lies in the sign conventions for the grading. To each homological
spectral sequence (E",d"), there is an associated cohomological spectral sequence (E,.,d,.), with

ES' = E"

—s,—t
for all integers s and t, and with

diyt = dr—s,—t .
To each increasing filtration {F}, of an abelian group G there is an associated decreasing filtration
{F*}, of the same group, with

Fs=F_,.

The spectral sequence (E",d"), converges (strongly) to the abutment G, filtered by {F;}s, if and only if
the associated cohomological spectra sequence (E,., d,.), converges (strongly) to the abutment G, filtered
by {F*}.
The sign change in the bidegree of the spectral sequence differentials implies that the direction of the
arrows in an (E,., d,.)-chart is reversed in comparison with the direction in an (E",d")-chart. For instance,
16



an (Es,ds)-term typically appears as follows. (Compare with the (E?2, d?)-term displayed earlier.)

—1,2 0,2 1,2 3,2
- E, EY E; ES .
1 1,1 1
0, E3’

Byl E E

2 2 2 2 2 ce
E;LO mk@\p)

2 5 2 5

0,
E,

One reason for switching from a homological to a cohomological indexing occurs when the spectral
sequence occupies a quadrant, or a half-plane. If the homological spectral sequence EY, is nonzero
only for s < 0 and ¢t < 0 (or for s < 0), then the associated cohomological spectral sequence E2* is
nonzero only for s > 0 and ¢ > 0 (or for s > 0). It tends to be notationally easier to work with the
latter conventions. We refer to such a spectral sequence as a first quadrant (or right half-plane) spectral
sequence. [[Formalize this definition?]]

[[Another reason for working with cohomology has to do with product structures. The cup product
in cohomology can be well respected by the spectral sequence.]]

[[Also mention Adams indexing. Since this will be our main focus, once we get the basic formalism
for spectral sequences in place, we will return to this in more detail later.]]

5. EXAMPLE: THE SERRE SPECTRAL SEQUENCE

5.1. Serre fibrations. A Serre fibration is a map p: E — B with the homotopy lifting property for
CW complexes (or, equivalently, for polyhedra), cf. Serre (1951). This means that for any CW complex
X, map f: X — E and homotopy H: X x I — B such that H(z,0) = pf(x), there exists a homotopy
H: X x I — E with H(z,0) = f(z) and pH = H.

f
_

X FE
g7
iol P lp
7

XxI——B
H

Any fiber bundle over a paracompact base space is a Serre fibration, cf. Spanier (1981, Theorem 2.7.13).
Suppose that B is a connected CW complex, and choose a base point by € B. Let F = p~1(by) be the
fiber above that base point. The fundamental group 7 (B, by) acts on the homology H.(F') of that fiber.

F——F

| ]

{bo} —— B

5.2. The homological Serre spectral sequence. The homological Serre spectral sequence for F' —
E — B is a spectral sequence converging to the homology H.(E) of the total space. It has E'-term

E;,t = CS(BM%(F))

given in bidegree (s,t) by the cellular s-chains of B with coefficients in the local coefficient system .7 (F')
associated to the action of the fundamental group on the homology of the fiber, and

B, = Hy(B; #4(F))

is given by the cellular homology of B with these local coefficients. If B is simply-connected, or more

generally, if the action is trivial, then this is the ordinary cellular homology of B with coefficients in the

abelian group H;(F). Notice that the E?-term, unlike the E'-term, does not depend on the chosen CW

structure on B. Hence the remaining terms of the spectral sequence are topological invariants of the

Serre fibration p: E — B. Notice also that Eit can only be nonzero for s > 0 and ¢ > 0, hence the same

holds for every later term E¢ ;. It follows that the Serre spectral sequence, like any other first quadrant
17



spectral sequence, is locally eventually constant, because df, = 0 when s —r < 0 and dg,,; , .4 =0
when ¢t —r 4+ 1 < 0, so both of these differentials vanish whenever r > m(s,t) = max{s + 1,¢ + 2}. The
Serre spectral sequence converges strongly to the homology of the total space:

ESQ,t = HS(B§%(F)) =5 Hs+t(E)-

5.3. The cohomological Serre spectral sequence. There is also a cohomological Serre spectral
sequence, with Fi-term
Byt = O (B, A (F))
given by the cellular s-cochains on B with coefficients in the local coefficient system S#¢(F). The Es-term
By = H*(B; A"(F))

is given by the cellular cohomology with the same coefficients, and the spectral sequence converges
strongly to the cohomology of the total space:

E)t = H¥(B; #4(F)) =, H*TY(E).

5.4. Killing homotopy groups. We illustrate by an example, based on the method of “killing ho-
motopy groups”, which was used by Serre [[and others?]] to determine several of the first nontrivial
homotopy groups of spheres, i.e., the homotopy groups 7;(S7) for varying i and j. It is quite easy to
show that m;(S7) = 0 for i < j. In the case i = j the Hurewicz theorem shows that m;(S%) = H,;(S) = Z
for ¢ > 1. The cases ¢ > j remain. When j = 1 we know that the contractible space R is the universal
covering space of S, so m;(R) = m;(S1) for all i > 2, hence m;(S1) = 0 for i > 2. The cases j > 2 are
significantly harder. There is a fiber sequence
St — 53 s 527,

where 7 is the complex Hopf fibration, and the associated long exact sequence of homotopy groups tells
us that 7, : m;(S%) — m;(S?) is an isomorphism for 7 > 3. Hence the cases j = 2 and j = 3 are practically
equivalent.

It turns out to be most convenient to start the analysis with the space S3. As already mentioned,
the first homotopy groups of S? are 7;(S®) = 0 for i < 3 and 73(S3) = H3(S3) = Z, by the Hurewicz
theorem. To calculate m4(S3), we shall construct the 3-connected cover E of S3, i.e., a map g: E — S3
such that m;(E) = 0 for i < 3 and g,: 7;(E) — 7;(S%) is an isomorphism for i > 3, in such a way that we
can calculate the homology H. (E) using a Serre spectral sequence. First we construct a map h: S% — K,
where h,: 7;(S?) — m;(K) is an isomorphism for i < 3 and 7;(K) = 0 for i > 3. The space K will then
be an Eilenberg-Mac Lane space of type K(Z,3).

To construct K, start with K4 = $3 and attach 5-cells to kill the non-zero classes in 74(S%). Then
attach 6-cells to kill the non-zero classes in 75 of the resulting CW complex K (®). Inductively, suppose
we have constructed a CW pair (K, $%), such that m;(S%) = m;(K™) for i < 3 and m;(K™) = 0
for 3 < i < n. Attach (n + 1)-cells to K™ to kill the non-zero classes in m, (K (™), and call the result
K™+ Continuing, we can let K = U., K™ = colim, K™, and the inclusion h: S — K has the
properties described above. To prove that this works, use the homotopy excision theorem. [[Reference
in Hatcher?]]

[[Also comment on Pontryagin and Whitehead’s early work using framed bordism, and its pitfalls.]]

5.5. The 3-connected cover of S3. Let g: E — S® be the homotopy fiber of h: S — K. By the long
exact sequence in homotopy, E is the 3-connected cover of S3. Furthermore, g is a Serre fibration. Let
f: F — E be the homotopy fiber of g: E — S3.

FrLp2 9K,
By a general result for such Puppe fiber sequences, we know that F' ~ QK so F' is an Eilenberg—Mac Lane
space of type K(Z,2). In other words, F' ~ CP>°. Hence we have a homotopy fiber sequence
cpP* — F -4 53,
The associated homological Serre spectral sequence has E2-term

Z for s € {0,3} and ¢t > 0 even,

E?, = H,(S% H,(CP>))
st ( il ) {0 otherwise,

and converges strongly to Hyi(E). We can display the E%-term as in Figure [l Notice that there is
18



t=4 Z 0 0 Z 0
t=3 0 0 0 0 0
t=2 Z 0 0 / 0
t=1 0 0 0 0 0
t=0 Z 0 0 Z 0

s=0 s=1 5=2 s=3 s=4

FIGURE 1. Serre E*-term for H,(E)

no room for nonzero d*-differentials, since d2 ; can only originate from a nonzero group EZ, if s = 0 or
s = 3, and in either case the target group E§_27t+1 is zero.

Hence d? = 0 in this spectral sequence, which implies that £ = E2?. There is, however, room for
d3-differentials, which we display in the E3-term as in Figure[2] The difficulty now is to determine these
homomorphisms dg’t for t > 0 even. At this point we can already deduce that each group H,(F) is a
finitely generated abelian group (of rank 0 or 1), since whatever the d"-differentials are, only a trivial,
finite cyclic or infinite cyclic group will be left at the E°°-term in each bidegree (s,t) with s € {0,3} and
t > 0 even. Since there is at most one nontrivial group in each total degree of EY,, we can conclude that

the abutment H,(E) is also either trivial, finite cyclic or infinite cyclic in each degree.

5.6. The first differential. By looking a bit ahead and working backwards, we can prove that the first
differential, dg’o, is an isomorphism. This is because at the E*-term the only possibly nonzero groups in
total degree s + ¢t < 3 will be

Eg,=cok(d3,) and  Ej,=ker(d3,).

Since the spectral sequence is concentrated in the two columns s = 0 and s = 3, i.e., is zero for all other
s, there is no room for any longer differentials than the d3-differentials. Hence d” = 0 for r > 4, and
E* = E*>. So if the cokernel or kernel of d ; is nonzero, then it will survive to the E>-term of the
spectral sequence, in total degree 2 or 3, respectively. The spectral sequence converges to H, (F), where
E by construction is 3-connected. Hence, by the Hurewicz theorem, H, (F) = 0 for 0 < n < 3. It follows
that (Fs), = 0 and (Fs/Fs_1), = 0 for all s and all 0 < n < 3. Convergence of the spectral sequence
thus implies that £5% = 0 for 0 < s+¢ < 3. In particular, Eg% = cok(d3 ) = 0 and E3 ; = ker(d3 ;) = 0.
This is equivalent to the assertion that d3 ; is an isomorphism.

5.7. The cohomological version. How do we proceed from here to determine the second differential,
d§72? It is not clear how to do this using only the additive structure in homology. Instead, we will pass
to cohomology, and use the multiplicative structure in the cohomological Serre spectral sequence, related
to the cup product in cohomology, to calculate all the later cohomological dz-differentials from the first
ds-differential, dual to the homological d3-differential that we just identified.

Let us use the notations H*(CP>) = Z[y] and H*(S®) = Z[2]/(z?), with algebra generators y in
degree |y| = 2, and z in degree |z| = 3. The cohomological Serre spectral sequence for CP>* — E — S3
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t=5 0
t=4 0
t=3 0
t=2 0
t=1 0
t=0 0

s=0 s=1 5=2 s=3 s=4

FIGURE 2. Serre E3-term for H,(E)

has Fs-term
Z for s € {0,3} and ¢t > 0 even,
0 otherwise,

Ey' = H*(S% H'(CP™)) = {

and converges strongly to H*T*(E). So far, this looks just like in homology. However, the cohomological
Serre spectral sequence has the additional property of being an algebra spectral sequence, meaning that
each E.-term is a graded algebra, and each d,-differential is a derivation with respect to this algebra
structure. This means that d, satisfies a Leibniz rule, of the form

d(ab) = d,(a)b+ (=1)%ad,.(b)

for classes a,b € E, and their (cup) product ab = a Ub. We shall return to the precise definition and
interpretation of multiplicative structures in spectral sequences, later.

For now, we just observe that the algebra structure of the cohomological Serre spectral sequence
FEs-term can be written as

Ey" = H"(S% H*(CP®)) = Z[]/(+*) ® Z[y] .

Since the spectral sequence is concentrated in the columns s = 0 and s = 3, there is only room for
ds-differentials, so F; = E3 and Fy = E.. We now display the cohomological Fs-term and the ds-
differentials, in Figure [3| Note that the direction of the differentials is reversed, compared to the homo-
logical case. Note also that we can now give names to the additive generators in the various bidegrees,
as products of powers of y and z.

We can now argue as before, that ker(dy?) = Ey” = E%2 and cok(dy®) = Ey” = E%0 must contribute
to H%(E) and H?(E), respectively, and since the latter two groups are trivial, hence so is the kernel and
cokernel of dg’Q. Alternatively, one can appeal to a Kronecker pairing of spectral sequences, evaluating
the cohomological spectral sequence on the homological one, to deduce that

dy?: HY(S% H*(CP>)) — H*(S%; H(CP>))
is dual to

dg,o: H3(S?; Hy(CP>)) — Hy(S?; Ho(CP™)),
20



t=5 0
t=4 0
t=3 0
t=2 0
t=1 0
t=0 0

s=0 s=1 s=2 s=3 s=4

FIGURE 3. Serre Es-term for H*(F)

in the sense of the universal coefficient theorem. This leads to the same conclusion. Hence we find that

ds (y) =2z,
up to a possible sign. If necessary we replace y or z by its negative, to make sure that the formula above

holds.

5.8. The remaining differentials. At this point, the algebra structure comes to our aid. The Leibniz
rule for ds applied with @ = y and b = y asserts that

ds(y?) = ds(y)y + yds(y) = 2y +yz = 2zy.
By induction, it follows that
ds(y*) = kzy* !
for all £ > 1. Hence the homomorphism
gt Z{y*} — Z{zy*'}

is given by multiplication by k, with respect to this basis. This lets us calculate the 4 = E-term

7 fors=t=0,

Exl = 7/k fors=3andt=2k—2,
0 otherwise.

It appears as in Figure 4| The group Z/1{z} in bidegree (3,0) is of course trivial. This leads to the
conclusion

Y/ for n =0,
H"(E)=]Z/k forn=2k+1,
0 otherwise.

For instance, in total degree n = 5, we have a finite descending filtration

HP(E) = (F°)° 5 (F1)° 5 (F?)° 5 (F?)° 5 (F*)° 5 (F°)° 5 (F°)” = 0,



t=4 0 0 0 Z/3{zy*} 0
t=3 0 0 0 0 0
=20 0 0 zpy o
t=1 0 0 0 0 0
t=0 Z{1} 0 0 0 0

s=0 s=1 s=2 s=3 s=14

FIGURE 4. Serre Eo-term for H*(E)

with filtration quotients
(Fs/Fs+1)5 — (FS)S/(Ferl)S o ngfs
for all 0 < s < 5. Hence
H(E) = (F°)° = (F')° = (F?)° = (F?)°  and  (F')° = (F°)> = (F°)°=0

while (F3)%/(F*)° = E32 = Z/2{zy}. Thus H°(E) = Z/2. In this case there were no (non-obvious)
extension questions, since there was at most one nontrivial group in each total degree of the E-term.

5.9. Conclusions about homotopy groups. We observed from the homological Serre spectral se-
quence that H,(F) is of finite type, i.e., a finitely generated abelian group in each degree, so the universal
coefficient theorem allows us to determine these homology groups from the corresponding cohomology
groups. We obtain

Z for n =0,
H,(E)=<Z/k forn=2k,
0 otherwise.

Hence the first nontrivial homology group of the 3-connected cover E of S® is Hy(E) = Z/2. By the
Hurewicz theorem, 74(E) = Hy(E), and by the defining property of a 3-connected cover, 74(S?) = 74(E).

Theorem 5.1. m,(S3) =2 7Z/2.

By a refinement of these methods, it is possible to concentrate on a prime p, such as 2, 3 or 5, and
to calculate the p-localized homology and homotopy groups of all the spaces involved. For instance, we
write H,(E),) for the localization of H,(E) at p, which means the result of making multiplication by
each prime other than p invertible in H, (E). More explicitly,

where Z,y is the ring of p-local integers, i.e., the ring of rational numbers a/b where p does not divide b.
We find that (Z/k),) = Z/(k,p) for k > 1, where (k,p) denotes the greatest common divisor of & and
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p. This equals the p-Sylow subgroup of Z/k, which is only nontrivial if p divides k. Hence

Zp) for n =0,
Hn(E)(p) = Z/(k,p) for n =2k,
0 otherwise,

and the first nontrivial p-local homology group of E is Ha,(E)q) = Z/p. By the p-local Hurewicz
theorem, mop,(E) () = Hap(E)(p), and by the defining property of E, ma,(5%) ) = 72, (E) ().

Theorem 5.2. m;(5%),) =0 for 3 <i < 2p, and 72,(5%) ) = Z/p.

The formalism for working with p-local homology and homotopy groups is a special case of a more
general theory of localizations. Its first incarnation, which suffices for the computation above, is known
as the theory of “Serre classes”, cf. Spanier (1981, Section 9.6). [[References for later work: Sullivan,
Bousfield-Kan (1972).]]

5.10. Stable homotopy groups. There are suspension homomorphisms

WZ(SJ) i) 7T7;+1(Sj+1)
taking the homotopy class of a map a: S* — S’ to the homotopy class of its suspension, Ya: S+ =
xS — £S89 = §itl The homomorphism ¥ is often denoted E, for the German “Einhingung”. By
Freudenthal’s suspension theorem, Y is an isomorphism if ¢ < 25 — 2, and it is surjective if ¢ = 2j — 1.
Iterating, and passing to the colimit, we come to the stable homotopy groups of spheres, also known as

the stable stems:
72 = colimj 1, (57).
J

By Freudenthal’s theorem, the colimit system consists of isomorphisms for j > n 4+ 2, so we have
isomorphisms 74, (S7) 2 75 for all j > n + 2, and a surjection $: 7o, 41 (S ) — 7.

In particular, 73(S?) = Z{n} surjects onto 74(S3) = 77, so the first stable stem 7 = Z/2 is
generated by (the suspensions of) the Hopf map 7. The Freudenthal theorem does not suffice to prove
that mo,(S%) — 7r‘29p_3 becomes an isomorphism after p-localization, but this is true:

Theorem 5.3. (75)(,) =0 for 0 <n <2p—3 and (’/Tzsp_g)(p) =~ 7Z/p.

n/(p) —

For each odd prime p, the generator of (7r23p_ 3)(p) given by the suspensions of the generator of 7o, (S 3)(p)
is usually denoted «;. It is the first class in the first of the so-called Greek letter families in the stable
homotopy groups of spheres. [[Reference to Ravenel.]]

6. EXAMPLE: THE ADAMS SPECTRAL SEQUENCE

6.1. Eilenberg—Mac Lane spectra and the Steenrod algebra. Let X and Y be spectra, i.e., objects
in one of the categories modeling stable homotopy theory. The Adams spectral sequence is a tool for
analyzing the homotopy classes [X,Y],, of spectrum maps X" X — Y, for all integers n, starting with the
mod p cohomology groups H*(X;F,) and H*(Y;F,) as modules over the mod p Steenrod algebra <.
For instance, if X =Y = S are both equal to the sphere spectrum, with k-th space S*, then the group

™ (5) =[5, S]n

equals the n-th stable stem 7.

Let H = HIF, denote the mod p Eilenberg-Mac Lane spectrum, representing mod p cohomology.
There is a natural isomorphism

X, H]_. = H(X:F,)
for all spectra X. By the Yoneda lemma, the natural graded transformations
H*(X;Fp) — H*(X;Fp),
i.e., the mod p cohomology operations for spectra, are in one-to-one correspondence with the elements
of
o =[H,H|_, = H"(H;F,).
This graded endomorphism algebra of the spectrum H is the mod p Steenrod algebra. It is concentrated

in non-negative cohomological degrees, i.e., is only nonzero for * > 0 in the notation above.
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6.2. The d-invariant. Each spectrum map f: X — Y induces a homomorphism f*: H*(Y;F,) —
H*(X;F,), which by the discussion above is a homomorphism of &/-modules. Hence the rule that takes
the homotopy class [f] to the &/-module homomorphism f* is a homomorphism

d: [X,Y]. — Hom,(H*(Y;F,), H (X;F,))
fT— 1
This is sometimes called the d-invariant, by analogy with the name “degree” for the integer deg(f) such
that f.[M] = deg(f)[N], where f: M — N is a map of oriented closed n-manifolds with fundamental
classes [M] € H, (M) and [N] € H,(N).
The (cohomological) grading of Homg-groups works as follows: An element [f] € [X,Y]; is the
homotopy class of a spectrum map f: XX — Y, which induces a homomorphism

[ H*(Y;F,) —» H*(S'X;F,) 2 H* (X F,) .
By definition this is an 2/-module homomorphism of degree ¢, i.e., an element of
Hom', (H* (V3 F,), H* (XiF,)).
taking elements in H(Y;F,) to elements of H*"'(X;F,), for all integers 1.
6.3. Wedge sums of suspended Eilenberg—Mac Lane spectra. In the special case Y = H we have
H*(Y;F,) = </, and the d-invariant
d: [X,H]; — Hom’,(/, H*(X;F,))

is an isomorphism for each ¢, since both sides are naturally isomorphic to H*(X;F,). More generally,
suppose that

Y ~ \/E"“H

is a wedge sum of suspensions of mod p Eilenberg-Mac Lane spectra. If 7, (Y) = @, ¥"F, is bounded
below and of finite type, or equivalently, if n, — oo as u — oo, then the canonical map

\VEmH — [ H
is an equivalence. In this case the d-invariant is also an isomorphism, since
X, Y] = (X, ][5 H] = [[H™ (X F,)

u

is naturally isomorphic to

Hom', (H*(Y;F,), H*(X;F,)) = Hom', ((P " o, H*(X;F,)) = [ [ Hom!, (5" o/, H* (X;F,))

for each integer ¢.

In general d is not an isomorphism. For instance, the Hopf map 7: S> — S2 induces the zero
homomorphism in (reduced) cohomology, but stabilizes to a nontrivial homotopy class of maps S! =
XS — §. Furthermore, the target of d is always a graded F,-vector space, while the source may be any
graded abelian group.

6.4. Two-stage extensions. If Y is an extension of two wedge sums of suspended Eilenberg—Mac Lane
spectra, so that there is a cofiber sequence of spectra

K -5vY L K,
with
Koy ~ \/E"“H and K~ \/ZH

then there are long exact sequences
o [X K 2 (XL Y] DS (X Kol - (X Kl —
and

s H*(Ko;F,p) 25 H*(Y:F,) - H* (K F,) —> H Y Ky F,) — ...,
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but the complex

i) #
.. — Hom, (H*(K1;F,), H*(X;F,)) 5 Hom?, (H*(Y;F,), H*(X;F,))

oy # #
U Hom?, (H* (Ko: F,), H* (X F,)) 25 Hom', (H* (K13 F,), H*(X;F,)) —» ...
is typically not exact. Here §# denotes the value of the contravariant functor Hom’,(—, H*(X;F,))
applied to the homomorphism §, and likewise for (i*)# and (5*)#.
Now suppose that j* is surjective, which is equivalent to asking that ¢* is zero. Then there is instead
a short exact sequence of &/-modules

0 — H*Y(Ky;F,) — H*(Ko;F,) 2 H*(Y;F,) - 0.
If 7.(Kp) and 7, (K;) are bounded below and of finite type, as before, then the left hand and middle
of-modules are free, so there is an associated exact sequence

(G*)* t

0 — Hom', (H*(Y;F,), H*(X;F,)) *% Hom',(H*(Ko;F,), H*(X;F,))
% Hom', (H* "\ (Ky; Fy), H*(X; F,)) — BxtS (H*(Y;F,), H*(X; F,)) = 0.

Here Ext}zf denotes the first right derived functor of Hom,,. More generally we write Extfj for the
internal degree t part of the s-th derived functor of Hom®,, for each s > 0. Recall that Ext%, = Hom,y,.
The groups
Ext}; (H*(Y;F,), H*(X;Fy))

for s > 2 are zero for the Y that we are presently considering, due to the existence of the short exact
sequence of «/-modules above.

Under the d-invariant isomorphisms associated to Ky and K, the homomorphism 9: [X, Ko|. —
[X, K1]«_1 corresponds to the homomorphism §# above:

2]

[X, Kol (X, Ki]i—1

{: dk

Hom', (H*(Ko: F,), H*(X:F,)) —2" Hom'; | (H* (K ;F,), H*(X:F,)),
so there are isomorphisms
ker(9); = Homy, (H*(Y;F,), H*(X;F,))
cok(d);—1 = ExtDf (H*(Y;F,), H*(X;F,))
for all integers t. Hence the short exact sequence
0 — cok(9d)y — [X,Y]; — ker(9); = 0
can be rewritten as
0 — ExtU Y (HA (V3 F,), H*(X;F,)) — [X, Y], % Hom', (H*(Y;F,), H*(X;F,)) — 0,
for each integer ¢t. In particular d is surjective in these cases. The homomorphism
e: ker(d); — ExtD TN HH(Y;F,), H (X;F,)),
which in this case is an isomorphism, is often called the e-invariant. Here e refers to “extension”, and
goes well with d.
This extension can be presented as a spectral sequence with Fs-term
Hom', (H*(Y;F,), H*(X;F,)) for s=0,
Ey' = Ext (H*(Y;F,), H*(X;F,)) fors=1,

0 otherwise,

that collapses at the Fy = F..-term, and which converges to a finite decreasing filtration
(X,Y];=F'>F'>F*=0
in the sense that
(FO/FY)y=E% and (F'),=E}"".
Thus for such Y the d-invariant is surjective, and F'! = ker(d) is its kernel.
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This discussion suggests that in order to get a better approximation to the graded abelian group
[X,Y]., it is necessary to take the derived functors of Hom into account.

6.5. The mod p Adams spectral sequence. The mod p Adams spectral sequence for X and Y has
FEo-term

By = Ext3) (H*(Y;Fp), H*(X;F,)).

If X is a finite CW spectrum, and Y is bounded below and of finite type, then it converges strongly to
the p-completion

([Xv Y]t*S);/;\
of the abelian group [X,Y];_s, equipped with a decreasing filtration
((X,Y)—s)p =F°D>F'>---DF°* D> ...

called the Adams filtration. For a finitely generated abelian group G the p-completion can be defined as
the limit

Gp =1im G/p"G.

If G = Z, this equals the p-adic integers Z,. If G is finite, this is a quotient group of G that is isomorphic
to the p-Sylow subgroup of G.
In the special case X = S we get the Fs-term of the mod p Adams spectral sequence for Y, namely

Ey' = Ext® (H*(Y;F,),F,).
When Y is bounded below and of finite type it converges strongly to the p-completed homotopy groups
me-s(Y)p = (S, Y]i—s)p
of Y. In particular, the mod p Adams spectral sequence for the sphere spectrum itself has FEs-term
Ey' = Ext®/(F,,F,),

and converges strongly to
(m-s)p = me—s(S)p = (19, S)e—s)} -

i.e., the p-completed stable stems.

By the Hurewicz theorem, 73 = 0 for n < 0 and 7 = Z, via the isomorphisms 7;(S7) & H;(S7) for
all j > 1. Using the theory of Serre classes, one can prove that each stable stem 72 for n > 1 is a finite
abelian group. Hence it is the product of its p-Sylow subgroups, or equivalently, of the groups (7 )9,
which we can hope to calculate using the corresponding mod p Adams spectral sequence. This will be
the aim of much of the remainder of these lectures.

6.6. Endomorphism ring spectra and their modules. Working at the spectrum level, without
passing to homotopy classes of maps, we can instead consider the function spectra F(X,Y), X# =
F(X,H), Y% = F(Y,H) and R = F(H,H), with m.F(X,Y) = [X,Y]., 7_.F(X,H) = H*(X;F,),
7« F(Y,H) = H*(Y;F,) and n_,F(H,H) = «/. The endomorphism spectrum R = F(H,H) is a
ring spectrum, with product corresponding to the composition of cohomology operations. The map
F(X,Y) — F(YH XH) factors through the spectrum of R-module maps, so that there is a spectrum
level degree map

d: F(X,Y) — Fr(Y" XH).
This turns out to be an equivalence in a wider range of cases than that for which the group level degree

map is an isomorphism, and to amount to a p-completion map of the source in an even wider range of
cases. Passing to homotopy groups, there is a spectral sequence

By = Ext}; (H*(Y;F,), H* (X;Fp))

converging [[conditionally? strongly?]] to m:—s of the target of the spectrum level degree map. [[This is
the Adams spectral sequence converging to m_F (X, Y)QH
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FIGURE 5. Adams Es-term for t — s < 15

6.7. The mod 2 Adams spectral sequence for the sphere. Let us look more closely at the mod 2
Adams spectral sequence for the sphere:

Ey' = Ext® (Fg, Fy) =, m—5(S)5 .

The Es-term is an Fa-vector space in each bidegree, concentrated in the region 0 < s < ¢, or equivalently,
in the region t —s > 0 and s > 0. We display the part where 0 <t — s < 15 and 0 < s < 10 of this
E>-term in Figure [5] using the Adams indexing with the topological degree t — s on the horizontal axis
and the filtration degree s on the vertical axis. This picture is usually called an Adams chart, and we
refer to (t — s, s) as the Adams bidegree.

The dots in a square corresponding to a given (t—s, s)-bidegree represent the elements of a basis for the
Fy-vector space in that bidegree. Empty bidegrees correspond to 0-dimensional vector spaces, bidegrees
with a single dot correspond to 1-dimensional vector spaces, and so on. In this range of bidegrees the
only 2-dimensional vector space is ES 20 Jocated at (t—s,s) = (15,5). Some of the generators are labeled
with their standard names. We will explain later how these Ext g -groups can be calculated, at least in
a limited range.

The chart continues upward and to the right. In the upward direction, only the groups in the zeroth
column are nonzero, while the groups in columns 1 < ¢t — s < 15 for s > 9 are all zero. There is much
more structure present in this Fo-term, and in the subsequent terms of the spectral sequence, than that
of a bigraded Fs-vector space, but let us introduce these structures one by one.

The do-differentials in the Adams spectral sequence are homomorphisms

s,t s,t s+2,t+1
dy': Byt — B3

mapping bidegree (t — s, s) to bidegree (t — s — 1, s+ 2), i.e., one unit to the left and two units upwards
in the (t — s, s)-plane. Looking at the chart, the do-differentials that could possibly be nonzero are those
originating in bidegrees (t —s,s) = (1,1), (8,2), (15,1), (15,2), (15,3) and (15,4). See Figure[d

More generally, the d,.-differentials in the Adams spectral sequence are homomorphisms

s,t . s,t s+r,t+r—1
dy B — E; ,
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FIGURE 6. Possible ds-differentials

mapping bidegree (t — s, s) to bidegree (t — s — 1,5 + r), i.e., one unit to the left and r units upwards
in the (¢t — s,s)-plane. For r > 3, the only possible d,-differentials are those originating in bidegrees
(t—s,5)=(1,1), (15,1), (15,2) and (15, 3).

The Adams F.-term is a subquotient of the Fs-term, hence is zero in all the bidegrees where E;’t = 0.
By strong convergence, there is a descending complete Hausdorff filtration

7n(S)y = (F°)y D (FY) D - D (F5), D ...,
the Adams filtration, and isomorphisms
(F/F), = By

for all s and t. For each integer n, the groups in the E,-term that contribute as filtration quotients to
the filtration of m,,(S)% are the groups ES:! with ¢t —s = n, i.e., the groups in the n-th column. Thus the
Adams indexing has the feature that all of the terms that contribute to the same topological degree are
aligned in the same column in the (¢ — s, s)-plane.

In fact the d,-differentials originating on the class hy € E21 2 in Adams bidegree (1,1) are all zero.
In other words, h; is an infinite cycle, and survives to the FE..-term. To see this, we might start from
our knowledge that m(S) = 77 = Z/2. If some d,-differential on h; were nonzero, then h; would not
survive to E:fp S0 E}fl =0 and EL? = 0. Hence every group E5**! for s > 0 would be zero, and the
filtration of 71(S)4 would have to be constant:

m(S)y =(Fn=Fh=-=Fh=....
Since the filtration is Hausdorfl, lim,(F'®); = 0, so this implies that each (£'*); = 0. In particular m(S)%
would be zero, contradicting our earlier calculation.

Theorem 6.1. d,.(h1) =0 for all r > 2.

Hence the Adams Es-term equals the Adams F.-term in topological degrees t — s < 6. In degree 0,
the Adams filtration

7T0(S)9 = (FO)() D) (Fl)() DD (Fs)o D...
has (F*/Fsth)y = ES® = 7/2, so (F*T1)y has index 2 in (F*)g, for each s > 0. Hence this complete
Hausdorff filtration is equal to the 2-adic filtration
7y =792l D+ D27y D ...

of the 2-adic integers. Note that Zs /27 = 7,/2°, and Zg = limg Z/2°.
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In degree 1, the Adams filtration has
m(8)y = (F'h=(F") and  (F?)i=---=(F)1 =0

for s > 2, so
mi(8)y = (F/F?), = B2 = 7/2{h} .
The generator of m(S) & Z/2, represented by the Hopf map 7, has d-invariant d(n) = 0, hence lifts to
Adams filtration 1 and is represented in (F'/F?); = EL?2 by the infinite cycle hy in Ey*
We can now go beyond what we already knew. In degree 2, the only nonzero class in the E,-term, i.e.,
in the groups E5°2 for s > 0, is the generator of E§’4 = E2%* in Adams bidegree (2,2). Foreshadowing

the existence of a multiplicative structure on the Adams Eo-term, this generator is usually called h?.
The Adams filtration has

m(9)s = (F%)2 = (F')y = (F?)2 and  (F)y=---=(F*)2=0
for s > 3, so
ma(9)s = (F?/F®), = EX* = 7Z/2{h7}.

The generator of mo(S) = Z/2, represented by the square n? of the Hopf map, lifts to Adams filtration
2 and is represented in (F?/F3)y = E%4 by the infinite cycle h?.

In degree 3, there are three generators of the Ey = F.-term, namely ho generating EQM7 a class we
call hohs generating Eg P and a class we call h3hs generating E§’6. The Adams filtration has

m3(8)5 = (F)s = (F')s

(
(F'/F?)3 = Z/2{hy}
(F?/F?)3 = 7./2{hohs}
)
)

||2

1%

3
(F?/F*)3 = Z/2{hghs}
(F*)3 =(F*)3=0

for s > 4. This proves that (F?)3 = Z/2{h2hy}, but without further information we have two ambiguous
extension problems

||2

(1) 0— (F*3 — (F%)3 — Z/2{hoha} — 0
and
(2) 0— (F2)3 — (Fl)g —>Z/2{h2}—>0

It is clear that (F2)3 is an abelian group of order four, and that 73(S)5 = (F!)3 is an abelian group of
order eight. In fact both of these extensions are nontrivial, and 73(S5)% is cyclic of order eight, but we
will need to refer to the multiplicative structure in the spectral sequence to deduce this. [[Relate hg to
the quaternionic Hopf fibration »7]]

In degrees 4 and 5 the Fs = Ey-term only contains trivial groups, so m4(S)5 = 0 and 75(S5)% are
both trivial.

In degree 6, the only nonzero class in the E.-term is the generator of ES’S in Adams bidegree (2,6),
which is usually called h3. The Adams filtration has

m6(9)5 = (F%)s = (F')s = (F?)s  and  (F)g=---=(F*)s=0

for s > 3, so
m6(9) = (F?/F®)s = B2 = 7,/2{h3} .

The generator of 7g(S) = Z/2, represented by the square lifts to Adams filtration 2 and is represented
in (F?/F3)s = E2® by the infinite cycle h3.
In degree 7, we can see that m7(S5)% has order 23 = 8 or 2% = 16, but in order to decide between these
two cases, we need to determine the possibly nonzero differential d3''*: E3"* — Ey'.
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FIGURE 7. Adams Fs-term, with h;-multiplications

6.8. Multiplicative structure. The sphere spectrum S is a homotopy commutative ring spectrum, or
in fact a “homotopy everything ring spectrum”, more technically known as an E., ring spectrum, or as
a commutative structured ring spectrum. This implies that 7. (S) is a graded commutative ring, with
the pairing
A T (S) @ T (S) — Tman(S)

mapping [f] ® [g] to [f A g], where f: S™ — S and ¢g: S™ — S are spectrum maps, with smash product
fAg: Smtn=gmaAgSr s GAS=4G.

This graded commutative ring structure is reflected in the Adams spectral sequence. There is a Yoneda
pairing

o: Ext®V"(F,,F,) @ Ext®>"*(F,,F,) — Ext}™>442(F, F)

making the Adams F»-term a graded commutative Fp-algebra, and in fact the Adams spectral sequence
is an algebra spectral sequence, in the sense that each E,.-term is a graded (commutative) algebra, each
d.-differential is a derivation, and these multiplicative structures are compatible under the isomorphism
E,.y1 2 H(E,,d,). Furthermore, the convergence of the Adams spectral sequence is compatible with the
multiplicative structure, in the sense that the Adams filtration {F*}, of 7.(S); is such that the smash
pairing takes F'** @ F'*2 into F'*1*%2, and the induced pairing

A: FS1 /F81+1 ® Fsz/FSQ-‘rl —y fsits2 /FS1+52+1

agrees with the pairing
o: ES1* @ E52* —y ESltsa
under the isomorphisms F'*/Fst1 =~ ES .

The class hy generating E21’1 = EL! in Adams bidegree (t — s,s) = (0, 1), represents 2 times the
generator ¢ in m(S)5 = Zs. Thus 2. has Adams filtration 1. If an infinite cycle z € ES! represents a
class [f] € m_4(S)%, in Adams filtration s, then the product hg o x = hoz € ESF1!T! represents the
product 2¢ A [f] = 2[f] € m—s(S)%, in Adams filtration s + 1, modulo classes in Adams filtration s + 2
(or greater).

We can use this to determine much of the additive structure of the groups m,(S)% in this range. In
Figure 7| a vertical line of length 1, from a class x in Adams bidegree (t — s,s) to a class y in Adams
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bidegree (t—s,s+1), indicates that hgox = y, i.e., the line connects x to hox. We say that these vertical
lines show the ho-multiplications. If hgx = 0, no line is drawn.

In the same way, the class hy generating Fy® = EL2, in Adams bidegree (t — s, s) = (1, 1), represents
the generator n of m1(S)) = Z/2. If z € E%! represents a class [f] € m_4(S5)% in filtration s, then
hiz represents n[f] € m—s+1(5)% in filtration s + 1, modulo Adams filtration s + 2. This is indicated in
Figuremby a line of slope 1, from x in Adams bidegree (¢t —s, s) to hiz in Adams bidegree (t—s+1,s+1).
If A1z = 0, no line is drawn.

The dashed lines of slope 1/3 correspond to multiplications by ha, the class generating E21 4 = ELA.
[[Relate to v?]] We could add lines of slope 1/7 corresponding to multiplications by hs, the class
generating Fy® = EL3, but these tend to clutter the diagram too much. [[Relate to ¢7]]

Using the multiplicative structure, we can now deduce that d5* = 0 for all » > 2 and t — s < 13, so
that E5" = E% for all t — 5 < 13.

It is clear that d,.(hg) = 0 for all » > 2, since these differentials land in trivial groups. The product
hohi = 0 vanishes for the same reason. Hence if hy survives to the E,-term, we have

0= d,(0) = dy-(hoh1) = dy(ho)h1 + hody(hy) = hod,(h1)

by the Leibniz rule. But d,.(h1) lies in the bidegree (0,7 + 1) generated by hi™', and multiplication by
ho acts injectively on this bidegree. Hence d,.(h1) = 0, also for all r > 2.

We can also use the multiplicative structure to deduce that dy'® = 0. The group E3'° is generated
by the product hihs. We know that do(hs) = 0, for bidegree reasons, so by the Leibniz rule do(hihs) =
da(h1)hs + hida(hs) = 0, as claimed.

6.9. The first 13 stems. The h;-multiplications seen at the Fs-term, allow us to determine the group
structures of 7, (5)% for 0 <n < 13.

Theorem 6.2. (1) m(S)8 =2 Z/2 generated by n represented by hy.
(2) m=2(S)5 2 7Z/2 generated by n?* represented by h3.
(3) m3(S)4 =2 Z/8 generated by v represented by ho. Here 2v is represented by hohs, and 4v = n® is
represented by h3ha = h3.
(1) m(S)) = 0.
(5) m5(5)y = 0.
(6) m6(S)s =2 Z/2 generated by v* represented by h3.
(7) m7(S)5 = Z/16 generated by o represented by hs. Here 20 is represented by hohs, 40 is repre-
sented by h3hs, and 8c is represented by h3hs.
(8) 7s(S)5 X Z/2& Z/2 generated by no and €, represented by hihs and cq, respectively.
(9) m(S)s = Z/2® Z/2 ® Z)2 generated by nc, ne and u, represented by h?hs, hico and Phy,
respectively. [[Explain Phy. No hidden additive extensions.]]
(10) m10(S)y 2 Z/2 generated by nu represented by hy Phy.
(11) m1(S)y = Z/8 generated by ¢ represented by Phy. Here 2 is represented by hoPhs, and
4¢ = n?u is represented by h3Phy = h3 Phy.
(12) 7T12(S)é\ =0.
(13) 71'13(5)5\ =0.

Remark 6.3. To remember the nomenclature in 7,(S)%, one may note that hy, hy and hs represent
classes 77, v and o, which are the Greek letters expressing the beginning sounds in ‘ichi’, ‘ni’ and ‘san’,
the Japanese words for ‘one’, ‘two’ and ‘three’. The identity map of S corresponds to the unit class ¢.

Proof. Let v € 13(S)) be a class represented by hy in Ey* = ELY. [[We may prove later that any

class in 73(S) of Hopf invariant 1 mod 2 has this property, for instance, the stable class S* — S of the
quaternionic Hopf fibration S7 — S*. The product 2v = 2¢ A v is then represented by hohs, and 4v is
represented by hZhs. Hence both extensions in and are nontrivial, with (F?)3 = Z/4 generated
by 2v and (F')3 = Z/8 generated by v.

Let o € m7(S)5 be a class represented by hs in E;’S = EL8. [[We may prove later that any class in
77(S) of Hopf invariant 1 mod 2 has this property, for instance, the stable class S” — S of the octonionic
Hopf fibration S'® — S8. The product 20 = 2¢ A ¢ is then represented by hohy, 40 is represented by
h3hy, and 8¢ is represented by hjhy. Hence (F*); = Z/2 is generated by 8o, (F3); = Z/4 is generated
by 4o, (F?); = Z/8 is generated by 20, and 77(5)5 = (F'); = Z/16 is generated by o.

In the 8-stem, we have an extension

0— Z/2{Co} — ﬂ'g(S)é\ — Z/Z{h1h3} —0.
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The element € in 7g(S)% that is represented by co in Adams filtration 3 is uniquely defined by this
property. The product no = n A o, represented by hihs in Adams filtration 2, modulo Adams filtration
3, is also well defined, since the ambiguity in the definition of ¢ is given by the even multiples of o,
and n A 20 = 0 since 2n = 0. The latter relation also implies that the extension above is split, so
78(S8)5 X Z/2® 7Z/2 is a Klein four-group, not a cyclic group of order four.

In the 9-stem, we have a well-defined element u € mo(S)) that is represented by the generator
Phy € E3'. The notation refers to an operator P called the Adams periodicity operator, which is
defined in part of the Es-term, and which takes h; to Phy and hs to Phs. The product classes ne
and n?c are well defined, and are represented by hicy and h?hz, modulo the Adams filtration. Hence
(F®)7 = Z/2 is generated by pu, the extension

0= (F®)7 — (FY7; — Z/2{ne} = 0
splits, and so does the extension
0 = (FY7 — mo(9)y — Z/2{n*s} = 0.

The additive extensions in the 11-stem are all nontrivial, just like in the 3-stem. The generator ( is
only defined up to an odd multiple, much like the case of v. O

We can also deduce most of the product structure on 7,(S)% in this range.

Theorem 6.4. Multiplication by 1 satisfies the relations nv = 0, nc =0, e =0 (1), ®*u =0, n¢ = 0.
Multiplication by v satisfies the relations vo =0 (1), v3 =n?c +ne (1), ve=0 (!) and v = 0.

Proof. [[ Why is v® = n?c +ne? Use e: S — j to deduce that n?e = 0 and ve = 0. How about vo?]] O

6.10. The first Adams differential. Recall that o € 77(5)} denotes a class represented by hs in
E)® = E18, e.g. the stable octonionic Hopf fibration. By graded commutativity of 7,(S)} we know
that 0 Ao = —o A o, since o is in an odd degree, so 202 = 0 in m14(S)%. Here o2 is represented by h3
in E3'% = E%16, 0 202 is represented by hoh? in E%'7, modulo Adams filtration 4. Since 202 = 0, it
follows that hoh% must be equal to 0 at the E-term. Since this product is not 0 at the Fa-term (and
d-(hoh3) = 0 for all » > 2 by the Leibniz rule), the only way to explain this is that hoh3 is a boundary,
i.e., is hit by a differential. For bidegree reasons, the only possibility candidate is the ds-differential
originating at h4 in E;w. Hence the “first” nonzero differential in the mod 2 Adams spectral sequence
is
do(hy) = hoh3 .

There are in fact also nonzero ds-differentials on hohg and h3hy, from Adams bidegrees (15,2) and (15, 3),
but these are harder to establish.

7. EXACT COUPLES

Following Massey (1952, 1953) and Boardman (1981 preprint, 1999), we introduce the notion of an
exact couple, and show how to use it to construct a spectral sequence. [[First additive, then convergence,
then perhaps products.]]

7.1. The spectral sequence associated to an unrolled exact couple.

Definition 7.1. An unrolled exact couple of homological type is a diagram

Agg— s Ay — s A, — Agil i
Es_ E; Esiq
of graded abelian groups and homomorphisms, in which each triangle
i Ae g s A B S AL
is a long exact sequence.

Usually 4 is of internal degree 0, while 7 and k are of internal degree 0 and —1, in one order or the
other.
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Definition 7.2. For r > 1, let
ZT =k ' im(i" AL, — Agq))
be the r-th cycle subgroup of E,, and let
B” = j(ker(i" ' Ay — Agir1))
be the r-th boundary subgroup. We have inclusions
0=Blc...cB cB"'c...cim(j)=ker(k)c---cZHcz c---cZ}=E,
of graded abelian groups, for each filtration index s. Let
E{ = Z(/ B¢
be the E"-term of the spectral sequence, and let the d"-differential
d.: BT — E_,
be defined by d’([z]) = [j(y)], where z € ZT, y € As_, and k(z) = i""1(y).

To see that the definition of the d"-differential makes sense, note that for each x € Z7, k(x) lies in the
image of i" 71, so there exists a y € A,_, with k(z) = i"~!(y). If y is another class with k(z) = i"~1(y/'),
then y —y € ker(i"~1), so j(y') — j(y) lies in B7, so the class of j(y) in E7_,. is well-defined. If z € B,
then z € im(j) = ker(k), so k(x) = 0 and we may take y = 0 in this case, with [j(y)] = 0. In general
it follows that [j(y)] only depends on the class [z] of 2 in ET. To see that d" is a differential, i.e., that
d’_, od =0, just note that with notation as above, kj(y) = 0.

For r = 1 we identify F} = Z!/B! = E,/0 with E,, and note that di: E! — E!_; equals the
composite jk: E; — F,_;. Hence the E%-term is the homology of the chain complex

"'%Es—l (&Es(&Es_i_l — ...
Proposition 7.3. ker(d) = Z!*' /B! and im(d,) = Bi™'/BL, so there is a canonical isomorphism
ker(dy) _ Z{"/BY | Zit
im(dy,,) — B*Y/Br Bt

HS(Er,dT) — — E;"-l—l’

for each r > 1 and each s.
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We call (E",d"), the spectral sequence associated to the unrolled exact couple in Definition

Proof. If x € Z7 satisfies d~([z]) = 0, then k(z) = i"~(y) for and y € As_, with j(y) € B7_,. Hence
J(y) = j(y’) for some y € Ay, with i"~1(y/) = 0. Thus j(y — ') = 0, so y —y' = i(z) for some
2€ A1, and k(x) =i""(y) =" Yy — ') =i"(2) is in im(i"). Hence x € Z7 1.

Conversely, if z € ZT1 then k(x) = i"(2) for some z € A;_,_1, so k(z) = i"~!(y) with y = i(2), and
3(y) = ji(=) = 0. Thus di([a]) = [j(y)] = 0.
Asfrfl : Asfr v Asfl : As G As+r71 4l> As+r
x Jj X Jj x Jj
Es—r Es Es+r
If u € Z; satisfies [u] = d}([v]) for some v € Z] ., then [u] = [j(w)] for some w € Ay with

k(v) ="~ (w). Then i"(w) = ik(v) = 0, so j(w) € BT, Hence u € BT 1.

Conversely, if v € BI™!, then u = ]( ) for some w € A with i"(w) = 0. Then i" !(w) € Agip_1
lies in ker(i) = im(k), so i"~!(w) = k(v) for some v € E,,. This relation shows that v € Z7, ., and by
deﬁnition? d;Jrr([v]) = [](w)] = [u] 50 [ ] € lm(ds+r) U

7.2. E*°-terms and target groups.

Definition 7.4. Let
Z¥ =lmZz =()2;

be the subgroup of infinite cycles in E, and let
By = colim B] = | | B;

be the subgroup of infinite boundaries. Let
B = 23°/BY°
be the E*°-term of the spectral sequence. For later use, let
RE* = erim Z!
denote the derived E°°-term.

To justify the notation REX® in place of RZJ°, note that if the boundary group By, in a fixed
bidegree (s,t) is independent of r for r > m = m(s,t), then Rlim, Z{; = Rlim, Z, /B, = Rlim, E ,.
If the spectral sequence collapses at a finite stage, or is locally eventually constant, then RE® =0 for
all s.

In particular, we have inclusions

B Cim(j) = ker(k) C Z°
of (graded) subgroups of E, and an associated short exact sequence
im(j) Zg Z
& S O
Bx  Bx  ke(k)

S

(3) 0—

expressing the E*°-term as an extension.

If As_, = 0 for r sufficiently large, then Z! = ker(k) for all these r, so that Z°/ker(k) = 0 and
m(j)/B° = E°. We shall give other sufficient conditions for the vanishing of this group in the next
subsection. On the other hand, if A,y,_1 = 0 for r sufficiently large, then B] = im(j) for all these r, so
that im(j)/B2° = 0 and E® = Z° / ker(k).

Definition 7.5. Let
A_o =lim A,
RA_,, = Rlim A,
Ao = colim A,

be the limit, derived limit and colimit of the bi-infinite sequence (Ay)s.
34



We consider two possible target groups for the spectral sequence; the colimit A,, and the limit A_ .,
Each comes with a natural increasing filtration.

Definition 7.6. Let Fs A, = im(A; = A) and FiA_ o = ker(A_o — Ay), for each integer s.

Lemma 7.7. The filtration {FsAx}s of Ax is exhaustive, and the filtration {FsA_o}s of A_oo 18
complete Hausdorff.

Proof. The first claim is clear. For the second claim, use the lim-Rlim exact sequences for

0> FA oo — Ao — im(A_ > A45) = 0

and
0—im(A_o = As) — Ay —> cok(A_oo = A5) = 0.
O
Proposition 7.8. There are natural isomorphisms
F, A im(j) F,A_
o d ———— 2 [[FTC]].
Fe—leo Bgoo o Es—lA—oo H ]]
Proof. Consider the diagram
Ay —— Ay — 5 A, As
N
k
E,.
The homomorphisms A; = Ay, and j: As — F, induce isomorphisms
FSAOO ~ AS
F, 1As  ker(A, — Ay) +im(i: Ag_ 1 — Ay)
and
m(j: As = EBs) A,
jlker(As — As))  ker(Ag — An) +ker(j: Ay — E ) ’
respectively, and the right hand sides are equal. Finally, j(ker(As — Ay )) = BS° by passage to colimits
over 7 from the definition j(ker(As — Asyr—1)) = BS.
[[ETC, limit case]] O

7.3. Conditional convergence.

Definition 7.9. A homological right half-plane spectral sequence is a spectral sequence such that £ ; =0
for all s < 0. More generally, a spectral sequence with exiting differentials is a spectral sequence such
that in each bidegree (s, t) only finitely many of the differentials starting in that bidegree map to nonzero
groups.

.
Es7t

A homological left half-plane spectral sequence is a spectral sequence such that EY, = 0 for all s > 0.
More generally, a spectral sequence with entering differentials is a spectral sequence such that in each
bidegree (s,t) only finitely many of the differentials ending in that bidegree map from nonzero groups.

By |
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Let (E™,d"), be the homological spectral sequence associated to an unrolled exact couple, as in
Definition and Proposition In the right half-plane case, the following classical theorem suffices.

Theorem 7.10 (Cartan—Eilenberg(?)). Suppose that Esx = 0 for all s < 0, so that A_. = A, for all
s <0 and (E",d"), is a spectral sequence with exiting differentials.

(1) If A_ = 0 then the spectral sequence converges strongly to the colimit As.
(2) If Ao = 0 then the spectral sequence converges strongly to the limit A_, = A_;.

In the homological left half-plane case, as well as in the case of whole-plane spectral sequences, the
utility of the following definition was explained by Boardman (1981 preprint, 1999). [[Check what Adams
writes in the Chicago lecture notes, or his 1971 survey of 1960s algebraic topology.]]

Definition 7.11. The spectral sequence (E",d"), associated to an unrolled exact couple converges
conditionally to the colimit Ao, if A_o, =0 and RA_, = 0. It converges conditionally to the limit A_
if Ao, =0.

Theorem 7.12 (Adams(?), Boardman). Suppose that Es = 0 for all s > 0, so that As = A for all
s>0 and (E",d"), is a spectral sequence with entering differentials.

(1) If the spectral sequence converges conditionally to the colimit Ay, and if RE® = 0, then the
spectral sequence converges strongly to that colimit.

(2) If the spectral sequence converges conditionally to the limit A_, and if RE® = 0, then the
spectral sequence converges strongly to that limit.

Conditional convergence is a property of the unrolled exact couple, which can often be verified in terms
of its construction. The additional assumption that RE*° = 0 can often be verified in concrete cases, e.g.,
in the presence of finiteness assumptions. The theorem asserts that it combination, these two properties
suffice to ensure strong convergence. We shall only discuss a minimal path towards this result. The
reader should consult Boardman (1999) for a much more complete story, including comparison theorems
and results about when the sufficient conditions are also necessary.

Proof. In view of equation and Proposition in order to prove that FyAy /Fs_1Ac = E it
suffices to prove that Z2°/ker(k) = 0. To establish strong convergence, we also need to prove that the
filtration {FsAs}s is complete and Hausdorff.

Definition 7.13. Let Qs = lim, im(i": A;_, — As) and RQs = Rlim, im(i": As_, — A;) be the limit
and the derived limit, respectively, of the image filtration
<o Cim(i": Ag_p = Ag) C oo Cim(i: As—1 — Ag) C As.

Lemma 7.14. There is a six term exact sequence

oo

0— keZS(k) +* 0,01 -5 Q, — RE>® 55 RQ,_1 -5 RQ, — 0.
T

Proof. For each r and s, there is a short exact sequence

— kefgk) LN im(i" ' Ay — A1) e (i As—p — As) = 0.

Passing to limits over r, we get the asserted six term exact sequence. ([

Corollary 7.15. If RE>® =0, then each i: Qs—1 — Qs is surjective and each i: RQs_1 — RQs is an
isomorphism. Hence lims Qs — Q,, is surjective and limg RQ s — RQ,, is an isomorphism, for each m.
By assumption Ay = A, so we have
Qo =limim(A_, — Ap) =lim Fs A,
T S
and
RQo = Rlimim(A_, — Ap) = Rlim F, A, .

Hence proving that Q¢ = 0 and RQy = 0 is equivalent to proving that {FsA.}s is complete Hausdorff.
By the corollary, when RE*® = 0 it will suffice to prove that limy; Qs = 0 and limgy RQs = 0. This will
then also imply that each Qs—1 = 0, so Z/ker(k) = 0, as desired. By the following lemma, these
properties follow from the assumptions A_,, =0 and RA_,, = 0. (]

Lemma 7.16. If A_ =0 and RA_,, =0 then lims Qs = 0 and limz; RQ s = 0.
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Proof. Consider the double limit system

LN im(i": As—1—r — As_1) Lﬂm(f: Asp = Ag) —— ...

As—l As

where the vertical maps are inclusions. The limit of the s-th column is by definition Q. The limit of
the r-th row maps identically to the limit of the bottom row, i.e., to A_,,. Hence

lign Qs = lignli}’nim(irz Ag_p — Ag) & 1i£nli£nim(irz As_p — Ag) & liTmA_oo ~A_ .
For each s let
N . As
roim(i": As_p — As)
be the completion of Ay with respect to the image filtration. The lim-Rlim sequence of the r-indexed
system of short exact sequences

A,
im (7" : Ag_ A A i
0 — im(é sor = Ag) — Ay — im(im: As—p — Ay) -0

contains the exact sequence
0—>Qs — A; — A — RQs — 0,
which breaks into the two s-indexed systems of short exact sequences
0= Qs — As — A/Qs — 0
and R
0— A,/Qs — As — RQs — 0.
These in turn give rise to the exact lim-Rlim sequences

0—=>1lmQ@s — A — limA,/Qs — Rlim@Qs — RA_ — RlimA,/Qs — 0

and
0 —limA,/Q, —» lim A, — lim RQ, —» Rlim A,/Q, —» Rlim A, — Rlim RQ, — 0.
Here 4 4
lim A, = lim i d ~ lim li s =lim0=0,
e P im(i": Ag_, — Ay) e im(i": As_, — Ay) .

since for each fixed r, the r-fold composite

. Ay — Ag
v im(im: As_or — As—r) im(i™: As—, — Ay)

is zero.

The assumptions A_,, = 0 and RA_,, = 0 now yield lims Qs = 0, lims A,/Qs = Rlim, @, and
Rlims A;/Qs = 0. Combined with the vanishing of limg A\S, this implies limg; As/Qs = 0, limg RQs = 0
and Rlim, A\S =~ Rlimg RQs. In fact Rlimy; RQs = 0, since i: RQs_1 — RQ; is surjective for each s. O

Boardman in fact proves the following more precise result, the middle part of which he refers to as
the Mittag—Leffler exact sequence. This is a special case of the Grothendieck spectral sequence for the
composite of two limit functors, which was first (?) analyzed by Roos.

Proposition 7.17. lim, Qs = A_, there is a short exact sequence
0 — RlimQ@Qs — RA_ — limRQ; — 0,

and Rlimg RQ, = 0.
37



8. EXAMPLES OF EXACT COUPLES

8.1. Homology of sequences of cofibrations. Generalizing the examples from Section [1| and Sec-
tion [3] consider a sequence of spaces

@:X_1CX0C"'CXS_1CXSC"'CX

where each inclusion i: X,_; — X, is a cofibration and X = colim; X, ~ hocolimg X, has the weak
(colimit) topology. For instance, X might be a CW complex and X its s-skeleton. Applying homology,
we obtain an unrolled exact couple

T

i Ho(Xyep) — Ho (X)) ————s Ho (X)) ———— H(Xyp1) — s ..

T T T

H*(Xs—laXs—Q) H*(XS7XS—1) H*(Xs—i-l)Xs)

with Ay = H.(X,) and Es = H. (X5, Xs—1). Each triangle is the long exact sequence of a pair, hence is
exact. The homomorphisms ¢ = i, and j = j, preserve the internal grading, while £ = 0 has degree —1.
The E'-term is
Egy = Horo(Xs, Xs1)
and the d'-differential is
iy =jeod: Hopo(Xo, Xoo1) — Horro1(Xoo1, Xs2),

i.e., the connecting homomorphism in the long exact sequence in homology for the triple (X, X1, X_2).
Here Ay = 0 for s < 0, so we have a homological right half-plane spectral sequence, with exiting differ-
entials. By Theorem [7.10] it converges strongly to

Ao = colim H, (X)) =2 H.(X).

In the special case when X, = X ) is the s-skeleton of a CW complex X, Esl,0 = HS(X(S),X(S*I)) =
Cy(X) and El, =0 for t # 0, so (E',d") equals the cellular chain complex of X, concentrated on the
horizontal axis. The E2?-term equals the cellular homology, and the spectral sequence collapses at this
stage. These observations give a spectral sequence proof of the fact that cellular homology is isomorphic
to singular homology for CW complexes.

8.2. Cohomology of sequences of cofibrations. Applying cohomology to the same sequence of
spaces, we get another unrolled exact couple

-

3

e HF (X)) — s H¥ (X)) ——— s H*(Xyy) ————— H*(Xyo) ———— ...

H*(XerlaXs) H*(XsaXsfl) H*(X5717X572) cee

now with A5 = A_, = H*(X,_1) and E* = E_, = H*(X;,Xs—1). In this case i = ¢* and k = j*
preserve degrees, and j = § has degree +1. The associated spectral sequence is a left half-plane spectral
sequence with entering differentials, and converges conditionally to the limit

A_ o = lim H*(X,)

since Ao, = colims H*(X;) = 0. By Theorem the spectral sequence converges strongly to this
limit if RE®® = 0. In general, the homomorphism H*(X) — lims; H*(X) is not an isomorphism, so this
spectral sequence is not always useful for the computation of H*(X).

Instead, one can consider the sequence of pairs of spaces

(X,0)=(X,X_1)Cc(X,Xp)C---C (X, Xs1) (X, X5)C---C (X, X)

and apply relative cohomology. The result is an unrolled exact couple

HH*(XaXS-i—l) %H*(XaXS) J—>H*(X7Xs—l) j—>H*(X7Xs—2) J4>

Ny

H*(Xs—i-th) H*(XsaXs—l) H*(Xs—laXs—Q) ey
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where A = A_; = H*(X,Xs_1) and E°* = E_; = H*(X;, Xs_1). In this case i = j* and j = i* preserve
degrees, and k = § has degree +1. The associated spectral sequence has

By =E', _, = H(X,,X,_1)
and d' = i* o §. In homological indexing it is concentrated in the left half-plane, hence has entering
differentials, and converges conditionally to the colimit

Ao = colim H*(X, X,) =2 H*(X)

S
whenever A_,, = lims H*(X,X,) = 0 and RA_o, = Rlimg H*(X,X;) = 0. In view of the Milnor
lim-Rlim short exact sequence
0 — Rlim H*~ (X, X,) — H*(X,hocolim X,) — lim H*(X, X,) — 0,

where we use the equivalence X ~ hocolimg X, these conditions are always satisfied. By Theorem [7.12

the spectral sequence therefore converges strongly to H*(X) whenever RE* = 0, e.g., if the spectral
sequence collapses at a finite stage.

8.3. The Atiyah—Hirzebruch spectral sequence. Replacing singular homology with a generalized
homology theory F., such as stable homotopy, topological K-homology or complex bordism, we instead
obtain an unrolled exact couple

T E*(XS—Q) 4l> E*(Xs—l) 41) E*(Xs) 41> E*(Xs+1) % .

B g
B (Xs—1,Xs-2) By (X5, Xs-1) B (Xst1,Xs)
with associated spectral sequence having A, = E,(X,) and E, = F,(X,, X,_1). The E'-term is
El; = Eop(Xe, Xo1)
and the d'-differential is jO, as before. This is now the connecting homomorphism in the long exact

sequence in E,-theory, for the triple (X, Xs—1, Xs—2). Again this is a right half-plane spectral sequence,
converging strongly to the colimit

Ao = colim B, (X;) 2 E (X).
S

In this generality the special case X, = X(®) is interesting, since
El, = Eo(X®), X0670) = C(X; By)

is the group of cellular s-chains of X with coefficients in the coefficient group E; = FEy(x) = m(F) of
the generalized homology theory E,. The d'-differential is the boundary homomorphism in the cellular
chain complex C,(X; E;), so the E?-term

EZ, = Hy(X; E)

is the s-th cellular homology group of X with coefficients in F;. This example is the F,-theory Atiyah—
Hirzebruch spectral sequence
EZ, = Hy(X; Br) =5 Espi(X)
converging strongly to F.(X). The target group is filtered by the images
F,E.(X) =1m(E.(Xs) — FE.(X))

and there are isomorphisms FsF,(X)/Fs_1E«(X) = (E°)., for all integers s. If H,(X) and E, = E.(x)
are concentrated in even degrees (meaning that Hs(X) = 0 for s odd and E; = 0 for ¢t odd), and at least
one of these graded groups are torsion-free, then

E?,=H,X;E,) = H,(X)®z E,
is concentrated in bidegrees (s,t) with both s and t even. It follows that each differential
dey: By — By iira
must be zero for bidegree reasons, so that the spectral sequence collapses at the E2-term, with E? = E>.
This happens frequently enough to be worthy of note, for instance if E = KU or MU represents complex

K-theory or complex (co-)bordism.
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The Atiyah—Hirzebruch spectral sequence for stable homotopy theory
Ef,t = H(X; 7TtS) = 7"'5+t(X)

is sometimes useful in conjunction with the Adams spectral sequence.
The cohomological version of the Atiyah—Hirzebruch spectral sequence is the spectral sequence

Ey' = H(X; E') =, E*T(X)
with entering differentials, where E' = E(x) = 7_;(F), associated to the unrolled exact couple with
ASt — Es+t(X7X(sfl))
and
ESt = E8+t(X(S),X(871)) _ CS(X;Et) )

It converges conditionally to the colimit, and converges strongly if RE., = 0.

The original paper of Atiyah and Hirzebruch (1961) concerned the generalized cohomology theory
given by topological K-theory, with K = K_; = Z for t even and K! = K_; = 0 for ¢ odd, so the
K-cohomology Atiyah—Hirzebruch spectral sequence

Ey' = H*(X;K") = K*M(X)
collapses at the Eo-term for each space X whose cohomology H*(X) is concentrated in even degrees.

[[Describe ds-differential in terms of cohomology operations.]]

8.4. The Serre spectral sequence. Consider a Serre fibration p: £ — B, with B path-connected.
Suppose that the base space B is a CW complex, with skeleton filtration {B(*)},. Define a filtration

0)=FE,CFEyC---CFE,1CFE,C---CF
of the total space E by taking the preimages of this skeleton filtration:
B = p_l(B(S)) .

We get an unrolled exact couple with A, ; = Hey(E;) and Egy = He14(Es, Es—1), and an associated
spectral sequence
E;,t = Hs—i-t(Es, Es—1)

converging strongly to Hs1+(F). We use the hypothesis that p: E — B is a Serre fibration to rewrite
the El-term in terms of the cellular chains on B. Let

¢ =[]®a.: [[D* — B

be the combined characteristic maps of the s-cells of B, and let ¢ : dD* — B! be the attaching map
of the a-indexed s-cell, i.e., the restriction of ®, to dD* C D*, viewed as a map into BE~1) ¢ B,

Let @ E = D® xp E be the pullback of E along ®,, and let ¢}, E = 0D* xp E be its restriction to
oDs.

oL P

N N

E,_1 E, E
oD? Ds p
[
Pa
Bs—1) B() B

By excision, the sum of homomorphisms

@H*((ﬁzEa QSZE) i) H*(Esa Es—l)

is an isomorphism. For each «a, the map

(®XE, ¢ E) — (D* x ®%E,0D° x ®*E)
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is a homotopy equivalence of pairs, since D? is contractible. For any fixed choice of base point dy € D?,
mapping to b, = ®,(dy) € B, the inclusion

Fba :p_l(ba) = {ba} xg B & {do} X ps (I)zE C @;E

is a (weak) homotopy equivalence, in view of the long exact sequence in homotopy for the Serre fibration
& E — D?, again using that D? is contractible. Hence there are preferred isomorphisms

H(P'E, ¢ F) = H,(D° x ®E,0D° x &> F) = H,(D*,0D°) @ H, (P, E) = H.(D*,0D°) @ H.(Fp,,) .
Thus
B!, =P H/(F,)
(6%

with b, = ®,(dp), varying with . By definition this is the group of cellular s-chains Cy(B; #(F')) of
B with local coefficients in the system J#(F'), taking b € B to H.(Fp).

A local coefficient system on B can be defined as a functor from the fundamental groupoid II;(B)
of B to the category of abelian groups. The objects of II;(B) are the points of B, and a morphism
from by to by is a homotopy class [f], relative to the endpoints, of paths f: I — B from b; to by. With
this convention, the composite of [f] and the class [g] of a path g: I — B from by to by is the class
[g] o [f] = [g * f] of the path g * f from by to by. When B is path connected, all objects of II; (B) are
isomorphic, and for any choice of base point by € B, the inclusion 71 (B, by) C II;(B) of the fundamental
group of B based at by, viewed as a groupoid with one object, is an equivalence of categories.

The local coefficient system % (F) takes b € B to Hy(F,), where Fy, = p~1(b) is the fiber of p: E — B
over b. To the homotopy class [f] of a path f from b; to by, as above, we associate the composite
isomorphism

[f]s: He(Fy,) — Hi(I xp E) +— Hy(Fy,) -
Here each inclusion F,, — I xp F is a (weak) homotopy equivalence, since I xp E — I is a Serre
fibration, and the interval I is contractible. Exercise: Prove that if H: I x I — B is a homotopy, relative
to the endpoints, from f to f’: I — B, then [f]. = [f']«.
A boundary homomorphism

9: Cy(B; H(F)) — Cs_y(B; H(F))

can be defined so as to agree with df , under the identifications above. [[ETC]]

In particular, (Cy(B; 54 (F),0) is a chain complex, and its homology H,(B; 4 (F)) is the cellular
homology of B with local coefficients in % (F). This then computes the E?-term of the homological
Serre spectral sequence

E.?,t = Hy(B; H(F)) =5 Het(E) .

If B is simply-connected, then J%(F) is isomorphic (as a coefficient system) to the constant system
at Hy(Fp,), for any fixed choice of base point by € B, so in this case we can write the E2-term as
H,(B; Hy(F)), with ordinary coefficients.

[[Relate to m-equivariant homology for the universal covering space B, with m = w1 (B, by).]]

The cohomological version of the Serre spectral sequence is associated to the unrolled exact couple
with

A8t = HSTHE, B, 1)

and

Es' = H"Y(E,, B, 1) .
It has

Byt = C*(B; A (F))
and

Ey' = HY(B; AN (F)) =, H*'(E).

It is concentrated in the first quadrant, in the cohomological indexing, and converges strongly to the
colimit H*(E).

[[There are many examples of calculations with Serre spectral sequences in the literature, e.g., for
loop-path fibrations QX — PX — X, or for homogeneous spaces H - G — G/H or G/H — BH —
BG.]]
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8.5. Homotopy of towers of fibrations. Turning in a different direction, consider a tower of spaces
V= RERE (e e S = D

where each map p: Y® — Y*~! is a Serre fibration, and Y = lim, Y®* ~ holim, Y*.
We assume that Y is not empty, so that we can choose a base point yy € Y, and take its image y;
under Y — Y® as the base point for Y*, for each integer s. Let

F® = p_l(ysq) = {y571} Xys—1Y?

be the fiber of p: Y* — Y*~! at y,_;, based at ys, so that there is a long exact sequence of homotopy
groups

S S S— 8 S
oo (P ys) — (Y2 ys) — mp (Y l,ys,l) — 1 (F°ys) = ...

We would like to link these together to an unrolled exact couple, but note that in general the end
e (Fys) — mi(Yoys) — m (YT ys 1)

9 s s s—
— 7TO(F‘ ays) — 71—O(Yv ays> — 71—O(YV 179371)

of this sequence is not a diagram of abelian groups, and we might not be able to extend the sequence to
the right with trivial groups.

Bousfield-Kan (1972, Section IX.4) address this problem by considering “extended” spectral sequences,
which consist of possibly non-abelian groups and pointed sets near the edge.

Another solution is to assume that each Y*® is a homotopy commutative H-space, with y, as neutral
element, and that each map p: Y* — Y*7! is strictly compatible with this H-space structure. Then
each fiber F® is also a homotopy commutative H-space, and the diagram above is one of abelian groups
and group homomorphisms. It is still not necessarily exact at mo(Y*~1,y,_1), since mo(p) does not need
to be surjective. We must therefore make this additional assumption. It is satisfied, for instance, if each
space Y? is path-connected.

Under these additional hypotheses, we get an unrolled exact couple

v —— T (YT i) P T (Y%, ys) LN T (Y5 Ly 1) LI (Y572, y5_0) — . ..

7T*(F5+\t(?ys+l) W*(Ftys) ﬂ*(FSJlavys—l)

with ¢ = p, of degree 0, j = 0 of degree —1, and k of degree 0. The associated spectral sequence
Ef’* = 71—>'<(-Fs7ys) s W*(Ya yO)

has entering differentials and converges conditionally to the limit limg 7, (Y®, y5). [[Claim: If RE. = 0,
then Rlim, 7. (Y®,ys) = 0 and the spectral sequence converges strongly to m.(Y, yo0).]]

8.6. Homotopy of towers of spectra. The difficulty with the lack of abelian group structures, and
lack of surjectivity at mp, is not present when we consider towers of spectra. Consider a diagram of
spectra

2

s Ys Lyl Y0 =y
and let Y*° = holimg Y®, so that there is a Milnor lim-Rlim short exact sequence
0 — Rlimm,41(Y?) — 7, (Y*°) — lim 7, (Y*) — 0.
Let K° be the homotopy cofiber of the map i: Y**! — Y*, so that there is a Puppe cofiber sequence
ysrl ys Iy gs 9y yysHt

We let Y =Y and K® = x for all s < 0. Applying homotopy to these spectra, we get an unrolled exact
couple of graded abelian groups

7

o (V) L (V) s (V) s (YY) —— L
N A NN
7. (K51 7. (K*) T (K571

with ¢ = i, and j = j, of degree 0, and k = 0, of degree —1.
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In homological indexing, we would write As; = ms44(Y %) and Es: = mo1¢(K %), for s <0, but we

switch to Adams indexing A%* = A_,; and E*' = E_;; so that

ASt = (V)

Es’t = Wt,S(Ks) .
The associated spectral sequence

EYt =7 o(K®) =, m_s(Y)

has entering differentials. By definition, it converges conditionally to the colimit Ao (= A7) = 7. (Y)
if the two groups

A_oo(= A®) =lim 7 (Y?) and RA_ (= RA*) = Rlim7,.(Y?)

both vanish. By the lim-Rlim exact sequence recalled above, this is equivalent to the condition that
7 (Y*°) =0, i.e., that holim, Y'* ~ x.

Proposition 8.1. The spectral sequence
EP' =1 o(K®) =4 m—s(Y)

associated to the tower --- —Y® =YL — ... 5 Y0 =Y converges conditionally to the colimit m,(Y)
if (and only if) holim, Y* ~ x. If RE., = 0 then the spectral sequence converges strongly to that colimit,
equipped with the descending filtration by the image subgroups F* = im(m.(Y*) — m.(Y)).

The mod p Adams spectral sequence converging to 7, (Y)g will be constructed as a special case of

this spectral sequence, where we make special assumptions about the Puppe cofiber sequence displayed
above, so as to be able to express the Es-term of the spectral sequence in purely algebraic terms.

9. THE STEENROD ALGEBRA
9.1. Steenrod’s reduced squares and powers.

Theorem 9.1. There are natural transformations
Sq': H"(X;Fy) — H" (X ;Fy)
fori >0, of contravariant functors from based spaces to abelian groups, called Steenrod’s reduced squares.
These satisfy Sq°(z) = z, Sq¢*(z) = B(z) (the Bockstein homomorphism associated to the extension
Fy — Z/4 — Fa), Sq¢'(z) = 2% for i = |z|, and Sq¢'(z) = 0 for i > |z|. They also satisfy the internal
Cartan formula
Sq*(xy) = Y Sq'(x)S¢ (y)
itj=k
and the Adem relations

@2 -
Sq"Sq" =) ( a—2j >5q“+b‘JSqﬂ

§=0
for 0 < a < 2b.

Proofs can be found in Steenrod and Epstein (1962).
By naturality, the internal Cartan formula for the cup product xy = z Uy is equivalent to an external
Cartan formula for the smash product = A y. See Figure [J] for the Adem relations in degrees < 11.

Ezample 9.2. The squaring operations for X = RP can be calculated as follows: Consider the total
squaring operation Sq(z) = ;5 Sqi(x). Then Sq(zy) = Sq(x)Sq(y). In H*(X;Fp) = H*(RP>;Fy) =
Folu] with |u| = 1 we have Sq(u) = u + u?, so Sq(u™) = (u+u?)" = 31" (7)u™*". Hence S¢'(u") =

(2w "

We outline one possible construction of the squaring operations. Let H, = K (FF3,n) be an Eilenberg—
Mac Lane complex of type (Fz,n), i.e., a space with m;(H,) = Fy for ¢« = n and 0 otherwise. For n =0
we may take Hy = Fy. For n > 1 we may construct H,, from the Moore space S™ Uy ™! by the method
of killing homotopy groups. Note that H; ~ RP°.

There is a universal class ¢, € H "(H,;Fq) that corresponds to the identity homomorphism under
the isomorphisms H"(H,;Fs) = Hom(H, (F,),Fy) = Hom(Fy,Fy). By a theorem of Eilenberg and
Mac Lane, there is a natural isomorphism

(X, H,] ~ H"(X;F,)
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SqtSqt =0 Sq'Sq* = S¢°

Sq¢'Sqg®* =0 Sq¢*Sq* = Sq¢*Sq*

Sq*Sq* = Sq¢° Sq¢*Sq® = Sq° + Sq*Sq*
S¢*Sq* =0 Sq'Sq®> =0

Sq¢*Sq* = Sq¢° + Sq¢°Sq S¢*Sq® = Sq¢°Sq*

Sq'Sq® = Sq” Sq¢*Sq® = Sq¢°Sqt

S¢*Sq* = Sq” Sq¢*Sq* = Sq°Sq*

Sq¢'Sq" =0 Sq*Sq® = Sq"Sq*

S¢*Sq® = Sq"Sq* Sq*Sq* = Sq"Sq* + Sq¢°Sq®
S¢°Sq* =0 Sq'Sq® = Sq¢°

Sq¢*Sq" = Sq° + Sq¢°Sq S¢*Sq® =0

Sq'Sq’ = S¢” + S¢°Sq" + Sq"S¢? Sq¢°Sq* = Sq"S¢”

Sq'Sq’ =0 Sq*Sq® = Sq'° + S¢°S¢q'
Sq¢*Sq" = Sq¢°Sq* Sq*Sq® = Sq'° + S¢*Sq?
Sq¢°Sq° = Sq¢°Sq* Sq°Sq* = Sq"Sq?

Sq'5q'° = Sq'! S¢25¢° = Sq'°5¢"

S = Sgtt Sq*Sq7 = Sq' + S¢°Sq?
Sq°Sq° =S¢t + S¢°S¢? Sq°Sq° = S¢”Sq® + S¢°Sq’
Sq"Sq* =0

FIGURE 9. The Adem relations at p = 2 in degrees < 11

that maps the homotopy class of f: X — H,, to f*(¢,). See Hatcher (2002, Theorem 4.57).
The smash product ¢, A t,, € H?"(H,, A H,;F3) is represented by a map
¢: H, NH, — Ho, .

The composite ¢y, where v: H,\NH, — H, A H, denotes the twist map, represents the same cohomology
class, hence there is a homotopy 1. A H, A H,, — Hs,, from ¢ to ¢y. We identify the interval I with the
upper semicircle in S', and reinterpret this homotopy as a Co-equivariant map S_1|r NH, NH, — Ho,
where the generator of Cy takes (s,z,y) to (—s,y,x), and acts trivially on the target. Equivalently, it
provides a map
¢1: SL Ac, Hy AN Hy, — Hop

which expresses the homotopy commutativity of the cup product ¢. There exists unique extensions, up
to homotopy, ¢y : Si Acy, Hy A Hy, — Ha, of this map, for all & > 2, where Cs acts antipodally on S*.
In the limit, these define a homotopy class of maps

®: 5% Ag, Hy A H,, — Ha,

where S*° is a contractible space with free Cy-action. We call Dy(H,) = ST Ac, Hn A H,, the quadratic
construction on H,. The structure map ®: Dy(H,) — Ha, is part of the E, ring spectrum structure
on the Eilenberg—Mac Lane spectrum H = {n +— H,}. Let

V:RP® A H, — S Ac, Hy A H,

be given by ([s],z) = [s,x,z], for s € S with image [s] € RP*® = §°°/C5. The composite map ®V
induces a homomorphism

(®V)*: H*(Hyy Fy) — H*(RP;Fy) @ H*(H,;Fy).
Here H*(RP®>;Fs) = Falu] with |u| = 1, so we can write (PV)*(12,,) in a unique way as a sum
(PV)*(t2n) = Zu”_i ® Sq"(tn),
i=0
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for some well-defined classes Sq*(iy,) E~fln+i(Hn;]F‘2), with 0 < i < n. We define Sq*(1,,) = 0 for i < 0
and for ¢ > n. For a general class x € H"(X;Fy), write = f*(i,,) for a map f: X — H,,, and define
Sq'(x) = f*(Sq' (1)) € H" W (X;Fy).
This defines an operation
Sq': HY(X;Fy) — H" (X Fy)

which is obviously natural in X.

It is easy to see that Sq¢"(z) = ¢*(x A x) = 22 for |z| = n, while checking that S¢°(z) = z and
Sq'(z) = B(z) requires more work. [[Relate S¢"~!(z) to 2 U; x derived from the commuting homotopy.]]

The situation at an odd prime p is similar.

Theorem 9.3. There are natural transformations
P HY(X;F,) — H" 2D (X F))

fori >0, of contravariant functors from based spaces to abelian groups, called Steenrod’s reduced powers.
These satisfy P°(x) = x, Pi(x) = 2P for 2i = |z|, and P'(x) = 0 for 2i > |z|. They also satisfy the
Cartan formula

P(zy)= ) P'x)P'(y)

itj=k
and the Adem relations
la/p] Db — i ]
pepb = Z(—l)“+j ((p = 1) _j) - )Pa+b—jpj
j=0 a—pj

for 0 < a < pb, and

[a/p] . [(a—1)/p] .
Paﬂpb _ Z (71)a+j <(P _a]-z(zj_ J))ﬁp(kkbjpj _ Z (71)a+j <(P _a]-z(zj__])l - 1) Pa+b7jﬂpj
j=0 j=0

for 0 < a < pb. Here 3: H*(X;F,) — H" ' (X;F,) is the Bockstein homomorphism associated to the
extension F, — Z/p? — F,,, which satisfies 3> = 0.

The first few p-primary Adem relations (for 0 < a < p and b = 1) are

PP = (-1)° (p - 2) pet!

a

and
a 1__ap_1 al__ap_2 a+1
PBP—(1)<G)6P+ (1) (a_l)P+6.

They imply that (P)? is a unit in F,, times P?, for all 0 < a < p, that (P')? = 0, and that PP~!3P! =
3PP — prg.

9.2. The Steenrod algebra.

Definition 9.4. Let the mod 2 Steenrod algebra o# = 47 (2) be the graded (associative, unital) Fo-algebra
generated by the symbols Sq* of degree i for i > 0, subject to the relations Sq° = 1 and S¢®Sq® =

> (b;lg_jj)S(]aJ“b_quj for 0 < a < 2b.

For each finite sequence I = (i1, ...,4) of non-negative integers we write
Sql =S¢ - ... Sq*

for the product in /. We say that I has length £ and degree iy + -+ iy.
For any based space X, the reduced mod 2 cohomology H*(X;Fs) is naturally a left o/-module, with
the action given by

Sq'(z) = Sq"* (... (Sq" (x))...).
We write
A\ o/ @ H*(X;Fy) — H*(X;Fy)
for the left module action map.
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n | admissible Sq! of degree n

0 Sqo

1] Sqt

2 | Sq?

3| S¢3, 9¢%Sq"

4| Sq*, Sq¢35q¢

51.5¢°,5¢*Sq"

6| Sq%,5¢°Sq¢, Sq*Sq?

718q¢7,5¢°Sq", Sq°Sq?, Sq*Sq*Sqt

8 | S¢%,5¢"Sq", Sq°Sq?, Sq°Sq*Sq'

9| 8¢°, 9¢°Sq", 84" Sq?,54°Sq*, Sq°Sq*Sq*
10 | Sq'°, S¢°Sq', S¢®Sq?, Sq”Sq>, Sq"Sq*Sq', Sq®Sq¢3Sqt
11 Sq“,SquSql,Sq95q2,5q85q3,5’q85q25’q1,Sq75q35q1

FI1GURE 10. The admissible monomials at p = 2 in degrees < 11

If iy < 2., for some 1 < s < £, then the product Sq’ can be rewritten in terms of other products Sq”
with lower moment ) _sj, < > sis. Likewise, if some i, = 0, then the product Sq! can be rewritten as
a Sq’ of shorter length. Hence only the monomials Sq’ with I admissible, in the sense of the following
definition, are needed to generate o/ additively.

Definition 9.5. I = (i1,...,4,) is admissible if i5 > 2is4q for all 1 < s < ¢, and if each i; > 1. The
empty sequence I = () is admissible of length 0, and SqU = 1.

See Figure [10] for the admissible monomials in degrees < 11.
Theorem 9.6. The admissible monomials Sq’ are linearly independent, hence form a vector space basis
for the Steenrod algebra:
o =TFo{Sq’ | I admissible} .

This can be proved by evaluating the action of the Sq’ on the cohomology of products X = (RP>)"
of many copies of RP*°, see Steenrod and Epstein (1972, Theorem 1.3.1).

Definition 9.7. For each odd prime p, let the mod p Steenrod algebra &/ = &/(p) be the graded
[F,-algebra generated by the symbols P? of degree 2i(p — 1) for i > 0 and 3 of degree 1, subject to the
relations P° = 1, the Adem relation for P®P® when 0 < a < pb, the Adem relation for P*3P® when
0<a<pb and B2 =0.

For each finite sequence I = (eq, i1, €1, ...,1¢,€), with 45 > 0 and €, € {0,1} for each s, we write

I:eoilel' . Piepee
Pl — gophga. . pig

for the product in «7. Here 8° = 1. The degree of I is ep + 2i1(p — 1) + €1 + -+ + 2ig(p — 1) + €.
For any based space X, the reduced mod p cohomology H*(X;F,) is naturally a left «7-module, with
the action given by

Pl(x) = go(Pr (B (... (P(B%(2)))-.))) -
We write
Ao/ @ H(X;F,) — H*(X;F,)
for the left module action map.

Definition 9.8. I = (eg,i1,€1...,17¢,¢€7) is admissible if is > €5 + pisyq for all 1 < s < £, and if each
is > 1. The empty sequence I = () is admissible of length 0, and PO = 1.

See Figure [11]| for the admissible monomials for p = 3 in degrees < 19.

Theorem 9.9. The admissible monomials P! are linearly independent, hence form a vector space basis
for the Steenrod algebra:

o =TF,{P" | I admissible} .

See Steenrod and Epstein (1972, Theorem VI.2.5).
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n | admissible P! of degree n
o] PO
LB
4| Pt
5| B8P, P13
6 | BP'3
8| P?
9 | BP2, P28
10 | BP?13
12| PP
13 | pPP, PPj3
14 | BPPS
16 | prtl prp!
17 | pprti prtig gprpl prpig
18 | pPPH13, BPPPLR

FicURE 11. The admissible monomials at p = 3 in degrees < 19

9.3. Indecomposables and subalgebras.

Definition 9.10. For each prime p, let ¢: &/ ®.47 — 4/ be the algebra multiplication map, let n: F, — o/
be the unit map, and let e: & — F, be the counit map, so that en = 1. Let I(%/) = ker(e) be the
augmentation ideal. It equals the ideal of elements of positive degree in .«/. The decomposable part of
o/ is the image

(/) =im(¢: (o) @ I(o/) — I())
and the indecomposable part of o is the F,-vector space
Q) = 1(e)/1()?.
Theorem 9.11. The squaring operation Sq* is decomposable if and only if k = 2° for some i >0, so
Q(/) = Fo{S¢* | i > 0}.
Hence the elements Squ for i >0 form a minimal set of algebra generators for o = o/ (2).

Proof. To prove that Sq? is indecomposable, consider its action on u? in H*(RP*>;F;). We have
Sq?(u?) = (?)uTH, which is 0 for 0 < j < 2¢ and equals 2/*! for j = 2°. It follows that S¢®" cannot
be written as a sum of products of positive-degree operations.

The Adem relation for Sq*Sq® with 0 < a < 2b shows that Sq®*? is decomposable if (bgl) Z 0 mod 2.

If k is not a power of 2, then k = a + b with 0 < a < b and b = 27, for some i. Then (bgl) =1 mod 2
by the case p = 2 of the following lemma, since b —1=1+2+4---+2"! and ((1)) =(]) =1 O

Lemma 9.12. Letn=ng +mp+ - +ngp’ and k = ko +kip+ - - + kep®, with 0 < ng, ks < p for all

s. Then
4
n g
= | I ® mod p.
(k) s=0 <k5>

Proof. The coefficient of 2% = [], 2*?" in

(14+2)" = H(l + z)P = H(l +277)"  mod p

S S

is the product over s of the coefficient of z*<P" in (1 4 zP")". O
Theorem 9.13. The power operation P* is decomposable if and only if k = p* for some i >0, so
Q) =F,{B, P | i > 0}.

Hence the elements § and pr' for i >0 form a minimal set of algebra generators for of = o/ (p).
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Example 9.14. For p = 2, the subalgebra of &7 generated by S¢' is the exterior algebra
A(0) = E(0) = F{1,5¢'}.
The subalgebra of &7 generated by Sq' and Sq? is the 8-dimensional algebra
A(1) = Fo{1,Sq¢", S¢%, Sq®, S¢*Sq*, S¢Sq', S¢° + Sq*Sq*, S¢®Sq'} .
It can be displayed as follows, where for typographical reasons we write Sq?Sq> for Sq® + Sq*Sq*.

T /ng\

11— 5¢! Sq? Sq¢3Sqt Sq*Sq® —— S¢PSqt

\_/
\ . /

The arrows of length 1 connect 6 to Sq*6, and the arrows of length 2 connect 0 to Sq¢?0, for § € A(1) C <.
[[Define A(n) for general n?]]

Example 9.15. For p odd, the subalgebra of &7 generated by S is the exterior algebra
A(0) = E(0) = Fp{1, 8} .
The subalgebra of o7 generated by 5 and P! is the 4p-dimensional algebra
A(l) =F,{1,8, P, BP', P'B, 8P B, ..., PP~ PPt PP=13 BPP~'3, PP3 — 3PP, BPPB}.
For p = 3 it can be displayed as follows, where we use the notation [PP, 3] = PP — SPP.

1 Pl BP'A P? + BP?3 (PP, B3] — BPPB
\ / \4 2
P 2 P23

The arrows of length 1 connect 6 to 86, and the arrows of length 4 connect 8 to P8, except the arrows
labeled ‘2°, which connect 8 to 2P'0 = —P'6. The arrow from B8P to the symbol ‘+’ is meant to express
that P! applied to P! is the sum BP2 4+ P28.

[[Define A(n) for general n?]]
9.4. Eilenberg—Mac Lane spectra.

Definition 9.16. Let H = HF, denote the mod p Eilenberg-Mac Lane spectrum, with n-th space H,,
an Eilenberg-Mac Lane complex of type (F,,n), for each n > 0. The structure map o: X H,, — H,41 is
left adjoint to a homotopy equivalence ¢: H, = QH, 1, for each n > 0.

There are maps n,,: S™ — H,, and pairings ¢, : Hpy A H,, = Hpy 4y, suitably compatible with the
spectrum structure maps, which define a unit map 7: S — H and a pairing ¢: H A H — H that make H
a homotopy commutative ring spectrum. In particular, p(n A1) ~ 1~ ¢(1 An) and ¢(d A1) ~ d(1 A ).

[[This multiplication can be refined to that of an F«, ring spectrum, or a commutative structured ring
spectrum.]]

Proposition 9.17 (Whitehead). There are natural isomorphisms
H,Y;F)Z2m,(HAY)=[S",HAY]
and
H"(Y;F,) =n_,F(Y,H)=[Y,X"H]

for all spectra Y and integers n.
The unit map n induces the mod p Hurewicz homomorphism

hi =n.: m,(Y) — H,(Y;F,).
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The multiplication ¢ induces the smash product pairing
A=¢e: H"(X;Fp) @ H'(Y;F,) — H™ (X ANY;F,).

Using the Serre spectral sequence for the loop-path fibration over H,,, Serre and Cartan were able to
calculate H*(Hp;F,) for p = 2 and for p odd, respectively. Recall the fundamental class ¢, € H"(H,;Fp).

Proposition 9.18 (Serre (1953), Cartan (1954)). The homomorphism
St — H*(Hy; Fy),

mapping X0 to 0(i,) for each 6 € o, induces an isomorphism in degrees x < 2n. Hence there is an
isomorphism

o = H*(H;F,) = [H,H]_.
of graded algebras, taking each class 0 € </ to its representing homotopy class of maps H — X H, where
i=10].
The second claim follows from the first, because of the exact sequence
0 — Rlim H" "1 (H,;F,) — H'(H;F,) — lim H""(H,;F,) = 0.

The limit system stabilizes for n > 4, so the derived limit is zero.
We collect a few lemmas relating maps of spectra to homomorphisms of cohomology groups.

Lemma 9.19. Let
K=\/s"H

be a wedge sum of suspensions of H, and suppose that K is bounded below and of finite type. Then the
canonical map

K= ][s™H
is an equivalence, and the d-invariant '
d: [X, K] — Hom (H*(K;F,), H*(X;F,)
is an isomorphism, for any spectrum X. In particular,
d: m(K) — Hom', (H*(K;F,),F,).
We discussed this earlier, in subsection [6.3}

Lemma 9.20. Let 7.(Y) be bounded below, with H.(Y;F,) = F,{cw,}v of finite type. Let {a,}. be the
dual basis for H*(Y;F,), with |ay| = |ow| = ny. Let ay: S™ — HAY and a,: Y — " H also denote
the representing homotopy classes of maps. Then the sum of the composites

1Ay, dNA1

YSWwH=HANS"™ — HANHANY — HAY

is an equivalence
\/S"H = HAY
u

and the product of the composites

HAY 2% gasreg 228 gasme — ey

is an equivalence
HAY = [[2™H.
n

Proof. The two maps induce the isomorphisms

PzrF, = H(V;F,) = [[=™F,

at the level of homotopy groups. [l

Lemma 9.21. Let j: Y — K be a map of spectra, with K ~\/, X"+ H bounded below and of finite type,
and suppose that j*: H*(K;F,) — H*(Y;F,) is surjective. Then a map f: X — Y induces the zero
homomorphism f*: H*(Y;F,) — H*(X;F,) if and only if the composite jf: X — K is null-homotopic.
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Proof. By Lemma [9.19

[X, K] = Homy (H"(K;Fp), H*(X;Fp))
is an isomorphism. Hence j f is null-homotopic if and only if f*;j* is zero. By assumption j* is surjective,
so this holds if and only if f* is zero. (I

Corollary 9.22. LetY be bounded below, with H,(Y;F,) of finite type. Then a map f: X — Y induces
the zero homomorphism f*: H*(Y;F,) = H*(X;Fp) if and only if the composite
x-Ly L HAY
18 null-homotopic, where
j=nAL:Y=ZSAY — HAY

induces the mod p Hurewicz homomorphism.

Proof. We only need to verify that j* is surjective. It is dual to the homomorphism j,.: H,(Y;F,) —
H,.(H ANY;F)p) induced by the map

IAQAL: HAY 2 HASAY — HAHAY .
The ring spectrum multiplication
oN1: HANHAY — HAY
induces a right inverse H,(H AY;F,) — H.(Y;F,) to j., showing that j,. is (split) injective and j* is
(split) surjective. O
10. THE ADAMS SPECTRAL SEQUENCE
10.1. Adams resolutions.

Definition 10.1. A spectrum Y is bounded below if there exists an integer N such that 7.(Y) = 0 for
all * < N. Tt is of finite type if m,(Y) is finitely generated in each degree. If Y is bounded below, then
it is of finite type if and only if H,(Y;Z) is finitely generated in each degree [[explain this?]], and we
say that it is of finite type mod p if H.(Y;F,) is finitely generated in each degree. This is equivalent to
asking that H.(Y;F,) is finite in each degree.

Hereafter we fix a prime p, and briefly write H,.Y = H,.(Y;F,) and H*Y = H*(Y;F,) for mod p
homology and cohomology.

Definition 10.2. An mod p Adams resolution of a spectrum Y is a diagram of spectra

. Y2yl L y0o——y
S e K
AN RN N .
h N \L? 0 h N \t] o h AN ij
K2 K! KO

where 0: K — LY**! for each s > 0, such that (a) each diagram

ystl Ly ys Iy s 9, yys+l
is a homotopy cofiber sequence, (b) each spectrum K* is a wedge sum of suspension of mod p Eilenberg—
Mac Lane spectra, that is bounded below and of finite type, and (c) each map j: Y* — K*® induces a
surjection j7*: H*K® — H*Y® in mod p cohomology.

Writing K° = \/,, X"+ H, the finiteness condition in (b) is equivalent to asking that {u | n, < N} is
finite for each integer N. By induction on s it implies that each Y* is bounded below and of finite type
mod p. In view of the long exact sequence

s HEYTY S R L 7y Syt L
condition (c) is equivalent to asking that i*: H*Y® — H*Y**!is zero, or equivalently, that 0% : H*(XY 1) —
H*K?® is injective, for each s > 0. By the universal coefficient theorem, these conditions are also
equivalent to asking that i,: H.Y*t! — H,Y* is zero, that J«: H,Y® — H,K? is injective, or that
Oy: H K, — H,(XY*T1) is surjective, for each s > 0.

Lemma 10.3. IfY is bounded below and of finite type mod p, then it admits an Adams resolution.
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Proof. Starting with Y° = Y, suppose that Y* has been constructed, for some s > 0, as a bounded
below spectrum of finite type mod p. Let K* = H AY?®, and let j = A 1 be the map

Y =SAY  "S HAY® = K°.
By Lemma K*®~\/, X" H is a wedge sum of suspensions of H. Here
K= HY* = Pu"F,

is bounded below, and
H.K°*2H,H® H.Y?®
is a tensor product of bounded below IF,-vector spaces of finite type, hence is again bounded below and of
finite type. The map j induces a surjection j*: H*K® — H*Y® by the proof of Corollary It suffices
to prove that j.: H,Y® — H,K?® is injective, but this is the homomorphism induced on homotopy by
the map
INj=1AnpAL: HAY =HASAY®  —HANHAY* =HAK?®
which is split by the map
O¢N1: HANHANY® — HAY?®.

Let Y1 be the homotopy fiber of j: Y — K*, and let i: Y**1 — Y'* be the canonical map from the
homotopy fiber. Then there is a homotopy (co)fiber sequence

yorl ys Iy g 9wt
which identifies the homotopy cofiber of j with the suspension of the homotopy fiber of j. By the long

exact sequences in homotopy and mod p homology, it follows that Y**! is bounded below and of finite
type mod p. Now continue the construction by induction. (I

Let H be the homotopy cofiber of the unit map n: S — H, so that there is a homotopy cofiber
sequence

(4) >1'H—8S-5H—H.
The homotopy cofiber constructed in the proof above can then be written as
STHAYS — SAY TS HAYS — HAY®.
By induction, we therefore have
Yi=(XTHYSAY
Ks=HAST'H)MAY
for all s > 0, with j =n A 1.

Definition 10.4. The canonical Adams resolution of Y is the diagram

..1<—>(2*1’)A2AY41'>2*1HA$Y;>Y Y
~ * ~
\\\ JJ’ 5\\\ J 6\\\ J{J
HAETTH)2AY HASTTHAY HAY

constructed in the proof above.
By the Kiinneth theorem,

HY 2 S 'H)** @ H'Y = (X' ()% @ HY
H'K 2H'HH X TH)*HY =4 (5 ()% @ HY
for each s > 0, with
J*HKS = of @ HY® 3 F, @ HY® = H*Y*
induced by the augmentation e: &/ — I, of the Steenrod algebra, and
O H*SY*N =)@ H'Y® — o/ @ H'Y® = H*K*

is induced by the inclusion I(«/) C &7. Note also that the canonical Adams resolution in natural in the
spectrum Y.
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The added generality of arbitrary Adams resolutions, as opposed to the canonical ones, will be useful
when we consider convergence questions and multiplicative structure.

Lemma 10.5. For any Adams resolution of Y, let
P, =H"(X°K?)
8y = &5 H*(Z°K®) — H*(X*" 1K)
and e = j*: H*KY — H*Y. Then
PP PP S HY 50
is a resolution of H*Y by free of -modules, each of which is bounded below and of finite type.

With this indexing, the homomorphisms ds and e all preserve the cohomological grading of P and
H*Y, which we call the internal degree and usually denote by t.

Proof. By assumption (b), K* ~\/ ¥"H with {u | n, < N} finite for each N, so
Ky =][smH (H)=]][2"o =P

is a bounded below free o/-module of finite type, for each s > 0. Hence each P, = H*(X*K"®) is a
bounded below free .«7-module of finite type.
By assumption (c), the long exact sequence in cohomology of each cofiber sequence

Ys+1 _Z> Y$ % KS i> EYS+1
breaks up into short exact sequences of &/-modules
0 H* 2y 25 mo (k) 25 B (v*) = 0.
These splice together to a long exact sequence
H*(X3Y3) H*(X2Y?) H*(ZY'1) H*Y
J J J
.. ————— H*(X2K?) T)H*(ZKl) TH*KO
along the lower edge of this commutative diagram of graded ./-modules and degree-preserving homo-
morphisms. Alternatively, this diagram may be displayed as follows:
H*(X?Y?)

N e e

H* 22K2 H*KO

Here im(9s41) = im(0*) = ker(j*) = ker(as) as subgroups of H*(X*K?®), for s > 1, since j* is surjective

and 9* is injective, im(d;) = im(9*) = ker(j*) as subgroups of H*KY since j* is surjective, and
j*: H*K° — H*Y is already known to be surjective. Hence e: P, — H*Y is a free /-module
resolution of H*Y. O

We say that the Adams resolution {Y*t1 — Y* — K* — XNY**1} of Y is a realization of the free
o/-module resolution P, = (Ps,0s) of H*Y. Tt is induced by passage to cohomology from the diagram
T ) G 3 IRy N EA
where each composite of two maps is null-homotopic. In the case of the canonical resolution, this diagram
appears as follows:
e HAEMAY L HnAAY L HAY Y,
The associated free resolution has the form

o d RN A)P2RHY B a0 HY 2 o @ H'Y -5 H'Y — 0.
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Here

€(fo @y) = e(bo)y
01(00 @01 ®y) = e(bo)th @y
D200, R0;0y) =€(0))0h 022y

and so on, where 6y € &7, 01,...,05 € I(«), y € H'Y, and €(0y)60; is viewed as an element of 7.

We shall return to this complex later, in the context of the bar resolution of the «/-module H*Y.
The complex above is isomorphic to the bar resolution, but not equal to it. Note that each term
o @ 1()® ® H*Y has the “diagonal” &/-module structure, prescribed by the Kiinneth theorem, which
is not the same as the “induced” «/-module structure where &7 only acts on the leftmost tensor factor.
Nonetheless, each term is free as an «/-module, by the argument given in Lemma for the existence
of a wedge sum decomposition of K* = H AY?".

10.2. The Adams FE>-term. We follows Adams (1958), using the spectrum level reformulation that
appears in Moss (1968).

Let Y be a spectrum such that m,(Y") is bounded below and H,Y is of finite type. Consider any
Adams resolution

. y2 oyl yo vy
X X X
AN RN RN .
h N JJ 0 h N lj o h N J/j
K2 K! KO

of Y. Applying homotopy groups, we get an unrolled exact couple of Adams type

(Y2 s (YY) s (YO

AN

m(Y)

n(K)  m(KY)  m(KO)
where

A® =7, (Y?)

E® =7 (K?)

are graded abelian groups, for each filtration degree s > 0, with components

As,t — Wt—s(ys)

ES"t = Ft_s(Ks)
in each internal degree t. By convention, A = A° and E* = 0 for s < 0. The homomorphisms
i = i, and j = j, have degree 0, and k = 0, has degree —1. There is an associated spectral sequence
(Er,dy), = (EX*,dy*), of Adams type, with

E:’Lsyt = m—s(K®)
and

A3 = (jO)u: T s(K®) — m_ (KT = (KH)
for s > 0. The d,-differentials have bidegree (r,7—1): If x € m,_(K*) = E{'" is such that 8, (z) = i~ (y)
for some y € w1 (Y517, then d,([z]) = [j.(y)] is the class of j,(y) € m_s_1 (K5t7) = EFFiHr=1,
This is the Adams spectral sequence for Y, sometimes denoted E,.(Y) = EX*(Y). We shall be inter-

ested in the possible convergence of this spectral sequence to the achieved colimit

G=m(Y)= colgim T (Y?),
filtered by the image groups
F° = Fom (V) =im(if: m(Y?) = m.(Y)).
This is an exhaustive and descending filtration:
e CFT CcFfCc. CcF'Cc FO=1.(Y).

We recall that, by definition, the spectral sequence is conditionally convergent to 7, (Y") if lim, 7, (Y*) = 0
and Rlim, 7. (Y*) = 0.
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Definition 10.6. An element in E2? is said to be of filtration s, total degree t — s and internal degree t.
An element in F* C m,(Y) is said to be of Adams filtration > s.

[[EDIT FROM HERE])

A class in 7,(Y) has Adams filtration 0 if it is detected by the d-invariant in 7, (K?), i.e., if it has
non-zero mod 2 Hurewicz image. If the Hurewicz image is zero, then the class lifts to m.(Y!). Then
it has Adams filtration 1 if the lift is detected in 7. (K1), i.e., if the lift has non-zero mod 2 Hurewicz
image. If also that Hurewicz image is zero, then the class lifts to m.(Y?). And so on.

Theorem 10.7. The Es-term of the Adams spectral sequence of Y is
Ey' = Ext> (H*(Y),F,).
In particular, it is independent of the choice of Adams resolution.

Proof. The Adams E;-term and d;-differential is the complex

10) jO)
(22K A o) S (K0 0

of graded abelian groups. It maps isomorphically, under the d-invariant m,(K) — Hom (H*(K),F5),
to the complex

e Homy (H*(52K2), Fa) €2 Homy (H* (£ K1), F2) €27 Homy, (H* (K°), Fa) «—— 0

where ((j0)*)* = Homg ((j0)*,1). With the notation of the previous subsection, this complex can be
rewritten as

a5 o7
... &—— Hom y (Py, Fy) +—— Hom, (P;,Fy) +—— Hom (P, Fa) +—0.

This is the complex Hom (Ps,Fy) obtained by applying the functor Hom (—,F3) to the resolution
e: P, —» H*(Y) of H*(Y) by free «/-modules. Its cohomology groups are by definition, the Ext-groups
ExtS,(H*(Y),Fy) = H*(Homy (Py,Fs3)).

At the same time, the cohomology of the E-term of a spectral sequence is the Es-term. Hence
E; =2 Ext},(H*(Y),Fq).

~

As regards the internal grading, E" = m_,(K®) = m(X°K*®) corresponds to the </-module homo-
morphisms H*(X¥K®) — X!Fy. This is the same as the &/-module homomorphisms H*(X5K®) —
Fy that lower the cohomological degrees by t. We denote the group of these homomorphisms by
Hom’, (H*(%°K*®),Fy) = Hom’,(P,,F;), and similarly for the derived functors. With these conven-
tions, B3 = Ext®/ (H*(Y),Fy), as asserted. O

We are particularly interested in the special case Y = S, with H*(S) = Fy and 7. (S) = 7% equal to
the stable homotopy groups of spheres.
Theorem 10.8. The Adams spectral sequence for S has Eo-term
E3" = Ext®) (Fg,Fy).

On the other hand, we can also generalize (following Brinkmann (1968)). Let X be any spectrum and
apply the functor [X, —]. to an Adams resolution of Y. This yields an unrolled exact couple

o [X YY), S (XYY S [X, Y], = [X, Y],

NN AN

X, K2, X, K], X, K9],

where A° = [X,Y?]., BE® = [X, K®]. are graded abelian groups, i, and j. have degree 0, and 0, has
degree —1. There is an associated spectral sequence with
Ef7t = [X’ Ks]t—s
and
A3t = (j0)u: [X, K®)—s — [X, KMoy
The d,-differentials have bidegree (r,r — 1). The expected abutment is the graded abelian group G =
[X,Y],, filtered by the image groups F* =1im(:f: [X,Y"]. — [X,Y].).
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Theorem 10.9. The Adams spectral sequence {E.(X,Y) = EX*(X,Y)}, of maps X — 'Y, with expected
abutment [X,Y]., has Ea-term

Eyt = Ext®/ (H*(Y), H*(X)).

The proof is the same as for X = S, replacing Fy by H*(X) in the right hand argument of all Hom 4~
and Ext$,-groups. [[ETC]]
[[EDIT TO HERE])

10.3. A minimal resolution at p = 2. To compute the Adams Fs-term for the sphere spectrum, at
p = 2, we need to compute
Ext?(Fa,Fo) = H** (Hom (Py,F2), )

for any free /-module resolution
co. — Py $P5_1—>~“—>P1 i>13()L>IF2—>O

of Fy, where § = Hom/(9,1). We now construct such a free resolution P, by hand, in a small range of

degrees. We start in filtration degree s = 0, and calculate up to some internal degree ¢. Then we proceed

with filtration degree s = 1, calculate up to the same internal degree ¢, and then repeat for larger s.
We need a surjection €: Py — Fs, so we let

Py = 4 {goo} = o

be the free «/-module on a generator gopo = 1 in internal degree 0.

In this filtration a single generator suffices, but in higher filtrations, infinitely many generators will be
needed. We will denote the generators in filtration s by gs0, gs,1, gs,2 and so on, in order of increasing
(or more precisely, non-decreasing) internal degrees.

10.3.1. Filtration s = 1. Next, we need a surjection 0y : P; — ker(e), where ker(e) = I(%7). An additive
basis for ker(e) is given by the classes Sq! for I admissible of length > 1. We listed these monomials in
internal degree ¢ < 11 in Figure

Starting in the lowest degree, we first need a generator g; o = [Sq'] in internal degree 1 that is mapped
by 81 to Sq'. The free summand 7 {g; o} of P; will then map by 9; to all sums of classes of the form
Sq’ o Sq' with I admissible. In view of the Adem relation Sq' o Sq' = 0, this image consists of all sums
of classes of the form Sq”’, where J = (ji,..., /) is admissible and j, = 1. See the left hand column of
Figure [12]

The lowest-degree class in ker(e) that is not in the image from <7{g1 0} is S¢?, in internal degree 2, so
we must add a second generator g1 1 = [Sq¢?] to Pi, mapping under 9; to S¢*. Using the Adem relations,
we can compute the image Sq’ 0 S¢? of each basis element Sq’g; 1 of &7 {g1 1}. See the right hand column
of Figure

The images of S¢%g1,0 and Sq*g1,1, namely Sq®>Sq' and S¢3, generate ker(e) in internal degree 3, but
Sq* is not in the image from <7{g1,0,91,1}, 50 we must add a third generator g; » = [S¢*] to P, mapping
to Sq*go,o under ;. See the left hand column of Figure

All classes in degree t < 7 of ker(e) are then hit by 81 on %7 {g1.0,91.1, 912}, but Sg®go o is not in that
image. We must therefore add a fourth generator g; 5 = [S¢®] to P, mapping to S¢®. See the right hand
column of Figure

In general, we must add enough «7/-module generators g1 ; to Py so that their images 01 (g1 ;) generate
the Fao-vector space Q(«) = I(«/)/I(«/)? of algebra indecomposables in the augmented algebra o7
This is necessary, since if 9;: P; — ker(e) is surjective, then so is its composite with the canonical map
ker(e) = I(«/) — Q(&7). It is also a sufficient condition, because of 0;: Py — ker(e) is surjective below
degree t and P — Q(&) is surjective in degree ¢, then any chosen class in (%) of degree ¢ is congruent
modulo I(7)? to a class in the image of ;. Any class in I(</)? is a sum of products of classes of degree
less than ¢, hence is also in the image of 91, by the assumption that 9 is surjective below degree t. Thus
the chosen class in I(7) is also in the image of 9;. [[State this as a lemma?])

By Theorem the S¢* for i > 0 give a basis for Q(), hence the minimal choice of a free
&/-module mapping onto ker(e) is

P ={¢10,911,91,2,91,3,--- }

with g1, = [Sq2i] in internal degree 2¢, for each i > 0. Here gy 4 is in degree 16, hence the first four
generators suffice in our smaller range of degrees.
[[Comment on how 01 ([f]) = 0, and how P, relates to the bar resolution.]]
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910 = [9¢"] +2 Sq

Sq'[Sq"] — g1 = 1967 v S¢?
2[Sql] — quSq1 Sql[SqQ] — S¢3
Sq¢*[Sq'] — Sq3Sq1 S¢*[Sq®] — S¢*Sq'

S¢*Sq' [Sq'] —

Sq*[Sq'] — Sq4Sq S¢*[Sq*] — 0
S¢*Sq' [Sq'] — S¢*Sq' [Sq®] — Sq° + Sq*Sq*

Sq°[Sq'] — Sq5Sq Sq*[Sq*] — Sq*Sq®
Sq*Sq'[Sq'] — S¢*°Sq' [Sq*] — Sq¢°Sq*

Sq¢°[Sq'] — SqGSq Sq°[Sq*] — Sq°Sq®
Sq°Sq'[Sq') — Sq*Sq'[9¢°] — Sq°Sq®
Sq'Sq*[Sq'] — Sq4Sq2Sq

Sq"[Sq"] — 5q75q Sq°[Sq*] — Sq°Sq®
S¢°Sq'[Sq'] — S¢°Sq'[Sq?*) — 0
S¢°Sq[Sq'] — 5q55q25q Sq*Sq*[Sq’] — Sq°Sq*Sq'

Sq*Sq*Sq'[Sq'] —

Sq¢®[Sq] — SQSSQ Sq'[Sq*) — Sq'Sq®
Sq"Sq'[Sq'] — S¢°Sq' [Sq?) — Sq®Sq®
S¢°Sq?[Sq'] — SqGquSq S¢°Sq*[Sq*] — 0

Sq°Sq*Sqt [Sql] Sq*Sq*Sqt [Sq2] — Sq° + S¢3Sqt + Sq"Sq? + Sq¢8Sq¢*Sqt

Sq¢°[Sq'] — ngSq Sq®[Sq*) — Sq*Sq®
S¢*Sq'[Sq'] — Sq"Sq' [Sq?) — Sq"Sq?
Sq"S¢*[Sq'] — Sq75q25q S¢°Sq*[Sq?] — Sq°Sq®Sq
S¢°Sq’[Sq'] — SqGSq?’Sq S¢°Sq*>Sq' [Sq®] — Sq°Sq* + Sq"Sq*Sq

Sq°Sq*Sq' [Sq') —
Sq'[Sq'] — SqloSq S¢°[Sq*] — Sq°Sq®
S¢°Sq' [Sq'] — S5¢°Sq' [Sq?) — Sq®Sq®
S¢*Sq*[Sq'] — SqSSqQSq Sq"Sq*[Sq?] — Sq"Sq*Sq'
Sq7Sq [Sql] — Sq7Sq35q SqSng[SqQ] — 0
Sq"Sq¢*Sq' [Sq'] — Sq°Sq*Sq' [Sq®) — S¢°Sq* + Sq®Sq® + Sq"Sq* Sq

FIiGURE 12. 81 on 527{9170,9171} chP

10.3.2. Filtration s = 2. To continue, we need a surjection dy: Po — ker(0;). First we go through the
linear algebra exercise of computing an additive basis for ker(d;). The result is shown in Figure

The class in lowest degree in ker(d;) is Sq'[Sq'], which corresponds to the Adem relation Sq'Sq! = 0.
We put a first generator gs o of degree 2 in P, with d3(g2,0) = Sq'[S¢']. See the left hand column of
Figure [15]

The first class in ker(d;) that is not in the image of 92 on &{ga0} is S¢3[Sq'] + Sq?[Sq?], which
corresponds to the Adem relation Sq?Sq? = Sq3Sq'. We add a second generator g2 1 to P», in degree 4,
with 02(g2.1) = S¢3[Sq'] + S¢?[Sq?], and compute the value of 92(Sq’g2.1) = Sq’ (S¢3[Sq'] + Sq¢?[Sq?))
in ker(9;) C Pj for each admissible I, using the Adem relations. See the right hand column of Figure

The lowest degree class not in the image of d2 on & {g20,921} C P» is Sq*[Sq'] + S¢*Sq*[Sq?] +
Sq'[Sq*], in degree 5. It corresponds to the Adem relation S¢?Sq® = Sq¢® + Sq*Sq!, in view of the
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Sq*[Sq*] — Sq"Sqt + S¢°S¢? g13 = [ng] N Sq®
Sq°[Sq*] — Sq7S¢? Sql[ng] — S¢°

Sq%19¢* — S¢"S¢? Sq?[Sq®] — Sq*° 4+ S¢°Sq!

— 0 Sq¢3[Sq®] — Sq*t
Sq8Sqt[Sqt] — S¢°Sq* + S¢®Sq¢? Sq*Sq'[Sq®) — Sq'°Sq
Sq°Sq°[Sq*] — S¢*' + S¢°Sq?

Sq*Sq°Sq'[Sq"] — Sq'°Sq" + S¢°Sq*Sq'

FIGURE 13. 07 on ﬂ{gl,g,glg} c P

identities Sq'Sq? = S¢* and Sq¢*'Sq* = Sq¢°. We add a third generator g2 o to P, with d2(g22) =
Sq*[Sq] + S¢*Sqt[Sq?] + Sq'[Sq?], and compute 92(Sqlga2), as before. See Figure [[At this point
we deviate from the minimal resolution chosen by ext, which replaces S¢2Sq'[Sq?] with Sq(®V[S¢?] =
(S¢® + S¢*Sq")[Sq]]]

The first class in ker(d;) not in the image of 92 on &7 {g2 0, g2.1, g2.2} is Sq"[Sq*] + Sq®[S¢?] + Sq*[Sq?].
We add a fourth generator gs 3 to P, in degree 8, corresponding to the Adem relation Sq*Sq* = Sq"Sq* +
Sq%Sq?, and let 02(g23) = Sq"[Sq'] + Sq°[S¢?] + Sq*[Sq'].

02
92,3 7 Sq"[Sq"] + Sq°[Sq®] + Sq[Sq"]
Sq'gas — Sq"[Sq*] + Sq°[Sq?]
Sq*g23 — (S¢° + S¢®Sq")[Sq'] + Sq"Sq [S¢?] + (Sq° + Sq°Sq*)[Sq?]
Sq¢*gas — Sq°Sq [Sq'] + Sq"[Sq"]
SQQSqng}S — (ng + SqSSq1>[Sq2] + Sq65q1[5q4}

This still leaves Sq¢®[Sq'] + Sq7[Sq?] + Sq*Sq[Sq*] + Sq'[Sq®] not in the image of 02, so we add a
fifth generator gs 4 in degree 9, corresponding to the Adem relation S¢*S¢®> = S¢° + S¢®Sq* + Sq7Sq?,
and let 92(g2.4) = Sq®[Sq*] + Sq7[59¢%] + Sq*Sq'[Sq*] + Sq'[Sq®].

02
g2.4 > SP®[Sq'] + Sq"[S¢%] + Sq*Sq* [Sq*] + Sq'[Sq®]
Sqtgaa — Sq°[Sq'] + S¢°Sq*[Sq]
Sq*g2.4 — (Sq"° + Sq°Sq")[Sa'] + (Sq° + S¢*Sq)[Sq®] + Sa°Sq*[Sq*] + S Sq* [Sq]

Finally we need a sixth generator, g2 5 in degree 10, mapping to Sq”Sq?[Sq']+S¢®[S¢*|+Sq* Sq®[Sq*]+
Sq*[Sq®]. Tt derives from the Adem relations for Sq?S¢® and for Sq¢*Sq®, using the Adem relation for
Sq*Sq*. [[Can we pick a different generator that corresponds to just a single Adem relation?]]

02
92,5 —> 54" S¢*[Sq'] + S¢°[Sq°] + Sq*S¢*[Sq"] + S¢*[S¢°]
Sq' g2.5 — Sq°[Sq®] + Sq°Sq*[Sq*] + Sq*[Sq®]

Now 0a: @ {g2,0,---,92,5} — ker(0) is surjective in degrees ¢t < 11. In fact, it is surjective for ¢ < 15.
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Sq'[Sq']

Sq¢*Sq'[Sq")

Sq¢°[Sq'] + S¢*1Sq)
Sq¢*Sq'[Sq')

Sq¢°[Sq’]

Sq*[Sq'] + S¢*Sq' [S¢°] + Sq' [Sq]
Sq4Sql [Sql}

S¢°[Sq'] + S¢*Sq' [Sq”]
Sq°Sq'[Sq']

(Sq° + Sq"Sq")[S¢”]
Sq¢°[Sq'] + S¢*Sq' [Sq"]
Sq¢°Sq'[Sq")
Sq4Sq2Sq1[Sq1]
Sq¢°Sq'[Sq?)

Sq¢°Sq*[5q'] + Sq*Sq*[S¢]
Sq"[Sq"] + S¢°1Sq®) + Sq*[Sq"]
Sq"[Sq'] + S¢*Sq' [Sq”]
Sq"Sq'[Sq")
Sq°Sq*Sq'[Sq']
S¢°Sq*[Sq?)

Sq"[S¢°] + Sq°[Sq*]

Sq®Sq'(Sq"]

Sq¢°Sq*Sq'[Sq']

54°Sq’[Sq'] + S4°Sq°[Sq?]

(S¢” + 54" Sq*)[Sq'] + S¢°Sq* Sq* [S¢?)
5q"Sq[S¢°] + S¢°[Sq"]

S¢°[Sq'] + S¢°Sq' [Sq"]

5q"S¢*15q" ] + S¢°[Sq°] + Sq*S¢*[Sq"] + S¢°[Sq"]
Sq"Sq¢*[Sq') + S¢*[Sq°) + Sq*Sq*[Sq"] + S¢*[Sq®)
Sq°Sq'(Sq"]

Sq"Sq*Sq'[Sq']

Sq°Sq*Sq'[Sq']

Sq"Sq’[Sq'] + 54" S’ [S¢?]

Sq®Sq®(Sq?]

Sq"Sq’[Sq']
Sq"[S¢")
(S¢° + 5¢°5¢")[Sq®) + S¢°Sq' [Sq']
(84" + Sq¢*Sq?)[Sq'] + Sq*Sq* Sq' [Sq']
S¢°1S¢°] + S¢°S¢*[Sq"] + S¢°[S )
Sq'°1Sq'1 + S¢*Sq'[Sq"]

+ (Sq¢” + S¢°Sq' + S¢°Sq*Sq")[Sq?]

Sq°Sq*[Sq'] + Sq*Sq*Sq' [Sq*] + Sq* Sq' [Sq']
Sq®[Sq'] + Sq"[S¢?] + Sq*Sq*[Sq*] + Sq*[Sq®]

FIGURE 14. A basis for ker(9;) in degrees < 11

10.3.3. Filtration s = 3. We carry on to filtration degree s = 3, looking for a surjection d3: P3 — ker(0s).
First we must compute a basis for ker(d;) C Ps, in our range of degrees. The result is displayed in
Figure [T7

As usual, the lowest degree class is Sq'gs o, so we first put a generator gs o of degree 3 in P3 with
93(93.0) = Sq'g2.0. The extension to «7{g3 o} is given in the left hand column of Figure

The lowest class not in the image of this extension is 93(gs3.1) = Sq4gg70 —|—Sq29271 +Sq192’2 in degree 6.
See the right hand column of Figure [I8

After this, the next class not in the image of 95 on @{gs0,931} is 95(g32) = S¢®g20 + (S¢° +
Sq*Sql)gaa + Sqlge.4 in degree 10:

P
932+ Sq°ga0 + (S¢° + Sq*Sq")ga2 + Sq' ga.4
S¢' g3, — S¢°g2,0 + S¢°Sq' ga,2

Finally, we need a fourth generator, g3 3 in degree 11, with

)
93,3 — Sq4Sq28qlgg,0 + Sq692,2 + quSqngg .

(This generator will be particularly interesting when we get to the multiplicative structure in the Adams
Es-term, since it is dual to the indecomposable class ¢y in EXti’{ll(Fg, Fy).) Then 03: &/{g3.0,---,933} —
ker(9y) is surjective in degrees t < 11.
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2.0 2 Sq'[Sq"]

Sqlgz,o — 0
Sq*ga0 — Sq*Sq'[Sq'] 921+ S¢*[S¢"] + S¢?[S¢]
S¢g20 — Sq*Sq'[Sq'] Sq g2 — Sq*[Sq¢?]

Sq¢*Sq' g0 — 0
Sq*g20 — Sq*Sq'[Sq'] Sq*g21 — (Sq° + Sq*Sq")[Sq'] + S¢°Sq' [Sq?]
Sq¢*Sq' g0 — 0

Sq°g2.0 — Sq°Sq'[Sq'] Sq®g21 — Sq°Sq'[Sq']
Sq*Sq' g20— 0 S¢*Sq' g210 — (S¢° + Sq*Sq")[Sq’]
Sq°g2.0 — Sq°Sq'[Sq'] Sq* 921 — S SE*[Sq'] + Sq* S [Sq?]
Sq°Sq'g2,0 — 0 Sq*Sq'g21 — Sq°Sq'[Sq’]
Sq*Sq*ga.0 — Sq*Sq*Sq'[Sq']
Sq" 92,0 — Sq"Sq' [Sq'] 5¢°g21 — S¢°Sq*[S¢7
5q°Sq'g20 — 0 Sq*Sq ga.1 — Sq°S¢P[Sq]

S¢°Sq*g2,0 — Sq°Sq*Sq [Sq']
Sq*Sq*Sq' g2.0 — 0

Sq®g2.0 — S¢°Sq' [Sq'] 5¢°g21 — Sq°Sq®1Sq'] + Sq°Sq[Sq?]
Sq"Sq ga,0 — 0 Sq°Sq'g21 — 0
5¢°Sq*g2,0 — Sq°Sq*Sq' [Sq] Sq*Sq?g21 — (Sq° + S¢®Sq' + Sq"Sq? + Sq°Sq*Sq")[Sq']+
S¢°Sq*Sq g2 o — 0 +5¢°S¢*Sq' [Sq?)
Sq°g2.0 — Sq°Sq'[Sq'] Sq"ga,1 — Sq" S [Sq'] + Sq"Sq[Sq?]
S¢®Sq' g2,0 — 0 Sq4°Sq ga.1 — Sq°S¢P1Sq?)
Sq"Sq?ga,0 — Sq"Sq*Sq' [Sq'] Sq®SqPga,1 — (Sq°Sq" + Sq"Sq*Sq")[Sq']

Sq°Sqga0 — Sq¢°SqSq [Sq'] Sq*Sq*Sqtga1 — (Sq¢° + S¢®Sqt + Sq"Sq* + Sq°Sq*Sq)[Sq?
SqGquSqng,o — 0

FIGURE 15. 05 on %{92,0,g271} c P

10.3.4. Filtration s = 4. In degrees < 11 we have an additive basis

Sq'g3.0 5q°Sq"g30

Sq*Sq*gso0 Sq*Sq*Sq" g3 0

Sq°Sq' gs.0 Sq"Sq" g0

Sq*Sq*gs S¢°Sq*Sq" g3 0

Sq°Sq' gs.0 Sq®g30+ (S¢° + 5¢*Sq")gs1 + Sq' g3 2

for ker(0s), and a surjection 9y: Py = o7 {g4,0,94.1} — ker(93) where

94(g9a,0) = Sq'gs.0
in degree 4, and
04(941) = Sq°93.0 + (S¢° + Sq*Sq")gs.1 + Sq' g3 2

in degree 11.
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922 *2> Sq*1Sq"] + Sa2Sq'[Sq?] + Sq'[Sq*]

Sqtg20 — Sq°[Sq'] + S¢*Sq*[S¢?]

Sq292,2 — (S¢° + S¢°SqH)[Sq'] + Sq*Sqt[Sq]

S¢*g20 — Sq"[Sq'] + S¢*Sq*[Sq]
S5¢°Sq 922 — S¢°Sq'[Sq'] + 5¢°Sq' 9]

Sq*g22 — (Sq"Sq" + S¢°Sq?)[Sq'] + Sq* S*Sq' [Sq®] + Sq* Sq'[Sq"]
Sq*Sq ga.2 — Sq7Sq'[Sq']

Sq°g2,2 — Sq"SE[Sq"] + S¢°S*Sq' [Sq*] + Sq°Sq' [Sq"]
Sq*Sq' gao — (Sq¢° + S¢®Sq' + Sq"Sq*)[Sq'] + S¢°Sq*Sqt[S¢?)

Sq°g22 — Sq"S*[Sq'] + Sa°S*Sq ' [Sq®] + Sq°Sq'[Sq"]
Sq°Sq ga.2 — Sq°Sq'[Sq']
Sq*Sq*gas — (Sq"° + S¢°Sq' + S¢°Sq® + Sq"Sq*Sq")[Sq'] + Sq* Sq* Sq* [Sq)

FIGURE 16. 0> on &/{g22} C P»

Sq192,0 Sq75q192,0

5¢*Sq' 92,0 Sq°Sq*Sq" ga,0

Sq*Sq" g2.0 5¢°Sq' g2,

Sq*g2.0 + S¢*g2.1 + Sq" g2, Sq°Sq*g2.0 + Sq*Sq*g21 + Sq*Sq' g2 .2
Sq*Sq" g2,0 Sq®g20 + (S¢° + 54" Sq")g2,2 + Sq' go.a
qugz,o + Sq392,1 S(JSSqlgz,o

54°Sq" g2,0 5¢°Sq°Sq" g2.0

S¢°ga.0 + S¢°Sq' g2 + Sa*Sq g2, (Sq° + Sq"Sq*)g2,0 + Sq°Sq* g1
54°5q" g2.0 Sq°g20 + S4°Sq* g2.2

Sq*Sq°Sq' g2.0 Sq*Sq*Sq' g2.0 + 5¢°g22 + S¢*Sq' g2

(S¢° + Sq*Sq") g
Sq"ga0 + S¢*Sq* g2,

FIGURE 17. A basis for ker(9;) in degrees < 11

10.3.5. Filtration s > 5. Things become quite simple from filtration degree s = 5 and onwards. In
degrees < 11 we have an additive basis

Sq"ga0 5¢°Sq" ga0
Sq°Sq" ga0 S4°Sq ga0
Sq*Sq" g Sq*5q*Sq" ga0
Sq4Sqlg4,0

for ker(dy4), and a surjection d5: Ps = o/{gs 0} — ker(ds) where 95(g5.0) = Sq'gs0 in degree 5. Contin-
uing, we have a surjection ds: Ps = o7 {gs 0} — ker(ds_1) in degrees < 11, where 95(gs,0) = Sq'gs—1,0 in
degree s, for all 5 < s < 11.

Definition 10.10. We say that P, is a minimal resolution when im(0s41) C I(&/) - Ps for all s > 0.
Then 1 ® 0s41: Fo @y Psp1 — Fo ®y Ps and Hom(0s41,1): Hom g (Ps,Fa) — Hom s (Psy1,Fs) are the
zero homomorphisms, so that
Tory (Fp, Fa) = Fa ® o Py = Fof{gsi}i
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93,0 RN 5q' g2,0

Sq'gs0 — 0

Sa*gs.0 — S¢*Sq 92,0

Sq*g30 — S¢°Sq" 92,0 931 2% Sq*ga.0 + Sq2g2,1 + Sq" 92,2
5¢*Sq'g3,0 — 0

Sq*gs0 — Sq*9q" 92,0 Sq'gsa — Sq°g2,0 + Sq’gaa
5¢°Sq' g3, — 0

Sq°g3.0 — Sq°Sq" 92,0 Sq*gs.1 +— (S¢° + Sq°Sq")ga.0 + S¢°Sq' g2.1 + S4°Sq g2,
5¢*Sq'g30— 0

5q°g3,0 — Sq°Sq" 92,0 Sq*gs.1 +— Sq" 920 + S¢*Sq" 92,2
5¢°Sq' g3,0 — 0 S¢*Sq' g3 — Sq°Sqtga,0 + (S¢° + Sq*Sq" ) g2
Sq*Sq°gs0 — Sq*S4°Sq 920

Sq" 930 — Sq"Sq" g2,0 Sq*gs1 — (S47Sq" + 5¢°Sq%)g2.0 + Sq*Sq?g21 + Sq*Sq' ga
Sq¢°Sq' gz 0 — 0 Sq*Sq' gz — Sq7Sq g2.0 + S4°Sq g2

5¢°Sq*g3,0 — Sq°Sq*Sq 92,0
Sq*Sq*Sq' gs0 — 0
Sq®g30 — Sq¢*Sq' g2,0 Sq°gs1 — Sq"Sq%g2,0 + S¢°Sqg21 + Sq°Sq 9o,
Sq"Sq' gz 0 — 0 Sq*Sq' gz — (S¢° + S¢°Sq" + 547 5¢%)g2.0 + S¢°Sq* g2
5¢°Sq*g3,0 — Sq°Sq*Sq 92,0
Sq°Sq*Sq' gz 0 — 0

FIGURE 18. 83 on &7{93,0,9371} C P

and

EthZ{(]FQ,FQ) = HOHl:Qf(Ps,]FQ) = ]Fg{gsﬂ'}:

for each s > 0, where Py = &/{gs;};. Equivalently, the number of generators of P; is minimal in each
internal degree. (This number is finite, since 7 is of finite type.)
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Theorem 10.11. There is a minimal resolution €: Py, — Fo with Py = o/{go0} and Ps = o/ {gs; | i >
0}, where Os: Py — Ps_1 is given in internal degrees t < 11 by

I
n
Q
—
)
L
=

(91,0)
(g1.1)
(91,2)
(91,3)
(92,0)
92(92.1) = Sa®g1.0 + S¢°g11
92(g2,2) = Sq*g1,0 + S¢*Sq' g11 + Sq' g1
92(92,3) = Sa"g1,0 + Sa°g1,1 + Sq*g1.2
02(92,4) = S¢®g1.0 + Sq"g1.1 + Sq*Sq 912 + Sq' g1.3
92(92,5) = Sa"SqPg10 + Sa®g11 + S¢* S 912 + SdPg1 3
33(93,0) = Sqlgz,o
(931) = Sq49270 + Sq29271 + Sqlgu
(93.2) = S¢®g2,0 + (S¢° + Sq*Sq") g2 + Sq* g2 4
(93,3) = (Sq" + 54" S¢*Sq" ) 92,1 + S4°92,2 + S4*5¢" g 3
( ) = Sqlg3,0
(94.1) = Sq°gs.0 + (S¢° + Sq*Sq')gs.1 + Sq' g3 2
85(95,0) = Sqlg4,0

03 93,1
03 93,3

04(94,1

011(g11.0) = Sq" g10,0 -

Proof. This summarizes the calculations above. The resolution is minimal, since we only added generators
gs,i With 04(gs,;) € I(o/) - Ps_1 = I(/){gs—1,;};. It should be clear that we can continue that way, since
&/ is connected. If any sum involving 1- g, ; occurs in ker(ds), then gs; could be omitted from the basis
for P; and J,: Ps — ker(0s—1) would still be surjective. O

Theorem 10.12. Ext?) (Fa,Fs) = Fo{v,,;}; where vs;: Ps — Fy is the o/ -module homomorphism dual

to gs,i, for each s > 0. The bidegrees of the generators in internal degrees t < 11 are as displayed in the

following chart. The horizontal coordinate is the topological degree t — s, the vertical coordinate is the
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cohomological degree s, and the sum of these coordinates is the internal degree t.

11,0
10|710,0

79,0
8178,0

")/770 . . . . . . ‘7
6| 76,0 . . . : ? ?

5,0 . . ? ? ?
4174,0 Ya,1| 7 ? ? ?

73,0 V3,1 V3,21 73,3| ? ? ?
21 72,0 Y2,1 | V2,2 Y2,3 | V2,4 | V2,5 ? ?

Y1,0 | V1,1 V1,2 71,3 ?
0| 70,0

0 2 4 6 8 10

We have not yet computed the groups labeled - or 7, but we will prove below that the groups labeled -
are 0. (This is the Adams (1966) vanishing theorem.) In fact, many of the groups labeled ? are also zero.

Proof. For each s > 0 we have Hom (Ps,F2) = Hom (%7 {gs,i}i,F2) = [, Fa{vs,:}, where v44(gs,5) =
;5 is 1 if i = j and 0 otherwise. It will be clear later that there are at most finitely many g, ; in a given
bidegree, so this product is finite in each degree. Then 7y, ; 0 9541 = 0, so the cocomplex Hom g (P, )
has trivial coboundary. Hence Ext}, (Fa,Fs) = Homy (Ps, Fa) = Fo{vs,:}i, as claimed. O

Lemma 10.13. Let e: P. — Fy be a free o7 -module resolution. Then Homg (Ps,Fa) = Hom(Fy 4
P, Fy), so there is an isomorphism Ethz’;(Fg,Fg) = Hom(Torft(Fg,Fg),Fg).
10.4. A minimal resolution at p = 3. Now consider the case of an odd prime p. The mod p Adams
E>-term for the sphere spectrum is
Ey" = Ext))(F,,F,) = H*(Hom (Py,Fp), 6),
where {
PP s PP S F, 0
is any free &/-module resolution of F,, and § = Hom,(0,1).
We calculate a minimal such resolution for p = 3 in internal degrees t < 2p?> — 2 = 16. To begin, let
Py = {900} = o/, with goo in degree 0 and €(go,0) = 1. The admissible monomials
B, P',BP', P'8,3P' B, P*, BP?, P*3, BP*3, P, PP, PP3, BPP3
form a basis for ker(e) = I(/) in degrees t < 16.

10.4.1. Filtration s = 1. To define a surjection dy: P; — ker(e), it suffices to add generators to P; that
map to a basis for the algebra indecomposables
Qo) = 1()/1(o/)? = F,{B,P', PP,...}.
Let
Py =d{g10,91.1,912,- -}
be generated by g1, in degree t = 1 with 01(g1,0) = £90,0, 91,1 in degree t = 2p — 2 =4 with 01(g11) =
Plgoyo, g1.2 in degree t = 2p? — 2p = 12 with 01(g12) = PPgg0, and so on. In general, g; ;41 in degree
t = 2p'(p—1) maps to pr' go,o for each ¢ > 0. The boundary 0; is given in Figure in internal degrees
t < 15. A basis for its kernel is shown in Figure 20] in the same range of degrees.
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8
91,0 — Bgo,0
Bgio+—0

911 — Plgoo
Pg10— P'Bgoo
Bgi1 — BP'goo
BP'g10+— BP'Bgo.
P'Bg1o+—0
BP'Bg10+— 0
Plgi1 v+ P'Plgg o =2P%go
P?g10 — P*Bgoo
BPg11 — 2BP%go0
P'Bg11 — P'BP'go0 = (BP? + P?B)go,o
BP?g1,0 — BP?Bgo o
P?Bg1o+—0
BP'Bg11 — BP?Bgo
BP?*Bg1,0+— 0
P2g1 10
g1,2 — PPgo
PPg10— P"Bgo,0
BP%*g1 1+ 0
P?Bg11 — P?BP'go o = (BP? — P"B)goo
Bgi,2 — BPPgoo
BPPg1,0 — BP?Bgo,0
PPBg1o—0
BP?*Bg1,1 — —BPPBgoo
BPPBg10 0

FIGURE 19. 01: P, - Pyforp=3

10.4.2. Filtration s = 2. Next we define a surjection dy: P» — ker(d). Let

Py = {g20,92,1,92,2, 92,3, - - - }

be generated by g2 in degree ¢ = 2 with 02(g2,0) = Bg1,0, by g2,1 in degree t = 4p — 3 = 9 with
92(g2,1) = 2P%g1,0+ (BP'—2P'B)g1,1, by ga,2 in degree 2p® —2p = 12 with 83(g2,2) = PP~ 'g11 = P?g11,
by g2.3 in degree 2p? — 2p + 1 = 13 with 92(ga3) = PPg10 + P?Bg1.1 — Bg1.2, and so on. Note how ga ¢
corresponds to the relation 32 = 0, g2.1 corresponds to the Adem relation P!3P! = 3P? + P23 (and
PPl = 2P?) and go corresponds to the Adem relation PP~*P! = 0. [[Continue with g 3.]] The
boundary Js is given in Figure in degrees ¢t < 15. A basis for its kernel is shown in Figure 22] in the
same degrees.

10.4.3. Filtration s = 3. We continue by defining a surjection d5: P3 — ker(02). Let

P3 = 47{g3,0,93,1:93,2,--- }

be generated by gso in degree t = 3 with 03(g30) = B892,0, by g3,1 in degree t = (?) = 13 with
(93(g3’1) = Plgg,l — 692,2, by 93,2 in degree t= (?) = 14 with (93<g3’2) = Ppgg() + Plﬁgg’l — 692,3a and so
on. The boundary 05 is given in Figure[23] in degrees t < 15. A basis for its kernel is shown in Figure
in the same range.
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Bg1.0

Plﬂgl,o

BPBg1,0

2P%g o+ (BP' —2P'B)g11
P?Bg10

5P291,0 - 5P1591,1
BP?Bg10

P291,1

PPgio+ P?Bgi1 — Bgi2
5P291,1

BPPg1 0+ BP*Bg11
PPBg1,0

BP?Bg1,0

FIGURE 20. A basis for ker(d;) at p=3

02
g2,0 — 591,0

Bga,0— 0

P192,0 — Plﬁgl,o
BP'gs0 — BP'Bgio
P'Bga0+—0

BPlﬁgg,o — 0

g2.1 — 2P%g1 0 + (BP* — 2P'B)g1 4

P?g30 — P*Bg10
Bga,1 — 2BP%g10 — 2BP Bg1 4
BP?gy0 — BP?Bgi 0
P?Bga0+—0
BP2ﬁg2,o — 0

G20 — P2g1 1

Plgs1 — (BP? —3P*B)g11 = BP?g11
Bgao — BP?g1 1

923+ PPgio+ P*Bgi1 — Bgio

PPgs o — PPBg10
5P192,1 —0
P'Bgs1 — (BPP — PPB)g10 — 2BP"Bg1 4
Bga,3 — BPPg10+ 5P2591,1
BPPg2.0 — BP?Bg1,0
PPBgao 0
BP'Bgs1 — —BPPBgi o

FIGURE 21. 0y: P, — Py forp=23
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B92,0
P'Bga0
BP'Bgs,0
P?Bga0
BP*Bgao

Pl

92,1 — ﬁ92,2

PPgy0+ P'Bga1 — Bgas
5P192,1

BPPgs0+ BP'Bg2a
PPBga2,0

FIGURE 22. A basis for ker(dz) at p=3

93,0
Bgs,0
Plgsg
BPgs0
P'Bgs0
5P1593,0
P?g30
BP%g30
P?Bgs0
5P25g3,0
93,1
Bgs
93,2
PPgso
Bgs.2

5}
— B92,0
— 0

— P'Bgs.0

— BP'Bga,0

— 0

— 0

— P?Bgs.0

— 5P2592,0

— 0

— 0

— P192,1 — Bg2,2

— 5P192,1

— PPgao + P'Bg21 — Bg2s
— PPBga0

— BPPg30+ BP' g2

FIGURE 23. 03: P3 — Py forp =3

Bgs,0
P'Bgs0
5P1593,0
P?Bgs.0
5P2593,0

FIGURE 24. A basis for ker(d3;) at p=3
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10.4.4. Filtrations s > 4. From here on we get surjections 0s: Ps — ker(9s_1) for s > 4 by letting
PS :.52{{9570,...}
with gs0 in degree s, where 95(gs,0) = 8gs—1,0, and so on.

Theorem 10.14. There is a minimal resolution ¢: P, — Fs, with Py = o/{goo} and Ps = o/{gs, |1 >
0}, where Os: Ps — Ps_1 is given in internal degree t < 15 by

01(g1,0) = Bygo,o

A1 (g11) = P'go.

01(91,2) = PPgo0

92(92,0) = Bg1,0

92(ga,1) = 2P%g10 + (BP' — 2P B)g1 1
Do(ga,2) = PP g1

92(g2,3) = PPg1,0 + P*Bg11 — Bgr2
93(93.0) = B92,0

93(g31) = Plga1 — Bgap

93(g3,2) = PPga,0 + P'Bg21 — Bgass
91(94,0) = B93,0

015(915,0) = BY14,0 -

Theorem 10.15. Ext’/ (F3,F3) = Fs{vs,;}i, where vs,;: Py — F3 is the o7/ -module homomorphism dual
to gs;. The generators in internal degree t < 15 are displayed in the following figure.

6[76,0
75,0
4 ’y470 . . . ‘?
73,0 73,1(73,2 20717
2(72,0 V2,1 Y2,2(72,3 ?717?
71,0 V1,1 V1,2 ?
0{70,0
0 2 4 6 8 10 12 14

We have not yet computed the groups labeled - or 7, but by the May vanishing theorem, see Ravenel
(1986, Theorem 3.4.5(b)), the groups labeled - are 0. In fact, many of the groups labeled ? are also zero.

The first possible differential is dé’u on 1,2), which indeed equals 3 1. Once we have proved conver-
gence and the visible vanishing line, it follows that 7. (S)5 begins as follows.

T (9)% | gen. | rep.
73 L | 70,0
0
0
7/3 a1 | M1
0
0
0
Z/3 Q2 | Y21
0
0
Z/3 Bi | 72,2
Z/9 a3/1 | 72,3
0

==
BB uo ok wN R~ oS
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The cyclic groups in degrees 2i(p— 1) — 1 = 4i — 1, generated by the a-classes, equal the image im(J).,
of the J-homomorphism J,: m4;—1(0) — m4;,-1(S). As becomes visible in degree 2p(p — 1) — 1 = 11,
the order of this cyclic group im(.J)gi(p—1)—1 varies with 4. It is p’t = 37t where j = v,(4) is the
p-valuation of i, or equivalently, the p-component of pi. The element of order p in this image is denoted
«;, for i > 1, and oy = pjai/j, where «;/; is a generator of this cyclic group. This pattern persists for
all odd primes p, but the case p = 2 is more complicated.

The first element of ﬂ*(S);\ that is not in the image of J, hence is in the cokernel of J, is 1 in
WQP(p_l)_Q(S)Q, represented in Adams filtration 2 by vz 2.

11. BRUNER’S ext-PROGRAM

11.1. Overview. Robert R. Bruner (1993) has developed a package of C-programs and shell scripts,
usually called ext, which can calculate Ext;’;(M ,IF3) over the mod 2 Steenrod algebra </ for many
modules M, in a finite range of filtration degrees s and internal degrees ¢.

The strategy is to compute a minimal free resolution e: P, — M of the «/-module M, one internal
degree t at a time, starting from filtration degree s = 0 and moving upwards. The ./-module basis
{gs.i}: for Py then also gives an Fa-vector space basis for Fo @4 Ps = Torf(IFg,M ). The dual basis
{7s,i i wWith 74(gs,;) = d; ;, is then an Fa-vector space basis for Ext}, (M, Fs).

The program can compute induced homomorphisms, Yoneda products and some Massey products,
and produces output in text, TEX, Postscript and PDF formats. It can also make similar calculations
over the subalgebra A(2) = (Sq', Sq?, Sq*) of o7, but is not prepared to calculate at odd primes p.

See subsection for a guide to how to install the current version of ext. Thereafter, see sub-
section to see how to encode an 2/-module M in a format that the ext program can use, and
subsection for where to store and process such module definition files. To resolve a module, first
see subsection for how to create the subdirectory where that calculation takes place, and then see
subsection for how to run the script that calculates the minimal resolution. [[ETC]]

11.2. Installation. At the time of writing, the most recent version of ext is ext.1.8.7 from April 14th
2014. It can be downloaded via Bruner’s home page at http://www.math.wayne.edu/~rrb/papers/,
or directly from http://www.math.wayne.edu/~rrb/papers/ext.1.8.7.tar.gz, using a web browser.
Save the file ext.1.8.7.tar.gz in a directory. In this guide we will assume that this directory is called
ext. You may be offered to create such a directory when saving the file, or you can create one using
mkdir ext.

Open a terminal window and move to the ext directory, using a command like cd ext. The file is a
compressed (gzip’ed) tape archive (tar-file). First uncompress it using gunzip ext.1.8.7.tar.gz. This
enlarges the file from about 2 MB to about 5 MB, and gives it the new name ext.1.8.7.tar. Then
unpack the archive using tar -xvf ext.1.8.7.tar. To list the resulting files use 1ls, giving output
like A A2 copyright doc ext.1.8.7.tar NEW README START_HERE TODO. The files START_HERE (up to
date for version 1.8) and README (dating from versions 1.6, 1.65 and 1.66) explain the basic usage of the
ext program. There is further documentation in the doc subdirectory, and an account of the changes
made since version 1.66 is given in NEW. The subdirectory A will contain the code and data for making
calculations over the mod 2 Steenrod algebra /. The subdirectory A2 will contain the corresponding
code and date for calculations over the subalgebra A(2).

To complete the installation, follow the instructions in section I of START _HERE, namely do cd A fol-
lowed by ./Install. This runs the shell script Install in ext/A. The script compiles several programs,
and assumes that the GNU C-compiler gcc is already installed on the system. If not, you will need to
install gcc first. There will be some warning messages regarding storage.c and splitname.c. Appar-
ently it is difficult to avoid these on all different systems. It may be possible to write Install in place of
./Install, but this depends on the settings of your system, i.e., whether the current directory (.) is in
the search path variable $PATH. We will not assume that it is, and therefore use the explicit . /-commands.
Finally, move up to ext and down to the A2 directory using cd ../A2, and then do ./Install in that
directory to compile the remaining programs. Again there will be some warning messages. Do cd .. to
return to the main directory (the one we are assuming is called ext). This completes the installation.

11.3. The module definition format. In order to calculate Ext;;{*(M ,F2), we must first specify the

&/-module M. Before version 1.5, the user was expected to provide a program (called module. c) that con-

tained functions keeping track of a [Fa-vector space basis for M, and the action of elements in the Steenrod

algebra on those basis elements. This is documented in ext/doc/readme.1.0 and ext/doc/module.doc,

but is now largely irrelevant, due to the new interface for module definitions introduced in version 1.5,
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partly written by Jeff Igo. It is documented in ext/doc/modfmt.ascii and ext/doc/modfmt.html, in
addition to the following explanation.

The &7-module M, which may eventually have a completely different name, must be presented to the
ext program as a finite dimensional Fa-vector space with a chosen ordered basis (vg,v1,...,vp—1). If
there are n basis vectors, they will be numbered from 0 to n — 1, inclusive. The &/-module action must
be specified by listing the value Sq"(v;) of each Steenrod squaring operation Sq¢” on each basis vector v;,
for r > 1 and 0 < i < n, except that operations that take the value 0 can be omitted. This ensured that
only finitely many values need to be specified.

If one is really interested in an infinite-dimensional module M, such as H*RP*> = Fy[z], one must
choose to truncate this module at some finite internal degree b, discarding all generators in internal
degrees t > b. This will not affect Ext‘;;t(M, Fs) for t < b, so a partial calculation in a finite range of
internal degrees is possible, if M is bounded below and of finite type. If M is not bounded below, or has
infinitely many generators in a single degree, then the ext-program will not be able to calculate with it.

The module definition file will be a text file with two parts. The first part specifies the internal grading
of the vector space basis. The second part specifies the action by the Steenrod operations.

The first part has the format

n
t0 t1 ... t(n-1)
where n is the Fay-vector space dimension of M, i.e., the number of basis vectors vg,v1,...,v,_1, and

toty ...tn—1 are the internal degrees of those basis vectors. Beware that these basis vectors are assumed
to be ordered so that the sequence of internal degrees is non-decreasing. In other words, a basis vector
cannot be followed by a basis element in strictly lower internal degree. (If your module definition file
does not satisfy this condition, the program ext/A/samples/sortDef can reorder the basis as needed.)

For example, if M = H*(S) = F2 has a single generator in internal degree 0, the module definition
file would begin:

1
0

IfM=H *(RP*) has four generators x, 22, 3 and z* in degrees 1, 2, 3 and 4, the module definition file
would begin:

4
1234

Note that the names of the generators are irrelevant for the program; it simply considers the basis as an
ordered list of n elements, and keeps track of the individual basis elements by their index in that list,
which is a number between 0 and n — 1. (This index is typically different from the internal degree of
that generator.) However, the ordering of the basis elements (within a given internal degree) will be of
importance when the Steenrod operations are to be specified.

The second part consists of a list of lines, one for each nonzero operation Sq"(v;) with » > 1. If
Sq"(v;) = vj, +vj, + -+ +vj, is a sum of k different terms, then that line will appear as follows:

irkjlj2... jk

The first entry, i, tells us which basis vector, v;, is being acted upon. The second entry, r, tells us
which Steenrod operation, Sq", is acting nontrivially on that basis vector. The value of Sq"(v;) is a
homogeneous element in M, hence is a sum of one or more of the basis vectors in that internal degree.
The third entry (k) tells us how many different terms there are in that sum. The remainder of the
line contains k entries, and these are the indices j1, jo, ..., ji of the basis vectors that occur in the sum
Sq"(v;) = vj, +vj, + -+ v, [[Usually ji < jo < --- < ji. Is this necessary? Duplications are not
allowed, I believe.]]

For example, if M = H*(S) = Fy, there are no nonzero operations Sq”, so the second part is empty;
it consists of zero lines.

If M = H*(RP*), the Steenrod operations satisfy Sq”(2?) = (f,)x”i. The nonzero operations are
Sqt(z) = 22, Sq¢* (23) = 2* and Sq¢*(2?) = 2*. The operation Sq*(z) = 22 is specified by the line

0111

where the first 1 means that we are acting on the generator numbered 0, i.e., x, the second 1 means that
we are specifying the value of Sq' on that generator, the third 1 means that Sq'(x) = 22 is a sum of one
term only, and the last 1 means that that one term is the generator numbered 1, i.e., 2. The operation
Sq'(z3) = 2* is specified by the line
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2113

where the first 2 means that we are acting on the generator numbered 2, i.e., 2%, the second 1 means
that we are specifying the value of Sq! on that generator, the third 1 means that S¢*(23) = z* is a sum
of one term only, and the last 3 means that that one term is the generator numbered 3, i.e., 2*. The
operation Sq¢?(x?) = 2 is specified by the line

1213

where the first 1 means that we are acting on the generator numbered 1, i.e., 22, the second 2 means
that we are specifying the value of Sq¢? on that generator, the third 1 means that S¢?(z?) = 2* is a sum
of one term only, and the last 3 means that that one term is the generator numbered 3, i.e., z*. The
combined second part of the module definition file for this M is therefore:

0111

2113

1213
The ordering of the lines does not matter. If preferred, we could also have used the following specification

0111

1213

2113
in order of the basis elements v;, followed by the order of the squaring operations Sq"(v;) on those basis
elements. With this ordering, the whole module definition file for H *(RP*) would appear as follows.

4

1234

N = O
=N e
B e
W W~

This file can be created in a text editor.

11.4. The samples directory. Module definitions for .&/-modules can conveniently be stored in the
directory ext/A/samples. The file name can be freely chosen, but it is convenient to let it specify the
o7/-module, or perhaps a spectrum whose cohomology realizes that «7-module. The module definition for
F2 can thus be saved under one of the names F2, F2.def, S or S.def in ext/A/samples. That directory
also contains some tools for working with module definitions. See the file ext/A/samples/README for
some documentation. The programs tensorDef, dualizeDef, collapse and truncate let you build new
module definition files from old ones.

For example, if M.def and N.def contain the definitions of two «/-modules M and N, then the com-
mand ./tensorDef M.def N.def MN.def will produce a new module definition file MN.def, presenting
the tensor product M ® N (with the diagonal «/-action, more on that later). If M = H*X and N = H*Y,
then M @ N = H*(X AY). If the ordered basis for M is (v;); and the ordered basis for N is (w;);,
the basis chosen for M ® N will consist of the set of tensors {v; ® w;}; ;, but the ordering of these basis
vectors may not be obvious. The program tensorDef therefore outputs a list of the pairs (¢, 7), in the
order that is chosen for M ® N. A copy of this output may be saved, since it can become useful later.

For another example, if M.def contains the definition of an «/-module M, then ./dualizeDef
M.def DM.def will produce a new module definition file DM.def, presenting the dual &/-module M* =
Homyp, (M, F3) (with the conjugated «7-action, more on that later). If M = H*X, then M* = H*(DX) =
H_,.(X), where DX = F(X,S) is the functional dual of X. For finite CW spectra X, this is the same
as the Spanier—-Whitehead dual of X. [[Is the basis {v}}; for M* ordered by reversing the order of the
basis (v;); for M?]]

Calling these commands without an argument, as in ./collapse or ./truncate, gives short messages
explaining their usage.

The consistency command, in its improved version called newconsistency, checks whether the
Steenrod operations listed in a module definition file actually define an @7-module, i.e., if the operations
satisfy the Adem relations. If all Adem relations are satisfied, it exits quietly. If they are not, it lists the
Adem relations that are not satisfied, and the generator on which this failure takes place.

[[Can use newconsistency to complete a partial definition of an o/-module, where only the action of
the algebra indecomposables Sq?" are given, to one where the action of all Sq" are given. To do this, start
by adding operations to correct the lowest degree error message from newconsistency, and continue.]]

70



11.5. Creating a new module. To make Ext -calculations with an &7-module M, defined by a module
definition file M.def in ext/A/samples, use cd .. or something similar to go to ext/A. Then use the
command ./newmodule M samples/M.def to create a subdirectory ext/A/M that contains the data and
code relevant for the calculations for M. In general, replace M with a more memorable name for the
module in question. newmodule calls on newconsistency to check that the module definition file M.def
actually defines an &/-module. If it does not, go back and correct it before calling newmodule again.

A copy of the module definition file will be stored as Def in ext/A/M.

The Extg-calculations for M will be carried out by finding a finite part of a minimal resolution
P, — M, in a range of filtration degrees 0 < s < Spqe, Where Sp,q. is the number stored in the file
ext/A/M/MAXFILT.

P, —s. .. —P 2P . P -sM—0.

Smax

Usually a common $;,4,-value for all o7-modules is set in the file ext/A/MAXFILT, and newmodule will
copy this value into ext/A/M/MAXFILT when creating the directory for M. [[It should not be changed
after newmodule has completed creating the module.]]

The data specifying the minimal resolution will be stored in the files Diff.0, Diff.1, .... Here
Diff.s will specify the internal degrees of the &7-module generators g ; for Ps, and the values 0s(gs,;)
in P;_1 of the boundary homomorphism J; on these generators. These values will be expressed as sums
of elements in the free «/-module on the generators gs—1 ; of Ps_1. [[What happens for s = 07]]

The computation will be done one internal degree ¢t at a time, assuming that the calculations for
lower internal degrees have already been done. The first line of each Diff.s contains two numbers. The
second is the internal degree ¢ up to which the calculation of Ps; and 0 has been completed, so far. The
first is the number of generators that have been added to P;, in internal degrees less than or equal to
t. Both of these numbers are set to 0 at the outset, when the module is created with newmodule. [[Can
this confuse the program if M starts in negative degrees, and dims is started at ¢t = 07]]

[[Explain format of Diff-files.]]

11.6. Resolving a module. To resolve a module M, created from a module definition file M.def in
ext/A/samples using ./newmodule M samples/M.def in ext/A, move into ext/A/M using cd M. (In gen-
eral, replace M by the directory name chosen for the module.) Suppose that the module M is concentrated
in internal degrees t > 0, and that we want to make the calculation up to internal degree ¢t = 60. Then
we use the script dims, which automatically starts a series of scripts nextt, each handling one ¢ at a
time. To calculate in the range just mentioned, use ./dims 0 60.

In general, the command ./dims a b in the directory ext/A/M will calculate the resolution P, for
0 < s < Smae in the range of internal degrees a < ¢t < b, under the assumption that the calculation is
already finished for ¢ < a, starting with ¢ = a and working its way up.

For each t, the calculation proceeds on s at a time, calculating the kernel of 0;_1: Ps_1 — Ps_5 in
degree t, identifying the image of 0s: P; — Ps_1 when restricted to the generators of Ps in internal
degrees less than ¢, and choosing an Fs-basis for a complementary subspace. For each basis vector v;,
an o/-module generator g, ; is added to P; in internal degree ¢, and 0s(gs,;) is set equal to v;. [[Is this a
fair representation of how the program actually works?]]

The subdirectory ext/A/M/logs will contain log files, recording the progress made. Use 1s logs in
ext/A/M to get a quick look at the progress, or try 1s -1rt logs for more detailed timing information.

After dims is finished, the calculation can be continued with another call to the same script, for
instance by ./dims 61 100.

[[Explain report and display.]]

[ETC)

12. CONVERGENCE OF THE ADAMS SPECTRAL SEQUENCE

12.1. The Hopf-Steenrod invariant. For p = 2, the standard notation for the class ~; ;, dual to the

indecomposable S¢?', is h;. See Adams (1958). The h is for Hopf, since these classes detect the stable
maps of spheres with Hopf invariant one.

Lemma 12.1. Tor{ (Fy,Fy) = I()/I(/)? = Q(/) = Fo{Sq® | i > 0} and Extl,(Fy,Fy) =
Hom(Tor? (Fa,F5),Fy) = Fo{h; | i > 0} where h; has bidegree (s,t) = (1,2%) and is dual to Sq*,
for each i > 0.
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Proof. There exists a free resolution --- — P; — Py — Fo — 0 where Py = & and P, = /{1, };
with 0: g1; — Sq? for all i > 0. The resolution is exact at P, since the Sq? generate the left ideal
I(«/) C &/, and it is minimal there since 0y (Py) C I(«/)Py. It is also minimal at Py, since the surjection
Py — I(</) induces an isomorphism Fa{g1:}; = F2 @ P = Pi/I()Py — I()/1()? = Q(),
so that 82(P2) = ker(@l) C I(JZ{)Pl Hence TOI'f{(FQ,IFg) = IFQ (S P1 = Q(ﬂ) and EXt}Q{(FQ,Fg) =
Hom/ (P, Fo) 2 Fo{h;};, as claimed. ((Proof using bar complex?)) O

Lemma 12.2. For p odd, Tory (F,,F,) = Fp{ﬁ,Ppi i > 0} and Extl, (F,,F,) = Fy{ag,h; | i > 0},
where ag has bidegree (s,t) = (1,1) and is dual to B, and h; has bidegree (s,t) = (1,2p*(p — 1)) and is
dual to PP", for each i > 0.

Proof. The proof is similar to the case p = 2, using a free resolution e: P, — F,, with Py = & and
P1 = %{9170,‘9171‘4_1 | ’L Z O}, Where al(glvo) = B and 81(9171'_;'_1) = sz fOI‘ each Z Z 0 D

We shall soon prove that the Adams spectral sequence
E3' = Ext®) (Fg, Fo) = m_4(S5)%

converges to the 2-adic completion of the stable homotopy groups of spheres. The chart in Theorem [10.12]
above displays the Fs-term in the range ¢ < 11. [[EDIT FROM HERE TO TAKE INTO ACCOUNT THE
ADAMS VANISHING LINE.]] We will see later that the pattern above the diagonal line, where s > t —s,
continues. There is an isomorphism Ext?)’(Fa,F2) = Fa{vs 0} for all s > 0, while Extfj (Fy,Fy) =0 for
t—s < 0and for 0 <t—s < s. Thus the groups labeled - in the chart are 0. Granting this, the only
possible d,-differentials starting in total degree ¢t — s < 6, for r > 2, are the ones starting on v; 1 = by
and landing in the group generated by ~,1,0.

However, these differentials are all 0, as can be seen either by proving that vs o detected 2° € my(.S),
or that v11 detects n € m(S), or by appealing to multiplicative structure in the spectral sequence.
Granting this, we can conclude that Ey = Eo in this range of degrees, so that the groups Fa{~v,;} in
one topological degree n =t — s, for s > 0 and n < 5 are the filtration quotients of a complete Hausdorff
filtration {F*}, that exhausts m,(5)5.

For n = 0, we already know that 7 (S) = Z so mo(S5)% = Zs. The only possible filtration is the 2-adic
one, with F* = 257y C Zg and F*/F*T1 2 257, /25117 =2 Fy{~, o} for all s > 0. For n = 1 we deduce
that m1(9)8 2 Z/2{v1.1} = Z/2{h1}. In fact m(S) = Z/2{n} is generated by the complex Hopf map
n: S* — S. For n = 2 we deduce that m3(9)% = Z/2{y2.1}. We shall see later that m2(S) = Z/2{n?}
is generated by the composite n?> = no Xn: S? — S. For n = 3 we deduce that m3(S)% is an abelian
group of order 8. We shall see later that 73(S)5 = Z/(8) is the 2-Sylow subgroup of 73(S) = Z/24,
generated by the quaternionic Hopf map v: S® — S. Finally, for now, we conclude that 74(5)% = 0 and
75(S)5 = 0, and in fact m4(S) = 75(S) = 0. [[EDIT TO HERE.]]

Lemma 12.3. (Hopf, Steenrod) For p = 2, let f: S™ — S be a map with 0 = f*: H*(S) — H*(S"),
and let Cy = hocofib(f) = S Uy €™t be its mapping cone. Suppose that Sq"t: H°(Cy) — H"T1(Cy) is
nonzero. Then n+ 1= 2% for some i > 0 and [f] € 7,(S) is detected in the Adams spectral sequence by

h; € E21’2i.
Proof. Consider the canonical Adams tower for Y = S, with Y = §, K* = H, Y! = ©7'H and

K' = HAX"'H. The composite j o f is null-homotopic, since d(f) = f* = 0, so we have a map of
cofiber sequences:

s Cy st

N
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Here d: Cy — H and e: S™ — Y1 H are determined by a null-homotopy of f. Applying cohomology to
the right hand part of the diagram, we get a map of .&/-module extensions:

Fo «—— H*(Cf) +——= X"y

Td* TEe*

Fy 4t o +— 2 < I()

Here d*(1) = 1, so by assumption d*(S¢"*!) # 0. Hence Ye*(Sq"*!) # 0. This is impossible if
Sqgntl s decomposable, so we must have n + 1 = 2¢ for some i > 0. Then e* # 0, which implies that
joe: S™ — H ANYX~1H is essential (= not null-homotopic).

This proves that [f] € m,(S) lifts to m,(Y") but not to m,(Y?), hence corresponds under the isomor-
phism F'/F? = E1* to a nonzero class in EL?" C E21’21' = Fy{h;}. The only possibility is that [f] is
detected by h;. O
Lemma 12.4. (Hopf, Steenrod) For p odd, let f: S™ — S be a map with 0 = f*: H*(S) — H*(S™),
and let Cy = hocofib(f) = S Uy et be its mapping cone. Suppose that P*: H°(Cy) — H" 1(Cy) is
nonzero, with n +1 = 2k(p —1). Then k = p' for some i > 0 and [f] € m,(S) is detected in the Adams
spectral sequence by h; € E;’Qpl(p_l). Alternatively, suppose that 3: H°(Cy¢) — H*(Cy) is nonzero. Then
n =0 and [f] € (S) is detected by ay € Ey".

Proof. The proof is similar to the 2-primary case. O

The class of Se*0d; : P, — Y HF, in Ext')" " (F,, F,) = F,{h;} is called the Hopf-Steenrod invariant,
or the cohomology e-invariant, of [f]. It is only defined for the [f] with vanishing d-invariant. More
generally, we have a diagram

F? F! y FO = [X,Y],
| |
Extl ™ (H*(X), H*(Y)) Hom?, (H*(X), H*(Y))

for each pair of spectra X and Y.

Theorem 12.5. The Hopf maps 2: S — S, n: S* = S, v: 83 — S and 0: ST — S are detected in the
Adams spectral sequence by the classes hg, hi, ho and hs, respectively. These are infinite cycles in the
spectral sequence.

Proof. In each case, f: S — S is the stable form of a fibration X"+1 f: §2n+1 — g7+l with mapping
cone a projective plane P2. Here H*(P?) = P(x)/(z%) = Fo{l, 2,22}, where |z| = n + 1, by Poincaré
duality Hence S¢"*1(z) = 2% # 0, and the previous lemma applies. Quite explicitly, ©Cy = RP? has a
nonzero Sq', £2C,, = CP? has a nonzero Sq?, £*C,, = HP? has a nonzero Sq¢* and ¥3C, = OP? has a
nonzero Sq8. O

The names 7, v and o for the Hopf maps detected by hy, he and hs are supposedly unrelated to the
correspondence between the initial phonemes in the Greek letters “eta”’, “nu” and “sigma” and in the
first three Japanese numerals “ichi”, “ni” and “san”. We shall see later that none of the classes h; for
i > 4 survive to the F..-term, so there are no maps S™ — S with nonzero Hopf-Steenrod invariant for

n > 8.

Theorem 12.6. Let p be odd. There are maps p: S — S and aq: S*~3 — S that are detected in the
Adams spectral sequence by the classes ag and hg, respectively. These are infinite cycles in the spectral
sequence.

Proof. The Bockstein homomorphism § acts nontrivially in the cohomology H*(C),) of the mapping cone
Cp = S U, e! of the degree p map p: S — S, so [p] € mo(9) is detected in the Adams spectral sequence
by ag.

The map a; € map_3(5) is the stable image of the generator of mo,(S?)) = Z/p that we discussed
in Theorem It can be constructed as the stable attaching map of the 2p-cell to the 2-cell in CP?,
after p-completion, but this requires proving that the attaching map ¢: S??~! — CPP~! compresses into
i: 82 = CP' ¢ CPP~!. For each 2 < k < p — 1 the obstruction to compressing a map S*»~! — CP*
into CP*! lies in 7, _1(S*) = ma(p—k)—1(S5), so if we assume that we know that this group is trivial,
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after p-completion, then ¢ compresses as i o a for a map a: S?~! — S§2. [[Another proof of this fact
can be given using the action of roots of unity in Z, on (CPP).]] Then i induces a map j: Co =
S?U, e* — CPP, and j*: H*(CPP) =F,ly|/(y**') — H*(C,) maps 1 and y? to generators of H*(C,).
Since Pl(y) = y? in H*(CPP), it follows that P! acts nontrivially in H*(C,), so the stable class a;y of
« is detected by hg, as claimed. O

12.2. Naturality. The essential uniqueness of free resolutions lifts to the level of spectral realizations.
Consider diagrams
syt Lys 5 YV =Y
and
i

ezt Lzt .52 =27

with cofibers K® = hocofib(Y**! — Y*) and L® = hocofib(Z**!1 — Z°) for all s > 0. There are
associated chain complexes

s PP P HAY(Y) = 0
and

o QB QL 2 Qo - HY(Z) = 0
of @/-modules, where P, = H*(3°K*®), Qs = H*(X°L®), 0 = 0*j* and e = j*.
Theorem 12.7. Suppose that (a) each cofiber L® is a wedge sum of Eilenberg—Mac Lane spectra that is

bounded below and of finite type, and (b) each map i: YT — Y* induces the zero map on cohomology.

(For instance, the diagrams {Y*}s and {Z°}s might be Adams resolutions.) Let f: Y — Z be any map.
(1) Each Qs is a free &/ -module, and the augmented chain complex e: P, — H*(Y) — 0 is ezact.
(2) There exists a chain map g.: Q. — P lifting f*, in the sense that the diagram

) o1

P P Py —S5 H*(Y) 0
921\ 911\ 901\ f*T
Q2 —25 Q1 —25 Qo — H*(2) 0

commutes. Furthermore, there is a map of diagrams {f: Y* — Z5}, lifting f and realizing g.,
in the sense that there is a homotopy commutative diagram

y2 _tayl Ly

bl

7P L7tz

)

and given any choice of commuting homotopies, the induced map of homotopy cofibers g°: K* —
L* induces gs = (2°g®)*: Qs — Ps, for each s > 0.

(3) If Gu: Q« — P. is a second chain map lifting f*, and {f*}, is a map of diagrams lifting f and
realizing g., then g. and g. are chain homotopic, and {f*}s and {f*} are homotopic in the
weak sense that the composites 5 oi and f*oi: Y5t! — Z° are homotopic for all s > 0.

Proof. Freeness of each @, is clear from the wedge sum decomposition of L®. Exactness of ¢: P, —
H*(Y) — 0 is clear from the vanishing of i*. The existence of a chain map g, lifting f* is then standard
homological algebra. We need to construct the maps f® and ¢g® in a diagram

% Y2 A Yl % Y

. .
AN AN
. N . N .
J 9 J 22N J
2

i K I K° b




of spectra, inducing a commutative diagram

H* 22Y2 ZYl
/ T (K1) I H*(K°)
(=252)* (=fhH*
*(%222) (Sgh)* (221 g°)* H*(Z)
*(SLY) LY

of «7-modules, with g; = (X°¢°)*.

Inductively, suppose the maps f = f°,..., f* and ¢°,...,¢° ! are given, for some s > 0, making the
diagram to the right of f° commute up to homotopy. Then j* o g5 = (X°f%)* o j*, by the assumption
that go lifts f* for s = 0, and by the assumption that 0*j* o g5 = gs—1 0 0*j* = 9*(X°f*)* 0 j* and the
injectivity of 0* for s > 1.

We have an isomorphism [K*®, L®] = Hom (H*(L?), H*(K?®)), so there is a unique homotopy class of
maps ¢°: K® — L° with (¥°¢°)* = g,;. Note that ¢g° o j: Y* — L* is homotopic to jo f*: Y* — L%
because of the isomorphism [Y*, L] & Hom (H*(L?), H*(Y*)) and the fact that (¢° o j)* = (j o f*)*.
(Both isomorphisms follow from hypothesis (a)).

Choosing a commuting homotopy and passing to mapping cones, or appealing to the triangulated
structure on the stable category of spectra, we can find a map of homotopy fibers f5+!: Ys+l — Zs+1
making the diagram
J

Ys+1 i Ys Ks 0 Zys+1

o I e
Zs+1 i Zs J Ls 0 EZ5+1
commute up to homotopy. This completes the inductive step.

The uniqueness of g, up to chain homotopy, meaning that any other lift g, is chain homotopic to g., is
standard homological algebra. We prove that f*o1i is homotopic to f*oi by induction on s. This is clear
for s = 0, since fo = fo = f. Suppose that io f* ~ 571 o4 is homotopic to io f5 ~ f51oi: Vs — Z51,
for some s > 1.

Ys+1 i VG i stl
fsl J{fs fsll lfsl
YA i Zs—l
X
E_lLS 1

Then i o (f* — f*) is null-homotopic, so that f° — f° factors through a map h: Y* — L71L571
Then f*oi — fSoi = (f* — f*)oi factors through hoi: Y**' — R=1[s=!  This map induces
i* o h* = 0 in cohomology, hence is null-homotopic because of the isomorphism [Vt =151 =
Hom , (H*(X71Ls~1), H*(Y**1)). In other words, f*oi~ f*oi. O

Corollary 12.8. Let f: Y — Z be a map of bounded below spectra with H,(Y) and H.(Z) of finite type.
Then there is a well-defined map

f*: {ET‘(Y)7dT}’I" — {ET(Z)7dT}T
of Adams spectral sequences for r > 2, given at the FEa-level by the homomorphism
(f ) Extd (H*(Y),Fy) — Extd (H*(Z),F)
induced by the o -module homomorphism f*: H*(Z) — H*(Y'), with expected abutment the homomor-
phism

form(Y) = m(Z).
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(Similarly for the Adams spectral sequences converging to [X,Y]. and [X, Z]., for any spectrum X.)

Lemma 12.9. Let {Y*}; and {Z°}; be Adams resolutions of a bounded below spectrum Y with H,(Y)
of finite type. Then there is a homotopy equivalence holim, Y ~ holimg Z*.

Proof. There are maps {f*: Y5 — Z%}, and {f*: Z° — Y*}, of resolutions covering the identity map
of Y = Y% = Z° and homotopies f*o f*oi~i:Y*" — Y*and f*o f*oi~i: Zt" — Z*, for all
s > 0. Hence holimg f* and holim, f° are homotopy inverses. O

Theorem 12.10. Let {Y*}; be an Adams resolution of Y, and let X be any spectrum. (The case
X = S is of particular interest.) A class [f] € [X,Y], has Adams filtration > s, i.e., is in the image
Fs of i*: [X,Y*],, = [X,Y],, if and only if the representing map f: ¥"X — Y can be factored as the
composite of s maps
YN =Xy 25 Xelg 253 .3 X, S Xg=Y
where 0 = z5: H*(X,—1) —» H*(X,) for each 1 < u < s. In particular, F* C [X,Y],. is independent of
the choice of Adams resolution.
Proof. If [f] has Adams filtration > s, let g: X" X — Y® be a lift, with i* o g ~ f. Let X,, = Y* and
zy =1 for 0 <u<s—1, and let z5 = ig:
X L ysl Lyl Ly

Conversely, given a factorization f = z; o --- 0 z, as above, let f0: Y — Y be the identity map. We

can inductively find lifts f*: X, — Y making the diagram

Zs Zs—1 zZ2 zZ1

Xs Xs1 . X1 Y
fsJ( fsfll fll J
ystyys-t Pyl Ly

commute, since the obstruction to lifting f%*~1 o z,: X, = Y* ! over i: Y* — Y%~ ! is the homotopy
class of the composite jo f*"toz,: X, — K“~! which is zero because 2} = 0. Let g = f*: ¥"X — Y.
Then i° o g ~ f, and [f] has Adams filtration > s. O
12.3. Convergence.

Definition 12.11. For each natural number m let the mod m Moore spectrum S/m = S U, e! be
defined by the homotopy cofiber sequence

s S — S/m— St

where the map m induces multiplication by m in integral (co-)homology. Note that H.(S/m;Z) = Z/m
is concentrated in degree 0. For any spectrum Y let Y/m =Y A S/m, so that there is a cofiber sequence

Y %Y —Y/m— %Y.
Applying F(—,Y) to the cofiber sequence
St —SYm-—85"8
leads to the cofiber sequence
Y Y — F(S™Ym,Y) — XY
and an equivalence Y/m ~ F(S~1/m,Y).
Definition 12.12. For each prime p there is a horizontal tower of vertical cofiber sequences

p

s—2 ... g S

p© P’ p
55— N = S
S/p® S/p? S/p
gl P, P g P a
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We define the p-completion of Y as the homotopy limit YpA = holim, Y/p® of the tower
e Y AS/pt = = Y AS/p2 =Y AS/p.
The maps S — S/p® induce the p-completion map ¥ — YPA.

Dually there is a horizontal sequence of vertical cofiber sequence

g1 ?r ygr_ P o P g1 P

S Yp—s S VYp? S

S — S — — S —

P P p
e P g__® P g_P
Let S™1/p> = hocolim, S~'/p¢. Note that H,(S™Y/p>;Z) = Z/p> = Q/Zy = Q,/Z,. Applying
F(—,Y) we get the tower defining the p-completion, so
N~ -1/, 00
Y~ F(S™/p™,Y).

The map S~!/p> — S induces the p-completion map ¥ — Y,
((See Bousfield.))

Lemma 12.13. The p-completion map induces an equivalence Y/p® — (Y,))/p® for each e. Hence it
induces an isomorphism H.(Y') = H*(Yp/\) in mod p homology (and cohomology). The p-completion map
Y/p® — (Y/p®), for Y/p® is also an equivalence.

Proof. The map S~!/p> — S induces an equivalence S~Y/p¢ A S=Y/p>® — S~Ype A S = S~Y/pe, for
each e, since p~1m,(S/p¢) = 0. Apply F(—,Y) to get the first conclusion. Apply integral homology
to the equivalence Y/p — (Yp/\) /p to get the second conclusion. Applying F'(—,Y) to the interchanged
equivalence S~1/p> A S~Y/p¢ — S A S71/p® leads to the third conclusion. O

Lemma 12.14. The p-completion of the p-completion map for Y, and the p-completion map for Yp/\,
are equivalences Yp/\ — (Yp/\);\. In either sense, p-completion is idempotent up to equivalence.

Proof. Use that the map S~!/p> — S induces equivalences S~1/p> A S~Yp> — S~Yp> A S and
S=p>® A STYp>® — S A STYp*>®, and apply F(—,Y), or pass to homotopy limits over e from the
previous lemma. O

Lemma 12.15. Let m,(Y)) = lim, 7, (Y) ® Z/p® be the algebraic p-completion of 7,(Y). There is a
short exact sequence

0— ﬂ'n(Y)I/)\ — lim 7, (Y/p®) = Hom(Z/p>, 7p—1(Y)) = 0

and an isomorphism Rlim, 7,41 (Y/p®) = Rlim, Hom(Z/p®, 7, (Y)). If m.(Y) is of finite type, i.e., if
7w (Y) is finitely generated for each n, then m,(Y) ® Z, = wn(Y)g = ﬂn(YpA) for all n.
Proof. We have a tower of short exact sequences

0->mY)RZ/p* — 7, (Y/p®) — Hom(Z/p®, mp—1(Y)) = 0

for e > 1. Each homomorphism 7, (Y)®Z/p*Tt — 7, (Y)®Z/p° is surjective, so Rlim, 7, (Y)®Z/p° = 0.
Hence the associated lim-Rlim exact sequence breaks up into a short exact sequence

0 — limm,(Y)®Z/p® — lim 7, (Y/p®) — limHom(Z/p®, m,—1(Y)) — 0

and an isomorphism

Rlim 7, (Y/p®) = Rlim Hom(Z/p®, m,—1(Y)) .

Here lim, 7, (Y) ® Z/p® = m,(Y);, and lim, Hom(Z/p®, m,—1(Y)) = Hom(Z/p>°, m,1(Y)).

If 7, (Y') is finitely generated, then clearly 7, (Y)®Z, = m,(Y');,. Furthermore, each Hom(Z/p®, 7, (Y"))
is finite, so Rlim, 7,41 (Y/p°®) = Rlim, Hom(Z/p®, 7, (Y)) = 0. If also 7,1 (Y") is finitely generated, then
its p-torsion subgroup is annihilated by pV for some fixed N. Hence Hom(Z/p®, m,_1(Y)) C mn_1(Y)
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equals that p-torsion subgroup for all e > N, and the homomorphisms in the limit system induce
multiplication by p, hence are nilpotent. Thus lim, Hom(Z/p®¢, 7,,—1(Y)) = 0. Thus the lim-Rlim exact
sequence
0 = Rlim 41 (Y/p®) — m(Y,)) — limm,, (Y/p°) — 0

for Y = holim, Y/p® simplifies to an isomorphism 7, (Y;) = lim, 7, (Y/p®), and the short exact sequence
above simplifies to another isomorphism 7, (Y, = lim, 7, (Y/p®). O
Ezample 12.16. (1) H~ H) and (HZ)], ~ (HZ,)), ~ HZy.

(2) For Y = HZ[1/p] or HQ we have Y/p® ~ x for all e, so (HZ[1/p]); ~ (HQ); =~ *.

(3) ForY = H(Z[1/p]/Z) = HZ/p> or H(Q/Z) we have Y/p® ~ X HZ/p* for all e, so H(Z[1/p]/Z);, =

H(Z/p®)) ~ H(Q/Z)) ~ SHZ,,.

Lemma 12.17. Let 0 — @,Z — @zZ — Z, — 0 be a short free resolution of Z,. There is a
corresponding cofiber sequence \/ , S — \/5 S — SZy,, where H,(SZy; Z) = Zy, is concentrated in degree 0.
Then 1, (Y A SZy) ~ 1, (Y) ® Zy for all n. In particular, S} ~ (SZy,), ~ SZy,. If m.(Y) is of finite type
then the natural map Y A SZ, — Y, is an equivalence, and H.(Y) — H.(Y}}) is an isomorphism.
Proof. ((Straightforward. TBW.)) O

Let HZ be the integral Eilenberg—Mac Lane spectrum, with 7o(HZ) = Z and m;(HZ) = 0 for i # 0.
It is a ring spectrum, with multiplication ¢: HZ A HZ — HZ and unit n: S — HZ. (Not to be confused
with the Hopf map n: S' — S.) Let HZ = HZ/S be the cofiber.

Lemma 12.18. H*(HZ) = o/ | o/{Sq'} for p=2, and H*(HZ) = o/ | o/ {B} for p odd.

Proof. Since the unit map S — HZ induces an isomorphism on 7o and a surjection on 7y, we find that
HZ is 1-connected. Hence H*(HZ) = H'(HZ) = 0.
There is a short exact sequence of «/-modules
0+ o |I{Sq'} ¢— o +— X/ /A {Sq'} +— 0
where the right hand arrow takes ¥1 to Sq'. It is clear that XSq’ — Sq’ 0 Sq* maps to 0, for admissible
I, if and only if I = (i1,...,i,) with i, = 1. These Sq’ generate precisely the left ideal .27 {Sq'}.
There is also a cofiber sequence HZ 2, HZ — H — YHZ, where 2* = 0, so that there is an
associated short exact sequence
0+— H*(HZ) «+— H*(H) «— XH*(HZ) «+— 0.

in cohomology. Let o7 — H*(H) be the isomorphism taking Sq’ to its value on the generator 1 € H°(H).
The composite X7 /o7 {Sq'} — o — H*(H) — H*(HZ) is zero, since the source is generated by X1 in
degree 1, and H'(HZ) = 0. Hence there is a map from the first short exact sequence of .&/-modules to the
second one. By induction, we may assume that the left hand homomorphism f: </« {Sq'} — H*(HZ)
is an isomorphism in degrees * < t. Then the right hand homomorphism X f: .o/ /<7 {Sq'} — SH*(HZ)
is an isomorphism in degrees * < ¢. Since the middle map is an isomorphism, it follows that the left
hand homomorphism is an isomorphism, also in degree ¢.
The proof for odd p is similar, comparing the short exact sequence

00— /) I{B} +— o «— X [A{B} +— 0
to the short exact sequence
0+— H*(HZ) «— H*(H) +— H*(XHZ) +— 0.
O

Recall Boardman’s notion of conditional convergence, meaning that limg A°* = 0 and Rlimg A® = 0,
and the result that strong convergence follows from conditional convergence and the vanishing of the
derived Foo-term RE.. For the spectral sequence associated to an Adams resolution {Y*};, conditional
convergence is equivalent to the contractibility of the homotopy limit Y*° = holim, Y?, in view of Milnor’s
short exact sequence

0 — Rlim 7,41 (Y?®) = 7, (holimY?®) — lim 7, (Y®) — 0.
As we have seen before, the condition holim, Y® ~ x is independent of the choice of Adams resolution.

Lemma 12.19. Let Y be bounded below with H.(Y') of finite type. Then there is an Adams resolution
{Z?}s of Z =Y /p with holim, Z° ~ x.
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((Enough that Y/p is bounded below with H.(Y/p) of finite type?))

Proof. The “canonical HZ-based resolution”

e VAT — Y HL— S
J{j lj JJ‘
HZ A (S~YHZ) HZAYVHZ HZ

is not an Adams resolution, since HZ is not a wedge sum of mod p Eilenberg—Mac Lane spectra, but the
ring spectrum structure ensures that j =n A 1: X — HZ A X induces a split injection 1A j: HA X —
HANHZAX, so that j*: H*(HZ AN X) — H*(X) is surjective, for each spectrum X.

Smashing this diagram with Z = Y/p, we get a diagram

S (STYHI)Y? AY)p— S VHLZAY [p———Y/p

| | |
HA (S YHZ)Y" AY HAXYHZAY HAY

where we have identified HZ A X AY/p with H A X AY, for suitable X. This is the desired Adams
resolution, with Z* = (X ~YHZ)"* AY/p and cofibers L* = H A (S"YHZ)"* A'Y. The maps j are split
injective, so each j* is surjective, as before. Since (HZ)"* A'Y is bounded below and H,((HZ)"* A
Y) = H,(HZ)®* ® H,(Y) is of finite type, it follows that each L* is a wedge sum of suspended mod p
Eilenberg—Mac Lane spectra, satisfying the finiteness condition required for an Adams resolution.

It remains to show that holimg Z® ~ *. This is true in the strong sense that in each topological
degree n, 7, (Z*%) = 0 for all sufficiently large s. By assumption there is an integer N such that 7, (Y) =0
for all n < N. We have seen that HZ is 1-connected, so that (X"1HZ)"* is (s — 1)-connected. Then
7% = (S"YHZ)"* ANY/pis (N +s—1)-connected. Hence 7, (Z*) = 0 for all n < N +s—1, or equivalently,
for all s >n — N. O

Theorem 12.20. Let Y be bounded below with H,(Y') of finite type. Then the Adams spectral sequence

Ey' = Ext% (H*(Y),F,) = m_,(Y}")

is strongly convergent. In particular, there is a strongly convergent Adams spectral sequence

Ey' = BExt%) (Fy,F,) = m—s(9)) .

More generally, the Adams spectral sequence
Ey' =ExtS (H*(Y), H* (X)) = [X,Y,\]1—s
is conditionally convergent. It is strongly convergent when RE., = 0, which happens, for instance, if

H*(X) is of finite type and bounded above, or if the spectral sequence collapses at a finite stage.

Proof. Let {Y*}4 be an Adams resolution of Y =Y, with cofiber sequences

yert L ys 2y s 2wyt
Smashing with S/p® for each e > 1, we get a tower of Adams resolutions {Y*/p¢}, of Y9/p® = Y/p®,
with cofiber sequences

Ys-i—l/pe 4 Y /p BN K*/p° L ZYS+1/pe.

(We check that these diagrams satisfy the conditions to be Adams resolutions: Each homomorphism
j*: H*(K*®/p®) — H*(Y*®/p°) can be rewritten as j* ® 1: H*(K®) @ H*(S/p°?) — H*(Y*®) @ H*(S/p°),
hence remains surjective. Each cofiber K®/p® sits in a cofiber sequence

K25 K — K0yt — NK°

where p¢ is null-homotopic, so that K*/p® ~ K*®V L K?* is still a suitably finite wedge sum of mod p
Eilenberg—Mac Lane spectra.) Now pass to the homotopy limit over e of these Adams resolutions. The
result is a diagram {(Y*)7}, of spectra, with cofiber sequences

(Verhn 5 (voh L (Ko)h L syt
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(Cofiber sequences are fiber sequences, up to a sign, hence are preserved by passage to homotopy limits,
such as completions.) It is again an Adams resolution, since the completion map K* — (K 3); is
an equivalence (K* ~ \/ X" H =~ [[, X" H and H — H) is easily seen to be an equivalence, see
Lemma @ and j: (YS);\ — (K?);, induces the “same” map as j: Y* — K*® in mod p cohomology.
We get the following vertical maps of Adams resolutions:

holim, Y Y2 : vyl : Y
K2 K1 KO
holim, (Y*)) (v2)r — (Y — Y/
(K?)) (K (K%
holim, Y* /p® Yz/pe : Yl/pe : Y/p©
J J J
KQ/pe Kl/pe K()/pe

(We omit the maps 9: K° — XYt etc.) By the previous lemma, there exists an Adams resolution
{Z*} for Y/p with holimg Z° ~ . Since this homotopy limit is independent of the choice of resolution,

we must also have holim, Y /p ~ x.
There are cofiber sequences S/p — S/pTt — S¢ — ¥.S/p, inducing cofiber sequences Y*/p —
Y$/petl — Y /p¢ — LY#/p for all s, hence also

holim V¥ /p — holim Y* /p**! — holim Y* /p® — S holimY* /p.
We deduce that holim, Y¥/p® ~ « for all e > 1, by induction on e. Thus
holim(Y™®)7 = holim holim Y* /p® ~ holim holim Y* /p® ~

by the standard exchange of homotopy limits equivalence.
Applying homotopy, we get a map of unrolled exact couples from the one for Y to the one for Yp’\:

7 (Y?) d m (Y1) : T (Y)

2
~ ® o R
N ~ ~
> j 9>~ j 8>~ j
~ ~

IR
IR
IR

.. »
K\ 1<\ K\
~ ~ ~
[ J 9~ J o ~ J
N ~N ~N

T ((K?)) T ((K1)y) T ((K°)p)
This induces a map of spectral sequences, from the Adams spectral sequence for Y to the one associated
to the lower exact couple. The equivalences K* — (K*®); induce isomorphisms

B = (K%)= m s (K°)))

of E1-terms between these spectral sequences. By induction on r, it follows that it also induces an

isomorphism of F,.-terms, for all » > 1. Hence we have two different exact couples generating the same

spectral sequence. The upper one is the Adams spectral sequence for Y. The lower one is conditionally

convergent to 7. (Y"), since holim,(Y*)7> ~ *. Hence the Adams spectral sequence for Y, with Ey" =
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Ext? (H*(Y),F,), is conditionally convergent to m.(Y,"), as asserted. Replacing .(—) by [X, —]. we
get the same conclusion for the Adams spectral sequence for maps X — Y.
To get strong convergence to 7. (Y,") or [X, Y], we need to verify Boardman’s criterion RE = 0. In

the first case, this follows since E3"*(Y') is of finite type, i.e., is finite(-dimensional) in each bidegree (s, t).
In fact, this holds already at the E-term if we use the canonical Adams resolution for Y, with X5 K* =

H A (H)™ NY, since then

Bt = (K%)= m(X8K*) = Hy(H) AY) 2 [H (H)®* @ Ho(Y)]; .
In the case of a general spectrum X, we have

EP' =X, K%),_s 2 [X,2°K?], = Hom!, (H*(2°K*), H*(X))

>~ Hom', (& @ I(«/)®* @ H*(Y), H*(X)) = Hom'(I(«)®* @ H*(Y), H*(X)) .
This group is finite if H*(X) is of finite type and bounded above, in the sense that there exists an integer
N with H™"(X) = 0 for n > N. For instance, this is the case of X is a finite CW spectrum. g
Proposition 12.21. Let Y be bounded below with H.(Y) of finite type. There is a cofiber sequence

holim Y —Y —Y)

where {Y*}4 is any Adams resolution of Y.
Proof. We use the notation of the proof above. In view of the equivalences K* ~ (KS);,\, we get a chain
of equivalences

holim hofib(Y® — (Y*)))) ~ hofib(Y* — (Y*)})) ~ --- ~ hofib(Y — Y}}")
for all s. Passing to homotopy limits, we find that

holgim Y?® ~ hoﬁb(holgim Y — holgim(Ys)Q) ~ h0£im hofib(Y* — (Y*)))) ~ hofib(Y — Y,).

In other words, the p-completion Y — Yp/\ precisely annihilates the obstruction holimg Y® to conditional
convergence for the unrolled exact couple associated to the Adams resolution of Y. (I

((Mention Bousfield’s E-nilpotent completion Y2 = Y/ holim, Y} where Y5 = (X7 1E)" A Y?))
13. MULTIPLICATIVE STRUCTURE

13.1. Composition and the Yoneda product. Let X, Y and Z be spectra. We have a composition
pairing

o: [V, Z]. ® [X,Y]., — [X, Z].
that takes ¢g: 'Y — Z and f: ¥*X — Y to the composite g o XVf: XY X — Z. More explicitly,
g:YASY = Zand f: XASt =Y, 5038V f = fALl: XASTASY - Y ASY and goXVf: XAStASY — Z.
To simplify the notation we refer to f and g as maps f: X — Y and g: Y — Z of degree t and v,
respectively, and write gf = go f: X — Y for the composite of degree ¢t + v.

Suppose that Y and Z are bounded below, and that H,.(Y) and H,(Z) are of finite type. Let {Y*} and
{Z"}, be Adams resolutions of Y and Z, respectively, with cofibers Y*/Y$+! = K* and Z%/Z%+! = L.
If f and ¢g have Adams filtrations > s and > u, meaning that they factor as f = i® f and g = i"%g with
f: X > Ysand §: Y — Z* of degree t and v, respectively, then we can lift § to a map {g°}s of Adams
resolutions

ys 4 ot Ly

N ;

Zstu Ly L, gu,
Hence gf = i%gi®f = i*T%g® f factors through i*t%: Z*t* — Z and has Adams filtration > (s +u). We
thus get a restricted pairing

F“Y, Z], ® F*[X,Y], — F*t"[X, Z],
that induces a pairing
Fu/Fu+1 ® Fs/Fs+1 N Fs+u/Fs+u+1
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of filtration subquotients. When the respective spectral sequences converge, we can rewrite this as a
pairing
of Eo-terms. Conversely, this pairing of E,.-terms will determine the restricted pairings F*®@F$ — FsT¢

modulo F5tu+1 je. modulo higher Adams filtrations. In this way the pairing of E..-terms determines
the composition pairing [V, Z]. ® [X, Y]« — [X, Z]. modulo the Adams filtration.

Ezample 13.1. ((Example of this phenomenon: h3 = h2h3z so v = n?c modulo Adams filtration > 4. In
fact, v® = n?c + ne.))

Let P, = H*(X*K?®) and Q,, = H*(X" L"), so that there are free resolutions

—>Psi>P5,1—>—>P1ﬁ>POL>H*(Y)_>O

and

By definition,
Ext " (H"(Z),H*(Y)) = H"(Hom{, (Q., H*(Y)))
Ext}) (H*(Y), H*(X)) = H*(Hom{, (P., H*(X)))
Exty, " (H*(Z), H*(X)) = H*"* (Hom(/"(Q., H*(X))) -
The (opposite) Yoneda product is a pairing
Ext) (H*(Z),H*(Y)) @ Ext (H*(Y), H*(X)) — Ext. (H*(Z), H* (X)),

and we shall see that the Adams spectral sequence relates the Yoneda product in Ey = Extg(—, —) to
the composition product in homotopy. (This is the opposite of the usual Yoneda pairing, meaning that
the two factors in the source have been interchanged. This comes about due to the contravariance of
cohomology. Working at odd primes the interchange introduces a sign.)

Let f: Py — Y'H*(X) and g: Q, — X'H*(Y) be «/-module homomorphisms. To simplify the
notation, we will refer to these as homomorphisms f: Py — H*(X) and g: Q, — H*(Y) of degree ¢ and v,
respectively. We also suppose that f and g are cocycles, meaning that 0 = f041: Psy1 — H*(X) and 0 =
90us1: Quir — H*(Y). The cohomology classes [f] and [g] are then elements in Ext®/(H*(Y), H*(X))
and Ext'"(H*(Z), H*(Y)), respectively. Then g lifts to a chain map g, = {gn: Quin — Pn}n, where
each g, has degree v, making the diagram

H*(X)

]

P, P Py —— H*(Y)

S

Qqus e e Qu+1 U+1\ Qu

commute. The composite fgs: Quis — H*(X) is then an &/-module homomorphism of degree (v + t),
and satisfies fgs0uts+1 = 0. It is therefore a cocycle in Hom”*(H*(Z), H*(X)), and its cohomology
class [fgs] in Extf " (H*(Z), H*(X)) is by definition the Yoneda product of [g] and [f]. It is not hard
to check that a different choice of chain map lifting g only changes the cocycle fgs by a coboundary, i.e., a
homomorphism that factors through 0y 4s: Qu+s = Quts—1, so that its cohomology class is unchanged.
Likewise, changing f or g by a coboundary only changes fg, by a coboundary, so that the Yoneda
product is well defined. [[TODO: Rewrite this as a clear definition.]]

s o1

Example 13.2. Let X =Y = Z = S and let P, = @, be the minimal resolution of Fy computed earlier.
We can compute the Yoneda product

Ext"’ (Fa, Fa) @ Ext®) (Fg, Fy) — Ext“F " (Fy, Fy)

that makes Ext’"(F2,F5) into a bigraded algebra, by choosing cocycle representatives f: Py — Fa and
g: P, — Fq, lifting g to a chain map ¢.: P,y. — Pk, and computing the composite fgs.
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Let f =~10="ho: P = Fz bedual to g10 € P, and let g =y 2 = ho: P = F be dual to g1 2 € P;.
A lift go: P = Py of g is given by g1,2 — go,0 and g1,; — 0 for i # 2.

Fo

f_hoT
01

P14)P04€>IF2

g1 go
g=ho
02

PQ*)Pl

The composite god2: Py — Py is then given by g9 — 0, g2.1 — 0, g22 — Sqlgoﬁo, 92,3 — Sq4go,0 etc. A
lift g1: P — P is given by g2.0 +— 0, g2.1 — 0, g2.2 — 91,0, 92,3 > g1,2 etc. Hence fgi: P, — Fy is given
by g2.2 — 1 and g2 ; — 0 for i # 2 (for degree reasons), so that [fg1] = v2,2. Thus hohs = 72,2 in bidegree
(s,t) = (2,4) of Ext})"(F2,F5). In hindsight, this it the only possible nonzero value of the product, and
it is realized because of the summand Sq'g; 2 in 92(gs2) and the summand Sq*go o in 91(g12), with Sq¢*
detecting hg and Sq¢* detecting hs.

Proposition 13.3. Let P, — Fy and Q. — H*(Z) be minimal resolutions, with Py = /{[|}, P1 =
A{[S¢*]} | i > 0}, Qu = {gu;}; and Qui1 = Z{gus1.k}x. Here 01([S¢*]) = S¢*'[], and we can
write

au-l-l(gu-i-l,k) - Zef,jsqygu,j
(2]
for suitable coefficients 0f ; € o . Let h; € Ext}fi(Fg,IFg), Yu,j € Ext (H*(Z),F2) and vyi1,6 €
Extyl’*(H*(Z),IFg) be dual to [Sq*), gu.; and gu.1 .k, respectively. Then

hi - Yu,j = Zdﬁj)%ﬂ,k’
k

where €: o/ — Fy is the augmentation. Hence h;-7y, ; contains the term vy41,x of and only if Out1(Gu+1,k)
contains the term quwgu,j.

Proof. The coefficient of g, ; in Ou+1(gu+1,x) can be written as a sum ), Gf’j Squ, since the Squ generate
I(7) as a left o/-module, and the coefficient lies in this augmentation ideal, by the assumption that the

resolution is minimal. Consider the following diagram, for fixed choices of ¢ > 0 and j.

Fo

]

Py Py ——T,

1A

Qqul R Qu
Out1

01

Here f = h; maps [Squ] to 1 and the remaining generators of P; to 0. Likewise g = 7, ; maps g, ; to 1
and the remaining generators of @, to 0. We lift g to a chain map g.: Qui+« — Ps, by first letting gg
map g, ; to 1[] and sending the other generators of @, to 0. Then

900us1(gus1) = 90O 05,807 gus) = > 05,867 1],

,J

so we can set g1(gutik) =D, Hﬁj [Sq2i]. Hence the Yoneda product f o g1: Qui1 — Fo maps gy+1,k to
e(@iﬁ j), and therefore contains 7,11, with that coefficient. O

Example 13.4. From the minimal resolution in Theorem [10.11} we can read off the following nontrivial

products: hovo,0 = V1,0, P17Y,0 = V1,1, P2Y0,0 = V1,2, P3Y0,0 = 71,3, Rovi0 = V2,00 P11 = 2,1,

h2’Y1,0 = 72,2, h0’71,2 = 72,2, h2’71,2 = 72,3, h3’r1,0 = 72,4, h0V1,3 = 72,4, h371,1 = 72,5, h171,3 = 72,5,
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hov2,0 = 73,0, h272,0 = V3,1, h1v2,1 = 73,1, hoY2,2 = V3,15 h3y2,0 = 73,2, hove,s = 73,2, hoY3,0 = V4,05

h3¥3,0 = V4,15 ---» hoY10,0 = 711,0- This gives the following multiplicative structure.
8
[} ?
6| ® ? ?
[ ) ? ? ?
4| @ [ 2 O N I B4
2092179
. L » 2
2| o | . R R 2172
= o Eers T 5
hoe . i;: };3
O] e
0 2 4 6 8 10

Proposition 13.5. For p odd, let Q. — H*(Z) be a minimal resolution, with Q, = </{gu. ;}; and
Qui1 = {gur1,k}tk. Let v; € Ext (H*(Z),F,) and yyi10 € Eth;l’*(H*(Z),]Fp) be dual to gy ;
and Gui1,k, respectively. Then the coefficient (in Fp) of Yut1,k in the Yoneda product ag - vu,; equals
the coefficient of Bgu,; N Out1(Gus1,k), and the coefficient of Yut1k in s - Yu,j equals the coefficients of

Pplgu,j m au+1(gu+1,k)-
Proof. The proof is similar to the case p = 2. We write Oy+1(gu+1,5) as
k k
D OB+ 08P )gu;
j i

with 9;-" and Hﬁj in «7/. This is possible, since the resolution is assumed to be minimal. Then ag - v,,; =

€(05)vur1,k and hi - 5 = €(0F ;) Yur1 k- U
Ezxample 13.6. From the minimal resolution in Theorem [10.14] we can read off the following nontrivial
products: agyo,0 = 71,0, hoY,0 = 71,1, P1Y,0 = 71,2, @Y1,0 = V2,0, 11,0 = V2,3, @0Y12 = —72,3,
ap¥2,0 = 3,0, hoY2,1 = 73,1, G0Y2,2 = —V3,1, R172,0 = 73,2, G0Y2,3 = —3,2, G0Y3,0 = V4,05 - -+ GOV14,0 =

v15,0- This gives the following multiplicative structure.

6
[ ]
] ?
“ L] o]
ol e | ./#“ 3k
0 &1
0 2 4 6 3 o - -

Definition 13.7. Consider any two complexes P, and Q. of o/-modules. Let
HOMQU(QM P*) = H HOIan(QquSv PS)

be the abelian group of sequences {gs: Quis — Ps}s of &/-module homomorphisms, each of degree v.
Thus HOMYL, (Q., P.) is a graded abelian group. Let
8. HOMY(Q., P.) — HOM“ ' (Q., P,)

map {gs}s 10 {Os+19s+1 + 9sOuts+1ts. ((We are working mod 2, so there is no sign.)) Then §,41d, = 0,
so HOM?/(Q., P.) is a cocomplex of graded abelian groups.
Lemma 13.8. The kernel

ker(Jp) € HOMY,(Q., P,)
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consists of the chain maps g.: Q« — P., meaning the sequences {gs: Qs — Ps}s of «/-module homo-
morphisms such that Os119s+1 = gsOs+1 for all s. The image

im(éfl) C ker(éo)

consists of the chain maps that are chain homotopic to 0, i.e., those of the form {Jsy1hsi1 + hsOs}s for
some collection of <7 -module homomorphisms hsy1: Qs — Pst1 for all s. Hence the 0-th cohomology

H°(HOMZ,(Q4, P.)) = {gx: Qx = P.}/(=) = [Qs, P]

is the (graded abelian) group of chain homotopy classes of chain maps Q. — P.. More generally,
H“(HOM},/(Q., P.)) is the group [Qu+«, Px] of chain homotopy classes of chain maps Quy« — Pi.

In the special case when P, = H*(Y) is concentrated in filtration s = 0, so that Py = H*(Y)
and P; = 0 for s # 0, then HOM"(Q., H*(Y)) = Hom{,(Qu, H*(Y)) and 0, = (Ou41)*, so that
H*(HOM 4 (Q., H*(Y))) &2 H"(Homy (Q., H*(Y))). When Q. is a free resolution of H*(Z), this is
Extly, (H*(Z), H*(Y)).

Proposition 13.9. Lete: P, — H*(Y) and ¢: Q. — H*(Z) be free o/ -module resolutions. Then
e.: HOM?, (Q., P.) < HOMZ(Q... H*(Y)) = Hom,/ (Q., H*(Y))
is a quasi-isomorphism, in the sense that it induces an isomorphism
€. H*(HOM?Y, (Qx, Py)) = Exty, (H*(Z),H*(Y))
in cohomology, in each filtration u.

This is standard homological algebra. The first assertion only requires that @, is free and P, — H*(Y")
is exact, but the final identification with Ext requires that Q. — H*(Z) is exact.
The composition pairing and the quasi-isomorphism

HOM?, (Q., P.) ® Hom gy (Py, H* (X)) —— Hom (Q., H*(X))
Hom’,(Q., H*(Y)) ® Hom g (Py, H*(X))
thus induce a pairing and an isomorphism

H(Hom?, (Qu. P.)) ® Exts, (H*(Y), H* (X)) —— Ext*(H*(Z), H* (X))

J -

Extg, (H*(2), H*(Y)) © Ext, (H*(Y), H*(X))
in cohomology, and the Yoneda product is given by the dashed arrow. From this description it is easy
to see that the Yoneda product is associative and unital. [[No evident commutativity in this generality.]]

13.2. Pairings of spectral sequences.

Definition 13.10. Let {'E..},., {"E,}, and {E, }, be three spectral sequence. A pairing of these spectral
sequences is a sequence of homomorphisms
br: BN QERY — BN
((for r > 1)) such that the Leibniz rule
dr(dr(x @y)) = ¢r(dr(z) @y) + (=1)"0r(z @ dr (y))

holds, where n = |z| is the total degree of z, and

Ori1([z] @ [y]) = [or(z @ )]
where [z] € 'E;"| is the homology class of a d,-cycle x € 'E*, and similarly for [y] and the right hand
side. In other words, the diagrams

/E:’* ®”E:’* Pr E;f’*

d,,.®1i1®d,,.l Jd,,.

/E:’* ®”E:’* Pr E;f’*
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and

H*’*(/ET) ® H*,*(//ET) H*’*(/ET ® NET) (¢r)* H*,*(ET)

J« bri1 l

1k, * 11 Tk *,%
B ®@"E B

commute.
A spectral sequence pairing {¢, }, induces a pairing
¢oo: /E;,)* ® //E;,)* N E;’)*

of Eo-terms. ((Clear if each spectral sequence vanishes in negative filtrations, so that in each bidegree
(s,t) the E,-terms eventually form a descending sequence, with intersection equal to the E.-term.))

When the Kiinneth homomorphism H**('E,) @ H**("E,) — H**('E, ® "E,) is an isomorphism,
for each r, one can readily define a tensor product spectral sequence {'E, ® "E,.},, and the pairing of
spectral sequences is the same as a morphism {'E,. ® "E,.}, — {E,}, of spectral sequences.

Definition 13.11. Suppose that the spectral sequences above converge to the graded abelian groups
G’, G" and G, respectively, in the sense that there are filtrations {'F*}s, {"F*}s and {F*}; of these
groups, and isomorphisms 'F* )/ Fstl = /g5 Vs M pstl 2 s and FS/FsTL =2 S for all s.

We say that a pairing {¢, }, of spectral sequences, as above, converges to a pairing ¢: G' @ G” — G if
the latter pairing restricts to homomorphisms ¢: 'F* @ "F$ — F%*5 for all u and s, and if the induced
homomorphisms ¢: 'F4// Futl @ " s /! s+l puts |putstl qoree with the limit ¢oo: 'EY @ "ES —
E“fs of the pairings ¢,..

In other words, the diagram

'EY @ ES = /Fu//Fu+1 ® //Fs///Fs+1 A G oG"
o0 o0

- |

Futs g = Fu+s/Fu+s+1 Futs G
o0
commutes. ((Consequences?))

Definition 13.12. An algebra spectral sequence is a spectral sequence {E,}, with a spectral sequence
pairing {¢,: E, ® E, — E.}, that is associative and unital. It is commutative if the pairing satisfies
Por(y®@x) = (=1)"¢.(z ®@ y) for all z, y and r, where n = |z| and m = |y| are the total degrees.
((Elaborate?))

Adams (1958) defined a join pairing in his spectral sequence for S, which is stably equivalent to a
smash product pairing in that spectral sequence. We shall return to those pairings later, but first look
at the case of composition pairings, since these are most closely related to the Yoneda product. ((We
may also need to look at this for Moss’ later theorem on Toda brackets and Massey products.))

Theorem 13.13 (Moss (1968)). Let X, Y and Z be spectra, with Y and Z bounded below and H,(Y)
and H.(Z) of finite type. There is a pairing of spectral sequences

EY,Z) Er*(X,Y) — EX*(X,Z)
which agrees for r = 2 with the (opposite) Yoneda pairing
Ext? (H*(Z),H*(Y)) ® Ext) (H*(Y), H*(X)) — Ext. (H*(Z), H*(X))
and which converges to the composition pairing
Y, Z3]. ® [X,Y3']. — [X, Z5)..
The pairing is associative and unital.

[[We omit this proof, and will instead deduce the theorem (for X and Y finite CW spectra) from a
similar theorem about the smash product pairing.]]
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13.3. Modules over cocommutative Hopf algebras. The Kiinneth isomorphism H*(Y A Z) =
H*(Y) ® H*(Z) and the universal coefficient theorem H*(F(X,S)) = Hom*(H*(X),F,) (for finite CW
spectra X) can be refined from being statements about graded Fp-vector spaces to statements about left
«/-modules. This requires making sense of the tensor product M ®@ N = M ®g, N and the homomorphism
group Hom(M, N) = Homg, (M, N) as left «/-modules, for given left »/-modules M and N.

By the Cartan formula

Fly A z) Z Sq'(y) A S¢’ (2)
i+j=k

in H*(Y A Z), for y € H*(Y) and 2z € H*(Z), it is clear that S¢* must act on y ® z in H*(Y) ® H*(Z)
as the sum over i + j = k of the action by Sq¢' ® S¢7. Milnor (1958) proved that for p = 2 the rule
SqF —s Z Sq' ® Sq¢’
i+j=k
extends in a unique manner to an algebra homomorphism

VA — AR .

Here & ® <7 is given the algebra structure given by the composition

' Ao A A A @

where vy: & ®.97 — o/ .97 is the (graded) twist isomorphism, so that (6;26s)-(03204) = (—1)I?211319,0;®
0264. In general, v: M @ N — N ® M is given by

I RQARA DA

y(m@n) = (=DImp @ m.
For p = 2 the sign can be ignored. For p odd the rules
Br—R1I+1®p
and
PF— > PeP
itj=k
likewise extend uniquely to an algebra homomorphism ¢: & — & ® &/. [[Give Milnor’s proof?]]

It follows that the Kiinneth isomorphism is an isomorphism of «/-modules, if we define the tensor
product M ® N of two A-modules M and N as follows.

Definition 13.14. Let M and N be left &/-modules, with module action maps \: & @ M — M and
A @ N — N. We give M ® N the left &/-module structure given by the composition

deMaN"E vodoMeaN' T oM sea N MeN.
If we write ¢(0) = ), 0, ® 0 for 6 € o7, which we usually abbreviate to )6’ ® 6", then
0-(m@n)= Z(_l)le”l\mlgf me0"-n

for m € M and n € N. The sign enters from the interchange of #” and m, and can be ignored for p = 2.
The coproduct v is counital and coassociative, in the sense that the diagrams

o

'

IF,,@JMWV%@MT@JM@FP

\
/

and

P —

1{ [ver

A QA —— A QA RQA
1Qy
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COmmute. Hence 26(0/)9// — 9 — 29/6(9//) and 22(9/)/ ® (9/)// ® 6// — Zzel ® (9//)/ ® (6//)//.

Furthermore, it is cocommutative, in the sense that the diagram

N

A QA —————— A A

commutes, so that 530" ® 0" = S (=1)I11€"1¢” @ ¢’. All of these properties are easily verified for the
algebra generators (S¢* for p = 2, 8 and P* for p odd) of <.

The counital and coassociative augmentation e: &/ — F, and coproduct ¢: &/ — & ® &/ give &
the structure of a coalgebra. By cocommutativity of v, it is in fact a cocommutative coalgebra. Both
the augmentation and the coproduct are algebra morphisms. This means that & is a bialgebra, or more
precisely, a cocommutative bialgebra.

The cocommutativity of o7 ensures that the twist isomorphism v: M @ N - N ® M is «/-linear,
since vy = v implies that the left hand square in the following diagram commutes. The remainder of
the diagram also commutes.

AIMINEE o deaMeaN TR veMeada N 28 Me N

1®VJ 'y®'yl Wl '{
PR1IR1 1®y®1 ARA

TINIM — A QA INQM — A INQSAI QM —— NRQM

[[If we arrange that ® is strictly unital and associative, as we implicitly arrange when we treat the
unitality and associativity isomorphisms as identities, then 2/-Mod is a permutative category.]]
Furthermore, o/ admits a conjugation x: &/ — &/, a linear homomorphism satisfying the relations

(1@ x)Y =ne=o(x®1).
Equivalently x makes the diagram

Adod — 5 goo
” X
o : F, ! o
x /
_
A — PA-Y

commute. It follows that y is an anti-homomorphism, i.e., satisfies x(6162) = x(62)x(0;) for all 67,6, €
4/, and it is an involution, i.e., x* equals the identity. [[Give a proof? Milnor—Moore?]]
Forp=2,x(1)=1and >, ; , Sqix(Sq’) = 0 for all k > 1, so that
k=1 _
X(S¢*) = 8" + > Sq'x(Sq¢* ).

i=1
For example, x(Sq¢') = Sq', x(5¢%) = S¢%, x(Sq¢®) = S¢*>Sq* and x(Sq¢?Sq') = Sq3. For p odd we get
x(B) = —f and

k—1
X(Pk> _ _Pk _ szx(Pk—l) .
i=1

A bialgebra with a conjugation is called a Hopf algebra. The Steenrod algebra <7 is thus an example
of a cocommutative Hopf algebra.

Let M be a left o/-module. The functor L — L ® M is left adjoint to the functor N — Hom™* (M, N),
in the sense that there is a natural bijection

Hom™ (L ® M, N) = Hom™ (L, Hom* (M, N))

taking f: L@ M — N to g: L — Hom™(M, N) given by g(£)(m) = f(£ ® m). The identity map of

L ® M on the left corresponds to the adjunction unit in: L — Hom™(M,L ® M) on the right, with

n(€)(m) = £ ® m. The identity map of Hom* (M, N) on the right corresponds to the adjunction coinit
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ev: Hom*(M,N)® N — M on the left, with ev(f ® n) = f(n). These adjunctions do not involve the
symmetric structure, and do not require the introduction of signs.

Definition 13.15. Let M and N be left «/-modules, with action maps A\: QM — M and A\: 4/ QN —
N. We give Hom(M, N) the &/-module structure given by the homomorphism & ® Hom(M, N) —
Hom(M, N) with left adjoint &/ ® Hom(M, N) ® M — N given by the composite

o ® Hom(M, N) @ M "% o/ @ o @ Hom(M, N) @ M

1®'y®1

'O o @ of @ Hom(M, N) ® M

2% & @ Hom(M,N)® o @ M '3 o7 @ Hom(M,N) @ M 2% o7/ 9 N 25 N .
For0 € o, f: M — N in Hom(M, N) and m € M, this composite is

(=DM f(x(07) - m) .

Proposition 13.16. The category <7 -Mod of left < -modules, with respect to the tensor product — ® —,
the unit object Fp, the twist isomorphism v and the mapping object Hom(—, —), is closed symmetric
monoidal.

Ezxample 13.17. For another example of this situation, consider a discrete group G and a field k. The
group algebra k[G] has unit and product given by the neutral element e and the multiplication in
G. Tt admits a cocommutative coproduct @: k[G] — k[G] ® k[G], given by ¥(g) = g ® g for each
g € G. The augmentation e: k[G] — k satisfies e(e) = 1 and ¢(g) = 0 for all group elements g # e.
The conjugation x: k[G] — k[G] is the anti-homomorphism given by x(g) = g~!. These maps make
k[G] a cocommutative Hopf algebra. The tensor product of two k[G]-modules M and N is again a
k[G]-module M @ N = M ®j, N, with the diagonal action g- (m ®&mn) = gm ® gn. The twist isomorphism
v M®N — N®M is k[G]-linear. The homomorphism module Hom(M, N) = Homy (M, N) has the
conjugate k[G]-action, given by (g- f)(m) = gf(g~'m)). Each k[G]-linear homomorphism M @ N — P
corresponds bijectively to a k[G]-linear homomorphism M — Hom(N, P).

The following result should be compared with Lemma [9.20

Proposition 13.18. Let M be any </ -module, with underlying graded Fp-module |M|. There is an
untwisting isomorphism of o/ -modules,

A Q|M| = o @M

from the induced o -module on the left hand side (with &7 acting only on the first tensor factor), to the
tensor product of </ -modules on the right hand side (with the diagonal < -action). In particular, the
diagonal tensor product &7 ® M is a free o7 -module.

Proof. The isomorphism from left to right is the composite
1@

AWM A | M 2D doM.

It sends 8 @ m to > 60’ ® 6”"m, where ¥(0) = >0 ® 6”. It is o7-linear, because the induced /-module
action on the left corresponds to the diagonal o/-module action on the tensor product of & and & ® | M|
in the middle, and the left action map \: & ® |M| — M is «/-linear.

The inverse isomorphism, from right to left, is the composite

AIM Y Ao d oM ES oo oM

It sends 0 @ m to Y. 0" @ x(6")m
One composite is visible along the upper and right hand edges of the following commutative diagram.

183 7 @ |M|.

dM—2 s ded oM —2 s geM

PR1 PR1IR1 PR1
1®w®
A RQARQIM —— A RARA R |M] g @A @M
1x®1x1 1@x®1
1@ea1 doAdAd M ER g oM
161 1®A

171 A
A OF, @ M| —2 of @ o ® | M| ——s o/ @ | M|
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The upper left hand rectangle commutes because v is coassociative, the lower left hand rectangle com-
mutes because x is a conjugation, the upper right hand rectangles commutes by naturality of the tensor
product, and the lower right hand rectangle commutes by associativity for A\. The left hand and lower
edges are the (mutually inverse) canonical isomorphisms, by counitality of ¢ and unitality of A.

[[The other composite is similar.]] O

13.4. Smash product and tensor product. Let T, V', Y and Z be spectra. We have a smash product
pairing
AN DY) @[V, Z]. — [T AV,Y A Z].
taking f: T —Y andg: V — Zto fAg: TANV — Y AZ, and similarly for graded maps. In particular,
for T =V =S we have a pairing
N (Y)em(Z) — (Y NZ).

If Y is a ring spectrum, with unit n: S — Y and multiplication ¢: Y AY — Y, we have a unit
homomorphism
N Tu(S) — m(Y)
and a product
1Y) @m (V) L (Y AY) 25 1 (Y)
that make m,(Y) an algebra over m(S). If Y is homotopy commutative, then 7.(Y) is a (graded)
commutative 7, (5)-algebra.

When Y = S, the smash product A: 7,(S) @ 7.(S) — 7. (S) agrees up to sign with the composition
product o: 7, (S) ® 7. (S) — 7.(S). The smash product of f: S* — S and g: S* — S'is f Ag: S'T? =
StASY — SAS =S, while the composition product is f o Xtg: SVt = XtV — ¥tS = §* — §. These
agree up to the twist equivalence v: St A S¥ = SV A St which is a a map of degree (—1)%.

Now suppose that Y and Z are bounded below with H,.(Y) and H.(Z) of finite type, and let {Y*},
and {Z"}, be Adams resolutions. If f: T — Y and ¢g: V — Z have Adams filtrations > s and > u,
respectively, then they factor as the composites of s maps

T=T,—---—Ty=Y
and u maps
V=V,— - =>W=Z,

all inducing zero on cohomology. By the Kiinneth theorem, the smash product f A g then factors as the
composite of (s + u) cohomologically trivial maps

TANV =T AVy — - =>TogANV, = =>To ANV =Y NZ.
Hence we get a restricted pairing
F3[T,Y]. @ F'[V, Z], — F*T [T AV,Y A Z).
that descends to a pairing
F$/Fst @ Fu/putl — pstu/pstutl
of filtration quotients. When the respective spectral sequences converge, we can write this as a pairing
of E-terms. We will relate this to an algebraically defined pairing
Ext> (H*(Y),H*(T))  Ext," (H*(Z2),H*(V)) — Extb;“’*(H*(Y NZ),H (T \NV))
of the Adams spectral sequence Fs-terms.

Let M, N, T and V be .&7-modules.

Lemma 13.19. Lete: P, —» M and €: QQ, — N be two resolutions. Then e @ e: P, @ Q. — M ® N 1is
a resolution. If P, or Q, is free, then so is Py ® Q.

Proof. If €,: Hy(Px) = M and €,: H,(Q.) — N are isomorphisms, then (e®e€),: H,(P,®Qs) > MQN
must also be an isomorphism, due to the Kiinneth isomorphism H,(Py) @ H.(Q«) = H (P ® Q).

If P, is free in each degree, then Py ® @, is a sum of copies of & ® @, for each s and u, hence is free
by Proposition Hence P, ® Q. is free in each degree. The same argument applies if @, is free in
each degree. (|
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Definition 13.20. The tensor product pairing

®: Ext®/(M,T) ® Ext"’(N,V) — Ext>/“""™"(M @ N,T® V)
is given by choosing free &7-module resolutions P, — M and Q, — N. The tensor product P, ® Q. —
M ® N is then a free @7-module resolution of M ® N, and T ® V is a left «/-module, in both cases

using the coproduct ¥: & — & ® &/ to restrict the external &/ ® &/-module structure to an internal
«7-module structure. The tensor product of @/-module homomorphisms induces a pairing

Hom’, (P, T) ® Hom},(Q., V) — Hom (P, ® Q., T @ V)
of complexes, and the tensor product pairing is the induced pairing in homology.

More explicitly, the pairing takes cocycles f: Py — X!T and ¢: Q, — X%V, with f0s4,1 = 0 and
gOu+1 = 0, to the tensor product

[®g:PRQ, —XTRXV2NT"TRV.

This is extended by zero on the remaining summands of (P.®Q)s+v. Equivalently, f and g can be viewed
as chain maps P, — X!T'[s] and Q. — XV [u], respectively, where ¥¢T[s] is the chain complex with 3T
concentrated in degree s, and similarly for UV [u]. Then (f®¢)0squs1 = fOs11@g9+(—D f@90,41 = 0,
so the tensor product is a cocycle.

In particular, for s = 0 and v = 0, the tensor product pairing on Ext agrees with the Hom-pairing

®: Hom’, (M, T) ® Hom",(M,V) — Hom""(M @ N, T ® V)

that maps f: M - YT and g: N - XV to f®g: M@N — ST @ XV 2T V.
Alternatively, if we have given another free @7-module resolution R, — M ® N, then we can cover the
identity of M ® N by a chain map A: R, — P, ® Q., unique up to chain homotopy. Then the composite

R, 2 P20, st Toyyesttiregy
is a cocycle that represents the tensor product [f] @ [g] in Ext®)""™"(M @ N,T ® V).

13.5. The smash product pairing of Adams spectral sequences. Let Y and Z be spectra. We
have a smash product pairing

N (V)@ 7m(Z) — m(Y AN Z)
that takes f: S* =+ Y and g: S¥ — Z to the smash product f Ag: SIT* =2 STASY 2 Y A Z.

Suppose that Y and Z are bounded below, and that H,.(Y) and H,.(Z) are of finite type. Let {Y*}; and
{Z"}, be Adams resolutions of Y and Z, respectively, with cofibers Y*/Y*+! = K* and Z%/Z%+! = L.
Let P, = H*(X°K®) and @Q,, = H*(X*L") be the «/-modules that appear in the usual free resolutions
e: P, > H*(Y) and e: Q. — H*(2).

Let W =Y A Z be the smash product. Then W is bounded below and H,(W) = H.(Y) ® H.(Z) is
of finite type. We shall construct an Adams resolution {W™},, of W by geometrically mixing the Adams
resolutions for Y and Z.

Traditionally, this is done by first replacing Y, Z and their Adams resolutions by homotopy equivalent
spectra, so that each Y and Z* is a CW spectrum, and each map i: Y*t! = Y* and i: Z%t! — Z% is
the inclusion of a CW subspectrum. Then Y* A Z* is a CW subspectrum of Y A Z, and one can form
the union of these subspectra for all s + u = n. Hence one defines

wr= |J Y azZ".
stu=n

Then W™t is a CW subspectrum of W, and
wr/wrtt = \/ K*AL".

stu=n

Lemma 13.21. The diagram
w2 Wl L W

e by -
) J \ J ) J
AN 1 ~ i ~
J J J
AN ~ ~
9 ~ 9 ~ 9 ~

w2 /W3 W /w2 /W

is an Adams resolution of W =Y NZ. The associated free resolution R, — H*(W) is the tensor product
of the free resolutions P, — H*(Y') and Q. — H*(Z).
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Proof. Since each K* is a wedge sum of suspended copies of H, of finite type, and each L" is of finite
type, we know that W™ /W"*t! is a wedge sum of suspended copies of H, of finite type. Let

st+u=n
This is a free @/-module of finite type, by its geometric origin as the cohomology of W"/W"*1. The
composite Wn=1 /W — SW" — S(W" /W) gplits as the direct sum of the maps jOALl: KSTIALY —
SKSAL* 2 N(KSALY) and 1 AjO: KS ALYt — KS AXLY = %(K*® A L*). Hence the boundary map
On: R, — R,_1 is given by the usual formula
On(z@y) = On(z) @y + 2@ 0n(y)

(we work at p = 2, hence there is no sign), so that R, = P, ® Q. is the tensor product of the two
resolutions. By the Kiinneth theorem, the homology of R, is the tensor product of the homologies of P,
and Q., soe: R, - H*(Y)® H*(Z) =2 H*(Y A Z) is a free resolution.

In particular, j: W% = Y A Z — K° A L induces a surjection j* in cohomology. It follows that
9: W/W! — W induces an injection d* in cohomology, with image in Ry = H*(W/W?!) equal to
the kernel of j* = e. This equals the image of 9; = 90*j* : Ry — Ry, by exactness at Ry of the free
resolution, which implies that j*, induced by j: W' — W' /W?2 is surjective. Suppose inductively that
j: W=l — Wn=1/W" induces a surjection j* in cohomology, for some n > 2. Then 9: W*~1/W" —
YW™ induces an injection * in cohomology. The image of 0* equals the kernel of j*, hence lies in the
kernel of 0,,_1 = 0*j*: R,,_1 — R, _2. This equals the image of 9, = 9*j*: R, — R,_1, by exactness
at R,_1, which implies that j*, induced by j: W™ — W™ /W™t is surjective. O

Granting a little more technology, the substitution by CW spectra can be replaced by the passage to
a homotopy colimit. For a fixed n > 0, one considers the diagram of all spectra Y* A Z* for s +u > n,
and forms the homotopy colimit

W™ = hocolimY*® A Z* .
stu>n

There is a natural diagram
W LW S WO~ Y AZ
and an identification

W /Wt = \/ hocofib(Y*™ — Y*) A hocofib(Z*+! — Z*)

stu=n

where hocofib(Y**! — Y*) ~ K* denotes the mapping cone of the given map, etc. The proof of the
lemma goes through in the same way with these conventions.
The following theorem is similar to that proved in §4 of Adams (1958).

Theorem 13.22. There is a natural pairing
EXNY)® EYY(Z) — ESTITY(Y A Z)
of Adams spectral sequences, given at the Eo-term by the tensor product pairing
Ext® (H*(Y),F,) ® Ext“" (H*(Z),F,) — Ext® "™ (H*(Y A Z),F,)
and converging to the smash product pairing
Ti—s(Y)) @ myu(Z)) — mi—sqo—u((Y AZ)]).
More generally, there is a natural pairing
EXNT,Y)® EYY(V,Z) — ESTWIT (T AVY A Z)
of spectral sequences, given at the Es-term by the tensor product pairing
Ext®) (H*(Y), H*(T)) ® Ext"" (H*(Z), H*(V)) — Ext> """ "(H*(Y A Z), H* (T A V)
and converging to the smash product pairing
[T, s @ [V, Z)yew — [T AV,(Y A Z) ]t sv—u -

((Discuss the role of completion in the pairing?))
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Proof. Recall that Ef = Z3/B2, where

75 =0 tim(i 1t m (V) — (VoY)

and
B: = jker(i:—lz T (Ys) — T (Ys-i-’!‘—l))
are subgroups of E! = 7, (K®). For the purpose of this proof, it is convenient to rewrite these groups as
Z: = lm(ﬂ'* (YS/YS""T) = T (Ks))
and
By = im(m. (871 (YY) m(K°)).

These formulas can be obtained by chases in the diagrams

ystr Ly Ys Yt
| b |
* K* = K

L |

Eys-i—r =ir ! YS+1 E(YS+1/YS+T)

and

% E—l(ys—r-‘,—l/ys) = Z—I(Ys—r—i-l/ys)

N

Ys+1 1 Ys J K
_J J{ir 1 J
Ys+1 i YS—T-H Ys—r+1/ys+1

of horizontal and vertical cofiber sequences.
The differential d2: E$ — EST" is determined by the homomorphism §: 7, (Y*/Y*%") — Z5T" induced
by Y/Y*t" — S K" and the surjection m: m,(Y*/Y ") — Z% induced by Y*/Y*T" — K*:

B < 75 « = m, (Vo ys+r) 2y Zs+t Bt

L,

s T s+r
E? Es

To compare this with the exact couple definition of d7, consider the commutative diagram

K3 Ys/ys+r N ZKS+T

|1

Systl el syt L st

where the left hand square is homotopy (co-)cartesian. (It follows that BJf}/B:+" C ES*" equals the
image of d.)

So far we have discussed the Adams spectral sequence for a single spectrum Y. We now relate the
Adams spectral sequences for Y, Z and W =Y A Z, where W has the Adams resolution obtained from
given Adams resolutions of Y and Z.

There is a preferred inclusion Y A Z% — W™ for all s,u > 0 and n = s + u. It restricts to inclusions
YT A ZY — WP and Y A Z4TT — WP that agree on YT A Z¥+". Hence we have a main
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commutative diagram

ar

U YT AZEUYS A Z8T — S YSTLAZeUYs AZvt 2 Ys A2 — Y A Z

| N N

Wn+r+1 i , WnJrr i Wn+1 ¢ wn w

where YS+t7 A Z¥UY$ A Z¥FT denotes the pushout of YT A Z% and Y* A Z4T" along Y7 A Z¥F7 and
U is brief notation for a similar union of Y+t A Zu, Y+ A Zutl Y+l A Z¥% and Y5 A Z¥F1,
Passing to horizontal cofibers for the middle part of the diagram, we get a commutative diagram

(5) YSANZY ——=YS)YST" AN ZY ) 24T ——— K5 AL

| | |

wn W’ﬂ/WTLJr’I‘ N Wn/wnJrl

where the maps in the upper row are smash products of the standard maps Y* — Y5 /Yt7 Y /ystr
K*, etc. The vertical map KSAL* — W™ /W™ *! agrees with the inclusion of a summand in W /Wn+! =
Viun K A L*. Hence it induces a pairing

¢1: EX(Y) © EY(Z) — EY(W)
that corresponds to the previously discussed pairing
Hom g (P, Fp) ® Homy (Qx, Fp) — Homgy (Py ® Qx, Fp)

under the d-invariant isomorphisms 7;_,(K*) = Hom', (P, F,), etc.
Passing to horizontal cofibers further to the left in the main diagram, we get a commutative diagram

(6) Y YSHTAZu)ZutT (YT A ZVUYS A 20T s (KT ALYV KS A L)

| J |

Wn/wnJrr Ewn+r E(WnJrT/WnJrTJrl)

where the composite map in the upper row is the wedge sum of the smash product of the standard maps
Y)Y — BKSTT and Z%/Z4T" — L*, and the smash product of the standard maps Y*/Y*t" — K*
and Z%/Z%t" — YL LTT. The right hand vertical map is the suspension of the wedge sum of the pairings
Ks+r A LY — Wn+r/wn+r+1 and K8 A Lu+r — WnJrr/WﬂJrrJrl'

We now claim that (a) ¢; = ¢; restricts to a pairing

¢ 2(Y) @ 2(Z) — 2 (W),
(b) &, descends to a pairing

or: EX(Y) @ B (Z) — E (W)
and (c) ¢, satisfies the Leibniz rule

d(d(y ® 2)) = ¢ (dr(y) © 2) + (1), (y @ d, (2)) .

Here r > 1 and n = s+ u.

Assuming these claims, which are similar to the conditions of Lemma 2.2 of Moss (1968), we can
easily finish the proof of the theorem. The pairings (¢,). and ¢,11 agree, under the identification
H*(Ey,d,) = E;,,, since they are both induced by a passage to quotients from ¢r1. Hence the
sequence {¢,}, qualifies as a pairing of spectral sequences. In particular, ¢o = (¢1). is the tensor
product pairing of Ext-groups. This spectral sequence pairing converges to the smash product pairing
in homotopy, since the pairing of E.-terms is induced by the pairing

T (V) @m(ZY) — m (YN ZY) — 7 (WT)

via the surjections m,(Y®) — EZ2_, etc., and the pairing of filtration quotients is induced by the same
pairing via the surjections m.(Y*) — F* — F*/F**t! etc. These surjections have the same kernel, so
the induced pairings of quotients are compatible under the identifications F*/Fst1 = ES_.
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It remains to prove the three parts of the claim.
(a) Applying 7, (—) to the right hand square in diagram , we get the outer rectangle of the following
map of pairings:

(Y3 )Y @ (24 ) Z%FT) —— Z3(Y) @ Z4(Z) —— E5(Y) @ B (Z)

| S

T (WP ST ™ ZMW) s B (W)

s

In view of the description of Z(W) as the image of m.(W"/W"+") — m (W™ /W"*) = EP (W), and
similarly for Y and Z, it follows that there is a unique pairing ¢, that makes the whole diagram commute.
(b) To check that ¢, descends to a pairing ¢,: EX(Y) ® E*(Z) — E*(W), we use the diagram

EXY) @ EXNZ) «—— Z2(Y) @ ZN(Z) —— Z; 1 (Y) ® 231 (2) —» B, (Y) ® B (2)

I
4)7‘ | (zg,l (Z’TIJ ¢r—1l
3

EW) ¢«——— 4 (W)r———— 2L, (W) —————— B, (W),

There is only something to prove for r > 2. We assume, by induction on r, that the Leibniz rule in (c)
holds for d,_1 and ¢,_1.

Given y € B5(Y) € Z*(Y) and z € Z*(Z) we must show that ¢,(y ® z) € B*(W) c Z*(W). The
image of y in E5_;(Y) has the form [y] = d,_1(z) for some x € E5~[*}(Y), and the image of z in
Ey1(Z) satisfies dy_1([2]) = 0. Then dy—1(¢r-1(x @ [2])) = dr-1(dr—1(2) ® [2]) £ dr1(x @ dr1([2])) =
Gr—1([y] @ [2]) £0 = [¢r(y ® 2)]. Hence ¢, (y ® z) is congruent modulo B (W) to a class in B[*(W), as
we asserted. The same argument shows that ¢, maps Z5(Y) ® B¥(Z) into B"(W). Hence ¢, descends
to ¢, and this uniquely determines ¢,..

(c) [[TODO: Account for signs.]] Applying m.(—) to the outer rectangle in diagram (6), we get the
outer rectangle of the following map of pairings:

[297 ] zst+r(v) @ Z4(Z ESTT(Y)® EXNZ
w (V) @, (7 ey L2ty D) O 2B BT 9 B
ZNY)® Z(Z) E3(Y)® EV(Z)
[&r (57‘] i[d’l ¢1]
5

T (W /W) Zyr (W) e By (W)
Since the pairings ér have been defined to make the right hand square commute, the whole diagram
commutes.

Combining parts of four of these diagrams, we have the commutative sprawl:

T

EY)Q BEYZ)¢«——Z5(Y)® ZY(Z) ——————— ZN(W) ———» EM(W)

T T

7r®7rT x
[fgii] T (YS/YS+T) (9] W*(ZU/Zu+T) SN 7.l.*(an/v[/nJrr) -
251
TR 5
EsTT(Y)® EX(Z 75t (Y) ® Z4(Z -
( %9 ( )«— ( %9 ( )%Z;LJW(W)—»E;}JFT(W)
EXY)® Ex*T(2) Z5(Y) © 287 (2) //
[¢7‘ ¢7‘]

Going around the outer boundary of the diagram we see that d (¢, (y®z)) = ¢, (d2(y)®2)+ ¢ (y2d¥(2)),
proving the Leibniz rule. (|
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Remark 13.23. If y € m.(K®) and z € m, (L") lift to g € m (Y*/Y*1") and Z € 7. (Z"/Z**"), respectively,
with images 0y € m (X K*t") and §z € 7. (SL“T"), then yAz € m (KSALY) lifts to gAZ € T (Y /Y 5T A
Zu/zu+r).

ZK5+T YS/YS+’I” N K3

ZKS+T /\(I/u\ /S ' Lu Lu
YS/YS-H" A Zu/zu+r Zu/zu+7'
SKS A LUt SLutr

The maps Y* A Z% — W5T% = W" induce a commutative diagram

SKSTTALYVSKS ALY «—— Y8 YT A\ Z% /78T — 5 KS ALY

| | |

2(wn+r/wn+r+1) W"/W”‘Hﬂ Wn/Wn-’rl

and § A Z maps to a lift § - Z in 7, (W™ /Wn"+") of the image y - z of y A z in W /W"*+1. Hence §(y - 2)
is the image dy -z +y -0z of Sy Az +y Adz in m (ZKST" A L* vV K% A L¥t"). The key point is that,
even if Y)Yt A Z%/Z%F" is attached to all of YSt" A Z* UY* A Z¥T" in Y A Z%, the composite
map to Wt — WnHr /W Hr+L factors through the quotient Kt A LV K A L*T", making the left
hand square above commute. The bookkeeping shows that dy represents d,.([y]), and so on, so that
d(y-z)=0y-z+y- 0z implies the Leibniz rule for d,.

Corollary 13.24. Suppose that Y is a ring spectrum, with multiplication ¢: Y NY — Y and unit
1n: S =Y. Then there is a natural pairing
EFY)@EXN(Y) — EP(Y),
given at the Es-term by the composite
Ext (H*(Y),F,) ® Ext? (H*(Y),F,) — Ext*(H*(Y AY),F,) BN Ext> (H*(Y),Fp),
and a unit map
Er*(S) = EF(Y),
given at the Fo-term by
Ext®*(F,,F,) = Exts (H*(Y),F,),
that make the Adams spectral sequence E**(Y) an algebra spectral sequence over EX*(S). IfY is

homotopy commutative, then it is a commutative algebra spectral sequence.

13.6. The bar resolution. Let k be a commutative ring, and consider any k-algebra A. (Our principal
example will be the case k = F, and A = <7, the mod p Steenrod algebra.) We write ® for ®;, and
Hom for Homy. Let M and N be left and right A-modules, respectively. The two-sided bar construction
Be(N, A, M) is the simplicial k-module, given in degree g > 0 by

By(N,A M) =N® A% @ M.
Following Eilenberg-Mac Lane (see MacLane (1963, Sect. X.2)) we use the notation nfai|...|aq]m for

the tensor n ® a1 @ -+ - ® ag @ m in B4(N, A, M), and the use of vertical bars in this notation gives the
construction its name. The face operators d;: 8,(N, A, M) — B,-1(N, A, M) for 0 < i < q are given by

nailaz| ... |laglm for 1 =0,
di(nlai|...|aglm) = { nla1|...|ai—1|a;aiy1]aito] . . . Jagm for 0 < i < ¢, and
nlai]...|ag—1]agm for i = q.

The degeneracy operators s;: Bq(N, A, M) = Bg+1(N, A, M) for 0 < j < ¢ are given by

sj(nla1]...laglm) = nla1|...laj|1l|at1|. .. |aglm,
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where 1 = n(1) € A denotes the algebra unit. There is an augmentation
€: Bo(N, A, M) — N®4 M

to the balanced tensor product N ®4 M, considered as a constant simplicial object, given in degree
g = 0 by e(n[Jm) = n ®4 m. In the special case N = A, with the right A-module structure given by
the k-algebra multiplication, there is an extra degeneracy operator s_1: SBq(A, A, M) — Bg41(A, A, M)
given by
s_1(aolar] . .. |aglm) = 1aolai| ... |aglm

and the augmentation specializes to €: So(A, A, M) — M given by €e(a[Jm) = am. [[Can discuss how
s—1 specifies a simplicial contraction of Se(A, A, M) to M.]] In this case the left A-module structure on
N = A induces an A-module structure on each 8,(A4, A, M), making Be(A, A, M) a simplicial A-module.
(The extra degeneracy s_; is not A-linear. We use the induced, not the diagonal, A-module structure
on each (,(A, A, M) = A® A®1® M, even when the latter exists.)

The associated normalized chain complex is the normalized bar construction. It is the chain complex
of k-modules given in degree ¢ > 0 by

By(N,A, M) =N & J(A)® & M
where J(A) = cok(n: k — A) is the unit coideal. [[Often denoted A.]] The boundary operator
Oq: Bq(N, A, M) — B,_1(N, A, M) is the alternating sum
q
9q = Z(*l)ldi
i=0
of the face operators, which descends over the surjection S,(N, A, M) — B,(N, A, M). Hence

Oy(nla]...|aglm) = naslaz| ... |aglm + Z (=1)'nfa1|...|aiaiz1] .. lagJm + (=1)nfay]. .. |ag—1]a;m
0<i<q

forn € N, a; € J(A) and m € M. [[A sign may be introduced, depending on the degrees of the terms

a;.]] There is still an augmentation

€: Bo(N,A, M) — N®a M
given by the canonical surjection N ® M — N ® 4 M, and we get an augmented chain complex
oo By(N, A, M) 25 Bi(N, A, M) 2% Bo(N, A, M)~ N@4 M —0

of k-modules. In the special case when N = A, the augmentation can be rewritten as ¢: By(N, A, M) —
M, sending a[Jm to am. In this case the extra degeneracy gives rise to a chain contraction S of
B.(A, A, M) to M. This is a chain homotopy

Syt By(A, A, M) — Byy1(A, A, M)

given by
Sqlaglar] ... |aglm) = 1[aola1] ... |aglm
for all ¢ > 0. It satisfies
0S + 50 =1-—ne.

Here 1 denotes the identity, and n: M — By(A4, A, M) sends m to 1[]m, so that ne(aJm) = 1{lam.
[[Prove the chain homotopy relation. Clarify that @ = 0 on By(NV, A, M). Conversely, the boundaries 9
are inductively determined by this relation and A-linearity.]] Hence € and n are chain homotopy inverse
equivalences between B,(A, A, M) and M, where M is viewed as a trivial chain complex concentrated
in degree 0.

The left A-module structure on N = A makes B,(A, A, M) a chain complex of left A-modules. In
other words,

e: Bu(A, A, M) — M
is an A-module resolution of M, called the bar resolution. (Note that we use the induced A-module
structure on each By(A, A, M) = A® J(A)®?® M, not the diagonal structure, in case the latter exists.)
If J(A) and M are flat, resp. projective, as k-modules, then so is J(A)®? @ M. This will imply that
B,(A, A, M) is flat, resp. projective, as a left A-module. Hence, under these conditions, the bar resolution
is a flat, resp. projective, resolution. If k is a field, as it will be in the case when A is the mod p Steenrod
algebra, then these conditions are automatically satisfied.
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In particular, we can in principle use the bar resolution to calculate Tor? (N, M) and Ext* (M, L). If

J(A) and M are flat k-modules, then
Tor (N, M) = Hy(N ®4 B,(A, A, M),1® 8) = Hy(B,(N, A, M), )
for each s > 0, as graded k-modules. This uses the evident isomorphism N® 4 B4(A, A, M) = B,(N, A, M)
for each ¢ > 0. If J(A) and M are projective k-modules, and L is any left A-module, then
Ext% (M, L) = H*(Hom4 (B« (A, A, M), L),Hom(d, 1))

for each s > 0, again as graded k-modules. [[Can rewrite Homa(B,(A, A, M),L) = Homu(A ®
J(A)®1® M, L) = Homg(J(A)®1® M, L) in terms of L® (J(A)*)®4® M*, leading to the cobar complex
C9(L, A*, M*) for the dual coalgebra A*. Return to this later.]]

13.7. Comparison of pairings. The bar resolution grows too fast in size to be useful for efficient
machine calculation, but its explicit form makes it useful for theoretical analysis. [[Calculate Yoneda
composition and tensor product in terms of bar resolutions.]]

Let f: X - Y and ¢g: Y — Z be maps of spectra, and let g: S — F(Y, Z) be right adjoint to g. The
smash product gA f: X 2 SAX — F(Y,Z) AY followed by the evaluation map ev: F(Y,Z)ANY — Z
defines a map

evo(gNf): X —Z
that equals the composite gf = go f: X — Z. Hence the composition pairing
o: [V, 7], ® [X,Y], — [X, Z].
can be rewritten in terms of the smash product pairing as the composite
mnF(Y,2)®[X,Y], 25 [SAX,F(Y,Z)AY], <5 X, Z]..
In particular, for Y = S, the composition pairing
0: [5, 7]« ® [X, 5], — [X, Z].

equals the smash product pairing. Specializing to X = S, the composition and smash products give the
same module action

T (Z) @ i (S) — 7 (Z) .
Specializing further to Z = S the two ring structures

74 (S) @ i (S) — 7 (S)

on 7, (95) agree. The smash product pairing is graded commutative, since p: S A S = S and pvy are ho-
motopic (or equal, in some models). It follows that also the composition product is graded commutative,
which is not so evident from its definition.

Conversely, given maps f: T'— Y and g: V — Z of spectra, the smash product fAg: TAV - Y AZ
can be factored in two ways, as

(FAL)o(1Ag)=FAg=(1Ag)o(fA1).
Hence the smash product pairing
AN [TY]L [V, Zl — [TAV,Y A Z].
can be rewritten in terms of the composition pairing as the composite
mnF(T,Y)@mF(V,Z) "2 n,F(TAZ,Y ANZ) @ n,F(T AV,TAZ) 5 m, F(T AV,Y N Z).

[[Explain the stabilization maps o: F(T,Y) = F(TAZ,YAZ)and 7: F(V,Z) — F(TAV,TAZ), perhaps
in terms of the adjoints ev Al: F(T,Y)ATAZ - Y AZ and y(ev A1) (1AY): F(V,Z)AT AV — TAZ]]
In particular, for T'= Z = S, the smash product pairing

A [S Y] ® [V, S]. — [V, Y],

equals the composition pairing.

Let L, M and N be left A-modules, for a k-algebra A that is projective as a k-module. Let
€: B.(A,A, M) - M and e: B.(A, A, N) — N be the normalized bar resolutions. The Yoneda compo-
sition

o: Ext% (M, L) ® Exty"(N, M) — Ext’™""(N, L)
takes [f]®[g] to [XV fogs], where [f] and [g] are the cohomology classes of cocycles f: Bs(A, A, M) — XL
and g: B, (A, A, N) — XYM, or equivalently, of chain maps f: B.(A, A, M) — X'L[s] and g: B.(A,A,N) —
¥ M{u], where ¥*L[s]| denotes the chain complex with 3L in cohomological degree s and 0 in all other
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degrees, and similarly for 3V M|u]. Furthermore, g.: Bi(4, A, N) — XVB,(A, A, M)[u] is a chain map
lifting g, so that eg, = g. It consists of A-module maps g,: By4u(4, A, N) — XVB,(A, A, M) for all
g > 0, commuting [[up to a sign]] with the boundary maps, and egy = g. [[Explain the cohomological
shift by u, denoted [u], of a chain complex, including sign convention?]]

B.(A, A, N) —2 B,(A, A, M)

The opposite Yoneda composition
0% Ext%V(N, M) @ Ext%'(M, L) — Ext’ """ (N, L)
is given by the twist map v: [g] @ [f] — (=1)*=9=¥[f] ® [g] followed by the Yoneda composition,

hence maps [g] ® [f] to (=1)*=)*=%)[8? f o g,] in the notation above. [[Is this the correct sign?]]
It is possible to write down an explicit chain map g, lifting g. Compare Adams (1960, p. 33).

Lemma 13.25. Given a cocycle g: B.(A, A, N) — X" M|[u], a chain map
gu: Bu(A, A N) = XVB.(A, A, M)[u]
that lifts g is given [[up to sign]] by the formula

9gqlaolar]. .. |agruln) = aolasl]. .. |aglg(lagia|. .. |agruln)
for each ¢ > 0. Hence the Yoneda product [f]o|g] is represented by the cocycle ¥V fogs: Bsin(A, A, N) —
YL given by
aplay] ... |astu]n — flaolai|...|aslg(Qass1] .- |asta]n)) -
Proof. Let go: By(A, A, N) = By(A, A, M) of internal degree v be given by

go(aolai|. .. |au]n) = aollg(l]as] ... |a.]n).

Then go is A-linear, and egy = g. Next, define g1: Byy1(A, A, N) — B1(A, A, M) to be the A-linear
homomorphism of internal degree v that agrees with Sogod,,1 when restricted along n®1: k® A2+ @
N — Byut1(A, A, N). Tt is given by

gi(aolas]. .. |au41]n) = aglar]g(Llaz| . .. [auta]n),

since the remaining summands from 9,41 are mapped to terms of the form ag[1]m = 0 in B;(A, A, M).
Then 0191 = 0150900ur1 on k ® A2+ @ N which by the relation 1Sy + ne = 1 differs from gody41
by negoOu+1 = ng0u+1 = 0, where we use that gg lifts ¢ and g is a cocycle. Hence 0191 = goOyu+1 On
k® A2+t @ N. Since both sides are A-linear, it follows that 0191 = godu+1 on all of B.+1(A, A N).

For ¢ > 2, suppose inductively we have defined g, as a chain map, of internal degree v, up to and
including gq—1: By+q—1(4,A,N) — By_1(A, A, M). In particular, we are assuming that dy_1g4—1 =
9q—20u+q—1. Define gq: Bgyu(A4, A, N) = By(A, A, M) to be the A-linear homomorphism that agrees
with Sy_19g—104+« when restricted over n®1: k@ARPUtQN — Byiu(A,A,N). Here Sq_1: Bg_1(A,A,N) —
B,(A, A, N) is part of the chain contraction of B, (A, A, N), and is not A-linear. By induction it follows
that

9gq(aolar]. .. |agruln) = aolar]. . |aglg(lagia|. .. |ag+uln),
since
9q(Lar|. .. lagruln) = Sq-194-10g+u(1]ar]. .. [agu]n)
= Sy—19q-1(a1faz| ... |agru]n — laraz| ... |agsuln +...)
= Sg—1(arfaz| ... laglg(l[ag+1] .. . |agru]n) — Laraz|. .. laglg(Lagsi]. - - ag+uln) +...)
= 1farlaal . loqlg(ags1] - lagsuln) — 1lloras) - -laglg(lagarl . - agaln) + ...

where the second and the remaining terms are zero in the normalized bar resolution. To check that

g« is a chain map, we must prove that 0,9, = 94—104+u: Bg+u(A, A, N) — By_1(A, A, M). [[This

should involve a sign (—1)".]] Both sides are A-linear, so it suffices to prove this after restriction to

k@ A®tw) o N Here 0q9q = 03Sq—19q—10g+v differs from gg— 1044+, by Sq—20q — 1gq—104+w, in view of

the relation 0,S4—1+Sg—204—1 = 1. This difference equals Sy_29q+u—10g+u—10¢+u = 0, by the inductive

hypothesis and the fact that B.(A, A, N) is a chain complex. O
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[[When A is a Hopf algebra, and M = k, so that

flaolar] ... las]g(Lasta]. . - |astu]n)) = flaolar]. .. |as]1) - g(Uas1]. . . lastuln)
the Yoneda product is induced by the diagonal approximation B.(A4, A, N) — B.(A, A,k)® B.(A, A, N)
mapping agla1]...|ag)n to the sum over s +u = ¢ of agla1]...|as]l @ last1|... |astq]n. Dualize to a

concatenation pairing of cobar complexes. What about the case when M # k7))

We can also write down explicit diagonal approximations to calculate the tensor product pairings.
Compare Adams (1960, p. 35).

Let M, N, T and V be left A-modules, still for a k-algebra A that is projective as a k-module. Let
€: By(A,A,M) — M and €: B.(A, A, N) — N be the normalized bar resolutions. These are projective
A-module resolutions. The tensor product € ® e: B.(A, A, M) ® B.(4,A)N) - M ® N is then a
projective A ® A-module resolution, hence is chain homotopy equivalent to the normalized bar resolution

B.(A® A, A AM®N)— M®N.

An explicit chain equivalence

AW: B, (AR A, A® AAM®N) — B.(A,A,M)® B.(A,A,N)

is given by the Alexander—Whitney map
q
AW(QO X bo[al X b1| RN \aq X bq]m X ’fl) = Zao[a1| SN |ai]ai+1 <. Qg X bobl N bz[bz+1| e |bq}’ﬂ .
i=0

See MacLane (1964, Cor. X.7.2). Now suppose that A is a Hopf algebra, with coproduct ¢: A —
A® A. Viewing M ® N as an A-module by restricting the A ® A-module stucture along the algebra
homomorphism v, we get a chain equivalence

U =DB(,¢,1): BA,AAM®N) — B(A® A,A® A,M ® N)

of A-module resolutions of M ® N. Note that both of these are projective A-module resolutions, by our
assuptions on A and the untwisting isomorphism from Proposition The composite A = AW o ¥
is a chain equivalence

A: By(A,AAM®N) — B.(A,A,M) ® B.(A, A,N)
of A-modules, with the diagonal action on the right hand side, given by

A(aglay|...|aglm @ n) Zao ail.. Wiyy oo agm @agay ...ai a4 ], |ag]n

where ¥(a;) =Y a, ®@al for all 0 <i <gq.

[[TODO: State the result above as a lemma.]]

As a special case, if M =k, and we arrange that a} € I(A) for all summands a} ® a} of ¥(a;), except
for a term 1 ® a;, then

A(aplay|...|aqln) Z agla M @agay...allais1] ... |agn

This recovers Adams’ formula. [[Explain how to construct this directly?]]
The tensor product pairing
®: Ext% (M, T) ® Exty"(N,V) — Ext’“"""(M @ N, T®V)
takes [f]®[g] to [(f®g)A], where f: Bs(A, A, M) — X'T and g: B, (A, A, N) — XVV are cocycles, so that
fOs+1 = 0 and gd,+1 = 0. When viewed as chain maps f: B.(A, A, M) — X!T[s] and g: B.(A, A,N) —
3"V [u], mapping to 0 in degrees other than s and w, respectively, their tensor product is a chain map
f®g: Bi(A, A, M) ® By(A,A,N) — X'T[s] @ 8"V [u] 2 ST @ V(s +u] .
The composite (f ® g)A is then the chain map determined by the cocycle
Bopu(A, A, M @ N) — STV

given by

aola1] ... |aspulm @ n — Z flaglal].. . lag]ag s - .- afy,m) ® glagal ... al[ay ] . |a . ]n) .
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Proposition 13.26. Let A be a Hopf algebra, projective as a k-module, and let L and N be A-modules.
The Yoneda composition pairing

o Exty'(k, L) ® Exty" (N, k) — Ext’ ""(N, L)
agrees with the tensor product pairing
®: Ext%'(k, L) ® Ext"(N, k) — Ext3t“ """ (k@ N, Lo k).
Proof. Let f: Bs(A, A k) — XL and g: B,(A, A, N) — XVk be A-linear cocycles. The Yoneda compos-
ite [f] o [g] is represented by the cocycle XV f o gs: Bsiy(A, A, N) — StV L given by
aolar] ... |astuln — flaolar] ... |as]g(Last1]. .. [as+u]n)).
The tensor product [f] ® [g] is represented by the cocycle

aolan] . fassuln— Y flaglai]... lalle(alyy - aly,)) - glagal .. alalyy]. |aly,]n)

where ¥(a;) = Y a}®a}. The assumption M = k implies that g(agay ...aZ[...]n) = 0if some a € I(A),

S
and €(al,,...a,,,) = 0if some a; € I(A), so only the summands a; ®1 of ¢(a;) contribute for 0 <i < s,
and only the summands 1 ® a; contribute for s + 1 < ¢ < s + u. Hence the sum simplifies to the single
term

aolaz]. .. lassuln — flaolar|. .. |as]1l) - g(1asta]. . - |asqu]n) -

Since f is k-linear, this equals the cocycle XV f o g;. O
Theorem 13.27. There is a natural pairing

E3Y(S,Z) @ B (X,8) — ESTWIT(X, 7)
of Adams spectral sequences, given at the Fo-term by the opposite Yoneda product

Ext’) (H*(Z),F,) ® Ext'y’(F,, H*(X)) — Ext>} """ (H*(Z), H* (X))

and converging to the composition pairing

’/Tt—s(Zz/;\) ® [X, Sﬁ]v—u — X, th—sﬂ—m

Proof. This is the same as the smash and tensor product pairing of the Adams spectral sequences, since
the tensor product of Ext-groups agrees with the opposite Yoneda product, and the smash product of
homotopy classes agrees with the composition product. Il

13.8. The composition pairing, revisited. Here is a geometric proof of Moss’ theorem on the com-
position pairing, close to the one for the smash product pairing.

Proof. Let {Y*}, and {Z"}, be Adams resolutions of ¥ and Z, with cofibers Y*/Y**1 = K* and
Zv) 7t = L% respectively. Let P, = H, (X*K?®) and Q, = H,(Z*L"), as usual.
Consider the homotopy limit of mapping spectra

M* = holim F(Y*, Z").
n<u-+s

Restriction from n < u+s+1ton < u+ s gives a map i: M%*t! — M%. Its homotopy fiber is the
product over s of the iterated homotopy fiber in the square

F(Y*, Zvs ) 5 F(Y?, Z%F%)

| |

F(ys+1’ Zu+s+1) F(ys+1’ ZquS),

which is equivalent to F'(K®, L“*#). Hence we get a tower

o —— MUt MY M! MO
S - J 1’\\ J
[I, F(K°, L) 1. F(K*®,L*).

101



Restriction to (s,n) = (0,u) defines a map to the tower

oo —— F(Y, 2% — S F(Y, Z2%) —— ... —— F(Y, ZY) —— F(Y, Z)

X ~
~ ~
~ ~
~ ~

F(Y, L") F(Y,L°%.
Applying homotopy we get a map of unrolled exact couples, from
oo —— T (MUY ———— 1 (M) (M) ——— 7. (M9)
X - J X l
[L K2, L], LK L7,

to the one generating the Adams spectral sequence {E>*(Y, Z)},. Let {{E**}, be the spectral sequence
generated by the unrolled exact couple just displayed. The map 'E}"* — E}"*(Y, Z) of E;-terms can be
identified, using the d-invariant isomorphisms

[11x°, 2], = [ [ Hom, (Quys, Ps) = HOML(Q., P.)

S
[Y, L*]. = Hom, (Qu, H*(Y))
with the quasi-isomorphism

€x: HOML"(Q+, P.) — Hom’,(Q,, H*(Y))
induced by €: P, — H*(Y). Hence the map of Es-terms is an isomorphism, identifying 'E5"" with the
Adams FEs5-term
Ey(Y,Z) = Exty (H"(Z), H*(X)).
We shall define a pairing of spectral sequences
br: "BV @ ES*(X,Y) — E*T5%(X, Z)
for » > 1, which agrees with the composition pairing
HOMY" (Q+, P.) @ Homy (Ps, H* (X)) — Hom ey (Quys, H* (X))
for r = 1. For r > 2 the source is isomorphic to
EX(Y, 2) @ B2 (X,Y)

via €, ® 1, which yields Moss’ pairing and the compatibility with the Yoneda product for r = 2.

The pairing ¢;: 'E"* @ EJ*(X,Y) — E}""®*(X, Z) is the composition pairing

[l L) @ (X, KoL — [X, L),

S

that takes (¢%)s ® f to ¢° f. We show that it restricts to a pairing ¢,: 'Z%* ® Z5*(X,Y) — Z4T5*(X, Z)
of r-th cycles, that descends to a pairing ¢,.: 'E“* @ E5*(X,Y) — E¥T$*(X, Z) satisfying the Leibniz
rule, for each r > 1.

((EDIT FROM HERE))
‘We shall use the identifications

"7 = im(m, (MY /M) — (MM TY))
Z5(X,Y) =im([X, Y)Y, — [X, K®].)
Z5%(X, Z) = im([X, Z%"5 ) 72T, — [ X, LY,
where M¥/M"“*tt =T], F(K*, L"**).
Consider the commutative square

F(YS, Zu+s+r) F(YS, Zu+s)

J |

F(YSJrT’ Zu+s+r) F(Y5+T7 Zu+s) .
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There are restriction maps from M¥*" to the upper left hand corner, and from M" to the homotopy
pullback of the rest of the square. Hence there is a map of homotopy fibers from L =1(M“/M"F1) to
F(Ys)ystr =Y (zwts | Zutstr)) giving a map
Mu/Mu+r N F(ys/ys—i—r Zu+s/Zu+s+r)
and an adjoint pairing
Mu/Mu+7' A Ys/ys—i—r N Zu+s/zu+s+7‘
compatible with the pairing M*/M*+tt A K¢ — L**$ for r = 1. This leads to the commutative diagram

7r*(]\4u/]\4u-§—7") ® [X, Ys/ys—i—r]* [X, Zu+s/zu+s+r]*

| |

LK, v, @ [X, K%, — 245 [X, Lw+e], .

The induced pairing of vertical images is ¢,..
((EDIT TO HERE)) (]

14. CALCULATIONS
14.1. The minimal resolution, revisited. Recall the minimal resolution e¢: P, — .

Lemma 14.1. The product h;-7ys n contains the summand vys11.m if and only if Os+1(gs+1,m) = Zj a;9s,;

contains the summand Squgs’n,

Proof. Letqs’n: P; — Fy be dual to the generator gs, € P, and let h; = 7v;,;: P — F2 be dual to
g1,i = [SqT].
Pop1 —— Py

P,—2 P F,

N,

Fy
We lift v5,, to vo: Ps = Po mapping g n — goo and gs; — 0 for j # n. Then g o0 0541 sends gs1,m
to ango,. To lift vy to v1: Poyy — Py we write a, = >, kaqQk, with each by € «/. Then we may
take Y1 (gs+1,m) = Y Dkg1,k, since 01 (g1,x) = Sqngoyo. The coefficient of gsy; , in the Yoneda product
hi - 7s,n is then given by the value of h; 01 on gsi1,m, which equals h; (3", brg1,x) = €(b;). Hence vey1,m
occurs as a summand in h; - 7y, if and only if Squ occurs as a summand in a,, = Zk kaqQk. This is

. . . 1 . . . .
equivalent to the condition that Sq¢? occurs as a summand when a,, is written as a sum of admissible
monomials. [l

Proposition 14.2. The Yoneda products in Ext;* (Fo,F3) in internal degrees t < 11 are given by:

"70,0‘71,0 V1,1 V1,2 71,3‘72,0 V2,1 V2,2 2,3 V2.4 ’Y2,5‘”Y3,0 3,1 73,2‘ Vs,0
ho {70720 O 722 72470 0 931 0 732 0 |70 0 71 | ¥s+1,0

hilmai| 0 71 0 vs| 0 31 O 0 0 ? 0 0 ? 0
ho 71,2 | 72,2 0 Y2,3 ? Y3,1 0 0 ? ? ? 0 0 ? 0
hs | 713|724 725 7 ?7 | y32 7 ? ? ? ? | yan 7 2 2
for 5 < s <10.
Proof. This can be read off from the minimal resolution e¢: P, — Fs, using the lemma above. O

Remark 14.3. The remaining summands, like Sq3g; o in 92(g2,1) and Sq?Sqlg1.1 in d2(ga,2), contribute
to higher compositions like Massey products, like h% € (ho, h1, hg) and hohs € (h1, ho, h1), which imply
n? € (2,n,2) and 2v € (n, 2, n), respectively.

Definition 14.4. Let ¢y € Extilfu(F%Fg) be the class of the cocycle 3 3: P3 — Fy of degree 11, dual
to g3,3.
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Corollary 14.5. The algebra unit is 1 = ~p,0. The classes hg = v1,0, h1 = v1,1, ha = V1,2, hs = Y13

and cy = 3,3 are indecomposable.

The remaining additive generators in internal degree t < 11 are

decomposable. These algebra generators commute with one another, so the Yoneda product is commutative
(in this range). The decomposable generators have the following presentations:

Vo0 = h3
Vo1 = I}
2,2 = hohs
Vo3 = I
Y2,4 = hohs
V2,5 = hihs

Y30 = hd

Y31 = hi’ = h3h2
Y32 = h3hs

Va1 = hihs

Ys,0 = hg

for s > 5. The relations hohy = 0, hiha = 0, h = h3ha and hoh3 = 0 are satisfied, and generate all

other relations for s < 3 and t < 11.

We redraw the Adams Fs-term with these standard names for the generators, in the usual chart with
the topological degree t — s on the horizontal axis and the filtration degree s on the vertical axis. (The
class labeled h3 could equally well have been called h3hs.)

hd ? ?
4| hg hghs| 2 | 7 | ?
h} h3 hdhs| co | 7 | ?
2| h§ hi |hoha hs |hohslhihs ?
ho | h1 ha h3
0
0 6 8 10

Another way to draw the chart is to use a e for each additive generator, a vertical line connecting x
to hox, a line of slope 1 connecting z to hiz, a (dashed) line of slope 1/3 connecting = to hex, and a

(dotted) line of slope 1/7 connecting x to hsz.

N
4| o
.
2 &
O
0
0 2
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Here is the same chart without the hs-multiplications, which tend to clutter the picture, but with
labels for the indecomposables.

\I . . ? ?
4] e ° ? ? ?
° ) ° CO. ? ?
VARK 3 i ) _.e ° ?
hot T, Il 1 Iy
o ¢«
0 2 4 6 8 10

The reader might contemplate the relations h;h;41 = 0, h?—s-l = h?hHg and hihf+2 =0, in view of this
diagram.

Let us take for granted Adams’ vanishing result, in the form that the groups E; T—0for1<t—s<7
and s > 5. Then:

Lemma 14.6. Ey' = E%! fort <11.

Proof. Since the h; for 0 < ¢ < 3 represent homotopy classes, they are infinite cycles, meaning that
dy(h;) = 0 for all »r > 2. By the Leibniz rule, it follows that d,(z) = 0 for each x in the subalgebra
generated by these classes. The only remaining additive generator is ¢g, but d,(cp) lands in Adams’
vanishing range, for all r > 2. (|

Theorem 14.7. [(a)]

(1) 7o(S)5 = Zsy is generated by the identity map t: S — S, represented by 1 € E%C. The class of
2% is represented by h§ € ES:°, for all s > 0.

(2) m1(S) =2 Z/2 is generated by the complex Hopf map n: St — S, represented by hy € EL2.

(3) m2(S)h =2 Z/2 is generated by n?, represented by h? € B2

(4) 73(S)5 =2 Z/8 is generated by the quaternionic Hopf map v: S® — S, represented by hy € EL.
The class 2v is represented by hoha € E%®, and the class 4v = n® is represented by hihy = h3

in E35.
(5) ma(S)y =0.
(6) m5(5)5 =0.
(7) 76(S)5 =2 Z/2 is generated by v?, represented by h3 € E%5.
(8) m7(S) = Z/16 is generated by the octonionic Hopf map o: ST — S, represented by hy € ELS.

The classes 280 are represented by hkhy € EXFUVFS8 for 0 <k < 3.

This gives the additive structure of m,(S)% for x < 7. We can also determine the multiplicative
structure.

Proposition 14.8. 2 =0, ° = 4v, nv = 0, 2v% = 0.

Proof. These follow from the relations hohy = 0, h3 = h3hg, hiha = 0 and hoh3 = 0 in Ext, together
with the fact that there are no classes of higher Adams filtration, in these cases. O

Remark 14.9. By associativity, it is clear that 1 - % = nv-v = 0. On the other hand, the vanishing of
hy - h3 in EXti;lO(FQJFQ) only tells us that - ? is 0 modulo classes of Adams filtration s > 4. There
is one such class, namely 8¢ represented by h3hs, but the factorization of v? tells us that 7 - v? is not
equal to 8c, but is 0.

14.2. The Toda—Mimura range. Toda (1962) calculated 7,4 (S*) for all n < 19, Mimura and Toda
(1963) extended this to n = 20, and Mimura (1965) carried on to n = 21 and n = 22. For k large, these
computations determine the stable homotopy groups 7, (S) for n < 22. ((Maybe better to continue to
n < 23, to see VR.))

The Adams Es-term in this range was originally computed by hand (by Adams (1961) for ¢t — s < 17
and Liulevicius (unpublished) for ¢t — s < 23), then by the May spectral sequence (by May (1964) for
t—s < 42 and Tangora (1970) for t —s < 70), but can now quickly be obtained by machine computation.
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FicUure 25. Adams spectral sequence for S, in degrees 0 < x < 22

Bruner’s ext-program yields the chart in Figure The larger chart in Figure was created by
Christian Nassau (2001).

((Show hidden extensions: 7 times p is represented by Pcg, 1 times ni is represented by Pdg, 2 times
2vk equals v times 4k and is represented by hy Pdy, v times v? differs from n?c by ne.))

With the exception of fj, each labeled class is the unique nonzero class in its bidegree. The class fj
is, for now, only defined modulo the decomposable class h3hs = h3hahy. (A definite choice can be made
using Steenrod operations in Ext.)

In addition to the hg-, hi- and ho-multiplications shown, and the product hs - hs = h3 in E§’16, there
are the following nonzero hs-multiplications:

hs - Phy = h3dy
hs - hiPhy = h3Phy = h3dy = hleg
hs - h2 = h3hy
hs - eq = hihaco
hs - P?hy = h?Pd,
hs3 - hiP2hy = h3P%hy = h3Pdy = hj Peg

The last three of these land outside the displayed range of topological degrees. We omit to list the
h;-multiplications for i > 4. ((The multiplicative structure also includes relations like ¢3 = hidp.))
The evolution of the Adams spectral sequence in this range is as follows.

Theorem 14.10. The algebra indecomposables in topological degree t — s < 22 of the Adams Es-term
are hg, hy, ho, hy and hy in filtration s = 1, ¢y and ¢y in filtration s = 3, dgy, ey, fo and g = g1 in
filtration s = 4, Phy and Phs in filtration s = 5, Pcqy in filtration s = 7, Pdy in filtration s = 8, and
P2h; and P?hy in filtration s = 9.
The classes hg, hi, ha, ha, co, c1, do, g, Phy, Pha, Pcy, Pdy, P?>hy and P%h, are infinite cycles.
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The nonzero ds-differentials affecting this range are:
ha V25 hohZ
ey — h%do
fo — hohado = heq
hieg = hofo — hidy = hieo
i — hoPdy
hoi — h2Pdy

The list of algebra indecomposables of the Es-term is as for the Es-term, with hy, eq and fo deleted,
but with hohy, hihs and hohy added. The classes hihy and hohy are infinite cycles.
The nonzero ds-differentials are:

hoha v hody
h2hy — hidy

The list of algebra indecomposables of the Ey-term is as for the Es-term, with hohy deleted, but with
h3hy added. There are no further differentials, so that E4 = E in this range of topological degrees.

Sketch proof. Use graded commutativity of 7, (S) to see that 202 = 0, but hoh3 # 0 in Eg”l?. Since hoh3
is an infinite cycle, it must be a boundary, so da(hs) = hoh3.

Using the homotopy-everything structure on S, one gets a differential da(fy) = h3ep, which implies
that dg(hofo) = h%@o and dg(eg) = h%do

Using the J-homomorphism, we known that m5(S5)% contains Z/32 as a direct summand. We know
that da(hohy) = h3h3 = 0. If also d3(hohs) = 0, then m15(5)% would instead contain a copy of Z/64
(unless dg(h1hy) = hihs). Deduce that d3(hohs) = hodo. O

Toda (1962) uses the following notation.

Definition 14.11. Let ¢ € m3(S)5 be the unique class represented by co € E3!. Then ne € mo(S)5 is
represented by hico € EX. ((Claim: v® = n%0 + ne.))

Let = pg € m9(S)5 be the unique class represented by Phy € E3. Then nu = p19 € m10(S)5 is
the unique class represented by hy Phy € ES16.

Let ¢ € m11(S) be a class represented by Phy € E3!6. It is determined up to an odd multiple. Then
4¢ = np.

The class 02 = 63 in 714(S)% is decomposable. It is represented by h3 € E2%!6.

Let k € m14(S)5 be the unique class represented by dy € EL®. ((Then nx € m15(S)% is represented
by hidg, and vk € m17(S)% is represented by hodg, while n?k = 0.))

Let p € m15(5)% be a class represented by hghy. It is determined up to an odd multiple. ((There is a
hidden multiplicative extension: np is represented by Pcy.))

Let n* = n4 € m6(S)% be a class represented by hihs. ((This only defines it modulo np.))

Let v* € m15(5)% be a class represented by hahy. ((This only defines it up to an odd multiple, and
modulo nji = p1z. Compare o2 to vv*?))

Let jz = p17 € m17(S)% be the unique class represented by P?%h, € ngﬁ. Then np = g € ms(S)5 is
the unique class represented by hy P2h; € E10:28.

((Define 7, ¢.))

Definition 14.12. It is traditional to write 6; for a class in my;+1_5(S) represented by h? in Egojﬂv?, if

such a class exists, and to write 7; for a class in my; (S) represented by hih; € E£+272.

Remark 14.13. The classes 0; are realized for 0 < j < 3 by 22 = 4, 2, v? and ¢2. It follows from the
computations of Mahowald and Tangora (1967) that h? is an infinite cycle, so that 4 € m30(S) exists.
It was proved by Barratt, Jones and Mahowald (1984) that h2 is an infinite cycle, so that 05 € mg2(S)
exists. It is an open problem whether 65 € m126(S) exists. Hill, Hopkins and Ravenel (2009, to appear)
showed that 6; does not exist for j > 7.

Mahowald (Topology, 1977) proved that the n; exist (so that hih; is an infinite cycle) for all j > 3.

It is known (Mahowald and Tangora (1967), plus later calculations) that the only other classes in
filtration s = 2 that survive to the E..-term are hohs, hohs and hohy, representing 2v, 20 and v* in
. (S).
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Theorem 14.14. [(a)]

(1) ms(S)5 = (Z/2)? is generated by no and €, represented by hihs € E%'0 and ¢y € E3', respec-
tively.

(2) m9(S)s =2 (Z/2)? is generated by n’c, ne and p, represented by hihs € E3'2, hicy € EL3 and
Phy € B3, respectively.

(3) m10(S) 2 Z/2 is generated by nu, represented by hy Phy € ES:6.

(4) m1(9)% = Z/8 is generated by (, represented by Phy € EX0. The class 2¢ is represented by
hoPhy € ES7, and the class 4C = n?p is represented by h3Phy = h?Phy, € E!8.

(5) 7712(5‘)9 = 0
(6) 71'13(5)@ =0.
(7) m14(S)% = (Z/2)?* is generated by 0® and k, represented by h3 € E%S and dy € EL8, respec-

tively.
(8) m5(9) = 7Z/32® Z/2 is generated by p and nk, represented by hihs € ELY and hidy € E32°,
respectively. The classes 28p are represented by h§+3h3 € EFHORH19 for 0 < k < 4.
(9) m16(S)% =2 (Z/2)? is generated by n* = n4 and np, represented by hihy € E%® and Pcy € BT,
respectively. ((Note the filtration shift inn-p.))
(10) m17(S)s = (Z/2)* is generated by nnm*, vk, n’p and i = pi7, represented by h2hy € E320,
hodo € E322, hyPcy € E72* and P%*hy € E2:?%, respectively.
(11) mg(S)y = Z/8 © Z/2 is generated by v* and nji = g, represented by hohy € E%2° and
hiP%hy € EL028 respectively.
(12) m19(9)5 = Z/2 ® Z/8 is generated by ¢ and (, represented by c¢1 € E2* and P*hy € E2?8,
respectively.
(13) mao(S)s = Z/8 is generated by K, represented by g € E%*. The class 2k is represented by
hog € E32°, and the class 4k = 1%k is represented by h3g = h3dy € ES2S.
(14) m1(9)5 = (Z/2)? ((?)) is generated by vv* and nk, represented by h3hy € E2* and h1g € E325,
respectively.
(15) m22(S)5 = (Z/2)% ((?)) is generated by va and n’k, represented by hoc; € E426 and Pdy € ES3°,
respectively. ((Note the filtration shift in n-nk.))

((Discuss additive splittings, by 2n = 0 and associativity, and multiplicative extensions.))

Remark 14.15. There are Steenrod operations Sq¢' in Ey™ = Ext®(Fy, Fy), taking E5" to E3T*". In
particular S¢°: Ey' — E5* is multiplicative, and maps h; to ki for i > 0. A sequence of elements

z,5¢°(x), S¢° (S (x)), ...

is called a Sq*-family. In the Sq°-family hg, hy, ho, ... the first four classes detect 2¢, 1, v and o, but hy
and all later terms are killed by the Adams differentials da(h;) = hoh?_; for i > 4.

In the Sq%-family h2,h2 hZ, ... the first six classes detect 4¢, n?, v2, o2, 0, and 05, but h2 and
all later terms are killed by (unknown) differentials. The status of hZ is unknown. In the family
hoha, h1hs, hohyg, ... the first three classes detect 2v, no and v*, but hghs and all later terms sup-
port differentials. In the family hohg, hihg, hohs,... the first two classes detect 20 and n*, but hahs
and all later terms support differentials. For each ¢ > 4, only the term hjih;y; survives in the family
hohiy hihiv1, hohito, ..., detecting n;+1. The classes ¢y, c1,ca,... also form a Sq%-family. The first two
classes detect € and &, but there are differentials do(c;) = hg fi—1 for i > 2.

These results leads to the conjecture, called the “New Doomsday Conjecture” by Minami, and the
“Finiteness Conjecture” by Bruner, saying that only a finite number of terms in each Sq¢"-family detects
nonzero homotopy classes. ((References?))

14.3. Adams vanishing.

Lemma 14.16 (Change of rings). Let A be any algebra, let B C A be a subalgebra such that A is flat
as a right B-module, let M be any left B-module and let N be any left A-module. There is a natural
isomorphism

Ext%'(A®p M, N) = Ext%'(M,N).

Proof. Let P, — M be a B-free resolution. Then A ® g P, — A ®p M is an «/-free resolution. The
isomorphism Hom (A ®p Py, N) = Homp(Py, N) induces the asserted isomorphism upon passage to
cohomology. O

((TODO: Discuss compatibility of multiplicative structure(s) in Ext 4 and Extg.))
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FIGURE 27. Adams spectral sequence for HZ

Definition 14.17. Let A be an algebra and let B C A be an augmented subalgebra, with augmentation
ideal I(B) = ker(e). Let
A//B=A®pF, =2 A/A-I(B).
If B is normal in A, meaning that I(B)- A = A-I(B), then A//B is a quotient algebra of A.
Recall that we write P(z) = Fo[z] and E(z) = P(z)/(z?) for the polynomial algebra and the exterior

algebra, respectively, on a generator x. Let A(0) = F(0) = E(Sq') C & be the subalgebra generated by
Sq'. There are isomorphisms H*(HZ) = o o/ Sq* = o/ @ a(9) F2 = o/ //A(0).

Proposition 14.18. The Adams spectral sequence for HZ collapses at the Eo-term

Ey* = Ext’) (H*(HZ),F2) 2 Ext'yl (F2,F2) = P(hy)

where hg € E21’1, and converges strongly to w.(HZs). The class of 2° € mo(HZs) = Zo is represented by
h§ € ES?, for each s > 0.

Proof. The Steenrod algebra 7 is free as a right A(0)-module, generated by the admissible monomials
Sq! for which I = (iy,...,is) and i, > 2. (This includes the monomial 1 = Sq0.)

There is a minimal, free A(0)-module resolution P, of Fy with P = A(0){gs} = F2{gs, S¢*gs} for
each 5 > 0, and d,(gs) = Sq'gs—1 for each s > 1. Then Ext? ) (F2, F2) 2= Hom (o) (Ps, F2) = Fa{7,} is
generated by the dual of gs. It lifts to a chain map 7,: P.ys — P that takes g, to g, for each n > 0.
These satisfy 4, 0 ¥s = Ju+s under composition, so v, - vs = Yu+s in the Yoneda product. Let hg = 71
be dual to g1, in internal degree 1. Then 75 = h§ and we have proved that Ext’ ) (F2,F2) = Fa{h{ |

The cofiber sequence
S H7Z — HZL
induces a short exact sequence
0 Fy <7 o7 /JA(0) «— (o [/ Sq") + 0
in cohomology, and a long exact sequence
Ext?, " (I(of |/ Sq"), Fa) = Ext?) (F2, F2) 5 Bxt’jl (Fa, Fa) — Bxt?) (I(«/ //Sq"), F2)

of Adams Fs-terms. The map 7, is an isomorphism for ¢ — s = 0, so the connecting homomorphism § is
an isomorphism for ¢t — s # 0.

Lemma 14.19. (< /<7 Sq") is free as a left A(0)-module, generated by the admissible Sq’ for which
I = (iy,...,i), i1 is even and iy > 2. (This excludes the monomial 1 = SqU.) The first few basis
elements are

Sq*,5q¢*, 4%, 54" Sq*, 54°, S4°Sq?, S¢°Sq*, S¢'°, Sq*Sq?, Sq*S¢?, ... .
Proof. When Sq! ranges over the admissible monomials with i; even and i, > 2, then S¢’ and Sq'Sq’
range over the admissible monomials with i, > 2. The only exception occurs for I = (). O
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Proposition 14.20. Let M be an <7 -module that is free as an A(0)-module, and concentrated in degrees
x> 0. Let

0 fors=0 mod 4,

€(s)=4¢1 fors=1 mod 4,

2 fors=2,3 mod 4.

Then
Ext?) (M,F3) =0
fort—s < 2s—¢(s).
Proof. First consider the case M = A(0), with the unique /-module structure realized by H*(S/2).
There is a minimal free @/-module resolution
Py 2 Py 2 P 2 Py S A(0) > 0

with Py = «7{1}, P, concentrated in degrees t > 2, P5 concentrated in degrees ¢t > 4, P3 concentrated
in degrees t > 7, and T2 = ker(0s) concentrated in degrees ¢ > 12.

This can be proved by direct calculation, or by using our previous Ext-calculations for the sphere
spectrum, the cofiber sequence S 2.8 S/2 — ¥.8 = S!, the induced extension 0 < Fy < A(0) +
3y + 0 of &/-modules, and the associated long exact sequence

s Ext® VT (g, Ty) LN Ext®) (Fa, F2) — Ext®/(A(0),Fp) — Ext® " (Fg, Fa) — ...

in Ext. Here each connecting map ¢ is given by the Yoneda product with hg, which is the class in
Extiz;{l (Fo2,F3) of the extension above. This leads to the additive structure of the following Adams chart
for Ext?)"(A(0),Fy):

8

6

4 LIZ
2 2 "

1 - 3
h&r’ /.’h
0
0 2 4 6 8 10 12

This proves the claim for M = A(0) and 0 < s < 4.

Next, consider an extension 0 - M’ — M — M"” — 0 of A(0)-free &7-modules, all concentrated in
degrees * > 0, and suppose that the claim holds for M’ and M"”. Then the claim follows for M, in view
of the long exact sequence

= BExt®) (M, Fy) — Ext®) (M, Fa) — Ext®/ (M’ Fa) — ... .

The claim for general A(0)-free M and 0 < s < 4 then follows.
Since A(0) and each Py is A(0)-free, it follows that 2K = ker(d3) is A(0)-free, and concentrated in
degrees * > 12. Thinking of P, 4 as a resolution of 12K, we get an isomorphism
Ext®f (K, Fy) = Ext® "2 (Fy, Fy)

for all s > 0. Hence the claim for A(0) and 4 < s < 8 follows from the one for K and 0 < s < 4. The
general claim for A(0)-free M and 4 < s < 8 then follows as above. Continuing this way, the general
claim follows for all s > 0. O

Corollary 14.21. EXti’;(FQJFQ) =0for0<t—s<2s—e¢, wheree =1 for s=1 mod 4, ¢ = 2 for
s=2 mod 4 and e =3 for s =0,3 mod 4.

Proof. This follows from the isomorphisms
Ext®) (Fo, Fo) = Ext®, " (I(of /o7 Sq"),Fo) = Ext®, "2 (M, Fy)

for t — s > 0, where ¥2M = I(<//</Sq'), and the proposition as applied to M. O
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This result is not quite optimal for s = 0 mod 4. Adams (1966) works a little harder to prove the
optimal vanishing range:

Theorem 14.22 (Adams vanishing). Ext®(Fy,Fy) =0 for 0 <t —s < 25 —¢, where e = 1 for s = 0,1
mod 4, e =2 for s =2 mod 4 and e =3 for s =3 mod 4.

((ETC: Approximation for Ext over A(n) C «7.))

14.4. Topological K-theory.

Definition 14.23. Let ku and ko be the complex and real connective K-theory spectra, with underlying
infinite loop spaces Q*°ku = Z x BU and Q°°ko = Z x BO, respectively. These are the connective covers
of the complex and real topological K-theory spectra, KU and KO, respectively.

Definition 14.24. Let bu and bsu be the 1- and 3-connected connected covers of ku, respectively, with
Q>°bu = BU and Q*°bsu = BSU. Let bo, bso and bspin be the 0-, 1- and 3-connected covers of ko,
respectively, with Q2°°bo = BO, Q2*°bso = BSO and Q*bspin = BSpin. We may also use the notations
u=X"1bu, su=X"bsu, 0o = " bo, so = X" 'bso and spin = ¥ 'bspin, for the desuspended spectra
with infinite loop spaces U, SU, O, SO and Spin, respectively.

Remark 14.25. This is the notation used by Adams and May. Mahowald and Ravenel write bu and bo
for “our” ku and ko.

Definition 14.26. Let Q1 = [Sq', S¢%] = S¢®+5¢*Sq*. Let E(1) = E(Sq¢', Q1) C & be the subalgebra
of &/ generated by Sq! and Q1, and let A(1) = (Sq', S¢?) C & be the subalgebra generated by Sq' and
Sq¢?. Here is an additive basis for A(1), with the action by Sq! and S¢? indicated by arrows:

! qu S\q?) quSqB
Sqt ————————— 8¢°Sqt —— S¢3Sqt SqlSqd

For typographical reasons, we write Sq2Sq> in place of its admissible expansion S¢° 4+ Sq*Sq!. Note
that £(1)//A(0) = E(Q1), A(1)//E(Q1) = E(Sq', S¢?) and A(1)//E(1) = E(Sq?).

Proposition 14.27 (Stong). There are </ -module isomorphisms
H*(ku) 2 o/ //E(1) = o | {Sq*,Q1} = o |/ {Sq*, Sq®}
and
H*(ko) = o/ //AQ1) = o |/ {Sq", S¢*} .
Proof. By complex Bott periodicity, there is a cofiber sequence
S2hu 25 ku — HZ — Sk

Here ¥2ku = bu is the connected cover of ku. The left hand map is a composite

S2ku = ku A S? 2% ku A ku -2 ku

where u € 7o (ku) is a generator and ¢ is the ring spectrum product. It is known that the mod 2 Hurewicz
image of w is zero, so f* = 0, and there is a short exact sequence of .&7-modules

0+ H*(ku) < H*(HZ) + S*H*(ku) + 0.
The short exact sequence of F(1)-modules
0+ Fy + E(1)//A(0) + %°Fy < 0
can be induced up to a short exact sequence
0« o //E(1) + o/ //A(0) + X%/ //E(1) + 0,

since &7 is free as a right E(1)-module.
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The composite HZ — Y3ku — Y3 HZ is known to take ¥31 to Q; in cohomology, so ku — HZ takes
@1 to 0 in cohomology. Hence there is a map of short exact sequences

0 o/ JEQ) +—— o | JA(0) «—— SPet |/ E(1) +—— 0

| J

04— H*(ku) «—— H*(HZ) +—— S3H* (ku) +—— 0

We know that the middle map is an isomorphism, and the right hand map is the triple suspension of
the left hand map. It follows by induction on the internal degree that the latter two maps are also
isomorphisms.

By real Bott periodicity, there is a cofiber sequence

Yko 5 ko — ku — Y2ko.

The left hand map is a composite

Sko = ko A S' 2% ko A ko -5 ko

where 7 € (ko) is the image of n € m1(S), and ¢ is the ring spectrum product. The mod 2 Hurewicz
image of 7 is zero, so n* = 0, and there is a short exact sequence of &7-modules

0« H*(ko) + H*(ku) < X2H*(ko) + 0.
The short exact sequence of A(1)-modules
0« Fy + A(1)//E(1) + X%Fy < 0
can be induced up to a short exact sequence
04 o [/AQ1) « o //E(1) « $2a/ | JA(1) + 0,

since & is free as a right A(1)-module.
The composite ku — X2ko — L2ku takes X121 to S¢? in cohomology, so ko — ku takes Sq? to 0 in
cohomology. Hence there is a map of short exact sequences

0+—— & //AQ1) +— | /E(1) +—— X2/ /JA(1) +— 0

| J

0 «—— H* (ko) «—— H*(ku) «—— S2H* (ko) +—— 0

We know that the middle map is an isomorphism, and the right hand map is the double suspension
of the left hand map. It follows by induction on the internal degree that the latter two maps are also
isomorphisms. U

Proposition 14.28. The Adams spectral sequence for ku collapses at the Fo-term

E;’* = EX‘E;; (H*(k‘u), ]FQ) & EXtEa)(FQ, IFQ) =t P(ho, hgo)

where ho € By and hyy € Ey®, and converges strongly to m.(kub) = Zo[u]. The class of 2 € mo(kup) is
represented by ho, and the class of u € mo(kub) is represented by hag.

Proof. We use the change of rings isomorphism Ext_;"(«///E(1),F2) = Exty ), (F2,F2). ((Must justify

that 7 is right free, thus flat, over E(1).)) There is a Kiinneth isomorphism

EXtE?I) (FQ, Fg) =~ EXtE?Sql) (Fg, ]FQ) ® EXtE?Ql) (]Fg, IFQ)

and ExtEE‘Ql)(FQ,IFQ) > P(hgg) with hgy dual to Qq, by the same argument we used to show that
ExtEE‘l)(IFQ,Fg) = P(hg) with ho dual to Sq'. (Another name for hog is v1.) The spectral sequence is

concentrated in even columns, hence collapses for bidegree reasons. O
Proposition 14.29. The Adams spectral sequence for ko collapses at the Eo-term
Ey" =Ext) (H*(ko),Fy) = Extj{a)(]Fg,Fg)
>~ P(hg, h1,v,w1)/(hohi, h3, hiv,v* = h3w;)
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FIGURE 28. Adams spectral sequence for ku
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FI1GURE 29. Adams spectral sequence for ko

where hg € By, hy € BEy?, v e E§’7 and wy € Ey'?, and converges strongly to

me(koy) = Zoln, o, B]/ (20,77, na, o® = 48) .
The classes 2, m, o and B are represented by hg, h1, v and wy, respectively.

Hence
o () == {ZQ{ui} for n = 2i
0 otherwise
and ‘
Z2{B"} for n = 8i
Z/2{nB'} forn=8i+1
Z]2{n*B'} forn=8i+2
Zo{aBt} forn =8i+4
0 otherwise
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for n > 0.
((The complexification map c: ko — ku induces hg +— hg, hy +— 0, v = hoh3, and w; — h3, in Ext,
and similarly in homotopy.))

Remark 14.30. To compute Ext’;{a)(Fg,Fg), we can use the Cartan—Eilenberg spectral sequence (1956,

Theorem XVI.6.1). If A is a connected graded algebra, B C A is a normal subalgebra, and A is projective
as a right B-module, then this is an algebra spectral sequence

EDT = Extt, . (Fy, Exth(Fy, Fy)) = Ext’(Fy, Fy)

A//B

of cohomological type. In the special case when A = F5[G] is a group algebra, and B = F3[N] is the group
algebra of a normal subgroup, we have B//A = F3[G/N] and the Cartan-Eilenberg spectral sequence
agrees with the Lyndon—Hochschild-Serre spectral sequence

B = Hy, (G/N: Hy, (N3 Fa)) = Hy(G: Fs).

This is again a special case of the Serre spectral sequence in mod 2 singular cohomology, for the fibration
BN — BG — B(G/N).

First proof. We use the change of rings isomorphism Ext(;"(e///A(1),F2) = Ext), (F2, F2). ((Must

justify that & is right free, thus flat, over A(1).)) The subalgebra E(Q1) C A(1) is normal, with
quotient A(1)//E(Q1) = E(Sq', Sq?). Hence there is a Cartan-Eilenberg spectral sequence

E;’* = EXtE(Sql,SqQ)(F27 EXt*E'(Q])(FQ’ IFQ)) — EXtZ(l)(]F27F2) .
Here Exty g, )(F2, Fa) 2 P(hy). The module action of E(Sq', S¢%) on P(hsy) is (necessarily) trivial, so
E3™ 2 P(hg, h1) ® P(hao)

with ko € Ey? dual to Sq', hy € Ey° dual to S¢?, and hgy € EY' dual to Q. (We are ignoring the
internal degrees here.) There is a dop-differential da(hog) = hohi, corresponding to the fact that the
generator )1 € E(Q1) becomes decomposable in A(1). This leaves the Fs-term

B3 2 P(ho, hy)/(hoh1) @ P(h) -
There is a further dz-differential da(h%,) = h$. This leaves the F3-term
Ey" 2 (P(ho, h1)/(hoha, h?) ® P(ho){hoh30}) @ P(ha) .

The spectral sequence collapses at this stage, for bidegree reasons: A ds-differential on h3, could only
hit A3, but the internal degrees do not match. ((No additive or multiplicative extensions.)) O

Second proof. One might also consider the Cartan—Eilenberg spectral sequence

Eg’q = EXt%(SqZ)(FQ, EthE(l)(FQ, ]FQ)) — EXtin() (]FQ,FQ)

associated to the isomorphism A(1)//E(1) & E(Sq¢?), but in this case the E(S¢?)-module action on
Extg(l)(IFg,Fg) = P(ho, hao) is non-trivial, being given by Sq? - hog = hg. With the usual periodic
resolution for Ext over E(S¢?), this gives a d;-differential dy(hag) = hohi, so that

E3" = P(ho,h1)/(hoh1) ® P(hi) .
Again there is a ds-differential d3(h3,) = h}, leaving
E;" = EX' = (P(ho, h1)/(hohi, h3) @ P(ho){hoh3y}) @ P(h) .
Note that in this case hg, h1 and hog have bigradings (p,q) = (0,1), (1,0) and (0, 1), respectively. O

Third proof. For a proof without the Cartan—FEilenberg spectra sequence, we may construct a minimal
resolution of Fy by “almost free” A(1)-modules. Some interesting examples of indecomposable modules
appear along the way. There is an exact sequence

0 — B12F, — S7TA(1)//A(0) 25 $44(1) 2 x24(1) 25 A(1)//A(0) -5 Fy — 0
of A(1)-modules. The kernel of the augmentation € from A(1)//A(0) = A(1)/A(1)Sq":

1 Sq? Sq? Sq¢?Sq?



is the “question mark module”

Sq? —— S¢3 Sq¢?Sq?

NS

which is isomorphic to ®2(A(1)/A(1)Sq¢?). Here 1 ® e: o/ //A(0) — </ //A(1) is induced by the zeroth
Postnikov section ko — HZ, with homotopy fiber bo, so XH*(bo) = o/ ®4(1) ker(e) and H*(bo) =
S(o | Sq?).

The kernel of 9; : 32 A(1) — ker(e), taking %21 to S¢?, is the double suspension of the “joker module”

YR

Sq¢? —— S¢3 Sq¢38qt Sq¢?Sq® —— Sq'S¢°

~_ 7

which is isomorphic to X*(7 /7 Sq*). Here 100; : X249/ — o/ ® 4(1)ker(e) is induced by the Postnikov sec-
tion bo — X H, with homotopy fiber bso, so S2H*(bso) = & @ 4(1) ker(01) and H* (bso) = ¥2(o/ | Sq?).

The kernel of 02: X4 A(1) — ker(d;), taking X*1 to X25¢?, is the fourfold suspension of the “inverted
question mark module”

N

Sq? Sq¢?Sq® —— Sq'S¢°

which is isomorphic to X (7 /&7 {Sq', S¢*Sq®}). Here 1®0y: B/ — o @ (1) ker() is induced by the
Postnikov section bso — %2H, with homotopy fiber bspin = $*ksp, so B2 H* (bspin) = o/ ®a(1) ker(0s)
and H*(bspin) = %4 (o |/ {Sq', Sq¢*>Sq?}).

The kernel of d5: X7A(1)//A(0) — ker(dy), taking %71 to X4S¢?, is the sevenfold suspension of the
trivial module

Sq¢2Sq3

which is isomorphic to ¥5F,. Here 1 ® 03: X7/ //A(0) = o ®a(1) ker(d2) is induced by the Postnikov
section bspin — %*HZ, with homotopy fiber %8ko, so L4 H*(X8ko) = o ®a(1) ker(03) and H*(X%ko) =
¥8(a///A(1)), which we already knew.

From the exact sequence of A(1)-modules, we get short exact sequences

0 — Ext’y); (ker(e), F iy (F2, Fa) — Ext’y) (F2,F) — 0

0 — Ext’y 35 (ker(d1), F

A1)

0 — Ext’y ;' (ker(92), Fa

0— Ext;(f)t(zl Fo,Fy

xtiyn) (ker(1), Fa) — Exty ! (5'Fa, Fa) — 0

Ext
Ext’y ;' (ker(e), F2) — Exty ! (Z°F2, F2) — 0
E
E s—3,t s—3,t 7
Xt A1) (ker(ag),Fg) — EXtA(O) (E FQ,]FQ) —0

Fo) -2
) -2
) -2
) -2

This determines Ext}y ) (F2,Fa). O

Corollary 14.31. There are </ -module isomorphisms:
H*(bo) = X(o |/ Sq?)
H*(bso) = %2 (o | .o/ Sq®)
H*(bspin) = %4 (o |7 {Sq", S¢*Sq’})
((Also k(1) = ku/2, ko/2.))
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15. THE DUAL STEENROD ALGEBRA

15.1. Hopf algebras. Let G be a topological group with H,(G) of finite type. Then the cohomology
cross product

H*(G)® H*(G) = H*(G x G)

is an isomorphism. The (cocommutative) diagonal map A: G — G x G, and the augmentation G — x*
induce a pairing

¢: H(G) ® H*(G) = H*(G x G) 25 H*(Q)
and a unit map
n: F, — H*(G)
that make H*(G) a (graded commutative) algebra. The group multiplication m: G x G — G and the
inclusion {e} — G induce homomorphisms
b H*(G) ™5 H*(G x G) = H*(G) @ H*(G)
and
e: H(G) — T,

that make H*(G) a commutative Hopf algebra, and the group inverse i: G — G induces a homomorphism
x: H*(G) -, H*(G)

that makes H*(G) a commutative Hopf algebra with conjugation, according to the following definitions.
It is connected if and only if G is path connected as a topological space.

Dually, the Pontryagin product ¢ = m.: H.(G) ® H.(G) — H.(G), unit inclusion n: F, — H.(G),
diagonal coproduct ¢ = A,: H,(G) —» H.(G) ® H.(G), augmentation e: H.(G) — F, and conjugation
X = ix: Hy(G) = H,.(G) make H,(G) a cocommutative Hopf algebra with conjugation.

Let k be any field, and write ® for ®y.

Definition 15.1. A k-algebra is a graded k-module A equipped with homomorphisms ¢: A® A — A
and n: k — A, such that the diagrams

A A A2 Aw A

ol
AvA—" A

(associativity) and

koA A0 A2 Ank

commutes, where y(a®b) = (=1)1?Plb®a. A k-algebra homomorphism f: A — B is a degree-preserving
k-module homomorphism such that the diagram

A A—2 Ak
f®fl fl J_
BoB—" 3Bk

commutes.
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Definition 15.2. A k-coalgebra is a graded k-module A equipped with homomorphisms ¢¥: A - A® A
and e€: A — k, such that the diagrams

A—"Y sAgA

b e

AA S A9 AmA

(coassociativity) and

IR

‘|
k®AWA®AT®C>A®k

(counitality) commute. It is cocommutative if the diagram

SN

AQA—— 3 AR A

HZ =

commutes. A k-coalgebra homomorphism f: A — B is a degree-preserving k-module homomorphism
such that the diagram

— —£%A®A

k A

1 e
ke B—3BoB
commutes.

Definition 15.3. A k-algebra A is connected if the underlying graded k-module is zero in negative
degrees and 7: k — A is an isomorphism in degree 0. A k-coalgebra A is connected if it is zero in
negative degrees and e: A — k is an isomorphism in degree 0.

Definition 15.4. An augmented k-algebra is a k-algebra A with a k-algebra homomorphism e: A — k.
Let I(A) = ker(e) be the augmentation ideal, and let

Q(A) =I(A)/I(A)? =k®a I(A)

be the indecomposable quotient module.

A homomorphism of augmented algebras is an algebra homomorphism that commutes with the augmen-
tations.

(We make sense of the tensor product over A in the next subsection.)

Proposition 15.5 (Milnor-Moore). Let f: A — B be a homomorphism of augmented algebras, with B
connected. Then f is surjective if and only if Q(f): Q(A) — Q(B) is surjective.

Definition 15.6. A coaugmented k-coalgebra is a k-coalgebra A with a k-coalgebra homomorphism
n: k— A. Let J(A) = cok(n) be the coaugmentation coideal, and let

PA)={zcA|Yx)=21+1z}=k04 J(A)
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be the submodule of primitives.

J(A)® J(A) J(A) P(A)

[, ]

A homomorphism of coaugmented coalgebras is a coalgebra homomorphism that commutes with the
coaugmentations.

(We make sense of the cotensor products under A in the next subsection.)

Proposition 15.7 (Milnor—-Moore). Let f: A — B be a homomorphism of coaugmented coalgebras, with
A connected. Then f is injective if and only if P(f): P(A) — P(B) is injective.

Definition 15.8. A Hopf algebra (over k) is a k-algebra structure (¢,7n) and a k-coalgebra structure
(1, €) on the same graded k-module A, such that ¢ and e are algebra homomorphisms and ¢ and n are
coalgebra homomorphisms. This means that the diagrams

@ W

AR A A AR A
] T
=
A(X)A@A®A—>1®7®1 ARARARA
and
AR A5 kok h—" 5 A
L L]
€ nen
A— >k kk——A® A

commute. A homomorphism if Hopf algebras is an algebra homomorphism that is simultaneously a
coalgebra homomorphism.

Definition 15.9. A Hopf algebra with conjugation is a Hopf algebra A with a homomorphism x: A — A
such that the diagram

A— k" 44

‘| Js

A A— 8% 404

commutes. A homomorphism of Hopf algebras with conjugation is a Hopf algebra homomorphism that
commutes with the conjugation.

Definition 15.10. Let A be a k-algebra, and let B C A be a subalgebra with an augmentation e: B — k,
making k£ a B-module. Then we let

A//B=A®pk=A/A-I(B)
and

B\A=k®pA=A/I(B)-A.
If A-I(B) =1(B) - A we say that B is normal in A. Then A//B is a k-algebra, and the canonical map
A — A//B is an algebra homomorphism.

Theorem 15.11 (Milnor-Moore). Let A be a connected Hopf algebra and B C A a Hopf subalgebra.
Then there is an isomorphism A= A//B ® B of right B-modules, and an isomorphism A = B @ B\\ A
of left B-modules, so A is free as a left B-module and as a right B-module.

This is part of Theorem 4.4 in Milnor-Moore (1965). More concretely, let i: B — A be the inclusion
and let s: A//B — A be any k-linear section to the projection A — A//B. Then the composite

A//BoB S AxA -2 A

is an isomorphism of right B-modules. It is not usually true that A is free as a B-B-bimodule.
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15.2. Actions and coactions.

Definition 15.12. Let A be a k-algebra. A left A-module is a graded k-module M with a pairing
A A® M — M such that the diagrams

A9 Ao M2 Ao M ko M- Ae M
SR N
A

AM —— M M
commute. A right A-module is a graded k-module N with a pairing p: N ® A — N such that the
diagrams

pR1 1®n
NRARA——NR®A Nk——N®A

100 g J»

NeA—" 5N N
commute. The tensor product N ® 4 M is the coequalizer in the diagram

1R

1A
N®A®M — NOM-—»N®s M
p

Definition 15.13. Let A be a k-coalgebra. A left A-comodule is a graded k-module M with a pairing
A M — A® M such that the diagrams

M—2 Ao M M
)\J ll@)\ AJ{ =
AQM — AQAQ M AM —sko M
PR1 e®1

commute. A right A-comodule is a graded k-module N with a pairing p: N — N ® A such that the
diagrams

N—" ‘N®A N

]

N®AwN®A®A N®AT®E>N®]€

1R

commute. The cotensor product N 4 M is the equalizer in the diagram

1®A
—
NOsM—NQM — NAQM

Lemma 15.14. Let M be a left A-module, with action a-m = A(a®m) fora € A and m € M. Then the
linear dual M* = Hom(M, k) is a right A-module, with action p-a = p(p®a) given by p-a: m — p(a-m),
for u: M — k in M*. Likewise, if N is a right A-module then N* is a left A-module.

Proof. p-a: m— p(a-m),so (p-a)-b:mw— (u-a)(b-m)=pla-b-m)=plab-m) equals p-ab. O

Lemma 15.15. Let A be a k-algebra, bounded below and of finite type. Then A* = Hom(A, k) is a
k-coalgebra with coproduct i = ¢*: A* = (A® A)* =2 A* ® A* and counit e = n*: A* — k. Conversely,
if A is a k-coalgebra then A* is a k-algebra. If A was bounded below and of finite type, then so is A*,
and A= (A*)*.

Lemma 15.16. Let A be an augmented k-algebra, bounded below and of finite type. Then A* is a
coaugmented k-coalgebra, J(A*) = I(A)* and P(A*) = Q(A)*.

Lemma 15.17. Let A be a k-algebra, M a left A-module and N a right A-module, all bounded below
and of finite type. Then M* is a left A*-comodule with coaction A = \*: M* — (A® M)* =2 A* @ M*,
and N* is a right A*-comodule with coaction p=p*: N* = (N® A)* X N* ® A*.

Conwversely, let A be a k-coalgebra, M a left A-comodule and N a right A-comodule. Then M* is a
left A*-module with action \: A* @ M* — (A® M)* — M*, and N* is a right A*-module with action
p: N*®@A* - (N® A)* - N*.
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Definition 15.18. Let A be an augmented k-algebra and let M be a left A-module. The A-module
indecomposables in M is the quotient k-module k ® 4 M = M/I(A) - M.

Definition 15.19. Let A be a coaugmented k-coalgebra and let M be a left A-comodule. The A-
comodule primitives in M is the k-submodule k04 M ={m € M | \(m) =1® m}.

Lemma 15.20. Let A be an augmented k-algebra and M left A-module, both bounded below and of finite
type. Let M* be the dual left A*-comodule. Then there are natural isomorphisms

Homy (M, k) =2 Hom(k ®4 M, k) =2 kO« M*
that are compatible with the inclusions into Hom(M, k) = M*.

See Boardman (1982) for more on left/right algebra/coalgebra actions/coactions.

Definition 15.21. Let A be a Hopf algebra, and let M and N be left A-modules. Then M ® N is a left
A-module, with the action \: A® M ® N defined as the composite

A®M®N%A®A®M®NML®1>A®M®A®Nﬂ)M@N

Likewise for right A-modules.
Conversely, let M and N be left A-comodules. Then M ® N is a left A-comodule, with the coaction
M M®RN— AR M ® N defined as the composite

MoN 2 Ao MeAeN 25 40 Ao Mo NS Ao MaN.

Likewise for right A-comodules.

15.3. The coproduct. Let Y and Z be spectra. If Y and Z are bounded below with H,(Y) and H,.(Z)
of finite type, then the cohomology smash product

H*(Y)® H*(Z) 2 H*(Y A 2)
is an isomorphism. The Cartan formula
Fly A 2) Z Sq'(y) A S¢’(2)
i+j=k
implies the more general formula
Sq¥(y A z2) Z Sq’(y) A Sq’ (2)
I+J=K
for sequences K = (ki,...,k¢) of non-negative integers, where the sum is over pairs of sequences I =
(45, ...,1¢) and J = (J1,...,j¢) of non-negative integers, such that k, = i, + j, for all 1 < u < £. Milnor
proved that the rule
Sqf — Z Sq' ® Sq”’
I+J=K
respects the Adem relations, in the sense that it gives a well-defined algebra homomorphism
VA — AR .
Since &7 is connected, there is a unique homomorphism
X: A — o

with x(1) =1 and Y a'x(a”) =0 for all a € I(«) with ¢¥(a) = > a’ ® a”’. Then x(ab) = x(b)x(a) and
x? is the identity.

Theorem 15.22 (Milnor (1958)). The Steenrod algebra <f , with the composition coproduct ¢, the co-
product ¥ and the conjugation x, is a cocommutative Hopf algebra with conjugation.

Definition 15.23. Let the dual Steenrod algebra </ = Hom(«7,F3) be the linear dual of the Steenrod
algebra. Since 7 is of finite type, there is a natural isomorphism & = Hom(,Fs). The algebra
structure maps ¢: &/ ® &/ — & and n: Fo — o dualize to coalgebra structure maps ©: &, — 4, ® I,
and e: @7, — F5. The cocommutative coalgebra structure maps ¢: &/ — &/ ® & and e: & — Fy dualize
to commutative algebra structure maps ¢: o, Q o, — o7, and n: Fo — &,. The conjugation x: &/ — o
dualizes to a conjugation x: &% — o%. With these structure maps, 7 is a commutative Hopf algebra.
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Remark 15.24. The isomorphism &/ = H*(H) is dual to an isomorphism &% = H,(H). This may justify
why we write o7, instead of &/* for the dual Steenrod algebra, thinking of the star as a homological
grading rather than as the symbol for dualization. The ring spectrum product p: H A H — H induces
the product ¢: & ® & 2 H.(H)® H.(H) 2 H.(H ANH) — H.(H) = 4/ in homology, and the counit
e: A, = m.(HANH)— m(H) = Fy in homotopy. The ring spectrum unit n: S — H induces a map
H = SANH — H A H that induces the coproduct ¢: @, = H.(H) > H.(HANH) = H,(H) @ H.(H) =
A, @ o, in homology. The two maps H 2 SAH — HAH and H = HAS — H A H both induce the
unit n: Fy — 7 in homotopy. The twist map v: H A H — H A H induces the conjugation x: &% — .
((Reference?))

By definition, ¥: & — &/ ® &/ makes the diagram

AR H (V)0 H(2) 28 v 9 H (V) 9 H*(2) 22 o @ H*(Y A Z)

I
1®7®1J& Al l)\
4

7 @ H(Y)® o @ H(Z) —2 4 H*(Y) ® H*(Z) —L—— H*(Y A Z)

commute, where A\: & @ H*(Y) — H*(Y) denotes the left o/-module action. We defined the o/-module
action on the tensor product H*(Y) ® H*(Z) by the dashed composite in this diagram, so that the
Kiinneth homomorphism A is an @/-module homomorphism.

By the Hom-tensor adjunction, the diagram can be reformulated as follows:

Hom (7, H*(Y)) @ Hom (s, H*(Z)) +—S2_ H*(Y) @ H*(Z) —— " H*(Y A Z)

!
®l Al \LS\
Y* pe A
Hom(« @ o, H*(Y) ® H*(Z)) ——— Hom(«/, H*(Y) ® H*(Z)) —— Hom(«/, H*(Y N Z))
where A\: H*(Y) — Hom(«/, H*(Y)) takes y to the homomorphism a ~— a(y), etc. If we add the
assumption that H*(Y') is bounded above, so that H.(Y) is (totally) finite, then there is a natural
isomorphism
H*(Y)® o, = Hom(o/, H*(Y))

taking y @ @ to a — a(a)y, withy € H*(Y), o € </ and a € /. We also assume that H,.(Z) is (totally)
finite. Then we can rewrite the diagram as:

H*(Y)® o, @ HY(Z) ® o, 22 H*(Y) ® H*(Z) —2— H*(Y A Z)

I
1®'y®1J/ﬁ Pl JP
KB

H(Y) @ H*(2) @ o, © o, 228 H*(Y) @ H*(Z) © o, 2Z% H* (Y A 2) ® o,
where ¢ is the algebra structure on 7., dual to the coproduct ¥ on 7, and p: H*(Y) - H*(Y) ® < is
the right 7.-comodule coaction on H*(Y'), corresponding to A via the isomorphism above. We defined
the «,.-coaction on the tensor product H*(Y) ® H*(Z) by the dashed composite. Hence the Kiinneth
morphism A is an o7,-comodule homomorphism.

Proposition 15.25 (Milnor). Let X be a space with H.(X) (totally) finite. The right of -comodule
coaction

p: H(X) —» H*(X) ® o,
is an algebra homomorphism, where H*(X) has the cup product and </, has the product dual to the
coproduct 1 on < .

Proof. Let Y = Z = ¥°°(X,). Then the diagonal A: X — X x X induces the commutative diagram

H*(X) ® o, @ H*(X) ® o, 20— H*(X) @ H*(X) —2— H*(X)

I
1®~/®1Ju Pl lp
<4

101
H*(X) @ H*(X) ® o, © o, 228 B*(X) @ H*(X) ® o, 2% H*(X) © .
which says that the cup product U is an o7,-comodule homomorphism, or equivalently, that the coaction
p is an algebra homomorphism. O
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This results encodes the Cartan formula for the Steenrod algebra action on the cohomology of a
product of spaces, in terms of the coaction of the dual Steenrod algebra, in a very convenient form.

15.4. The Milnor generators. Without appealing to the conjugation y, we have the following four
left and right actions and coactions on the homology and cohomology of a space X with H,(X) finite:
A QH (X)) — H*(X)

p: Ho(X)® o — H.(X)

p: H(X) — H*(X) ® &

A Ho (X)) — @ H(X)

We specialize to the test object X = RPN C RP>* = Hy, with H*(X) = P(z)/(zV*?1) and H.(X) =
Fa{y; | 0 < j < N}, where 27 is dual to 7;. We are interested in the limit as N — oo, when
limy H*(RPN) = P(z) and colimy H,(RPY) = Fa{v; | j > 0}. The limiting right coaction

p: P(z) — P(z) ® o,
was just seen to be an algebra homomorphism, hence is determined by the single value
plx) = 2l @a
j=1
where «; € 7, has degree (j — 1), for each j > 1.
Lemma 15.26. There are well-defined classes & € <, such that

p(z) = szl ®& -
i>0
Here £y = 1, and &; has degree 2° — 1, for each i > 0.
Proof. There is a pairing m: RP>* x RP>* — RP> that represents the tensor product of real line
bundles, or comes from the loop structure on H; ~ QHs. It induces a homomorphism
m*: P(x) = H*(RP*) —» H*(RP* x RP*°) = P(x1,%2)

with m*(x) = x1 + x9, where 1 = X 1 and z2 = 1 X . By naturality of the right <Z-coaction p, we

have that
m*(p(x)) =Y (21 +22) @ o
jz1
is equal to
p(m* () = p(x1 +23) = p(w1) + pla2) = Y @] ®a;+ Y wh®ay

Jj=1 Jj=1

in P(z1,2) ® 4. The product formula for binomial coefficients mod 2 implies that (x; 4 22)7 # z7 + 17
for all j not of the form j = 2%, i > 0, hence a; = 0 for all such j. We let & = s for i > 0. Counitality
of the coaction implies that £ = 1. O

Let P(& |i>1) = P(&1,£2,&3,...) be the polynomial algebra generated by the classes &; for i > 0,
only subject to the relation & = 1.

Theorem 15.27 (Milnor). The canonical homomorphism
P& |i=1) = 4
is an algebra isomorphism.

See Milnor (1958) Theorem 2 or Steenrod-Epstein (1962) Theorem 2.2 for the proof. Surjectivity
of P(& | i« > 1) —  follows by the detection results for /. A count of dimensions then proves
isomorphism.

Theorem 15.28 (Milnor). The Hopf algebra coproduct v: of, — o, @ oy is given by
(&) = > & g
i+j=k
where i, > 0 and & = 1. Hence the conjugation x: <. — <y is determined by
> Ex(g) =0

i+i=k
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forallk > 1.

Proof. The coassociativity of the right coaction tells us that
J J i+j J
(p@p(z)=(pe )Y ©&) =) p@)” 0= * 0 0
j=0 j=0 i,5>0
is equal to

(1ey)px) =Y 2% @v(&).

k>0
O

These formulas for the coproduct in o7, are often more manageable than the Adem relations for the
product in &7. Here is list of ¥(&x) and x(&x) for small k:

P(E)=&4®1+10&

P(E)=LR1+ER6+1RE

V&) =601+ E06+E6R6+106

PE) =L®1+E04+506+5RG+104
x(&) =&

x(&2) =&+ &

X&) =&+ &G + &+

X(E) =&+ 6E+EG+E+EG+HEE + 2L +&°

We note that ff is primitive for each ¢ > 0, and that x (&) = £ modulo decomposables.
We now make the Milnor classes & € <7 a little more explicit. Dualizing the formula for p(x), the
right action
p: H.(RP*®)® o/ — H,(RP*)
is given in total degree 1 by
(a,&)m  for j =27
i ®a+—
& {O otherwise.

Here a € & has degree (j — 1) and (—, —): & ® & — Fa is the evaluation pairing. Likewise, the left
action

A: o/ @ P(x) — P(x)
is given on & @ Fo{x} by _
awr—s a(e) = 3o &)

i>0
Lemma 15.29. For admissible sequences I,
Sl () = 22 forI = (20712072 .. 02.1),5>0
0 otherwise.

Hence
1 forI= (2712072 ...21)
0 otherwise.

<Sqla§1> = {

In other words, & is dual to SqQFISqQF2 ... 8¢%Sq" when we give o the admissible basis.

The identification of RP*° with the first space H; in the Eilenberg-Mac Lane spectrum H leads to a
stable map f: X°°H; — X H. The induced «/-module homomorphism

f*: %o/ = H(XH) — H*(H,) C P(z)
takes the generator X1 to x, hence agrees with the &/-module homomorphism & @ Fo{z} — P(z) taking

a®x to )
a(x) =D (a,&)a”

i>0
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via the isomorphism Y&/ 2 o/ ® Fy{x}. Dually, it follows that the @7%-comodule homomorphism
fo: Ho(H,) — H.(SH) = %,
is the linear dual mapping

¥¢ forj=24i>0
Vi .
0 otherwise.

Lemrpa 15.30. The map f: X°RP>* — Y H induces a homomorphism fI*H(RP"o) — o, taking
v € H;j(RP>) to & if j = 2%, i >0, and to 0 otherwise.

Definition 15.31. The dual Steenrod algebra o7 = P(& | k > 1) has a basis {¢f}r given by the
monomials

£R _ ;“15;2 ;z
where R = (r1,...,r¢) ranges over all finite sequences of non-negative integers, with ry > 1if £ > 1. The

Milnor basis {S¢®}r for the Steenrod algebra </ is the dual basis, defined so that
(S¢", &%) = {
¢

Hence |Sq®| = |¢7| = Y7, _; 7u (2" — 1). The coproduct is given by 1(Sq”) =3 5. g ¥ @ 9%,

1 for R=1S

0 otherwise.

Remark 15.32. One should not confuse the notations S¢’ and Sq¢. We let I, J and K range over
admissible sequences, and let Sq’, Sq” and S¢¥ denote the corresponding admissible composites of
Steenrod squares. We let R, S and T range over finite sequences of non-negative integers, and let Sq’,
Sq° and SqT denote the corresponding elements in the Milnor basis.

Ezample 15.33. Tt is clear that S¢0 = 1, S¢(Y) = S¢' and Sq® = S¢?. In degree 3, we have (Sq3, &) = 0,
(Sq?Sqt, &) =1, (S¢3,€3) = 1 and (Sq¢?Sqt,€3) = 1. For example,
(Sq°Sq",€}) = (S¢*Sq", (&1 @ €1)) = (V(S*Sq"), & ® &)
=((S¢®®1+5¢' ®S¢" +1® 5¢°)(S¢' ®1+1®5¢"),6 ® &)
= (9¢"' © (S¢* + Sq' Sq"), &1 ® &) = (S¢", &)(S¢%, €7) = 1.
Hence Sq¢®) = S¢* and SqOY = S¢° 4+ S¢2S¢* = Q.
Lemma 15.34. The Milnor basis element Sq'") equals the Steenrod operation Sq”, for each r > 1.

Proof. Let S = (s1,...,5¢) be a finite sequence of non-negative integers, with sy > 1. We must prove
that (Sq", &%) equals 1 for S = (r) and 0 otherwise. Let ® be the Zﬁ=1 sy-fold product on &, and
let ¥ be the Zﬁzl sy-fold coproduct on 7. Writing ¢% = ®(£, ® -+ ® &) with a < --- < £, we must
compute (Sq", %) = (Sq", ®(&a @ - @ &) = (V(Sq"), & @ -+ @ &). Here ¥(Sq") is a sum of tensor
products of factors of the form S¢7. We have (S¢2 ~1,&) equals 1 for ¢ = 1 and 0 for i > 2. Hence
(U(5¢"),£,®---®E&r) = 0if £ > 2. Furthermore, (¥(5¢"),&,®---®@&) =1if S=(r)anda=---={(=1,
since W(Sq") contains the summand Sq' @ --- ® Sq! that evaluates to 1 on & ® -+ - ® &;. O

Theorem 15.35 (Milnor). For each infinite matriz of non-negative integers (almost all zero)

* To1 Xo2
Ti0 T11 T12

X = \zgg o1 T

let R(X) = (r1,7r2,...), S(X) = (s1,82,...) and T(X) = (t1,t2,...) be given by the sums

Ty = Z ijij (weighted row sum),
J
55 = Z Tij (column sum),
i
tr = Z Zij (diagonal sum).
iti=k
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Then
Sq™ . Sq¢° = Z b(X)Sq”
X

where X ranges over the matrices with R(X) = R and S(X) =S, with T =T(X) and
b(X) = [ te!/ ][ i
k i

See Milnor (1958) Theorem 4b. To prove this, one must count how often ¢% ® ¢9 € o7, ® &/, occurs
as a summand in Y (ET) = (&) - (&)t
Ezample 15.36. Let k> 2, R = (2¥) and S = (0,...,0,1) with (k — 1) zeroes. Then Sq* - S¢° is a sum
of terms b(X)Sq", where X ranges over the matrices (z;5) with zoo = 0, Y-, 27wy; = 25, 37272, = 0
fori>2,% 2, =1and >, x;; =0for 1 <j <k—1andfor j > k+ 1. There are only two possible
matrices X, namely X’ with 2}, =1 and the remaining terms zero, and X" with z{j, = 1, 7, = 2¥ and
the remaining terms zero. The corresponding sequences are T/ = T(X’) = (0,...,0,1) with & zeroes,
and T” = T(X") = (2%,0,...,0,1) with (k — 2) zeroes. The coefficients b(X’) and b(X") are 1, so

Sq(Qk) . Sq(o ..... 0,1) _ Sq(o,...,o,o,m + Sq(Qk’O"”’O’l).

On the other hand, Sq° - S¢% is the sum of a single term b(X)Sq”, where X has x¢; = 2, 230 = 1 and
the remaining terms are zero. Again b(X) = 1, so

Hence the commutator

[Sq(Qk),Sq(O"'”O’U} _ Sq@k) - §q(001) 4 gq(0.,0.1) Sq(Qk)
((k — 1) zeroes each time) equals the Milnor element Sq(® 0% now with k zeroes.
15.5. Subalgebras of the Steenrod algebra.

Definition 15.37. A Hopf ideal in a Hopf algebra A is a two-sided ideal I C A such that ¢(I) C
A@I+1®Aande(l)=0:

I ART+I®A
A—" a4

L]

A AJTe AT

Then ¢ and ¢ induce a coproduct ¢: A/I — A/I® A/I and a counit €: A/I — k that make A/I a Hopf
algebra, and the canonical surjection A — A/T is a Hopf algebra homomorphism. Dually, (4/1)* — A*
is a Hopf subalgebra.

€

T FT——O

Definition 15.38. For each k > 0, let Q = Sq(®0:D (k zeroes) denote the Milnor basis element in
o/ that is dual to &1, in degree 281 — 1.

These classes are known as the Milnor primitives; see the next lemma. By the sample calculation
above, these classes can also be recursively defined by Qo = Sq! and [Sq%", Qr_1] = Qp for all k > 1.
The first few Milnor primitives are:

Qo = Sq"
Q1 = 8¢V = 5¢° + S¢*Sq"
Q2 = 8¢ = 8¢" + 8¢°Sq" + S¢°Sq* + Sq*S¢*Sq
Qs = 50001
Lemma 15.39. The Qy are primitive elements, and they generate an exterior Hopf subalgebra
E=EQr|k>0)Co

of the Steenrod algebra. In symbols, Y(Qr) = Qr ® 1+ 1® Qk, Q2 = 0 and Q;Q; = Q;Q; for all
1,7,k > 0. The conjugation is trivial: x(Qr) = Q.
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Proof. First note that if A = E(€) is the primitively generated exterior algebra on one generator, viewed
as a bicommutative Hopf algebra, then the dual Hopf algebra A* = E(Q) is also a primitively generated
exterior algebra, with 1 and @ dual to 1 and &, respectively.

Now consider the quotient algebra E, = /(£ | k > 1) of the dual Steenrod algebra. The ideal
J = (& | k> 1) C o is a Hopf ideal, since ¥(&3) = 3,1, 2 g &7 lies in o, ® J + J ® ., and
€(€2) = 0. Hence o/, — E. is a Hopf algebra surjection. The generators & are primitive in ., since

V() =01+ 1®&

modulo A® J + J ® A. It follows that x (&) = & modulo J. Hence E, = E(&, | k> 1) = Qpoq E(ék)
is a primitively generated exterior Hopf algebra. -
Passing to duals, we have a Hopf algebra injection £ = (E,)* — &/. Here E = E(Qx | k > 0) =
R~ E(Qr) is also primitively generated, with @ dual to {41 in the monomial basis for E,. Since I
is generated by monomials, it follows that the inclusion maps Q, € E to Qr € /. Hence the Qy are
primitive in &7. (I

Lemma 15.40. Q(«7) = Fo{Sq* | i > 0}, P(,) = Fo{€Z | i > 0}, Q(A) = Fo{€iy1 | i > 0} and
P(o) 2 F2{Q; | i = 0}.

Definition 15.41. For each n > 0, let E(n) = E(Qo,...,Q») C & be the exterior subalgebra generated
by the Milnor primitives Qo, ..., Q. It is a Hopf subalgebra with conjugation. The dual of E(n) is the
quotient Hopf algebra E(n). = @4 /J(n) of < by the Hopf ideal

J(n) = (&, &y b | k= n+2).

Definition 15.42. For each n > 0, let A(n) = (Sq',...,S¢*") C & be the subalgebra generated by the
Steenrod squares Sq',...,S¢?". Tt is a Hopf subalgebra with conjugation.

Lemma 15.43. The dual of A(n) is the quotient Hopf algebra A(n), = /. /I(n) of <. by the Hopf ideal
I(n) = ( 2”*1, gna---vgzzagg—&-lagk | k Z TL—|—2)

Proof. The ideal I(n) is generated by the classes f?t with s > 1 and s+t > n+ 2. It is a Hopf ideal
since
t i+t t
YE) =Y & e0f
1+j=s
is a sum of terms in &/ ® I(n) (for i = 0) and in I(n) ® & (for 1 < i < s). Hence & /I(n) is a finite
commutative Hopf algebra, and the dual is a finite cocommutative Hopf subalgebra of <.
We claim that Sq¢* € A(n) for all 0 < k < 2"+, Equivalently, we must prove that (Sq¥,¢) = 0 for
all £ € I(n). By induction, we may assume that this holds for all smaller values of k. The ideal I(n) is
additively generated by products f:ft SR with s > 1and s+t >n+ 2, and

(Sq", €2 - ™) = (S, o(¢F @ &™) = (W(Sg"), ¥ @ ™) = > (Sq', €2 )(Sq,¢).

i+j=k

By the inductive hypothesis, this equals (S¢*,£2') - (1,¢R), which is 0 for k < 27+ since |£2'] > 21
when s > 1 and s+t > n+ 2. ((It remains to prove that the S’qk for k < 2™, or for k < 2n+1, generate
all of the dual of A(n),.)) d

Corollary 15.44. </ = colim,>¢ A(n) is a countable union of finite algebras. Hence each element in
positive degree of <f is nilpotent.

Remark 15.45. Steenrod and Epstein (1962) write @7, for our A(h +1). Adams (Math. Proc. Camb.
Phil. Soc., 1966) writes A, for our A(r). Clearly E(0) = A(0), and E(n) C A(n) for n > 1. This can
also be seen from the inclusion I(n) C J(n).
((Write P! = 5q(0--02) for the dual of §§t, so that P} = S¢2" and P2, = Q,? Review Adams—
Margolis classification of Hopf ideals in <7 and Hopf subalgebras of <, in terms of profile functions.))
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15.6. Spectral realizations.

Definition 15.46. Brown and Peterson (Topology, 1966) construct a spectrum BP such that H*(BP) &
&/ //E as an &/-module. Johnson and Wilson (Topology, 1973) construct spectra BP(n) such that
H*(BP{n)) = o///E(n), for each n > 0. As a convention, one may define BP(—1) = H.

The connective cover k(n) of the n-th Morava K-theory spectrum K (n) has cohomology H*(k(n)) =
A [|E(Qy), for each n > 1. By convention, k(0) = HZ) and K(0) = HQ.

Remark 15.47. Baker and Jeanneret (HHA, 2002), using methods of Lazarev (K-Theory, 2001), show
that there is a diagram
BP —---— BP{n) —---— BP(0) > H
of S-algebras, or equivalently, of A, ring spectra, inducing the surjections
o - d[/EQ)— -+ > d//E(n)— - =

in cohomology. Naumann and Lawson (J. Topology, 2011) prove (for p = 2 only) that BP(2) can
be realized as a commutative S-algebra, or equivalently as an E., ring spectrum, like the realizations
BP{0)) ~ HZo and BP{1)4 ~ kuf. It is an open problem whether BP can be realized as a commutative
S-algebra.

Baas and Madsen (Math. Scand., 1972) realize k(n). Angeltveit (Compos. Math., 2011) proves
that K(n) has a unique S-algebra structure. For n = 1 (and p = 2) one can take k(1) = ku/2 and
K(1) = KU/2. None of the k(n) for n > 1 admit commutative S-algebra structures, since the map
k(n) — H induces a homomorphism H,(k(n)) — < that cannot commute with the Dyer-Lashof
operations in the target.

Proposition 15.48. The Adams spectral sequence for BP collapses at the FEo-term
Ey* 2 Exty"(Fo,Fo) = P(vg | k > 0)
to the abutment
7. (BPy) & Zolvg | k> 1],

where vy, in degree 28+ — 2 is detected in EL2"' 1 by the dual of Qi € E.
Similarly, the Adams spectral sequence for BP(n) collapses at

E;’* = EXthn) (FQ,FQ) = P(Uo, . ,Un)

to the abutment
T (BP(n)) = Za[v1, ..., 0],
and the Adams spectral sequence for k(n) collapses at

Ey" o EXtEEan)(]FQ,Fz) > P(vy)
to the abutment

m(k(n)) = Falvy] .

Proof. The Es-term can be computed using change-of-rings:
Ext(H*(BP),Fy) 2 Ext,, («///E,Fy) = Exty" (Fa,F2) = P(vy | k > 0)

where vy, is dual to the indecomposable Q;, € E. In particular, vy = hg is dual to Qo = S¢'. Since the
E>-term is concentrated in even total degrees, there is no room for differentials. There is also no room for
other multiplicative extensions than the ho-towers, since Zs[vy | k > 1] is free as a graded commutative
algebra. ((This presumes that 7.(BP) is commutative.)) O

Remark 15.49. Let MU be the complex bordism spectrum. Milnor (Ann. Math., 1960) and Novikov
((ref?)) shows that H*(MU) is a direct sum of suspensions of copies of H*(BP) = «///E. Brown
and Peterson (Topology, 1966) showed that MU, splits as a wedge sum of suspensions of BP. One
finds that m.(MU) = Z[zy | k > 1] with |z| = 2k. Quillen (Bull. Amer. Math. Soc., 1969) relates
7 (MU) to formal group laws, in such a way that m,(BP) corresponds to p-typical formal group laws.
The introduction of spectra like BP(n), E(n), k(n) and K(n) is then motivated by the classification
of formal group laws according to height, which in turn leads to the chromatic perspective on stable
homotopy theory, which seeks to organize the homotopy groups of S and related spectra in periodic
families of varying wave-lengths.
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F1GURE 30. Adams spectral sequence for BP

Remark 15.50. Starting with the Hopkins—Miller obstruction theory for A, ring structures, continued
by Goerss—Hopkins—Miller and Lurie for E, ring structures, Hopkins and Mahowald (preprint, 1994)
produce a connective Eo, ring spectrum tmjf with H*(tmf) = o/ //A(2). We have already discussed
the realizations H*(ko) = &/ //A(1) and H*(HZ) = «///A(0). (The Davis—-Mahowald proof of the
non-realizability of o7 //A(2) (Amer. J. Math., 1982) contains an error.)

There is no spectrum with cohomology H*(X) = &/ //A(n) for n > 3, since the unit map S — X
would induce a map of Adams spectral sequences

E;’*(S) = Eth;{*(FQ,Fg) — EXt*A’?n)(F27]F‘2) = E;’*(X)
mapping h, — h, and h,41 — 0. This contradicts the Adams differential do(hp41) = hoh%, since
hoh? # 0 on the right hand side for n > 3. ((Elaborate?))
hoh

n

h2

hn+1

(B = A, /(£1,63,63,&4, ...) has dual B = A(1) ® E(Q2) and Extp is Extan) @ P(v2).))
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