IMPROVED FRAME STABILITY ANALYSIS WITH EFFECTIVE LENGTHS

By Jostein Hellesland' and Reidar Bjorhovde,” Fellow, ASCE

ABSTRACT: Approximate methods for determination of effective lengths of compression members in frame
systems are normally based on rotational restraints defined through so-called joint stiffness ratios or G-factors.
These approaches allow the member to be considered in isolation from the rest of the frame. However, they are
known to be inaccurate in many cases. A method is proposed that involves postprocessing of effective lengths
from isolated column analyses to arrive at improved, weighted mean values. The approach, termed the method
of means, satisfies general system instability principles, is attractively simple, and yields in general effective
length predictions in excellent agreement with exact results for a wide variation of parameters. The errors are
normally within a few percent of exact solutions. The method is applicable to braced and to a range of unbraced
frames. It is particularly suitable for cases where drastic changes of beam or column stiffness occur, such as in
the top or bottom stories of a frame, or where column stiffness, axial force level, and story height change at

certain floor levels.

INTRODUCTION

Most national and international codes and standards for
structural design include provisions involving effective lengths
of columns for stability evaluations and approximate methods
of second-order analysis. A full system instability analysis,
required for exact effective length determination, may be quite
involved for a frame system of some complexity. For this rea-
son, the usefulness of approximate analyses in routine design
depends to a great extent on the availability of reasonably
simple and accurate methods for determining effective lengths.

Presently, the most widely used approach in the design of
framed columns consists of considering the columns in isola-
tion, with rotational end restraints defined through conven-
tional joint stiffness ratios between the columns and beams
that frame into a joint. These ratios, most frequently labelled

G (or ), are defined by
> EIlL

G=— )
> ElIL,

where the summations are over the columns and beams (sub-
script b) intersecting at a joint.

In the general case, a major limitation of the methods based
on such G-factors is that they do not properly recognize the
contribution (positive or negative) to the rotational end re-
straints from columns in stories above or below (vertical in-
teraction effects) and from adjacent columns (horizontal inter-
action through connecting beams). The neglect of such
interaction effects, due to differences in boundary conditions,
axial loads, lengths, and cross-sectional stiffness between the
column in question and the other columns, may result in sig-
nificant errors outside defined ranges of applicability (Helles-
land and Bjorhovde 1996).

Efforts to extend the range of applicability include an im-
proved G-factor approach proposed by Duan and Chen (1988,
1989) for continuous columns with equal flexibility parameters
(ag), and an iterative procedure for braced frames (Bridge and
Fraser 1987) that explicitly reflects both positive and negative
G-factors. Approximate, story-based methods for effective
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length prediction that account for the horizontal interaction
between columns in a story have long been available for un-
braced frames (Yura 1971; LeMessurier 1977).

In this paper, a new method for elastic effective length pre-
diction is presented. The method, originally developed by Hel-
lesland (1992b), removes some of the shortcomings of the con-
ventional G-factor approaches, and significantly extends the
range of validity. Denoted as ‘‘the method of means,”’ the
approach requires effective length factors from isolated col-
umn solutions as input. Based on basic system instability re-
quirements, it performs a postprocessing of these input values
to arrive at improved, weighted mean values.

The applicability of the method is assessed against numer-
ical predictions for columns in both braced and unbraced
frames. However, in this study, primary attention is devoted
to braced frames, and in particular to the vertical interaction
between columns in such frames. Different boundary condi-
tions, as well as a wide range of different column and beam
parameters, are considered.

ISOLATED COLUMN ANALYSIS

The input data for the method of means are effective length
factors, K, that have been determined by traditional methods.
These allow the column to be considered in isolation. For the
sake of distinction and brevity, such K-values will be referred
to here as ‘‘isolated values.”’

For instance, for isolated braced and unbraced columns with
known rotational end restraints (k), elastic effective length fac-
tors can be determined from the standard alignment charts, or
from the well-known transcendental equations (Galambos
1968) given by the following:

GGy (m\' | Gt G| _ _miK tan(/2K) _
4 \K 2 tan(w/K) 2K
@3]
G.Gu(m/K) — 36 1K
AGs(T/K) _ 3)

6(G, + Gs)  tan(w/K)

respectively. Here, the joint stiffness ratios (G,, Gp) at the
ends, denoted A and B, may be defined in the general form by

El/L
G =b
0 k,

where b, = 2 for the braced column case [(2)]; and b, = 6 for
the unbraced column case [(3)].

When the rotational restraint stiffness, k (k4 or k;), at the
column ends are due to beams only, then k = k,, where k, (k,.
or kp) is the sum of the rotational stiffnesses of all beams at
the respective joint

i=A B @)
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Ky = (Z bEI,,/L,,) i=A B 5)
1

For uniform beams, rigidly connected to the column, and with
negligible axial force and shear deformation effects, the rota-
tional stiffness coefficient b takes on the familiar values of b
= 2, 3, 4, and 6 for beams bent in symmetrical single curva-
ture, beams pinned at the far end, beams fixed at the far end,
and beams in antisymmetrical double curvature, respectively.
In cases with semirigid restraints, which are not considered
here, appropriate adjustments must be made (Bjorhovde 1984).

The end restraints for a framed column may be expressed
as a restraint demand factor, f, times the beam restraint, k =
fky. With beam restraints given by (5), (4) can be restated as

EIL
Gi=————— i=AB (6)

( > mEI,,/L,,)

where m = b/b,. Here, the vertical and horizontal interaction
effects are reflected by f and m, respectively. In the normal
design practice of frames with rigid beam-column connections,
the parameter m is set equal to 1.0. This corresponds to the
cases of braced columns restrained by symmetrically bent
beams (b = b, = 2) and unbraced columns restrained by anti-
symmetrically bent beams (b = b, = 6). For cases other than
these reference (datum) cases, m represents the appropriate
stiffness modifier.

A number of approximate restraint demand factors for the
vertical interaction of braced columns have been considered
and discussed in previous studies (Hellesland 1992a; Helles-
land and Bjorhovde 1996). For numerical predictions of
braced columns in this study, three of these will be used, as
follows:

i

=B . ni f=—2e
<E EI/L) ” (2 a5>

where n., = number of columns framing into joint i; and o =
flexibility parameter = P/P,. The summations are over all col-
umns (n.) at the joint considered (i = A or B). The relative
effect of these f-factors will be discussed later.

The combination of (6) and (7) yields the conventional G-
factor given by (1) when m = 1. Use of this factor in con-
junction with alignment charts is frequently referred to as the
alignment chart procedure. The term ‘‘conventional’’ is pre-
ferred here for effective length predictions with f according to
(7), and G according to (6).

These f-factors imply that column end restraints are positive
fractions of the rotational stiffness of the beams framing into
the joints. Consequently, they vary between the limiting values
of 0 and 1. Exact factors, which may be positive or negative,
vary between much wider limits, as they reflect not only the
effect of restraining beams, but also positive or negative re-
straining effects from other columns. This is particularly the
case for small beam restraints, when vertical interaction dom-
inates the response.

SYSTEM INSTABILITY REQUIREMENTS

The effective length L, and the elastic effective length factor
K of a compression member of length L and cross-sectional
bending stiffness EI are in standard fashion expressed by L, =

7-9

KL and
[Pg | Pg / 1
= —_—= —_—= 10
K P cr ‘Ych 'YrraE ( )
where
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P wEl
A = 'ITE and PE = L2

(11a,b)

is a column flexibility parameter (‘‘load parameter’’) and the
Euler buckling load of a pin-ended column, respectively. The
critical load (P,,) is equal to the axial force in the member at
overall instability of the structural system of which the mem-
ber is a part, and -y, is the load factor at column buckling.

Assuming proportional loading, the effective length factors
in the various compression members of a frame are interrelated
through their ae-values at system instability, since the critical
load factor (vy,,) is the same in the members. Considering two
columns, i and j, the relationship between their effective length
factors becomes

K, =KVQy (12)
where
P,L*El, P, (EIL
Qu_%__'__j.__’(_)! (13)

“ag P/ LEEl, P (EIL),

is a nominal column flexibility ratio. The first subscript in Q
refers to «y in the numerator, and the second to oy in the
denominator. Thus, inverse values are obtained by reversing
the subscripts

Qi=7=— 14)

Once K is known for one column, K for the other columns
can be computed using (12). Effective length predictions that
do not satisfy such interrelationships violate basic system in-
stability requirements.

This will generally be the case with isolated column pre-
dictions due to the approximations in restraint assessments.
However, if such K-values are underestimated in some col-
umns, they will be overestimated in neighboring columns.
Consequently, a weighted mean of these values may give im-
proved and realistic end results. The system instability require-
ment discussed may be used to establish ‘‘weighting func-
tions’’ in such a procedure. This is the basis for the ‘‘method
of means,”” presented in the following in two alternative
forms.

METHOD OF MEANS
Method of Means—Alternative 1 (“Mean 1”)

It is assumed that approximate isolated K-values are com-
puted for m interacting columns, using, for instance, one of
the restraint definitions presented in (7)—(9). The isolated ef-
fective length factors are denoted XK, K, K, ..., K,,.

Using (12), it is possible, for each of the columns, to cal-
culate an additional m — 1 K-estimates. For instance, the fol-
lowing m estimates can be found for the K-factor of column
1:

Kls KZV Q2h K3V Q31’ -'-’KmV le

For example, the term K,V Q,, is the value of K, as derived
on the basis of K, for column 2. In an exact analysis, all of
these would be equal. In approximate methods this is not likely

to happen.
From these K, -estimates the following mean effective length
factor is determined for column 1:

_ — 1
K=K + K, Q21+---+Km le); (15)

Since Q;; = 1, (15) can be written as



1~
K=~ KNV (16)
1
or, for an arbitrary column j, as

f<,=$2 KNV, an

=1

Once the mean K-value is computed for column j, the corre-
sponding mean values for the other columns can be determined
from this value using (12). Thus, for column i

K
R =RVQ=—= (18)
VO,

Obviously, (17) may be used for the computation of all K-
values. However, (17) in combination with (18) will reduce
the computational effort.

Method of Means— Alternative 2 (“‘Mean 2°")

An alternative approach to that of averaging isolated effec-
tive length factors can be made on the basis of averaging iso-
lated column stability indices. Eq. (12) can be rewritten as

oy = oy (19)
where, for any i and j
*El P
a=P/P, and P, = (lKﬁ - (20a,b)
i.e.
o = Ko, @n

The ratio defined by a is often termed the ‘‘stability index.”’
This seems like an apt term as it reflects how close to insta-
bility the frame is. Theoretically, @ = 1 in all columns at in-
stability. However, in approximate methods based on effective
length predictions for isolated columns with approximations
in the end restraint assessments, this will not be the case.

An average for the various interacting columns will repre-
sent an approximation of the system stability index. Using the
term &, this becomes

1
6L=[a1+a2+...+ot,,,]; (22)

where a,, a,, etc. are the individual isolated column data. By
substituting for these from (21), (22) yields

1
alog = (K} + K3Qs + ... + KoQm) - 23

Noting that (21) for average values gives

for any j, the ‘“‘mean’’ value of K, now becomes equal to the
square root of the mean of the weighted squares of the m K-
estimates
1 172 1 m 1/2
kl = [_ (K% + K%QZI L K:;le)] = <" 2 K?Qn)
m m S
25)

or, for an arbitrary column j

m 1/2
_ 1
K= (— > K?Qu> (26)
m -

The corresponding mean values for the other columns can be
determined from this value using (18).

Lower Limits on K-Values for Braced Columns

In principle, the Q; parameter may assume a value any-
where between zero and infinity. Corresponding mean effec-
tive length factors at these limits can be found from (17) and
(26). For instance, in a case involving two columns, the fol-
lowing are the results:

I?2=K2/aandl?l——)°°ath=0
I?1=K,/aand1?2—->°°at Qz|=0(Q12—)w)

where a = 2 and V2 according to (17) and (26), respectively.
The input values, K; and K, computed for the isolated col-
umns, will be close to 0.5 for a braced column that is nearly
fully fixed at both ends. This implies that the lowest predicted
mean values may be close to 0.5/2 = 0.25 and 0.5/V2 = 0.35
for alternatives 1 and 2, respectively. First buckling mode val-
ues less than 0.5 are not physically possible. Therefore, it is
necessary to impose constraints on the K-predictions.

As a general constraint, predicted values should not be taken
less than 0.5, or a slightly greater value, considering that col-
umns in practice are rarely fully fixed. On this basis it is pro-
posed that K-predictions should be subjected to the following
general lower limit constraint:

R =lim K = 0.53 Q@7

In the theoretical case of full fixity, this constraint results in a
conservative error of 6%.

Similarly, if the K-prediction for a column becomes less
than some other (higher) known lower limit, this can be used
to improve the K-predictions. For instance, for a braced col-
umn pinned at a support and interacting with the frame in
question at the other end [e.g., column 4, Fig. 1(a)], exact
effective lengths will always exceed 0.7. For such columns,
the following lower limit constraint may be imposed:

R=1lmK =073 (28)

The unique relationship between K-values for the various
columns, as given by the system instability requirement, (18),
must in any case be satisfied. Thus, all columns will be af-
fected by a limitation in any one column. For instance, if a
lower limit governs column %, i.e., if the predicted K, of the
column becomes less than lim K,, then the improved predicted
effective lengths of the columns become

Ki=(1ika)VQki i=1,2,...,m (29)

It is conceivable that the mean effective length factors of more
than one column in a frame may be limited by a lower limit.
In such a case, the calculations of (29) should be carried out
based on the column (k) that yields the larger K-values.

The K-limits must not be confused with the minimum K-
values that are recommended by a number of specifications or
specification commentaries. In principle, the K-limits are also
applicable to ‘‘braced’’ columns in unbraced frames. Very
flexible columns in an otherwise laterally stiff frame fall into
this category, and may cause instability by local (braced) buck-

E E E

1 2 1 2 1 2
E E E
3 4 3 4 3 4
i rg” whnr i whr i
@ (b) ©

FIG. 1. Examples of Braced Frames with Different Degrees of
Interaction between Columns
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ling between column ends. However, for the unbraced frames
discussed later in this paper, the lower K-limits will not apply.

Systematic Procedure

The foregoing implies that K-predictions are first deter-
mined for all columns using (17) and (18) in alternative 1, or
(26) and (18) in alternative 2. Further, (29) is applied to arrive
at improved values only if a lower limit constraint is applicable
to one or more columns. This is probably the most practical
approach.

An alternative, systematic approach to the determination of
final K-values would be to determine first the maximum K-
value for one column, the reference member, and then to use
this value as the basis for the determination of K-values for
the other columns. Consider a braced case involving m col-
umns, with column 1 as the reference column and with only
column m pinned at a support [e.g., column 4, Fig. 1(a)]. Then,
lim K is 0.73 for column m and 0.53 for the others. The cal-
culation procedure then proceeds as follows:

1. Determine K, for column 1 as the largest value of: K,
given by (17) in alternative 1, or (26) in alternative
2, and Kl = 053, K] = 0.53 Qu, e ey K[ =
0.73v/Q,. [{-{1 = (lim I?k)\/le k=1,2,3,...,m]

2. Determine K for the other columns from (18) based
on the largest K, found in step 1. Thus, K, = K,V Qy, =
ENQ, i=2,3,...,m.

In a practical case, it will normally be apparent which one of
the various expressions in step 1 it is that gives the larger
value. For normal restraints and column flexibility ratios (Q),
the larger K,-value will in general be that obtained in the first
part of step 1. For unbraced frames subjected to the limitation
given in the following section, the second part of step 1 will
not govern and can be deleted.

In the summations in (17) and (26), only columns that in-
teract with each other, either directly or through other mem-
bers, should be included. Columns that do not interact with
the others can be analyzed independently and proportioned
such that local (braced) buckling of these do not induce pre-
mature system instability. Examples of such columns are pin-
ended columns (K = 1) in fully braced frames and column 4
(K = 0.7) in Fig. 1(b). In other cases, the frame may be divided
into subframes that can be analyzed separately [e.g., Fig. 1(c)].

Limitation on Applicability for Unbraced Frames

For unbraced (sway permitted) frames with both stiff and
very flexible columns, the latter columns’ contribution to the
summations in (17) and (26) may become very dominant, and
result in excessively conservative K-predictions. This is par-
ticularly obvious in the extreme case of an unbraced frame
that includes ‘‘leaning’’ (pin-ended) columns having infinite
isolated (free-to-sway) K-factors. Consequently, the resulting
K-predictions also become infinite. This is clearly not correct.

To avoid excessive conservativeness, use of the method of
means to unbraced frames should be limited to cases without
excessive differences in column flexibilities. This can be
achieved by limiting the application to cases where

KXQ,<CR? i=1,2,...,m (30)

holds between each term (i) in the summations and a given
multiple of the mean value.

This relationship, with C = 1.7, has been given before (Hel-
lesland 1995). Here, a more nuanced C-factor is suggested. It
is given by

C = 1.05\V/d 31)
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where d = portion of the m terms in the summations [in (17)
or (26)] that are markedly greater (at least about two to three
times) than the others. In other words, d represents the portion
of the columns that are markedly more flexible than the others.
Thus, for cases where one-third, one-half, and two-thirds of
the columns are in this category (d = 1/3, 1/2, and 2/3), C
becomes 1.8, 1.5, and 1.3, respectively.

With this C-definition, it is found from an examination of
single-story unbraced frames that K-predictions that just barely
satisfy (30) normally will not exceed exact values by more
than about 15%.

APPLICATION TO TWO-STORY BRACED FRAMES

The application and accuracy of the method of means is
demonstrated in the following, using the two-story frames
shown in Fig. 2. The results are compared to exact results of
analyses using standard stability functions.

Both alternatives of the method of means are considered,
although most results are obtained according to alternative 2.
The input values to the method of means are the effective
length factors K, and K,, obtained from isolated column anal-
yses using (2), with G-factors as shown in Fig. 3.

The conventional G-factors, according to (1) or (6) with m
= 1 and f according to (7), can be written as follows:

Gia=8.=0; Gyr=gqgc (32a,b)
1=+ @)giss Guw=Gip (33a,b)
where
EL/L, EL/L,
= 3 i = , Ii=A B, C 34a,b
e 8T ELLy, (34a,6)

Most results in this paper are based on these G-factors. How-
ever, for comparison, some results are also obtained based on
G-factors with the restraint demand factors given by (8) and
(9). With these f-factors, G, and G,z can be written as

G = 2818; Gy = 2qgm (35a,b)

1
Gis = <1 + Q_> g Gu=q(d + Qg (36a,b)

12

Ly
I Elyc

PZ2222227272)

El,
JE E k=2 —[%Q
5 [C 2 El,
L, P, | Col. 2 El
Kpg =2
Elg b Elyp ; 3 b8 _ﬁ&
# Elrl col. 1
Ly P, .
1 Kpa =00
-nirf} m)m- bA =
(@) Type 1 (b)Type 2 (c) idealization

FIG. 2. Braced, Symmetrical Two-Story Frames with: (a) Un-
equal; (b) Equal End Restraints at the Base and Top; (c) Analysis

Model
G158 i B Gac Ec
Col. 1 Col. 2
Kj Ko
Gia A Gz B
=0
(b)

@

FIG. 3. Isolated Column Analysis



The factors G,, and G, remain unchanged since only one
column frames into each of joints A and C (i.e., fi, = 1 and
fie =1
Basis for Predictions

For convenience, the procedure outlined earlier is restated
in the following for the two-story frames in question:

1. Determine K, as the largest of the values given by

. 1 .
R = % K, + K,VO,) = > (K, + K,/ Q,,)—alternative 1

172

172
K. = I:% (Ki+ K%Qz,)] = [% K3+ K§/Q,2)] —alternative 2
and

K] = 0.53 or Kl = 0.53 \Y QZl = 0.53/ V Q]Z

2. Determine K,, based on the largest K, found in step 1,

as
K1=K1 \% Ql2
T T T T | T T T T |
1.4 P’ L1/P2L2= 2 -1
———-— 1 lExacT |
—_— 2 ' -1
1.2 —— - — MEAN'K 4
. ——-~-— CONVENTIONAL

a =aE1= P Ly Elp/L,
2 Qg PL, EL/L,

FIG. 4. Predicted versus Exact Effective Length Factors for
Frame Type 1 with Negligible Beam Restraints

1.4 L T T

17 T 1 1 L l T | ¥ Ll
L I
r P, L, _ El, /L, _ 2 2 X
1.2+ Pl Els/Lp 11

AN2 K
0.4} -——=~--—— CONVENTIONAL ]
S NS S SN VR U SN ST S SR NN SR S | .
0 1 2 3
Qrz

FIG. 6. Predicted versus Exact Effective Length Factors for
Frame Type 1 with Intermediate Beam Restraints and P,L,/P,L,=
2

1.2 : T T T T T T =T -1 T T
" EXACT _ (PL),/(PL; =1 4
— - — MEAN2 K (E/L),
1.0k —--—— CONVENTIONAL ——1 =0.
(Elp /Lp)
K -
0.8+
0.6}

——- —— -

04 | R,=053 K= 0.53 ]
0.2 K= 0.53VQy K,=0.53VQ,,
1 1 1 ] I 1 | | | 1 1 i 1
e 1 2 3
012

FIG. 7. Predicted versus Exact Effective Length Factors for
Frame Type 1 with Strong Beam Restraints

TABLE 1. KIK,,..-Ratlos for Columns in Fig. 4

PL, Qi
P.L, |Alternative| 0 |0.1/0.3/0.5]1.0/1.5|2.0/3.0/6.0] «
) (2 @j@iG) 6@ ]|®E) ] |09 (2)

L T S L I B N B 1 1 ]0.71]0.850.92]0.94]0.97]0.981.00[1.021.02]1 .06
= P 2 4 2 1 0.7110.86]0.96/0.99{1.02|1.01]1.00{0.9910.97(1.06"
y Ly El, /L,
120k P. Lo = Elo/L =1 P 14 i 1 2 1.0111.01{1.00{0.99{0.98(0.99|1.00{1.03|1.05|1.06°
. \ 2%z oite 2 2 1.01/1.03(1.04{1.04/1.02|1.01{1.00/0.99|1.00|1.06
K Ratio® [1.41(1.19(1.10[1.06{1.02|1.00{1.00(1.01{1.03{1.00
1.0 Note: K\/K oo = Kol Kooxacr:
*The general lower KR-limit (0.53) governs these results. The higher
limit (0.73) for the pin-ended column 2 has not been imposed in these
0.8 predictions.
"Ratio between alternative 2 and alternative 1 results.
0.6 R it
8
p— 7V R ] o
0.4+ T CONVENTIONAL ~ Typical results are presented in Figs. 4—7 and Tables 1-3.
| | Numerical details and results for additional parameter values
0 1 ] 1 5 S 3 are given in Hellesland (1992b). The figures show effective
o length factors versus Q,,. All figures include three sets of ef-
12

FIG. 5. Predicted versus Exact Effective Length Factors for
Frame Type 1 with Intermediate Beam Restraints and P,L,/
Pl=1

fective length factors: exact factors, predicted mean factors
(K), and isolated column factors.

For frame type 1 with (EI,/L)/(El,/L,) = 1,000, correspond-
ing in practice to pinned beam-column connections (Fig. 4),
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TABLE 2. Alternative 2 K-values, Based on Various Restraint
Demand Factors, versus Exact K-Values; Frame Type 1 (Fig. 2)
with (EL/LW(EI/L,) =1

P,L, |Ratios q = (EL/L)/(EL/L,)
P.L, R 0 [01(03[05|07[10[15(20}30 =
M@ [[@iG (6 |@]G) e 00/d1){302)
1 Kixaer | © |1.69 11.08 |0.91]0.83[0.75]0.69|0.64]0.59 10.50
R1* |1.06°]0.99°10.94 |0.96]|0.97]0.98}0.98{1.01{1.02 |1.06"
R2 1.06°(0.99°|0.90 |0.95(0.96(0.98|0.99|1.00/1.01 |1.06"
R3 1.06°{0.99°10.90°/0.93|0.96|0.980.98 | 1.00|1.00 |1.06"
2 Kioxae | @ |1.19 [0.78 |0.69{0.65(0.62]0.60(0.580.56 |0.50
R1 1.06°(0.99°/1.01 |1.011.00/0.9910.98/0.98]0.98 |1.06"
R2 1.06°10.99°|0.98 11.00(1.0010.99(0.98(0.97[0.96 {1.06"
R3 1.06°(0.99°(0.98 |1.00|1.00/0.9910.97)|0.96]0.95"| 1.06"

'R = R\/K et (=K2/Karexae). In the R-ratios R1, R2, and R3, K, is
computed based on isolated column values with restraint demand factors
according to Eqgs. (7) (‘‘conventional’’), (8), and (9), respectively.

*The general lower K-limit (0.53) governs these results.

TABLE 3. K.,../K...-Ratios for Two-Story Braced Frames
(Fig. 2)

ELL, | PiLs Qe
(Elp/Lp)s | PaL, 0 0.5 1.0 1.5 3.0 o0
M @1 G “ (5) (6) @ @)
(a) Frame Type 1
0.1 1 1.06* 1.01° 1.00 1.00* | 1.02* | 1.06"

2 1.06" 1.03° 1.00 1:01' 1.02* | 1.06"
0.5 0.5 1.06* | 091 095 | 0.99 1.06 1.06*

1 1.06° | 095 0.99 1.00 1.02 1.06*

2 1.06" | 1.00 1.00 | 1.00 0.96 1.06*

1.0 0.5 1.06* | 0.92 095 | 098 1.06 1.06*
1 1.06* | 0.96 0.98 1.00 1.02 1.06°

2 1.06* | 1.01 1.01 1.00 0.98 1.06*

2.0 1 1.06* | 097 098 | 0.99 1.03 1.06*
2 1.06° | 1.00 1.02 | 1.01 0.99 1.06*

1,000 1 1.01 0.99 098 | 0.99 1.03 1.06*
2 1.01 1.04 1.02 | 1.01 0.99 1.06"

(b) Frame Type 2
0.1 1 1.06° | 1.04* | 1.00 | 1.01* | 1.02* | 1.06"

2 1.06* 1.04* 1.00 1.01* 1.02* | 1.06"
0.5 1.06* { 0.96 1.00 1.03 1.05 1.06*
1.0 1 1.06* | 0.99 1.00 1.00 1.00 1.06"
2 1.06" 1.03 1.00 | 0.98 0.95 1.06"

Note: K-factors are computed with ‘‘isolated’’ column factors based
on the conventional approach.
*These values are due to the general lower K-limit (0.53).

isolated column K-factors are constant and equal to 0.7 and
1.0, respectively, for columns 1 and 2. The predicted mean
factors will therefore be independent of PL-ratios in a plot
versus Q.

Alternative 1 versus Alternative 2

Comparing the K-predictions based on alternatives 1 and 2,
as shown in Fig. 4 and Table 1, it is seen that alternative 2
gives somewhat larger K-values over the entire range of the
comparison, and in particular at smaller Q,,-values. Further-
more, alternative 2 gives generally better agreement with exact
results, as seen in Table 1. The lower limit for pin-ended col-
umns has not been imposed on these predictions. Improved
alternative 1 predictions could have been obtained in this case
at small Q,;-values by using (29), with 0.73 as a lower limiting
value for column 2 (pinned at one end).

Predictions based on alternative 1 also have been obtained
for other cases. The trend is the same as discussed earlier. With
increasing beam stiffnesses (i.e., decreasing column to beam
stiffness ratios), the significant difference between the two al-
ternatives at smaller ),-values becomes less pronounced.
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When the lower limit on K governs, it is immaterial which
alternative is used.

For the overall predictions, alternative 2 gives K-values
closest to the exact results for the cases investigated. Also,
since it is not significantly more complex in its formulation,
alternative 2 would seem to be the better choice of the two,
and is the one considered in the remainder of this study.

input Values—Isolated Column Predictions

The three restraint demand factors [(7)—(9)] and the result-
ing G-factors [(32)—(36)] give rise to different isolated column
effective length factors. As seen in Table 2, resulting mean
values, K, are not significantly affected by the choice of the
restraint demand factor. The smallest ratios (R3) are at most
5% below the largest (R1), at ¢ = 0.3 for the case considered.

In the evaluation of various restraint demand factors for
braced columns (Hellesland and Bjorhovde 1996), it was con-
cluded that the conventional G-factor gives rise to isolated
column effective length factors that are the least in agreement
with the exact results. It was also concluded that the use of
the conventional factor reflected an incorrect influence of the
major parameters. This is apparent in Figs. 5—7, where the
conventional K;-factor is seen to increase with increasing Q,,,
whereas the exact factor decreases. In spite of this, it is of
interest to note that it is the K-predictions computed with iso-
lated column values based on the conventional restraint de-
mand factor that are closest to the exact results (R1, Table 2).

Thus, as an approach for providing input values to the pres-
ent procedure, the conventional approach would not only seem
to be acceptable, but would also seem to be the better approach
in terms of providing improved K-predictions.

Whether this also holds for frames other than those inves-
tigated here remains to be seen. However, it is likely that it
will at least result in larger K-predictions than the other ap-
proaches for two-story frames. This may be explained with
reference to (26) as restated earlier for the two-story case (al-
ternative 2). At smaller Q),-values, conventional K,-factors
[due to (7)] are smaller than those due to (8) and (9). Con-
sequently, for K,-factors the opposite will be the case. At small
Q..-values (less than 1), the K,-contribution to K, will be am-
plified by 1/Q,, (greater than 1). Thus, at small Q),-values the
K;-contribution will be the dominant one. The conventional
approach, with the larger K,-value, will therefore yield the
larger K-values. At larger Q,,-values, the conventional K;-fac-
tor is larger and the K,-factor smaller, than those due to the
other approaches. Since 1/Q,, now is less than one, the K-
contribution will dominate. The net result will be the same as
found earlier.

The Lower Limit

The imposed general lower limit (0.53) on K-predictions
governs results to an increasing extent with decreasing column
to beam stiffness ratios. For frame type 1 in Fig. 7, with a
ratio (EI,/L\)/(El,/L,) as low as 0.1, the lower limit governs
results for nearly all Q,-values. The agreement with exact
results is excellent. Further, at small Q,,-values in Figs. 5 and
6 it is also seen that 0.53 is an appropriate choice for a lower
limit on predictions. For normal column to beam stiffness ra-
tios and normal Q),-values, the lower limit does not govern
results.

Accuracy—Alternative 2

Results presented in Figs. 4-7, with P,L,/P,L, = 1 or 2, are
representative for all results obtained with such PL-ratios.
With these PL-ratios, errors in the predicted results were al-
ways found to be within about +6% of exact results. This can
be seen in Table 3. For practical Q,,-values, believed to be



commonly in the 0.5-2.0 range, errors are within 5%, which
is about the same as found for the total Q,,-range. With Q,,-
values of about 1.0-1.5, errors do not exceed *2%. With a
PL-ratio of 0.5, the maximum errors increase to about —10%
when combined with smaller Q,,-values (0.3-0.5). However,
such combinations are not likely to be representative of prac-
tical situations for the frames considered.

With the foregoing qualification, it may be concluded that
errors will be within about *5% for all practical cases of the
frames considered. The agreement between K-predictions and
exact results must in general be considered very good. It is
emphasized that errors in K-predictions will become equal in
the various columns of a structure. This is due to the relation-
ship imposed by (18).

APPLICATION TO UNSYMMETRICAL BRACED PANEL
FRAME

The frames examined were symmetrical about the vertical
centerline with respect to loading and geometry. Consequently,
the frames could be modeled by a continuous two-story col-
umn with exactly defined beam restraints since axial forces
(second-order effects) in the beams were neglected. The only
interaction between the columns is therefore the vertical in-
teraction. Without symmetry, horizontal interaction will take
place between adjacent columns. The effect of lack of sym-
metry on buckling shapes is schematically illustrated for a sin-
gle panel frame in Fig. 8.

The first case is representative for cases with Q,, close to,
but greater than one (i.e., column 2 slightly stiffer than column
1). Both columns buckle into triple curvature bending. The
beams deflect into single, but not symmetrical curvature. The
beam restraint at column 1 becomes greater, and at column 2
smaller, than that corresponding to symmetrical beam bending.

If column 2 is markedly stiffer than column 1, it may buckle
into double curvature (with strong beam restraint at one end),
or into single curvature as in the second case considered (Fig.
8). In the latter case, the beams bend into double curvature,
and therefore reflect increased beam restraints at the ends of
column 1 and decreased (negative) restraints at the ends of
column 2. In this manner, the ‘‘stronger’’ one (column 2) con-
tributes to the restraint of the ‘‘weaker’’ one (column 1).
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FIG. 8. Single Panel Braced Frame: (a) Frame Definition; (b)
Possible Buckiing Modes

TABLE 4. Effective Length Factors for Single Panel Braced
Frame (Fig. 8)

Exact effective length factors, computed using stability
functions and neglecting axial forces in beams, are given for
Q1 =1, 1.1, and 2 in Table 4. Also given are conventional
isolated K-values [(2) and b = 2] and predictions according to
the alternative 2 of the method of means.

In the symmetrical case (Q,, = 1) the beams bend into sym-
metrical single curvature at frame buckling. Consequently, all
three methods give the same effective length factors. With in-
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FIG. 9. Structures Considered in Other Investigations
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TABLE §. K-Factor Comparisons for Braced Continuous
Three-Story Columns in Fig. 9(a, b)

Isolated Exact®|Mean 2°|(isolated/|(Mean 2/
Ga| Gs| K, K, Ks | Koxact K Exact) | Exact)
M@ | @ |6 |6 (7) (8) 9)
(a) Far ends of upper and lower columns are fixed (a)

0.1 10310.524]0.588[0.563 | 0.571 | 0.559 |0.92-1.03| 0.98
0.2 | 0.6 10.546]|0.6490.599 | 0.616 | 0.600 (0.89-1.05 0.97
03104 ]0.563)0.644{0.578} 0.606 | 0.596 [0.93-1.06] 0.98
041 0.8 10578 (0.7010.615] 0.647 | 0.633 [0.89-1.08] 0.98

. 0.5 | 2.0 [0.590 | 0.765 | 0.656 | 0.693 | 0.674 [0.85-1.10] 0.97

Effective Length Factors | ¢oyateq/ (Mean 2/ 1.0 | 0.1 ]0.6260.654 | 0.524 | 0.634 | 0.604 |0.83-1.03] 0.95

Q.. | Column | Exact [lsolated | Mean 2 | Exact) | Exact) 25 | 50 [0.695[0.988 | 0.697 | 0.809 | 0.805 [0.86-1.22] 1.00
(1) 2) 3) 4) (5) (6) @ (b) Far ends of upper and lower columns are hinged (b)

1 1 0794 | 0794 | 0.794 1.00 1.00 0.1 |03]0.732(0.588 | 0.784 | 0.746 | 0.706 [0.79-1.05| 0.95

0.794 | 0794 | 0.794 1.00 1.00 0.21 0.6 |0.760 | 0.649 | 0.835 | 0.780 | 0.752 [0.83-1.07] 0.96

1.1 1 0.781 | 0794 | 0.780 1.02 1.00 0.3 ] 040784 (0644 | 0.804 | 0.765 | 0.747 0.84-1.05| 0.98

2 0819 | 0.804 | 0818 0.98 1.00 04|08 {0.804 |0.701 | 0.858 | 0.804 [ 0.790 [0.87-1.07| 0.98

2 1 0744 | 0794 | 0.708 1.07 0.95 0.5]20|0.821}0.765| 0923 | 0.853 | 0.839 [0.90-1.08| 0.98

2 1.052 | 0864 | 1.001 0.82 0.95 1.0 ] 0.1 |[0.875]0.654]0.732| 0.802 | 0.759 10.82-1.09| 0.95

Note: Frame data EI,/L:El,,/L,: El,,/L, = 1:0.333:1.667. P, = P, = P
(i.e., O\, = EL/EI).

25 | 50 [0.992]0.988|0.996| 0992 | 0.992 [1.00-1.00] 1.00
*Qy=1ExactK,=K,=K;, mean K, =K, =K, =K.

JOURNAL OF STRUCTURAL ENGINEERING / NOVEMBER 1996 / 1281



TABLE 6. K-Factor Comparisons for Braced Structures in Fig.
9(c-9)

Effective Length

Com-
Factors

pression (Isolated/|(Mean 2/
Frame/member| Q. | Exact |isolated|Mean 2| Exact) | Exact)

a) @ 1G] @ ® ® @) ®

c 1 1.000| 0.96 1.0 0.92 1.04 0.96
2 0.769| 1.10 1.0 1.05 091 0.96
3 1.346{ 0.83 1.0 0.79 1.21 0.96
4 0.769] 1.10 1.0 1.05 091 0.96
5 0.321] 1.68 1.0 1.62 0.60 0.96
d 1 1.000{ 0.67 0.7 0.66 1.06 0.99
2 0.347] 1.13 1.0 1.12 0.89 0.99
3 0.781] 0.76 0.7 0.75 0.93 0.99
4 0.521| 0.93 1.0 0.92 1.10 0.99

1,2 |10 0.80 0.68 0.79 0.85 0.99
3,4 |10 0.80 0.89 0.79 L1 0.99
f 1,2 |10 0.68 0.61 0.67 0.90 0.99
3,4 |10 0.68 0.72 0.67 1.07 0.99
5,6 |10 0.68 0.68 0.67 1.00 0.99
3 (1.0 0.87 0.63 0.83 0.72 0.95
,6 (2.0 0.62 0.70 0.59 1.13 0.95

TABLE 7. K-Factor Comparisons for Unbraced Frames in Fig.
9 (e-l)

Effective Length Factors (Isolated/|(Mean 2/
Frame| Column| Q, | Exact {Isolated|Mean 2| Exact) | Exact)

(1) (@) ® | @ (5) (6) {7) (8)
e 1,2 }1.0 1.65 1.44 1.62 0.87 0.99
3,4 |10 1.65 1.79 1.62 1.08 0.99
f 1,2 1.0 1.21 1.11 1.16 0.92 0.96
3,4 |10 1.21 1.22 1.16 1.01 0.96
5,6 |1.0 1.21 1.16 1.16 0.96 0.96
g 1,2,3 (1.0 1.58 1.16 1.46 0.73 0.93
4,5,6 120 1.12 1.21 1.03 1.09 0.93
h 1,2 1.0 1.44 1.50 1.44 1.04 1.00
3,4 |05 2.04 1.94 2.03 0.95 1.00
i 1, 4 1.0 2.77 2.05 2.74 0.74 0.99
2,3 ]2.658]| 1.70 2.02 1.68 1.19 0.99

creasing Q;,-values, isolated factors become increasingly in-
accurate. For Q,, = 2 the error is —18% for column 2. The
corresponding error by the method of means is —5%.

APPLICATION TO OTHER STRUCTURES

As an illustration of the broad applicability of the method
of means, it has also been applied to various structures that
have been analyzed by other researchers. These are shown in
Fig. 9. Structures a and b were used by Duan and Chen (1988),
¢ and d by Bridge and Fraser (1987), and e—i by Kuhn (1976).
For frames e—g, braced as well as unbraced buckling is con-
sidered. Exact effective length factors have been computed
using a computer program {(BETA) utilizing stability functions,
and developed at the University of Oslo (Frislid 1994). Except
for frame d, exact factors are also given in the various studies.

Isolated conventional K-factors and K-predictions (Mean 2)
based on alternative 2 of the method of means are compared
to exact results in Tables 5, 6, and 7. The isolated K-factors,
used as input to the method of means, are obtained from (2)
for the braced structures and from (3) for the unbraced struc-
tures. Both cases were based on conventional G-factor defi-
nitions, with the restraining beams in symmetrical (b = 2) and
antisymmetrical curvature (b = 6), respectively. The K-predic-
tions for the unbraced cases all satisfied the suggested limi-
tation given by (30) and (31).

Braced Structures—Comments

The three-story columns, a and b, with rotational spring re-
straints defined by (5) with b = 2, have equal flexibility pa-
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rameters o and therefore flexibility ratios O, = 1. Exact K-
factors will consequently be the same for the three columns.
This is also the case for the K-predictions, which in this case
are simply given by

K= /% K+ K2+ K% (37

Except for the first case in Table S, section b, where the
suggested limit of (28) might have been adopted (i.e., replac-
ing K = 0.706 with 0.73), no K-predictions are below the pro-
posed lower limit constraints. This is also the case for the
comparisons in the following.

The tiered continuous five-story column, ¢, and the
“‘wharf’’ structure, d, consist of compression members only.
Due to the absence of restraining (beam) elements, the G-
factors become infinite at the member joints, and the isolated
K-factors are either equal to 1.0 {c) and 1.0 or 0.7 (d).

Isolated K-predictions for the braced structures a—g are be-
tween 40% below to 22% above exact results (Tables 5 and
6). In comparison, mean K-predictions (alternative 2) are all
at the most 5% below the exact results. Alternative 1 predic-
tions (not shown) are in all cases slightly below the predictions
according to alternative 2.

Unbraced Structures—Comments

Structures e—i are the only unbraced ones that have been
considered in this study. The four first cases, e—h, demonstrate
the ability of the method of means to correct for the vertical
interaction effects between columns in different stories. In the
last case, i, it is the horizontal sway interaction between col-
umns with different axial load levels that is reflected. The
method of means therefore offers an alternative to the story
sway (or moment) magnifier approach.

The accuracy of the mean K-predictions, as shown in Table
7, is comparable to that found for braced structures. However,
the structures considered in the unbraced mode do not repre-
sent a particularly wide range of influencing parameters. A
wider range should be considered to verify (30) and (31), and
to identify other possible limitations of applicability.

CONCLUDING REMARKS

It was found that the method of means in either of the two
alternatives presented offers a simple and accurate approach
for the computation of effective length factors for continuous
columns and frames. Its use of isolated effective length factors
obtained by standard methods makes the approach particularly
attractive.

Alternative 2, with isolated factors based on the conven-
tional approach, was found to give the better predictions. Er-
rors were within a few percent of the exact results for the cases
considered. Further, an important property of the method of
means is that errors will be of the same magnitude, and in the
same direction (positive or negative) for all columns. It is
therefore recommended that predictions should be increased
by about 5% in actual design.

The method is based on general principles and is applicable
to braced frames and to a range of unbraced frames. The
method is suitable to account for vertical interaction between
columns on different stories of a frame and to account for
horizontal interaction between columns on the same level. For
unbraced frames, and in particular for such frames containing
laterally very flexible columns, the range of validity of the
method of means needs to be investigated further.

The method has been found to be especially useful in the
analysis of frames with regions where abrupt changes of mem-
ber stiffness occur. Such regions are found where there are (1)
sudden changes in beam restraint conditions, such as in the



top and bottom stories; (2) sudden changes in column stiffness
(dimensions) at a floor level; and (3) sudden changes in axial
force levels and in story heights. It is known that the approx-
imate, isolated K-predictions are particularly inadequate for
such cases.

In the applications of the method to the structures consid-
ered in this paper, all compression members were included in
the summations leading to the mean K-predictions. However,
it is not envisioned that all compression members necessarily
should be included. For instance, for large multistory frame-
works partial application to a limited number of columns in
each region with significant stiffness changes might possibly
be adequate. For such applications, some guidelines for prac-
tical use of the method require further study.
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APPENDIX Il. NOTATION

The following symbols are used in this paper:

b(by) = rotational beam stiffness coefficient (reference value);
C = coefficient in Eq. (30);
d = coefficient in Eq. (31);
El, El, = flexural bending stiffness of column and beam section
(subscript b);
f = restraint demand factor at a column end (=k/k,);
G = joint stiffness ratio between columns and beams at a
joint;
g = stiffness ratio between one column and the beams at a
joint;
K = effective length factor;
K = weighted mean effective length factor;
k = rotational restraint stiffness at a column end;
k, = rotational stiffness of restraining beams at a joint;
L, L, = length of column and beam (subscript b);
L, = effective length (=KL);
m = number of interacting columns in the method of means;
m = beam stiffness modifier (=b/b,), Eq. (6);
n. = number of columns meeting at a joint,
P = axial force in column (compression member);
P = Euler buckling load of pin-ended column;
Q; = column flexibilities ratio (=g /o) between columns i
and j;
g = ratio between column EI/L-values (column 2 to column
1); and
oy = column flexibility parameter (=P/Py).
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