UNIVERSITY OF OSLO
 Faculty of Mathematics and Natural Sciences

Exam in: \quad STK2130 - Modelling by Stochastic Processes.
Day of exam: Wednesday June 12th 2013.
Exam hours: $14.30-18.30$.
This examination set consists of 3 pages.
Appendices: None.
Permitted aids: Approved calculator. " Formelsamling" for STK1100 and STK1110

Make sure that your copy of this examination set is complete before answering.

Problem 1.

a) There are three classes

1. State 0 , transient
2. States 1 and 2 , recurrent
3. State 3, transient
b) When $X_{0}=1$ or $X_{0}=2$ the process starts in a recurrent and finite class with period 1 , thus ergodic, and the limits $\pi_{j}=\lim _{n \rightarrow \infty} P_{i j}^{n}$ are determined by (1) $\pi_{1} P_{11}+\pi_{2} P_{21}=\frac{1}{2} \pi_{1}+\frac{3}{4} \pi_{2}$ and (2) $\pi_{1}+\pi_{2}=1$. The solution is $\pi_{1}=0.6, \pi_{2}=0.4$.
Since the chain will eventually reach the recurrent class also the $\lim _{n \rightarrow \infty} P_{i j}^{n}=$ π_{j} when $i=0$ or $i=3$ and $j=1$ and 2 . For other values of j the limit is zero.
c) The average converges to $\pi_{1}+2 \pi_{2}=1.4$ by the law of large numbers for ergodic Markov chains. This is the expectation of X_{n} in a stationary state with $\pi_{j}=P\left(X_{n}=j\right)$.
d) By a one-step argument $\nu_{0}=1+\nu_{0} P_{00}=1+\nu_{0} \frac{1}{3}$. Thus $\nu_{0}=\frac{3}{2}$.

Similarly $\nu_{3}=1+\nu_{0} \frac{1}{4}+\nu_{3} \frac{1}{4}$ which implies that $\nu_{3}=\frac{11}{6}$.
e) If $X_{0}=0$ then A_{0} has a geometric distribution on $1,2,3, \ldots$ with probability $p=\frac{2}{3}$, thus $\mathrm{E}\left[A_{0} \mid X_{0}=0\right]=\frac{1}{p}=\frac{3}{2}=\nu_{0}$ from c).
Similarly $\mathrm{E}\left[A_{3} \mid X_{0}=3\right]=\frac{1}{q}=\frac{4}{3}$ for $q=\frac{3}{4}$.
For $\mathrm{E}\left[A_{0} \mid X_{0}=3\right]$ introduce $Y=1$ if the process ever enters state 0 and $Y=0$ otherwise.
Then (1) $P\left(Y=1 \mid X_{0}=3\right)=\frac{1}{4}+\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{4}\right)^{3}+\cdots=\frac{1}{3}$ and
(2) $\mathrm{E}\left[A_{0} \mid X_{0}=3\right]=\mathrm{EE}\left[A_{0} \mid Y, X_{0}=3\right]=\frac{3}{2} P\left(Y=1 \mid X_{0}=3\right)+0 \cdot P(Y=$ $\left.0 \mid X_{0}=3\right)=\frac{1}{2}$

Problem 2.

a)

$$
\begin{aligned}
P_{i j}(t+s) & =\mathrm{P}(X(t+s)=j \mid X(0)=i) \\
& =\mathrm{P} \bigcup_{k=1,2,3}(X(t+s)=j, X(t)=k \mid X(0)=i) \\
& =\sum_{k=0}^{2} \mathrm{P}(X(t+s)=j, X(t)=k \mid X(0)=i) \\
& =\sum_{k=0}^{2} \mathrm{P}(X(t+s)=j, \mid X(t)=k) \mathrm{P}(X(t)=k \mid X(0)=i) \\
& =\sum_{k=0}^{2=0} P_{i k}(t) P_{k j}(s)
\end{aligned}
$$

which are the Chapman-Kolmogorov equations.
b) By Chapman-Kolmogorov $\mathbf{P}(t+h)-\mathbf{P}(t)=\mathbf{P}(t) \mathbf{P}(h)-\mathbf{P}(t)=\mathbf{P}(t)(\mathbf{P}(h)-$ $\mathbf{I})=\mathbf{P}(t)(\mathbf{P}(h)-\mathbf{P}(0))$. Thus $\mathbf{P}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{1}{h}[\mathbf{P}(t+h)-\mathbf{P}(t)]=$ $\lim _{h \rightarrow 0} \mathbf{P}(t) \frac{1}{h}(\mathbf{P}(h)-\mathbf{I})=\mathbf{P}(t) \mathbf{R}$ which are the Kolomgorov forward equations.
c) With $v_{i}=q_{i j}+q_{i j^{\prime}}$ for j and j^{\prime} different from i we have

$$
\mathbf{R}=\left[\begin{array}{ccc}
-v_{0} & q_{01} & q_{02} \\
q_{10} & -v_{1} & q_{12} \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
-3 \mu & 2 \mu & \mu \\
\mu & -3 \mu & 2 \mu \\
0 & 0 & 0
\end{array}\right]
$$

The remaining $P_{i j}(t)$ are given by $P_{02}(t)=1-P_{00}(t)-P_{01}(t), P_{12}(t)=$ $1-P_{10}(t)-P_{11}(t) P_{20}(t)=P_{21}(t)=0$ and $P_{22}(t)=1$.
d) By straightforward derivation of the given expression for $P_{00}(t)$ we get

$$
P_{00}^{\prime}(t)=\frac{-\mu}{2}[(3-\sqrt{2}) \exp (-(3-\sqrt{2}) \mu t)+(3+\sqrt{2}) \exp (-(3+\sqrt{2}) \mu t)]
$$

According to the Kolmogorov equations $P_{00}^{\prime}(t)=-3 \mu P_{00}(t)+\mu P_{01}(t)$ which can be expressed as

$$
\begin{aligned}
& \frac{-\mu}{2}[3 \exp (-(3-\sqrt{2}) \mu t)+3 \exp (-(3+\sqrt{2}) \mu t) \\
& -\sqrt{2} \exp (-(3-\sqrt{2}) \mu t)+\sqrt{2} \exp (-(3+\sqrt{2}) \mu t)]
\end{aligned}
$$

which after redistribution of the terms equals the straightforward derivative of $P_{00}^{\prime}(t)$.
e) Let $I_{1}(t)$ be the indicator that $X(t)=1$. Then $B=\int_{0}^{\infty} I_{1}(t) d t$. Thus $\mathrm{E}[B \mid X(0)=0]=\mathrm{E}\left[\int_{0}^{\infty} I_{1}(t) d t \mid X(0)=0\right]=\int_{0}^{\infty} \mathrm{E}\left[I_{1}(t) \mid X(0)=0\right] d t$.
But this again equals $\int_{0}^{\infty} P_{01} d t=\frac{1}{\sqrt{2}}\left[\frac{1}{(3-\sqrt{2}) \mu}-\frac{1}{(3+\sqrt{2}) \mu}\right]=\frac{2}{7 \mu}$.
Similarly the expected time in state 0 given $X(0)=0$ is given by $\int_{0}^{\infty} P_{00}(t) d t=\frac{3}{7 \mu}$. Thus the expected total lifetime given $X_{0}=0$ equals the sum of these two terms $\frac{2}{7 \mu}+\frac{3}{7 \mu}=\frac{5}{7 \mu}$.

