
1 Monte Carlo thinking and technique

1.1 Introduction

To get started we need stochastic modelling and Monte Carlo, and this chapter is an introduction
to both. The modelling part, though skinny is enough to see us through a lot of problems in the
next chapter. There is a deliberate thought behind the manner in which models are presented.
Emphasis is on how they are simulated in the computer, not on their probabilistic description.
This is the constructive approach where mathematics is developed the way it is being used. One
of the advantages is that we can move quicker beyond the most elementary. There will be more on
the probabilistic side of things in Parts II and III.

Why Monte Carlo is such an important problem-solving tool was indicated in Chapter 1. Here
is the same argument phrased in a more abstract way. Typicaly a risk variable X has many ran-
dom sources, and it is usually hard, or even impossible, to find its density function f(x) or its
distribution function F (x) through mathematical deductions. This is true even when the random
mechanisms involved are simple to write down and fully known. It is here Monte Carlo comes in.
Computer simulations X∗

1 , . . . ,X
∗
m enables the distribution of X to be approximated. How that is

done and the error it brings is best discussed at a general level. That is where we start (Section
2.2). Then come construction and design, an immense theme. Basis for stochastic simulation is
the uniform random variable U for which every value between 0 and 1 is equally likely and the
density function a horizontal straight line over the interval (0, 1). A Monte Carlo simulation X∗ is
a transformation of an independent, computer-generated sample U∗

1 , U∗
2 ,. . . of such uniforms. In

mathematically terms

X∗ = H(U∗
1 , U

∗
2 , . . .) (1.1)

where the function H is some mathematical expression or merely command lines in the computer.
The number of U∗

i may be very large indeed, sometimes even random. Computer software contains
procedures for drawing uniform random variables, and we might skip how it is done. Still, the issue
is not without practical relevance and sometimes leads to worthwhile gain in computer time. The
generation of uniform random numbers is treated in Chapter 4.

But why be so basic? Gaussian and many other distributions can be sampled through software
packages. Can’t we ignore the theory and proceed directly to how they are used? A lot of work
can be satsfactory carried out with no knowledge of underlying algorithms, yet they should be
studied. Otherwise we would be at the mercy of what software vendors have chosen to implement.
Consider large claims in property insurance. One of the popular models is the Pareto distribution
(you see why in Chapter 9), but a Pareto generator is not always routinely available, and we should
be able to set up one on our own. Then there is computational speed. Software packages have a
tendency to run slowly. By writing a program in, say the C language, speed may be enhanced by a
huge factor and even very much more if quasi-randomness (Section 4.7) is invoked. Advantages:
Larger problems can be tackled. Money is saved if we can get around on one of the cheap compilers.

1.2 How simulations are used

Introduction
Quantities sought are typically expectation, standard deviation, percentiles and probability density

1

function. This section demonstrates how they are worked out from simulations X∗
1 , . . . ,X

∗
m of X,

the error that brings and how the sample size m is determined. We draw on statistics, using the
same methods with the same error formulas as for historical data. The experiments below have
useful things to say about error in ordinary statistical estimation too.

Mean and standard deviation
Let ξ = E(X) be expectation and σ = sd(X) the standard deviation (or volatility) of X. Their
Monte Carlo estimates are sample average and sample standard deviation

X̄∗ =
1

m
(X∗

1 + . . .+X∗
m) and s∗ =

√

√

√

√

1

m− 1

m
∑

i=1

(X∗
i − X̄∗)2. (1.2)

The statistical properties of the sample mean are the well-known

E(X̄∗ − ξ) = 0 and sd(X̄∗) =
σ√
m
. (1.3)

Monte Carlo estimates of ξ are unbiased, and their error may in theory be pushed below any pre-
scribed level by raising m. An estimate of sd(X̄∗) is s∗/

√
m where σ in (1.3) right has been replaced

by s∗. This kind of uncertainty is often of minor importance compared to other sources of error; see
Chapter 7, but if X̄∗ is to be a price of something, high Monte Carlo accuracy may still be demanded.

For s∗ the statistical properties are approximately

E(s∗ − σ)
.
= 0 and sd(s∗)

.
=

σ√
2m

√

1 + κ/2, (1.4)

where κ = kurt(X) is the kurtosis of X (see Appendix A.1 for the definition). Are these results
unknown, look them up (p. 355) in Kendall, Stuart and Ord (1994). They are needed in Section
5.7 too. For normal variables κ = 0. The approximations (1.4) are asymptotic and become exact
as m→∞. Large sample results of this kind work excellently with Monte Carlo where m is large.

Example: Financial returns
Let us examine how this machinery performs in a transparent situation where it is not needed. Sam-
ple mean and sample standard deviation calculated from m Gaussian simulations have in Figure 2.1
been plotted against m. The true values were ξ = 0.5% σ = 5% (which could be monthly returns
from equity investments). All experiments were completely redone with new simulations for each
m. That is why the curves jump so irregularly around the straight lines representing the true values.

The estimates tend to ξ and σ as m → ∞. That we knew, but the experiment tells us something
else. The sample mean is in terms of relative error less accurately estimated than the standard de-
viation. Suppose the simulations had been historical returns of equity. After 1000 months (about
eighty years, a very long time) the relative error of the sample mean is still, perhaps, two thirds of
the true value! Errors of that size would have a degrading effect on our ability to evaluate financial
risk and makes the celebrated Markowitz theory of optimal investment in Section 5.3 harder to use.
When financial derivatives are discussed in Section 3.5 (and Chapter 14), it will emerge that the
Black-Scholes-Merton theory removes these parameters from the pricing formulas, doubtless one of
the reasons for their success.

2

Number of simulations
0 1000 2000 3000 4000 5000

0
.0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

Estimated mean

Average

Number of simualtions
0 1000 2000 3000 4000 5000

0
.0

4
0

0
.0

4
5

0
.0

5
0

0
.0

5
5

0
.0

6
0

0
.0

6
5

Estimated standard deviation

Standard deviation

Figure 2.1 Sample mean and standard deviation against the number of simulations for a Gaussian

model. Straight lines are the true parameters.

This is an elementary case, and the main conclusion can be drawn via mathematics as well. Indeed,
from the left hand side of (1.3) and (1.4)

sd(X̄∗)

ξ
=
σ

ξ

1√
m

=
10√
m

and
sd(s∗)

σ
.
=

√

1/2 + κ/4
1√
m

.
=

0.71√
m

when the values of the parameters are inserted (κ = 0). The coefficients explain why X̄∗ is so much
more inaccurate. In Section 13.5 parameter errors of the celebrated Wilkie asset model follow a
similar pattern.

Percentiles
The percentile qǫ is the solution of either either of the equations

F (qǫ) = 1− ǫ or F (qǫ) = ǫ,
upper lower

depending on whether the upper or the lower version is sought. With insurance risk it is typically
the former, in finance the latter. The Monte Carlo approximation is obtained by sorting the
simulations, for example in descending order as X∗

(1) ≥ . . . ≥ X∗
(m). Then

q∗ǫ = X∗
(ǫm) or q∗ǫ = X∗

((1−ǫ)m)

upper lower
(1.5)

with error approximately

E(q∗ǫ − qǫ)
.
= 0 and sd(q∗ǫ)

.
=

aǫ√
m
, aǫ =

√

ǫ(1− ǫ)
f(qǫ)

, (1.6)

which are again asymptotic results as m → ∞; see Kendall, Stuart and Ord (1994), p. 382. It is
possible to evaluate f(qǫ) through density estimation (see below) and insert the estimate into (1.6)

3

Number of simulations
0 20000 40000 60000 80000 1000000

.0
8

0
.0

9
0

.1
0

0
.1

1
0

.1
2

0
.1

3 Estimated percentiles

5% percentile

1% percentile

Normal distribution

Number of simulations
0 20000 40000 60000 80000 100000

0
.2

0
.3

0
.4

Estimated percentiles

1% percentile

5% percentile

t−distribution with 2 degrees of freedom

Figure 2.2 Estimated percentiles of simulated series against the number of simulations. Note:

Scale of the vertical axes unequal.

for a numerical estimate of sd(q∗ǫ).

The experiment in Figure 2.1 has in Figure 2.2 left been repeated for 1% and 5%-percentiles.
Simulation error is larger for the former which is no more than common sense, but it is substanti-
ated by the fact that

aǫ →∞ as ǫ→ 0, (1.7)

which is proved in Section 2.7. Very many more simulations are required for small ǫ. What about
the impact of the distribution itself? The second experiment on the right in Figure 2.2 has been run
for the heavy-tailed t-distribution with two degrees of freedom (see Section 2.3 for the definition).
Now the error has become much larger than they were for the normal on the left (scales of the
vertical axes differ). A precise mathematical result is as follows. Let q1ǫ and q2ǫ be percentiles
under two different density functions f1(x) and f2(x). Suppose the second one has heavier tail than
the first. We may take this to mean that

q2ǫ

q1ǫ
→∞ as ǫ→ 0, (1.8)

and if aiǫ =
√

ǫ(1− ǫ)/fi(qiǫ) are coefficients similar to aǫ in (1.6), then

a2ǫ

a1ǫ
=
f2(q2ǫ)

f1(q1ǫ)
→∞ as ǫ→ 0; (1.9)

see Section 2.7 for the proof. This tells us that simulation error is indeed larger with the second,
more heavy-tailed distribution.

Density estimation
Another issue is how the density function f(x) is visualized given simulations X∗

1 , . . . ,X
∗
m. Sta-

tistical software is available and works automatically, but it is still useful to have an idea of how

4

x
0 2 4 6 8 10

0
.0

0
.0

5
0

.1
0

0
.1

5
0

.2
0

0
.2

5
0

.3
0

Thick: True density
Thin: Estimate, h=0.2

Dashed: Estimate, h=0.05

Moderate smoothing

x
0 2 4 6 8 10

0
.0

0
.0

5
0

.1
0

0
.1

5
0

.2
0

0
.2

5
0

.3
0

Thick: True density
Thin: Estimate, h=0.3

Dashed: Estimate, h=0.5

Heavy smoothing

Figure 2.3 Kernel density estimates based on 1000 simulations from model in the text, shown as

the thick solid line in both plots.

such techniques operate, all the more since there is a parameter to adjust. Density functions are
in this book estimated from simulations by means of the Gaussian kernel method. A smoothing
parameter h > 0 is then selected, and the estimate is the sum

f∗(x) =
1

m

m
∑

i=1

1

hs∗
ϕ

(

x−X∗
i

hs∗

)

where ϕ(x) =
1

√

(2π
e−x2/2. (1.10)

As x is varied f∗(x) traces out a curve which resembles the exact f(x). The method averages m
Gaussian density functions with standard deviation hs∗ and centered at the m simulations X∗

i . Its
statistical properties, derived in Chapter 2 in Wand and Jones (1995), are

E{f∗(x)− f(x)} .= 1

2
h2f ′′(x), and sd{f∗(x)} .= 0.4466

√

f(x)

hm
, (1.11)

where f ′′(x) is the second derivative. The estimate is biased! The choice of h is compromise between
bias on the left (going down with h) and random variation on the right (going up). Commercial
software is usually equipped with a sensible default value. In theory the choice depends on m, the
‘best’ value being proportional to the fifth root!

The curve f∗(x) will contain random bumps if h is too small. This emerges clearly on the left
in Figure 2.3 showing estimates based on m = 1000 simulations drawn from the density function

f(x) =
1

2
x2e−x, x > 0.

The estimates become smoother with the higher values of h on the right, but now the bias tend to
drag the estimates away from the true function. It may for many purposes not matter too much
if h is selected a little too low. Perhaps h = 0.2 is a suitable choice in Figure 2.3. A sensible rule
of the thumb is to take h in the range 0.05 − 0.30, but, as remarked above, it also depend on m.

5

Other kernels than the Gaussian one can also be used; see Wand and Jones (1995) or Scott (1992)
for monographs on density estimation.

Monte Carlo error and selection of m
The discrepancy between a Monte Carlo approximation and its underlying, exact value is nearly
always Gaussian as m→∞. For the sample mean this follows from the central limit theorem, and
standard large sample theory from statistics yields the result in most other cases; see Appendix
A.4. A Monte Carlo evaluation ψ∗ of some quantity ψ is therefore roughly Gaussian with mean ψ
and standard deviation of the form a/

√
m, where a is a constant. That applied to all the examples

above except the density estimate (there is still a theory, but the details are different; see Scott,
1992). Let a∗ be an estimate of a obtained from the simulations (how was explained above). The
interval

ψ∗ − 2
a∗√
m
< ψ < ψ∗ + 2

a∗√
m

(1.12)

then contains ψ with approximately 95% confidence1 that can be reported as a formal appraisal
of Monte Carlo error. Here a∗ = s∗ when ψ is the mean and a∗ = s∗

√

1/2 + κ∗/4 when ψ is the
standard deviation; see (1.3) and (1.4) right (for the kurtosis estimate κ∗ consult Exercise 2.2.8).

Such results can also be used for design. Suppose Monte Carlo standard deviation exceeding
σ0 is unaccepable. The equation a∗/

√
m = σ0 when solved for m yields

m =

(

a∗

σ0

)2

(1.13)

which is the number of simulations required. For the idea to work you need the estimate a∗. Often
the only way is to run a preliminary round of simulations, estimate a, determine m and complete
the additional samples you need. That approach is a standard one with clinical trials in medicine!
With some programming effort it is possible to automatize the process so that the computer takes
care of it on its own. The selection of m is further dicussed in Section 7.2.

1.3 Making the Gaussian work

Introduction
The Gaussian (or normal) model is the most famous of all probability distributions, arguably
the most important one too. It is familiar from introductory courses in statistics, yet built up from
scratch below and is the first example of distributions being defined the way they are simulated in
the computer. This allows more advanced topics like stochastic volatility, heavy tails and correlated
variables to be introduced quickly, though their treatment here is only preliminary. General, de-
pendent Gaussian variables require linear algebra and is dealt with in Chapter 5 which introduces
time-dependent versions too.

The normal family
Normal (or Gaussian) variables are built up from standard-normal N(0, 1) variables (in this book
denoted ε or η). Their distribution function is

Φ(x) =

∫ x

−∞

1√
2π
e−y2/2dy,

1The precise 2.5% percentiles of the normal has been rounded off from 1.96 to 2.

6

Φ(x) = Q(z) exp(−x2/2) where
z = 1/(1 − c0x) and Q(z) = z(c1 + z(c2 + z(c3 + z(c4 + zc5))))
c0 = 0.2316419 c1 = 0.127414796 c2 = −0.142248368
c3 = 0.710706870 c4 = −0.7265760135 c5 = 0.5307027145

Table 2.1 Approximation to the normal integral Φ(x) for x ≤ 0,
use Φ(x) = 1−Φ(−x) for x > 0

known as the Gaussian integral and needed on many occasions. Closed formluae are unavailable,
but an accurate approximation with error less than 1.5 10−7 (taken from Abramowitz and Stegun,
1965) is given in Table 2.1.

The normal family of random variables is defined as

X = ξ + σε, ε ∼ N(0, 1), (1.14)

where ξ = E(X) and σ = sd(X) are mean and standard deviation. Simulations are generated
through X∗ = ξ + σε∗, and the problem is how to draw ε∗. Let Φ−1(u) be its inverse function
(which was denoted qu earlier). It will be proved in Section 2.4 that ε can be represented as

ε = Φ−1(U), U ∼ uniform, (1.15)

and Gaussian variables can be sampled by combining (1.14) and (1.15). In summary:

Algorithm 2.1. Gaussian generator
0 Input: ξ and σ
1 Generate U∗ ∼ uniform
2 Return X∗ ← ξ + σΦ−1(U∗) %Or Φ−1(U∗) replaced by ε∗

generated by software directly

For this to be practical we must have a quick way of calculating Φ−1(u). Very accurate and
simple approximations are available. The method in Table 2.2 was developed by Odeh and Evans
(1974) and is for all u accurate to six decimal places. sufficient for most purposes. Even more ac-
curate approximations can be found in Jäckel (2002) who recommends Algorithm 2.1 for Gaussian
sampling.

Modelling on logarithmic scale
Models on logarithmic scale are common. Returns on equity (Section 1.3) is a case in point for
which the standard model is

log(1 +R) = ξ + σε, or R = exp(ξ + σε)− 1, (1.16)

φ−1(ǫ) = z +Q1(z)/Q2(z) where z = {−2 log(1− ǫ)}1/2 and
Q1(z) = c0 + z(−1 + z(c2 + zc3)), Q2(z) = c4 + z(c5 + z(c6 + z(c7 + zc8))))
c0 = −0.322232431088 c1 = −0.342242088547 c2 = −0.020423121024
c3 = 0.0000453642210148 c4 = −0.099348462606 c5 = 0.58858157049
c6 = −0.531103462366 c7 = 0.0.10353775285 c8 = −0.0038560700634

Table 2.2 Approximation to Gaussian percentiles Φ−1(ǫ) for ǫ ≥ 1/2. Use
Φ−1(ǫ) = −Φ−1(1− ǫ) for ǫ < 1/2.

7

Return
-0.15 -0.10 -0.05 0.0 0.05 0.10 0.15

0
2

4
6

8

Solid: Normal

Dashed:
Log-normal

Equity return

Damage
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Solid: Log-normal

Claim size

Figure 2.4 Left: Normal and log-normal density functions for ξ = 0.005, σ = 0.05. Right: Log-

normal for ξ = −0.5, σ = 1.

where ε ∼ N(0, 1). Another example are claims in property insurance, in this book denoted Z.
The model now reads

log(Z) = ξ + σε, or Z = exp(ξ + σε). (1.17)

Mean and standard deviation are

E(R) = exp(ξ +
1

2
σ2)− 1, and E(Z) = exp(ξ +

1

2
σ2), (1.18)

and

sd(R) = sd(Z) = E(Z){exp(σ2)− 1}1/2. (1.19)

These formulae are among the most important ones in the entire theory of risk. Sampling is easy:

Algorithm 2.2 Log-normal sampling
0 Input: ξ, σ
1 Draw ε∗ ∼N(0,1) %For example: U∗ ∼ uniform, ε∗ ← Φ−1(U∗)

2 Return R∗ ← exp(ξ + σε∗)− 1 or Z∗ ← exp(ξ + σε∗).

The models (1.16) and (1.17) are known as the log-normal. Mathematical expressions for their
density functions are available, but are in this book not needed at all. Examples of their shape
(obtained from simulations) are shown Figure 2.4. Note the pronounced difference from left to
right. Small σ (on the left) is appropriate for finance and yields a distribution close to the normal
model, as postulated in Section 1.3. Higher values of σ (on the right) leads to pronounced skewness,
as is typical for large claims in property insurance.

Stochastic volatility

8

Financial risk is in many situations better described by adding a stochastic model for σ so that (1.14)
is extended to

X = ξx + σε where σ = ξσ
√
Z. (1.20)

There are now two ξ-parameters ξx and ξσ distinguished through their subscripts. The random
variable Z is positive and might be scaled so that E(Z) = 1 or E(Z2) = 1 which means that
ξσ = E(σ) or ξ2σ = E(σ2). What is the effect on X? Principally that a very small or large ε may
occur jointly with a very large Z which opens for larger deviations from ξx than the normal is
able to capture alone. The distribution has become heavier-tailed. Models where the standard
deviation (in finance called volatility) are stochastic have drawn much interest in finance, and
dynamic versions where σ is linked to earlier values will be introduced in Chapter 13. Sampling is
an extension of Algorithm 2.1:

Algorithm 2.3 Gaussian with stochastic volatility
0 Input: ξ, σ0, model for Z
1 Draw Z∗ and σ∗ ← ξσ

√
Z∗ %Many possibilities for Z∗; see text

2 Generate U∗ ∼ uniform.
3 Return X∗ ← ξx + σ∗Φ−1(U∗) %Or Φ−1(U∗) replaced by ε∗

generated by software directly

The most common choice for Z is

Z = 1/G,

where G is a standard Gamma variable with mean 1; see Section 2.5. Now X follows a t-distribution
(see Chapter 13). The earlier example in Figure 2.2 right was run with G = − log(U), which is an
exponential distribution (Section 2.5 again). That is a very strong form of stochastic volatility,
and even daily equity returns typically have lighter tails than this.

Dependent normal pairs
Many situations demand correlated normal variables. Such models are constructed by applying
the linear reresentation (1.14) several times. A normal pair (X1,X2) is defined as

X1 = ξx1 + σ1ε1
X2 = ξx2 + σ2ε2.

where
ε1 = η1

ε2 = ρη1 +
√

1− ρ2 η2,
(1.21)

and a new feature is the sub-model on the right based on independent N(0, 1) variables η1 and η2.
Both of ε1 and ε2 are N(0, 1) too, but they have now become dependent (or co-variating) in a
way controlled by ρ. It will emerge in Section 5.4 that ρ is the ordinary correlation coefficient..
Simulation is straightforward. Generate η∗1 and η∗2 by Gaussian sampling and insert them for η1

and η2 in (1.21); see Algorithm 2.4 below.

The model provides one of the the most popular stochastic descriptions of equity returns R1 and
R2. Using the log-normal we then take

R1 = eX1 − 1, and R2 = eX2 − 1,

where X1 and X2 are correlated Gaussians as above. Simulations of (R1, R2) based on ξx1 = ξx2 =
0.5% and σ1 = σ2 = 5% (could be monthly returns on equity) have been plotted in Figure 2.5. The

9

•

•
•

••
• •

•

•
•

•

•

•

••

•

•
•

•

•

•
•

•

••

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•
•

•

•
•

••

•

•

•
• •
•

•

•

••

•

•

•

••
•

•

•

•

•

•
•

•

•

•
•

•

•

• •

•

•
•

•
•

•

•
•

•

••

•

•
•

••
•

• •

•

• •

-0.15 -0.05 0.05 0.15-0
.1

5
-0

.0
5

0
.0

5
0
.1

5

Return asset 1

Return asset 2

Correlation 0 (independence)

•

••
•

• • ••

•
•

•

•
•

•

•

•

•
•

•

•

•
•

•

••

•

•
••

•

•

•

•

•

••

••

•

•

•
•

•
•

•
•

••

•
•

•

•
••

•

•

•

•

•

••
•

•

•

•

•
•

•

•

•

•

•

• •
• •• • ••

•
•

•

• •

•

•

•
•

•
••

•

•
•

•

•

•
•

•

-0.15 -0.05 0.05 0.15-0
.1

5
-0

.0
5

0
.0

5
0
.1

5
Return asset 1

Return asset 2

Correlation 0.7

•

••
•

•
•

••

•
•

•

••

•

•

•

•
•

•

•
•

•

•

••
•

• •
•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•••
••

•• •

•
••

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
• •

•

•

•
•

•

•

••
•

•

•

•

•

•
• ••

•

•

•
•
•

•

•

•

•

-0.15 -0.05 0.05 0.15-0
.1

5
-0

.0
5

0
.0

5
0
.1

5

Return asset 1

Return asset 2

Correlation 0.9

•

••

•

•
•

•
•

•
•

•
••

•

•

•

•
•

•
••

••
••••

•

•
•

•
•

•

• •

•

•

•

•

•

•

•

•

••• ••
•

•
•

•
•

•

•

•
•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

••
•

•

•

•
•

•

•

•••

•

•

•

•

•
•

••
•

•

•
•
•

•
•

•

•

-0.15 -0.05 0.05 0.15-0
.1

5
-0

.0
5

0
.0

5
0
.1

5

Return asset 1

Return asset 2

Correlation 0.99

Figure 2.5 Joint plot of 100 pairs of simulated equity returns; from the ordinary log-normal model

described in the text.

effect of varying ρ is pronounced, yet the variation for each variable alone isn’t affected at all.

Dependence and heavy tails
Returns of equity investments may be both dependent and heavy-tailed. Can that be handled?
Easily! We simply combine (1.20) and (1.21), rewriting the latter as

X1 = ξx1 + σ1η1, σ1 = ξσ1

√

Z1 (1.22)

X2 = ξx2 + σ2(ρη1 +
√

1− ρ2 η2), σ2 = ξσ2

√

Z2.

Here ξσ1 and ξσ2 are fixed parameters and Z1 and Z2 are positive random variables playing the
same role as Z in (1.20).

It is common to take Z1 = Z2 = Z assuming fluctuations in σ1 and σ2 to be in perfect syn-
chrony. The shape of the density functions of X1 and X2 must then be equal and non-normal
to exactly the same degree. This has no special justification, but it does lead to a joint density
function on a ‘nice’ mathematical form. Not much is made of this in the present book, and Exercise
2.4.5 plays with an alternative.

The effect on financial returns has been indicated in Figure 2.6 which has been set up from the
same model as in Figure 2.5 except that now

Z1 = Z2 = 1/{− log(U)}.
What is the change brought by stochastic volatility? When you take into account that axes scales
are almost tripled compared to what they were in Figure 2.5, it becomes clear that strongly devi-
ating returns has become much more frequent. By contrast the degree of dependence seem to have
remained what it was; see Exercise 5.2.7.

Equi-correlation models
Suppose there are many interacting Gaussian variables. We start out as above by taking

Xj = ξxj + σjεj j = 1, . . . , J (1.23)

where ε1, . . . , εJ are normal N(0, 1) and dependent. The general formulation is a somewhat com-
plicated issue and is dealt with in Section 5.4. A simple special case which will be used in the next
chapter is the equi-correlation model for which

εj =
√
ρ η0 +

√

1− ρ ηj j = 1, . . . , J. (1.24)

10

•
•

•
•

•

• •
•

•
•

•

•

•

•• • •

•
•

•
• •••

•

••

•

•
•

•

•• •
•

••

•
•

•
••

•
• ••

•

•

•

•
•

• •
• •

•
•

•
•

•

•

••
•

• •
•

• •• •
•

•••
••

•
••

•

•• •

•

• •
•

•
•

• •• •
•

•
••

•

•

-0.4 -0.2 0.0 0.2 0.4

-0
.4

-0
.2

0
.0

0
.2

0
.4

Return asset 1

Return asset 2

Correlation 0

••
•
•

•

•
•
•

•• •

•

• •• • ••
•

•
•

•••

•

••

•
•
•

•

•• •

•

••
• •• •

•••
••

•
•

•
•
•

•

•

•
••

•

• •
•

•

•
• •

•

•

•

•
••

•
• ••

•

•
•
•

••

•
•

•
•

•
• •

•

••
•

•

•
•

•

•
••

•

•

-0.4 -0.2 0.0 0.2 0.4
-0

.4
-0

.2
0
.0

0
.2

0
.4

Return asset 1

Return asset 2

Correlation 0.7

•• ••

•

•
••

•
• •

•

• •
• •

••

•

•
•

•••

•

••

•

•
••

•
•

•

•

••
•

•
•

•
•••

••

•
•
•

••
•

•

•
••

•

• •
•

•

•
• •

•

•

•

•
••

•

• ••
•

•
••

••
•
•

•
•

•• •

•

•••

•

•

•

•

•••
•

•

-0.4 -0.2 0.0 0.2 0.4

-0
.4

-0
.2

0
.0

0
.2

0
.4

Return asset 1

Return asset 2

Correlation 0.9

•• ••

•

•
••
•

•
•

•

•
•

•
•

•
•

•

•
•

•••
•

••

•

•••
•

•
•

•

•••

•

•

•
•••

••
•••••

•

•

•

•
•

•
• ••

•
•

• •

•

•

•

•
••

•

• ••
•

•
••

••
•••
• •

• •

•

•••

•

•

•

•

••••
•

-0.4 -0.2 0.0 0.2 0.4

-0
.4

-0
.2

0
.0

0
.2

0
.4

Return asset 1

Return asset 2

Correlation 0.99

Figure 2.6 Joint plot of 100 simulated financial returns; from stochastic volatility model (same

as in Figure 2.5 otherwise) described in the text.

Here η0, η1, . . . , ηJ are independent and N(0, 1), and η0 is responsible for relationships between all
pairs of variables (εi, εj). The parameter ρ (must be ≥ 0) is still a correlation coefficient, this time
common for all pairs.

How correlated returns are generated under this model is summarized by the following scheme:

Algorithm 2.4 Financial returns under equi-correlation
0 Input: ξx1, . . . , ξxJ , σ1, . . . , σJ , c1 ←

√
ρ, c2 ←

√
1− ρ

1 Generate η∗0 ∼ N(0, 1) %Common stochastic factor

2 For j = 1 . . . , J do
3 Generate η∗ ∼ N(0, 1)
4 ǫ∗ ← c1η

∗
0 + c2η

∗ %Randomness in j’th return

5 R∗
j ← exp(ξxj + σjε

∗)− 1 %Stochastic volatility: Draw Z∗ and

let σ∗

j ← ξσj

√
Z∗; use it for σj

6 Return R∗
1, . . . , R

∗
J

How heavy-tailed models are introduced through the comment on Line 5. Some of the exercises at
the end of the chapter play with this algorithm.

1.4 Generating non-uniform random variables

Introduction
The simulation algorithms in the two preceding sections were model relationships copied in the
computer. This is indeed the most common way stochastic simulation algorithms are developed
and has in this book influenced the way probabilistic models are being presented. But there are
other ways too. Sampling is definitely an area for the clever, full of ingenious tricks. An example is
the Box-Muller representation of Gaussian random variables. Suppose U1 and U2 are independent
and uniform. Then

η1 =
√

−2 log(U1) sin(2πU2) and η2 =
√

−2 log(U1) cos(2πU2) (1.25)

are both N(0, 1) and also independent; consult p.38 in Hörmann, Leydold and Derflinger (2004)
for a proof. This gives the Box-Muller generator:

11

Algorithm 2.5 Independent, normal pairs
1 Generate U∗

1 , U∗
2 ∼ uniform

2 Y ∗ ←
√

−2 log(U∗
1)

3 Return η∗1 ← Y ∗ sin(2πU∗
2), η∗2 ← Y ∗ cos(2πU∗

2)

On output η∗1 and η∗2 are independent and N(0, 1). The algorithm is, despite its elegance, not
particularly fast, but worth including for its simplicity. It is also an illustration of the inventiveness
of sampling theory. Many useful procedures are ad-hoc and like the Box-Muller method adapted
to concrete situations.

The intent here is not even remotely one of providing justice to the vast subject of generating
random variables with given distributions; see Section 2.7 for references. Our target is methods of
practical usefulness in actuarial science. Actually the handful of sampling procedures in Section 2.5
take us far if we know how to apply and combine them intelligently. The present section presents
three general techniques.

Inversion
It was claimed above that a normal variable is generated through (1.15). This is actually a general
sampling method known as inversion. Let F (x) be a strictly increasing distribution function
with inverse F−1(u). Define

X = F−1(U) or X = F−1(1− U), U ∼ Uniform. (1.26)

Consider the specification on the left for which U = F (X). Note that

Pr(X ≤ x) = Pr{F (X) ≤ F (x)} = Pr{U ≤ F (x)} = F (x),

since Pr(U ≤ u) = u. In other words, X defined by (1.26) left has the distribution function F (x),
and we have a general sampling technique. The second version based on 1 − U is justified by U
and 1− U having the same distribution. In summary:

Algorithm 2.6 Sampling by inversion
0 Input: The percentile function F−1(u)
1 Draw U∗ ∼ uniform
2 Return X∗ ← F−1(U∗) or X∗ ← F−1(1− U∗)

In either case X∗ has the desired distribution function F (x). The two variants represent a so-
called antitetic pair. It has a speed-enhancing potential that will be discussed in Chapter 4.

Whether Algorithn 2.6 is practical depends on the ease with which the percentile function F−1(u)
can be computed. That condition is satisfied for Gaussian variables, and Algorithm 2.1 has now
been justified. There are many additional examples in the next section, but first a second general
technique:

Acceptance-rejection
Acceptance-rejection is a random stopping rule and much more subtle than inversion. The idea
is to sample from a density function g(x) of our choice. Simulations that do not meet a certain
acceptance criterion A are discarded, and the rest will then come from the original density function

12

f(x). Magic? It works like this. Let g(x|A) be the density function of the simulations keept. By
Bayes’ formula (consult Section 6.2 if necessary)

g(x|A) =
Pr(A|x)g(x)

Pr(A)
, (1.27)

and we must specify Pr(A|x), i.e. the probability that X = x drawn from g(x) is allowed to stand.
Let M be a constant such that

M ≥ f(x)

g(x)
, all x, (1.28)

and suppose X is accepted whenever a uniform random number U satisfies

U ≤ f(x)

Mg(x)
.

Note that the right hand side is always less than one. Now

Pr(A|x) = Pr

(

U ≤ f(x)

Mg(x)

)

=
f(x)

Mg(x)
,

which in combination with (1.27) yields

g(x|A) =
f(x)

MPr(A)
.

The denominator must be one (otherwise g(x|A) won’t be a density function), and so

g(x|A) = f(x) and Pr(A) =
1

M
. (1.29)

We have indeed obtained the right distribution. In summary the algorithm runs as follows:

Algorithm 2.7 Rejection-acceptance sampling
0 Input f(x), g(x), M
1 Repeat
2 Draw X∗ ∼ g(x)
3 Draw U∗ ∼ uniform
4 If U∗ ≤ f(X∗)/Mg(X∗) then stop and return X∗.

The expected number of repetitions equals 1/Pr(A) and hence M by (1.29) right. Good designs
are those with low M .

Example: A Gamma sampler
Some of the smartest algorithms in the business are of the acceptance/rejection type. Here is an
example illustrating how it works. Consider the Gamma density

f(x) = Cxα−1x−αx, x > 0

where α > 0 is a parameter and C a constant. Sampling isn’t straightforward, and accep-
tance/rejection is often used. A simple scheme when α ≥ 1 is to take g(x) = e−x, x > 0 with

13

distribution function 1 − e−x and inversion sampler X∗ = − log(U∗). It is easy to verify that
f(x)/g(x) attains its maximum at x = 1 (differentiate and see). Hence

M =
f(1)

g(1)
= Ce−α+1 so that

f(x)

Mg(x)
= e(α−1)(log(x)−x).

and the Gamma sampler for α > 1 becomes

X∗ ← − log(U∗), accepted if X∗ > (α− 1)(log(X∗)−X∗).

This is a reasonably efficient for moderate α (but not for larger ones, don’t use it when α > 50).
A better (but more complex) scheme is presented in the next section.

Ratio of uniforms
This is another random stopping rule and applies to positive variables only. It is due to Kinderman
and Monahan (1977) and requires f(x) and x2f(x) to be bounded functions. Let a and b be finite
constants such that

a ≥ max
x≥0

√

f(x) and b ≥ max
x≥0

x
√

f(x). (1.30)

They should for maximum efficiency be as small as possible (equalities in (1.30) are best). Let U1

and U2 be uniform random variables and introduce

Y = aU1 and X = bU2/Y.

Suppose Y = y is fixed. Then X is uniform over the interval (0, b/y) so that its conditional density
function is f(x|y) = y/b for 0 < x < b/y (if conditional and joint distributions is unfamiliar ground
consult Chapter 6.) Multiply with f(y) = 1/a (the density function of Y), and the joint density
function of (X,Y) appears as

f(x, y) =
y

ab
, 0 < y < a, 0 < x < b/y.

Let A be the event Y <
√
X and note that if y <

√

f(x), then

y <
√

f(x) ≤ a and y <
√

f(x) ≤ b/x so that x < b/y

which means that A is inside the region where f(x, y) is positive. But then the density function of
X given that A has occurred must be

f(x|A) =

∫

√
f(x)

0
C
y

ab
dy =

C

2ab
f(x),

and this only makes sense if C = 2ab. It follows that f(x|A) = f(x), and we have:

Algorithm 2.8 Ratio of uniforms
0 Input: f(x), a, b and c = b/a
1 Repeat
2 Draw uniforms U∗

1 and U∗
2

3 X∗ ← cU∗
2 /U

∗
2

4 If aU∗
1 <

√

f(X∗) then stop and return X∗.

14

Good designs are those that get the search done quickly. Implementation may be carried out
in terms of any function proportional to f(x).

Gamma sampling again
For illustration consider again the Gamma density f(x) = Cxα−1e−αx for α > 1. The constant C
is immaterial (cancels on Line 4 in Algorithm 2.8), and we may take f(x) = xα−1e−αx. Then

√

f(x) = e{(α−1) log(x)−αx}/2 and x
√

f(x) = e{(α+1) log(x)−αx}/2.

with maxima at x = 1 − 1/α and x = 1 + 1/α respectively. It follows that a and b in Algorithm
2.8 become

a = e(α−1)(log(1−1/α)−1)/2 and b = e(α+1)(log(1+1/α)−1)/2

so that

c =
b

a
= e{α+1) log(1+1/α)−(α−1)(log(1−1/α)}2−1.

Gamma-distributed variables are for α > 1 returned by the scheme

X∗ ← c
U∗

2

U∗
1

accepted if aU∗
1 < e(α log(X∗)−αX∗)/2.

The method works reasonably for all α (and excellently when α is small), but Algorithm 2.13 below
(though more complex) is still superior.

1.5 Some standard distributions

Introduction
Normals and log-normals were reviewed above, and four new distributions are now added. These
six families of distributions form a toolkit we shall rely on all through Part I. The presentation be-
low is very sketchy, concentrating on mean and standard deviation and on how sampling is carried
out. Poperties and genesis of these distributions are covered later where still other models will be
introduced; see also some of the exercises to this section.

The Pareto distribution
Random variables X with density function

f(x) =
α/β

(1 + x/β)1+α
, x > 0 (1.31)

are Pareto distributed. Here α > 0 and β > 0 are positive parameters and negative values for X
do not occur. The model is extremely heavy-tailed and often serve as model for large claims in
property insurance; more on that in Chapter 9. Mean and standard deviation are

E(X) =
β

α− 1
, α > 1 and sd(X) = E(X)

√

α

α− 2
, α > 2. (1.32)

They do not exist (i.e. is infinite) for other values of α than those shown. Real phenomena with α
between 1 and 2 (so that the variance is infinite) will be encountered in Chapter 7.

15

The distribution function and its inverse of (1.31) are

F (x) = 1− (1 + x/β)−α, x > 0 and F−1(u) = β{(1 − u)−(1/α) − 1}, (1.33)

where the latter is found by solving the equation F (x) = u. The second version of the inversion
algorithm now yields the following Pareto sampler:

Algorithm 2.9 Pareto generator
0 Input α and β
1 Generate U∗∼ uniform
2 Return X∗ ← β{(U∗)−(1/α) − 1} %X∗ Pareto distributed

The exponential distribution
Suppose β = αξ is inserted into the Pareto density (1.31) while ξ is kept fixed and α is allowed to
become infinite. Then

f(x) =
ξ−1

(1 + (x/ξ)α−1)1+α
→ ξ−1

exp(x/ξ)
, as α→∞,

and we have obtained the exponential density function

f(x) =
1

ξ
e−x/ξ, x > 0. (1.34)

The fact that the exponential distribution is a limiting member of the Pareto family is of impor-
tance for extreme value methods; see Section 9.5

Mean and standard deviation of exponential variables are

E(X) = ξ and sd(X) = ξ, (1.35)

and distribution and percentile functions become

F (x) = 1− exp(x/ξ) and F−1(u) = −ξ log(1− u).

Inversion (Algorithm 2.6) yields the following sampling method:

Algorithm 2.10 Exponential generator
0 Input ξ
1 Draw U∗ ∼ uniform
2 Return X∗ ← −ξ log(U∗) %X∗ exponential

There is a connection to Algorithm 2.9 which refects the way the exponential model was con-
structed from Pareto. If you insert β = αξ on the last line of Algorithm 2.9 and let α → ∞, the
preceding algorithm emerges.

The Poisson distribution
Suppose X1, X2,. . . are independent and exponentially distributed with ξ = 1. It can then be
proved (see Section 2.7 and also Exercise 8.2.4) that

Pr(X1 + . . .+Xn < λ ≤ X1 + . . . +Xn+1) =
λn

n!
e−λ (1.36)

16

for all n ≥ 0 and all λ > 0. The right hand side are Poisson probabilities; i.e defining the density
function

Pr(N = n) =
λn

n!
e−λ, n = 0, 1, (1.37)

This model is the central one for claim frequency in property insurance, and a lot will be said about
it in Chapter 8. Its mean and variance are equal; i.e.

E(N) = λ and sd(N) =
√
λ. (1.38)

The main point for the moment is that (1.36) tells us how Poisson variables are sampled. Utilize
that Xj = − log(Uj) is exponential if Uj is uniform and follow the sum X1+X2+ . . . until it exceeds
λ, in other words:

Algorithm 2.11 Poisson generator
0 Input λ,Y ∗ ← 0
1 For n = 1, 2, . . . do
2 Draw U∗ ∼ uniform and Y ∗ ← Y ∗ − log(U∗)
3 If Y ∗ ≥ λ then

stop and return N∗ ← n− 1.

This is a random stopping rule of a kind different from acceptance-rejection. We count how long it
takes for (1.36) to be satisfed and return the number of trials minus one.

More on Poisson sampling
Poisson counts are so central in property insurance that it is worthwile elaborating a bit on its
sampling. Actually the simple Algorithm 2.11 is often good enough (you see why Section 10.3),
though it does slow down for large λ. If speed is critical, we may turn to the method of Atkinson
(1979) which was constructed to deal with precisely that issue:

Algorithm 2.12 Atkinson’s Poisson generator
0 Input: c← 0.767 − 3.36/λ, a← π/

√
3λ, b← λa, d← log(c/a) − λ

1 Repeat

2 Repeat
3 Draw U∗ ∼ uniform and X∗ ← {b− log(1/U∗ − 1)}/a

until X∗ > −0.5

4 N∗ ← [X∗ + 0.5] and draw U∗ ∼ uniform
5 If b− aX∗ − log{{1 + exp(b− aX∗)}2/U∗} < d+N∗ log(λ)− log(N∗!)

stop and return N∗

Before running the algorithm it is necessary compute (recursively!) and store the sequence log(n!)
up to some number which the Poisson variable has microsopic chances to exceed (5λ could be a
sensible choice). The method is derived through rejection sampling; see Cassela and Robert (1998).
Atkinson recommends that λ > 30 for his procedure to be used. Devroye (1986) contains other
possibilities; see also the discrete sampling procedures in Section 4.2.

17

The Gamma distribution
One of the most important models is without doubt the Gamma family of distributions which will
be encountered repeatedly in differerent roles. The density function is

f(x) =
(α/ξ)α

Γ(α)
xα−1e−αx/ξ, x > 0 where Γ(α) =

∫ ∞

0
xα−1e−x dx. (1.39)

Here Γ(α) is the Gamma function which satisifes Γ(n) = (n − 1)!, coinciding with the factorials
when α is an integer. Mean and standard deviation are

E(X) = ξ, and sd(X) = ξ/
√
α. (1.40)

and following McCullagh and Nelder (1992) the expectation has been made one of the two param-
eters (Gamma models are often presented differently.) The case ξ = 1 will be called the standard
Gamma and denoted Gamma(α).

Sampling is a bit problematic. There are no convenient stochastic representations to lean on and
the percentile function is complicated computationally (no fast and accurate approximations avail-
able) which makes inversion sampling unattractive. There are several good acceptance-rejection
procedures available among which the following method due to Best (1978) is one of the best ones
when α > 1:

Algorithm 2.13 Gamma generator for α ≥ 1
0 Input: ξ, α and b = α− 1, c = 3α− 0.75.
1 Repeat
2 Sample U∗ ∼ uniform
3 W ∗ ← U∗(1− U∗), Y ∗ ←

√

c/W ∗(U∗ − 0.5), X∗ ← b+ Y ∗

6 If X∗ > 0 then
7 Sample V ∗ ∼ uniform(0, 1)
8 Z∗ ← 64(W ∗)3(V ∗)2

9 If Z∗ ≤ 1− 2(Y ∗)2/X∗ or if log(Z∗) ≤ 2{b(log(X∗/b)− Y ∗)}
then stop and return X∗ ← ξX∗/α.

The loop is repeated until the stop criterion is satisfied.

The case α < 1 is referred back to 1 + α through a result due to Stuart (1962); i.e.

X = Y U1/α ∼ Gamma(α) if Y ∼ Gamma(1 + α), U ∼ Uniform.

Here Y and U are independent. Computer commands are summarized as follows:

Algorithm 2.14 Gamma generator for α < 1
0 Input: ξ, α
1 Sample Z∗ ∼ Gamma(1 + α) %From Algorithm 2.13

2 Sample U∗ ∼ uniform
3 Return Z∗ ← ξZ∗(U∗)1/α

Together Algorithms 2.13 and 2.14 yield quick sampling, though slower than many of the earlier
algorithms.

18

1.6 Mathematical arguments

Section 2.2
The limit relationship (1.9) Only the upper percentiles will be considered; the lower ones are
similar. Suppose q1ǫ/q2ǫ → 0 as ǫ → 0 which is the condition (1.8) in Section 2.2. Since both
numerator and denominator tend to zero as ǫ→ 0, we may apply l’Hôpital’s rule which yields

∂q1ǫ

∂ǫ
∂q2ǫ

∂ǫ

→ 0, as ǫ→ 0.

Differentiate both sides of the identity Fi(qiǫ) = 1 − ǫ with respect to ǫ for i = 1, 2. By the chain
rule

f1(q1ǫ)
∂q1ǫ

∂ǫ
= −1, and f2(q2ǫ)

∂q2ǫ

∂ǫ
= −1, (1.41)

so that

f2(q2ǫ)

f1(q1ǫ)
=

∂q1ǫ

∂ǫ
∂q2ǫ

∂ǫ

→ 0 as ǫ→ 0

and the ratio f(q1ǫ/f(q2ǫ)→∞ as claimed in (1.9).

The limit relationships (1.7) Again only the upper percentile is treated. Note that aǫ in (1.6)
right can be rewritten

aǫ =

√

1− ǫ
bǫ

where bǫ =
f(qǫ)

2

ǫ
.

and we must examine bǫ. If the density function f(x) has a derivative f ′(x), l’Hôpital’s rule may
be used. The limit of bǫ is then that of

2f(qǫ)f
′(qǫ)

∂qǫ
∂ǫ

= −2f ′(qǫ)

using (1.41). Since qǫ →∞ as ǫ→ 0 it follows that bǫ → 0 and hence aǫ →∞ if

f ′(x)→ 0 as x→∞.

It is possible to construct pathological cases when this does not hold, but in practice the condition
is valid.

Section 2.5
Algorithm 2.10 Let X1, . . . ,Xn be stochastically independent with common density function
f(x) = exp(−x) for x > 0. To verify the Poisson generator in Algorithm 2.10 we have to evaluate
the probability

pn(λ) = Pr(X1 + . . .+Xn < λ ≤ X1 + . . .+Xn+1)

which is exercise in conditional probabiltities. Let n > 1 and note that

pn(λ) =

∫ ∞

0
Pr(x+X2 . . .+Xn < λ ≤ x+X2 + . . .+Xn+1|X1 = x)f(x) dx,

19

or

pn(λ) =

∫ ∞

0
Pr(X2 . . .+Xn < λ− x ≤ X2 + . . .+Xn+1)f(x) dx.

which can also be written

pn(λ) =

∫ λ

0
pn−1(λ− x)f(x) dx, n = 1, 2,

This is a recursion starting at

p0(λ) = Pr(X1 > λ) = exp(−λ).

The solution is

pn(λ) =
λn

n!
exp(−λ)

as claimed in (1.36). This is certainly true for n = 0, and if it is true for n− 1, then

pn(λ) =

∫ λ

0

(λ− x)n−1

(n − 1)!
e−(λ−x)e−x dx =

∫ λ

0

(λ− x)n−1

(n− 1)!
dx e−λ =

λn

n!
exp−λ,

and it holds for n as well.

1.7 Bibliographical notes

Statistiscs Parts of this chapter have drawn on fairly elementary results from statistics. Kendall,
Stuart and Ord (1994) is a thorough, practical review of this topic containing many of the central
distributions. The non-parametric aspect is treated (for example) in Wasserman (2006) whereas
Scott (1992) and Wand and Jones (1995) are specialist monographs on density estimation. For uni-
variate distributions see Johnson, Kotz and Balakrishnan (1994) (the continuous case) and Johnson,
Kemp and Kotz (2005) (the discrete one), Balakrishnan and Nevzorov (2003) (both continuous and
discrete) and in an actuarial and financial context Klugman, Panjer and Willmot (1998) and Kleiber
and Kotz (2003). Many of the most common distributions in general insurance are also reviewed
in Panjer and Wilmot (1992), Beirlant, Teugels and Vynckier (1996) and Klugman (2004). Gaus-
sian models and stochastic volatility are treated much more thoroughly in Chapters 5 and 13 with
references given in Sections 5.9 and 13.8.

Sampling The best handbook ever written on the sampling of non-uniform random variables
may be Devroye (1986) (most of these algorithms had been discovered by 1986). An alternative is
Hörmann, Leydold, and Derflinger (2004). Many of the continuous distributions used in this book
can be sampled by inversion, but the Gamma model as an exception. Algorithms 2.13 and 2.14
are due to Best (1978) and Stuart (1962). Other possibilities for Gamma sampling are presented
in Gentle (2003), for example the method due to Cheng and Feast (1979). Smart algorithms for
some of the central distributions in actuarial science are presented in Ahrens and Dieter (1974).

Programming What platforms should you go for? High-level software packages are Splus or
R (which is the same), MATLAB, Maple and Mathematica. All of them allow easy implementation
with sampling generators for the most common distributions available as built-in routines. Much

20

information is provided by the web-sites2; for textbooks consult Venables and Ripley (2002), Zivot
and Wang (2003) or Krause and Olson (2005) (for Splus), Hunt, Lipsman and Rosenberg (2001) or
Otto and Denier (2005) (MATLAB), Cornil and Testud (2002) or Dagpunar (2007) (Maple) and
Wolfram (1999), Rose and Smith (2001) or Landau and Wangberg (2005) (Mathematica). Many
problems can be successfully handled by these platforms, and you may even try Excell. The ad-
vantage is quick implementation, but for large problems such programs may run uncomfortably
slowly (vectorization helps; avoid for-loops if possible). If you are an Excell user, you might be
familiar with Visual Basic which is still another possibility (see Schneider (2006) for a reference),
but if speed is needed, choose C, Fortran or Pascal. All experiments in this book have been coded
in Fortran90, and in most cases the computer time was seconds or less. Introductions to these
programming languages are Stoustrup (1997) and Harbison and Steele (2002) (for C), Ellis, Philips
and Lahey (1994) and Chivers and Sleightholme (2006) (Fortran) and Savitch (1995) (Pascal).
Parallel processing may allow even higher speed, but this hasn’t been used much in insurance and
finance. Grama, Gupta, Korypis and Kumar (2003) is a general introduction (with examples from
engineering and natural sciences); see also Nakano (2004) in the context of statistics.

Abramowitz, M. and Stegun, I. (1965). Handbook of Mathematical Functions. Dover, New York.
Ahrens, J. and Dieter, U. (1974). Computer Methods for Sampling from Gamma, Beta, Poisson
and Binomial Distributions. Computing, 12, 223-246.
Atkinson, A.C. (1979). The Computer Generation of Poisson Random Variables. Applied Statis-
tiscs, 28, 29-35.
Balakrishnan, N. and Nevzorov, V.B. (2003). A Primer on Statistical Distributions. John Wiley
& Sons, Hoboken, New Jersey.
Beirlant, J., Teugels, J.L and Vynckier, P. (1996). Practical Analysis of Extreme Values. Leuven
University Press, Leuven.
Best, P.J. (1978). Letter to the Editor. Applied Statistics, 28, 181.
Cheng, R.C.H and Feast, G.M. (1979). Some Simple Gamma Variable Generators. Applied Statis-
tics, 28, 290-295.
Chivers, I.D. and Sleightholme, J. (2006). Introduction to Programming with Fortran. Springer-
Verlag, London.
Cornil, J-M. and Testud, P. (2002). Introduction to Maple V. Springer, Berlin.
Devroye, L. (1986). Non-uniform Random Variate Generation. Springer-Verlag, Berlin.
Dagpunar, J.S. (2007). Simulation and Monte Carlo with Application in Finance John Wiley &
Sons, Chichester.
Ellis, T.M.R., Philips, I.R. and Lahey, T.M. (1994). Fortran 90 Programming. Addison-Wesley,
Harlow, Essex
Grama, A., Gupta, A., Korypis, G. and Kumar, V, second ed. (2003). Introduction to Parallel
Computing. Pearson/Addison-Wesley, Harlow, Essex.
Gentle, J.E. (2003). Random Number Generation and Monte Carlo Methods. Springer-Verlag, New
York.
Harbison, S.P. and Steele, G.L. (2002), fifth ed. C: a Referee Manual. Prentice Hall, Englewood
Cliffs, New Jersey.
Hörmann, W., Leydold, J. and Derflinger, G. (2004). Automatic Non-Uniform Random Variate
Generation. Springer-Verlag, Berlin.

2http://www.r-project.org for R (and Splus), http://www.mathworks.com for MATLAB,
http://www.maplesoft.com for Maple and http://www.wolfram.com for Mathematica.

21

Hunt, B.R., Lipsman, R.L. and Rosenberg, J.M. (2001). A Guide to Matlab. Cambridge University
Press, Cambridge.
Jäckel. P. Monte Carlo Methods in Finance. John Wiley & Sons, Chichester.
Johnson, N.L. Kotz, S. and Balakrishnan, N (1994). Continuous Univariate, Distributions. John
Wiley & Sons, New York.
Johnson, N.L., Kemp, A.W. and Kotz, S. (2005). Univariate Discrete Distributions. John Wiley
& Sons, Hoboken, New Jersey
Kendall, M.G., Stuart, A. and Ord, K. (1994), sixth ed. Kendall’s Advanced Theory of Statistiscs.
Volume 1. Distribution Theory. Edward Arnold, London.
Kinderman, A.J. and Monahan, J.F. (1977). Computer Generation of Random Variables Using
Ratio of Uniform Deviates. ACM Transactions of Mathematical Software., 3, 257-260
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economic and Actuarial Sciences.
John Wiley & Sons, Hoboken, New Jersey.
Klugman, S.A. (2004). Continuous Parametric Distributions. In Encyclopedia of Actuarial Science,
Teugels, J, and Sundt, B. (eds) John Wiley & Sons, Chichester, 357-362.
Klugman, S.A., Panjer, H. and Willmot, G.E. (1998). Loss Models: from Data to Decisions. John
Wiley & Sons, New York.
Krause, A. and Olson, M. (2005). The Basics of Splus. Springer Science + Business Media, New
York
Landau, R.H. and Wangberg, R. (2005). A first Course in Scientific Computing: Symbolic, graphic,
and Numerical Modeling Using Maple, Java, Mathematica and Fortran90. Princeton University
Press, Princeton, New Jersey.
McCullagh, P. and Nelder, J.A. (1989), second ed. Generalized Linear Models. Chapman & Hall,
London.
Nakano, J. (2004). Parallel Computing Techniques. In Handbook of Computational Statistics.
Concepts and Methods. Gentle, J.E., Härdle, W. and Mori, Y (eds). Springer Verlag, New York,
237-266.
Panjer, H. and Wilmot, G. E. (1992). Insurance Risk Models The Actuarial Foundation, Schaum-
burg, Illinois.
Odeh, R.E. and Evans, J.O. (1974). The Percentage Points of the Normal distribution. Applied
Statistics, 23, 96-97.
Otto, S.R. and Denier, J.P. (2005). An Introduction to Programming and Numerical methods in
MATLAB. Springer Verlag, London.
Rose, C. and Smith, M.D. (2001). Mathematical Statistics with Matematica. Springer Verlag, New
York.
Savitch, W. (1995). Pascal: an Introduction to the Art and Science of Programming. Ben-
jamin/Cummings. Redwood City, California.
Schneider, D.I. (2006). An Introduction to Programming Using Visual Basic 2005. Pearson/Prentice
Hall. Upper Saddle River, New Jersey.
Scott, P.W. (1992). Multivariate Density Estimation: Theory, Practice and Visualization. John
Wiley & Sons, New York.
Stoustrup, P. (1997), third ed. The C++ Programming Language. Addison-Wesley, Reading, Mas-
sachusetts.
Venables, W.N. and Ripley, B. (2002), fourth ed. Modern Applied Statistics with S. Springer Verlag,
New York.
Wand, M.P. and Jones, M.C. (1995). Kernel Smoothing. Chapman & Hall/CRC, Boa Raton,

22

Florida.
Wasserman, L. (2006). All of Nonparametric Statistics. Springer, New York.
Wolfram, S. (1999). The Matematica Book.. Wolfram Media, Champaign, Illinois.
Zivot, E. and Wang, J. (2003). Modelling Financial Time Series with S-plus. Springer-Verlag
Berlin.

1.8 Exercises

Introduction
These exercises are meant to promote Monte Carlo technique and are preliminary to problem solving in the
next chapter. Some topics of more general importance are also introduced here. Q-Q plotting (Exercises
2.2.2-2.2.5) is a convenient way of comparing distributions and are used on many occasions later. For some
of the exercises the underlying answer is known permitting us to examine how well Monte Carlo works. If
you find problems overly simplistic, remember that they are only an aid to tackle realistic situations later
where the answer is not known. Quite a lot about Monte Carlo performance can be learned from simple
examples.

Section 2.2
Exercise 2.2.1 Consider Gaussian financial returns R for which ξ = 0.5% and σ = 5%. They might well
be monthly ones. a) Run Monte Carlo experiments with m = 100, m = 1000 and m = 10000 simulations
and in each case compute means X̄∗ and and standard deviation s∗. b) Judge the relative accuracy in per
cent; i.e

e∗r = (
X̄∗

ξ
− 1)× 100 or e∗r = (

s∗

σ
− 1)× 100.

c) How good are the chances of determining ξ and σ if we are dealing with historical data instead of simulated
ones?

Exercise 2.2.2 a) Generate m = 1000 Monte Carlo returns R∗

1, . . . , R
∗

m assuming them to be normal
with ξ = 0.5% and σ = 5%. b) Order them in ascending order as

R∗

(1) ≤ . . . ≤ R∗

(m)

and for i = 1, 2 . . . ,m

plot R∗

(i) against Φ−1(ui) where ui =
i− 1/2

m
.

Here Φ−1(u) is the inverse normal integral. c) Repeat when R∗

1, . . . , R
∗

m are generated under ξ = 0 and
σ = 1 (which could come from property insurance). d) You understand why the plot in c) is a straight line
at angle 45◦. Why is it another straight line in b)?

Exercise 2.2.3 The procedure in Exercise 2.2.2 where ordered simulations (or historical data!) were plotted
against percentiles are known as a Q-Q plots. Arguably it is the most efficient way of checking graphically
whether a given distribution fits. If it doesn’t, the shape deviates from a straight line. a) Draw a Monte
Carlo sample Z∗

1 , . . . , Z
∗

m from the Pareto distribution with α = 5 and β = 1 using Algorithm 2.8. Take
m = 1000. b) Order as

Z∗

(1) ≤ . . . ≤ Z∗

(m)

and plot Z∗

(i) against Φ−1(ui) as in Exercise 2.2.2. c) Comment on how the tails of the Pareto distribution
show up in the discrepancies from the straight line. There is a general story here.

23

Exercise 2.2.4 Q-Q plotting may be carried out against any distribution. The Gaussian percentiles Φ−i(ui)
are then replaced by general ones

F−1(ui) where ui =
i− 1/2

m

and ordered simulations like R∗

(i) or Z∗

(i) plotted against F−1(ui). a) Compute the percentiles of the Pareto

distribution when α = 5 and β = 1 using (1.33). Take m = 1000 and store them. b) Draw m = 1000 simula-
tions from the same Pareto distribution and Q-Q plot against the percentiles in a). c) Repeat b) with Pareto
simulations from α = 5 and β = 0.5. Comment? d) Repeat b) one more time, but now with α = 3 and
β = 1. What has happened to the plot? e) Simulate m = 1000 normal variables with ξ = 0.5% and σ = 5%
and Q-Q plot against the Pareto percentiles in a) as before. Anything different compared to Exercise 2.2.3b)?

Exercise 2.2.5 Q-Q plots with fake shapes emerge when the number of simulations is small. With the
Monte Carlo experiments themselves that is not important (since m is large), but it is a highly relevant
point with historical data. a) Generate normal Monte Carlo samples (ξ = 0.5% and σ = 5%) for m = 20
and Q-Q plot against the mother distribution. Do this five times. Comments? b) Repeat the exercise for
the Pareto distribution when α = 5 and β = 1, but now use m = 100. c) Try to formulate some general
lessons of the exercise.

Exercise 2.2.6 The accuracy of Monte Carlo evaluations of standard deviations hinges on the kurtosis
of X ; see (1.4). Kurtosis is defined as

κ =
E(X − ξ)4

σ4
− 3

where ξ = E(X) and σ = sd(X). Its meaning will be illustrated by the stochastic volatility model (1.20);
i.e. X = ξ + σ0

√
Zε where ε is N(0, 1). a) Show that

(X − ξ)2 = σ2
0Zε

2 so that σ2 = E(X − ξ)2 = σ2
0E(Z).

b) By utilising (see Appendix A) that E(ε4) = 3 also show that

(X − ξ)4 = σ4
0Z

2ε4 which yields E(X − ξ)4 = 3σ4
0E(Z2).

c) Now deduce that

κ = 3

(

sd(Z)

E(Z)

)2

so that κ = 0 when X is normal.

d) Explain why κ
.
= 3var(Z) if E(Z)

.
= 1. For most stochastic volatility models used in practice this is

approximately true.

Exercise 2.2.7 Use (1.4) to explain how the accuracy of a standard deviation estimate depends on kurtosis.
Explicitly, compare the cases κ = 6 and κ = 0 (κ = 6 could well be a reasonable value for daily equity returns).

Exercise 2.2.8 The standard kurtosis estimate is

κ∗ =
λ∗4
s∗4
− 3 where λ∗4 =

1

m

m
∑

i=1

(X∗

i − X̄∗)4

Here λ∗4 is the fourth order moment. a) Motivate this estimate. We shall test it on log-normal data
X = exp(ξ + σε) where ε is N(0, 1). b) The parameter ξ does not matter. Do you see why? c) Simulate
log-normal data when σ = 0.05. Use m = 100, m = 1000 and m = 10000 and estimate each time the

24

kurtosis. d) Repeat c) when σ = 1. e) Compare the results with the the theoretical expression which for
the kurtosis of the log-normal which is

κ =
e6σ2 − 4e3σ2

+ 6eσ2 − 3

(eσ2 − 1)2
.

The small σ may correspond to monthly assets returns in finance and the large ones to the size of claims in
property insurance. When is the kurtosis easiest to estimate?

Exercise 2.2.9 For this exercise use a procedure for density estimation in a software package or imple-
ment (1.10) on your own. There is smoothing parameter h to adjust and we shall examine how it affects the
performance of the estimate. a) Draw a log-normal sample based on ξ = 0.5% and σ = 5% using m = 100.
b) Apply the estimate with h = 0.1, 0.2 and 0.3. Comment! c) Repeat the exercise with m = 1000. d)
Repeat b) and c) when ξ = 0 and σ = 1. What seems to be the conclusions from this exercise?

Exercise 2.2.10 Use the results in Section 2.2.2 to detail the confidence interval (1.12) when ψ is the
mean, the standard deviation and the percentile.

Exercise 2.2.11 Usually the Monte Carlo standard deviation is approximately of the form ζ/
√
m which

equals σ0 if m = (ζ/σ0)
2; see (1.13). Of course, ζ is not known, but we can get around that through a

preliminary, smaller experiment. That makes the entire scheme

X∗

1 , . . . , X
∗

m1
−→ ζ∗, m = (ζ∗/σ0)

2 and then X∗

m1+1, . . . , X
∗

m.
First round Second round

After ζ has been estimated from the first round, the main, second experiment is run with the number of
simulations determined. a) If we are dealing with the mean, then m = (s∗/σ0)

2 where s∗ is the sample
standard deviation of the first m1 simulations. Explain why. b) If X is N(0, 1) and m1 = 100, run the
preliminary experiment five times, estimate each time s∗ and report how much the estimated m varies. c)
Repeat b) when is X is Pareto distributed with parameters α = 2 and β = 1. c) What you simulate in
practice is quite likely to follow a distribution between these two extremes. Did m1 = 100 seem enough with
the Pareto model?

Exercise 2.2.12 Suppose the Monte Carlo experiment is run to estimate the ǫ-percentile. Show that
we in the set-up of the preceding exercise should use

m =
ǫ(1− ǫ)
{f∗(q∗ǫ)}2σ2

0

for the second part of the experiment. Here q∗ǫ is the preliminary estimate of the percentile and f∗(q∗ǫ)}2 the
density estimate.

Section 2.3
Exercise 2.3.1 We shall in this exercise compare normal and log-normal models for financial returns through
simulations. The alternatives are

R = ξ + σε and R̃ = (1 + ξ) exp(− 1
2σ

2 + σε)− 1
normal model log-normal model

where ε ∼ N(0, 1). a) Explain why E(R) = E(R̃). b) Suppose ξ = 0.02% and σ = 1.5% (which could
be true for daily equity returns) Draw m = 10000 simulations from each distribution, sort each sequence
separately in ascending order as

R∗

(1) ≤ . . . ≤ R∗

(m) and R̃∗

(1) ≤ . . . ≤ R̃∗

(m)

normal model log-normal model

25

and plot corresponding pairs (R∗

(i), R̃
∗

(i)) from the two sequences against each other. c) Repeat b) for ξ = 5%

and σ = 23.7% (perhaps annual equity return). d) Draw conclusions from these two rounds of experiments.

Exercise 2.3.2 The issue resembles the one in Exercise 2.3.1, although now

R = ξ + σε and R̃ = exp(ξ̃ + σ̃ε)− 1

where the parameters (ξ, σ) and (ξ̃, σ̃) differ. As usual ε ∼ N(0, 1). a) Show that if

σ̃ =
√

1 + (σ/ξ)2 and ξ̃ = log(ξ)− 1

2
σ̃2

then E(R) = E(R̃) and sd(R) = sd(R̃). b) Determine ξ̃ and σ̃ if ξ = 5% and σ = 23.7%. c) Repeat the
experiment in Exercise 2.3.1c with these parameters; i.e. generate ordered, simulated returns R∗

(i) and R̃∗

(i)

under the two models and plot the pairs (R∗

(i), R̃
∗

(i)) for i = 1, . . . ,m when m = 10000. d) Comment on the
difference between the two models.

Exercise 2.3.3 a) Draw a sample of 1000 log-normals Z = exp(σε) when σ = 0.05, σ = 0.4, σ = 1.0
and σ = 2. b) Estimate in each of the four cases the density function and plot it. c) Comment on the
distribution as a model for financial returns and for size of claims in property insurance.

Exercise 2.3.4 Consider the stochastic volatility model (1.20) for log-returns; i.e. assume that

R = exp(X)− 1, where X = ξ + σ0

√
Z ε, ε ∼ N(0, 1).

A possible model for Z is to make it log-normal, for example Z = exp(−τ2 + 2τη) where η ∼ N(0, 1), τ ≥ 0
and where η is independent of ε. a) Explain why

√
Z is also a log-normal variable. b) Use the formulae for

mean and standard deviation of such variables in Section 2.3 to deduce that

E(
√
Z) = 1 and sd(

√
Z) =

√

eτ2 − 1,

and the degree of stochastic volatility goes up with τ .

Exercise 2.3.5 a) Implement a program for sampling R under the model of the preceding exercise. Suppose
ξ = 0.5% and σ0 = 5% (R could then be monthly return of equity). b) Draw m = 1000 simulations of R
when τ = 0.5, estimate the density function and plot it (it is inaccessible through ordinary mathematics
now!). c) Redo b) when τ = 0.001 and comment on the different shapes of the plots.

Exercise 2.3.6 Consider again the model for R introduced in Exercise 2.3.4 and the simulation program in
Exercise 2.3.5. Suppose ξ = 0.5% and σ0 = 5%. a) Run the program m = 10000 times when τ = 0.5 and
compute the ε-percentiles of R for ε = 0.01, 0.05, 0.50, 0.95 and 0.99. b) Redo when τ = 0.001. c) Compare
the results in a) and b) and comment.

Section 2.4
Exercise 2.4.1 Consider the bivariate normal model (1.21). a) Simulate it (m = 100) when

ξ1 = ξ2 = 5%, σ1 = σ2 = 25% and ρ = 0.2, ρ = 0.7 ρ = 0.95,

and make scatter-plots in each of these three cases. b) Redo a) for log-returns; i.e convert X1 and X2 to
R1 and R2 through R1 = exp(X1)−1 and R2 = exp(X2)−1. This example could be annual returns for equity.

Exercise 2.4.2 Suppose a financial portfolio has placed equal weights on the two assets of the preced-
ing exercise. This means that portfolio return is R = (R1 + R2)/2; see (??) in Section 1.3. a) Simulate R
m = 10000 times when ρ = 0.2 and compute the percentiles for ε = 1, 5%, 50% and 95%. b) Redo a) for
ρ = 0.5 and ρ = 0.95 and compare the sets of percentiles computed.

26

Exercise 2.4.3 Suppose the financial portfolio of the preceding exercise is based on J = 5 assets instead still
with equal weights on all. The portfolio return is now R = (R1 + . . .+R5)/5. a) Implement Algorithm 2.4
for financial returns that are log-normal with common correlation coefficient ρ. b) Determine the percentiles
of R when ξ = 5% and σ = 25% for all five assets and ρ = 0.2. c) Redo b) when ρ = 0.5 and 0.95. d)
Compare the evaluations in b) and c) with the analogous ones in Exercise 2.4.2. Any patterns?

Exercise 2.4.4 Consider a heavy-tailed bivariate model of the form

R1 = exp(X1)− 1
R2 = exp(X2)− 1

where
X1 = ξ + σ0

√
Z1 ε1

X2 = ξ + σ0

√
Z2 ε2.

and Z1 = Z2 = Z.

Here ε1 and ε2 are N(0, 1) with correlation ρ. As in Exercise 2.3.4 Z = exp(−τ2 + 2τη) for η ∼ N(0, 1).
a) Implement a program that samples (R1, R2). b) Calculate the 1%, 5%, 50% and 95% percentiles of
the portfolio return R = (R1 + R2)/2 under conditions similar to those in Exercise 2.4.2; i.e take ξ = 5%,
σ0 = 25%, ρ = 0.5 and let τ = 0.5. c) What’s the effect of the heavy tails when you compare with the
ρ = 0.5 evaluations in Exercise 2.4.2?

Exercise 2.4.5 Consider the model of the preceding exercise, but now allow Z1 and Z2 to be different.
A simple construction is

Z1 = exp(−τ2
1 + 2τ1η1) and Z2 = exp(−τ2

2 + 2τ2η2)

where η1 and η2 are N(0, 1) with correlation ρη = cor(η1, η2). a) Explain why the model is the same as in
the preceding exercise if τ1 = τ2 and ρη = 1. b) Revise the program in Exercise 2.4.4a) so that it covers the
present situation. c) Calculate the 1%, 5%, 50% and 95% percentiles of the portfolio return R = (R1+R2)/2
when ξ = 5%, σ0 = 25%, ρ = 0.5, τ1 = τ2 = 0.5 and ρη = 0.0. Compare with the results from Exercise 2.4.4.

Exercise 2.4.6 An avant-garde model would be to allow stochastic correlations. If it appears far-fetched,
the idea has nevertheless been proposed (and substantiated) in academic literature, for example in Ball and
Torus (2000). With the machinery in Section 2.4 it is not hard to build such models for financial returns.
For example, starting from the same angle as before let Rj = exp(ξ + σ0εj)− 1 for j = 1, 2 where ε1 and ε2
are N(0,1) with correlation coefficient ρ for which

ρ =
(1 + ρ0)e

τη − (1− ρ0)

(1 + ρ0)eτη + (1− ρ0)
where η ∼ N(0, 1).

a) Verify that −1 < ρ < 1 and that ρ0 is the median in the distribution for ρ [Hint: The median appears
when η = 0.]. b) How do you make ρ a fixed parameter and what’s its value then? c) Implement a program
that samples (R1, R2) under this model. d) Compute the 1%, 5%, 50% and 95% percentiles of the portfolio
return R = (R1 +R2)/2 now using ξ = 5%, σ0 = 25%, ρ0 = 0.5 and τ1 = 0.5. You may again compare with
results in Exercise 2.4.2

Section 2.5
Exercises 2.5.1-4 introduce probability distributions that have been proposed (and used) in property insur-
ance. None of them admits simple matematical expressions for mean and variance. An alternative way of
interpreting their parameters is to use median and quantile difference i.e.

med(X) = q0.5 and qd(X) = q0.75 − q0.25 (1.42)

where qε is the lower ε-percentile of the distribution function F (x); i.e the solution of the equation F (qε) = ε.
The quantile difference is a measure of spread.

Exercise 2.5.1 The Weibull model comes from engineering orginally. Its distribution function is

F (x) = 1− exp{−(x/β)α}, x > 0.

27

Here α, β > 0 are parameters. a) Show that

X∗ = β(− logU∗)1/α

is the inversion sampler. b) Use this to derive mathematical expressions for med(X) and qd(X); see (1.42).
c) Generate m = 1000 simulations for β = 1 and α = 1.0, 3.15 and 5.0. Plot in each case density estimates
and comment. d) Run m = 10000 simulations for α = 3.15 and β = 1 and run a Q-Q plot against the
normal distribution. Any comments?

Exercise 2.5.2 The Fréchet distribution

F (x) = exp{−(x/β)−α}, x > 0,

is of a so-called extreme value type. Again α, β > 0 are parameters. a) Derive its inversion sampler and b)
Determine med(X) and qd(X); see (1.42).

Exercise 2.5.3 Still another distribution sometimes used in property insurance is the logistic one for
which

F (x) = 1− 1 + α

1 + α exp(x/β)
, x > 0.

Once again the parameters α, β > 0. a) Derive the inversion sampler. b) Determine mathematical expres-
sions for med(X) and qd(X); see (1.42).

Exercise 2.5.4 The Burr model has three positive parameters α1, α2 and β and its distribution func-
tion is

F (x) = 1− {1 + (x/β)α1}−α2 , x > 0.

a) Derive its inversion sampler. b) Find mathematical expressions for med(X) and qd(X), see (1.42).

Section 2.6
Exercise 2.6.1 Let Y be exponentially distributed with density function exp(−y), y > 0 and let X = βY 1/α

with α, β > 0. a) Show that

Pr(X ≤ x) = Pr(Y ≤ (x/β)α) = 1− exp{−(x/β)α}, x > 0.

b) Use Exercise 2.5.1 to identify the model for X as the Weibull distribution.

Exercise 2.6.2 a) Draw m = 1000 Poisson variables when λ = 5, 20 and 100. b) In each of the three
cases use a Q-Q plot to compare against the normal distribution. Comments?

Exercise 2.6.3 Let N1 = M4 + M7 where M4 and M7 are Poisson distributed with parameters λ = 4
and λ = 7 respectively and let N2 be Poisson with parameter λ = 11. a) Generate m = 1000 Monte Carlo
samples of N1 and then b) the same number of simulations from N2. c) Compare the the distributions of
N1 and N2 by Q-Q plotting their ordered simulations against each other. Any comments? For the general
story see Chapter 8.

Exercise 2.6.4 We shall in this exercise consider sums of exponentially distributed variables, as in Al-
gorithm 2.10, but now with a fixed number of terms. Let Y = X1 + . . . + X5, where X1, . . . , X5 are
exponentially distributed. a) Sample Y one thousand times. b) Sample the same number of times from
a Gamma distribution with shape parameter α = 5. c) Compare the two distributions by plotting the
ordered simulations against each other as in the preceding exercise. Again there is a more general story. It
is presented in Chapter 9.

28

Exercise 2.6.5 One way to inestigate the efficiency of the Gamma simulator in Algorithm 2.11 is to check
how often the acceptance criterion holds. With a slight rephrasal let U∗ and V ∗ be uniform random variables.
What we seek is the probability of the event

log(U∗) ≤ (α− 1)(log(X∗)−X∗) where X∗ = − log(V ∗).

Run 100000 simulations for α = 2, 20, 100 and 1000 and estimate the acceptance probability. A smarter
way is given in the next exercise!

Exercise 2.6.6 a) Implement the Gamma generator Algorithm 2.11. b) Generate m = 1000 simula-
tions when α = 2 and ξ = 1. c) Check the program by plotting a density function estimated from the
simulations. d) Redo (possibly with smaller m) for α = 100 and establish that the procedure now is more
time-consuming. To understand why we shall try to find out how many repetitions are needed for accept to
occur. The simplest way is to compute the constant M prior to Algorithm 2.11 in Section 2.6; i.e.

M =
αα

Γ(α)
exp(−α+ 1) where for integers n Γ(n) = (n− 1)!

e) Explain from the theory in Section 2.5 why M equals the average number of trials for each simulation. f)

Compute it for α = 2, 20, 100 and 1000 and compare with the assessments in Exercise 2.6.5. Any comments?

Such sensitive performance is typical for the rejection/acceptance method. Cleverness is needed!

29

