
1 Evaluating risk: A primer

1.1 Introduction

The hardest part of quantitative risk analysis is to find the stochastic models and judge their real-
ism. This is discussed later. What is now addressed is how models are used once they are in place.
Only a handful of distributions have been introduced, and yet a good deal can be achieved already.
The present chapter is a primer introducing main arenas and their first treatment computationally.
We start with property insurance where core issues can be reached with very simple modelling.
That applies to liabiltities in life insurance too, but now the mean feature is different. Once the
stochastic model is given, there is little risk left. Of course, this doesn’t rule out much uncertainty
in the model itself (see Chapter 15). When we go to financial risk there are once again random
events with strong impact. Target of this chapter is the general line. Many interesting points
(demanding heavier modelling) are left out and treated later.

A unifying theme is Monte Carlo as a problem solver. By this is not meant computational tech-
nique which was treated in the preceding chapter (and in the next one too). What is on the agenda
is the art of making the computer work for a purpose, how we arrange for it to chew away on
computational obstacles and how it is utlized to get a feel for numbers. Monte Carlo is also an
efficient way of handling the myriad of details in practical problems. Feed them into the computer
and let simulation take over. Implementation is often straightforward, and existing programs might
be re-used with minor variations. The potential here is endless. Is there a new contract clause, an
exception from the exception say? With mathematics you need new expressions and may have to
work them out anew, almost from scratch. If you use simulations there is perhaps no more than
an additional statement in the computer code. And often the mathematics becomes too unwieldy
to be of much merit at all.

1.2 General insurance: Opening look

Introduction
Risk variables in general insurance are amounts paid as compensations for damages or accidents,
say X to a policy holder and X to cover the entire portfolio. Consider the representations

X = Z1 + . . . + ZN and X = Z1 + . . . + ZN
policy level portfolio level, identical risks

(1.1)

where N and N are the number of insurance incidents and Z1, Z2, . . . what it costs to settle them.
If N (or N ) is zero, the corresponding sum X (or X ) is zero too. The underlying period of time T
(often one year) influence the models for N and N .

For these descriptions to make sense all of Z1, Z2, . . . must follow the same probability distri-
bution. That is plausible when dealing with a single policy. Surely an unlikely second event isn’t
on average any different from the first? However, for portfolios claims depend on the object insured
and the sum it is insured for, and we must keep track on where it comes from by going through
the entire list of policies. If there are J of them with claims X1, . . . ,XJ , then

X = X1 + . . . + XJ where Xj = Zj1 + . . . ZjNj
, (1.2)

and claim numbers Nj and losses Zj1, Zj2, . . . depend on the policy index j. If all Zji have common
distribution, X in (1.2) collapses to X in (1.1) by taking N = N1 + . . . + NJ .
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Enter contracts and their clauses
The preceding representations do not take into account the distinction between what an incident
costs and what a policy holder receives, a common thing. If the actual compensation is some
function H(z) of the total replacement value z, then (1.1) left changes to

X = H(Z1) + . . . + H(ZN ) where 0 ≤ H(z) ≤ z. (1.3)

Note that H(z) can’t exceed total cost z. A common type of contract is

0, z ≤ a
H(z) = z − a, a < z ≤ a + b

b z > a + b.
(1.4)

Here a is a deductible subtracted z (no reimbursement below it) whereas b is a maximum insured
sum per claim. These quantities typically vary over the portfolio so that a = aj and b = bj for
policy j.

Re-insurance, introduced in Section 1.2, is handled mathematically in much the same way. The
original risk is now shared between cedent and re-insurer through contracts that may apply to
both individual policies/events and to the portfolio aggregate X . Typical representations of the
re-insurer part are

Xre = H(Z1) + . . . + H(ZN ) or X re = H(X ),
re-insurance per event re-insurance on portfolio level

(1.5)

where H(z) and H(x) define the contracts, satisfying 0 ≤ H(z) ≤ z and 0 ≤ H(x) ≤ x as before.
The example (1.4) is prominent in re-insurance too. It is now called a layer a× b contract and a
is the retention limit of the cedent (who keeps all risk below it).

Re-insurance means cedent net responsibility falling to Xce = X − Xre or X ce = X − X re in-
stead of X and X . Whether the point of view is cedent or re-insurer, there is a common structure
in how we proceed. Claim numbers and losses are described by stochastic models, allowing us
to generate Monte Carlo realisations that are feed them into contracts and clauses for the final
payments. That will be the agenda in Section 3.3.

Stochastic modelling
The critical part of risk evaluation in general insurance is the uncertainty of the original claims.
Much will be said on that issue in Part II, yet a number of problems can be attacked right away
through the following introductory observations. Claim numbers, whether N (for policies) or N
(portfolios) are often well described by the Poisson distribution. The parameters are then

λ = µT
policy level

and λ = JµT,
portfolio level

(1.6)

where µ is the expected number of claims per policy per time unit. For example, in automobile
insurance µ = 5% annually might be plausible (incident for one car in twenty). This central pa-
rameter (known as an intensity) will be explored thoroughly in Chapter 8 and used as vehicle for
more advanced modelling.
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Then there is the loss Z per event, usually taken to be independent of N . Unlike the case with claim
numbers there is now little theoretical support, and modelling is almost always a question of pure
experience. Common choices of distributions are Gamma, log-normal and Pareto, all introduced in
the preceding chapter. How Z is modelled is discussed in Chapter 9.

Risk diversification
The core idea of insurance is risk spread on many units. Insight into this issue can be obtained
through very simple means if policy risks X1, . . . ,XJ are stochastically independent. The
portfolio aggregate has then mean and variance

E(X ) = ξ1 + . . . + ξJ and var(X ) = σ2
1 + . . . + σ2

J ,

where ξj = E(Xj) and σj = sd(Xj). Independence is the prerequisite for the variance formula.
Introduce

ξ̄ =
1

J
(ξ1 + . . . + ξJ) and σ̄2 =

1

J
(σ2

1 + . . . + σ2
J)

which is the average expectation and variance. Then

E(X ) = Jξ̄ and sd(X ) =
√

Jσ̄, so that
sd(X )

E(X )
=

σ̄/ξ̄√
J

, (1.7)

which are formulae of merit.

What they tell us is that portfolio means grow with J and their standard deviations with
√

J ,
a much smaller number. As the number of policies goes up the unpredictable part represented
by the standard deviation loses in relative importance and can be ignored eventually. A precise
argument rests on the law of large numbers in probability theory (Appendix A.4). As J → ∞,
both ξ̄ and σ̄ tend to their population means, and the ratio sd(X )/E(X ) in (1.7) approaches 0. In
other words, insurance risk can be diversified away through size.

Are large portfolios, therefore, risk-free? That’s actually how we operate in life insurance and
pensions (Section 3.4), but it is never that simple. There is always uncertainty in the underly-
ing model, and risks may well be dependent as we shall see in Section 6.3. The big insurers and
re-insurers of this world handle hundreds of thousands of policies. Their portfolio risk isn’t zero!

1.3 How Monte Carlo is put to work

Introduction
This section is a first demonstration of Monte Carlo as a problem solver. The arena is general
insurance where many problems relating to pricing and control can be worked out from simulated
samples X ∗

1 , . . . ,X ∗
m of the portfolio pay-out X . How they are generated is shown below through

skeleton algorithms. Ideas for validation are included. These things are best learned by example,
and we shall illustrate on the following concrete case:

J = 100 µT = 10% Z ∼ Pareto(α, β) with α = 3, β = 2,
number of policies annual claim frequency claim size distribution
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which is a small portfolio, potentially with very large claims. The average number is JµT = 10 inci-
dents annually, and expected loss and standard deviation per event are ξz = E(Z) and σz = sd(Z)
which become ξz = 1 and σz =

√
3; see formulae in (??) and (??) in Section 2.5. The set-up is

reminiscent of industrial installations insured through a small company such as a captive1. The
uncertainty from one year to the next one is huge which Monte Carlo handles better than most
other computational methods.

Skeleton algorithms
Monte Carlo implementation of portfolio risk in general insurance does not differ much from Algo-
rithm 1.1. When risks are identical:

Algorithm 3.1. Portfolio risk, identical policies
0 Input: λ = JµT , distribution of Z
1 X ∗ ← 0
2 Generate N ∗ %Often Poisson(λ) by means of Algorithm 2.11,

alternative model in Chapter 8

3 For i = 1, . . .N ∗ do
4 Draw Z∗ %Algorithms in Section 2.5,

additional ones in Chapter 9

5 X ∗ ← X ∗ + Z∗ %Extension: Add H(Z∗) instead; see Algorithm 3.3

6 Return X ∗ %Re-insurance in terms of X : Return H(X ∗) instead

The logic is straightforward. Start by drawing the number of claims N ∗ and add the N ∗ losses in-
curred, drawing each one randomly. On Lines 2 and 4 sub-algorithms must be inserted. The study
below employs Algorithm 2.11 (for Poisson distributions) and Algorithm 2.9 (Pareto). The number
of commands are not high. Note that the algorithm also applies to individual policies by taking
J = 1. A second loop around the preceding commands then yields a version where policy risks vary:

Algorithm 3.2. Portfolio risk; heterogeneous case
0 Input: Information on all policies
1 X ∗ ← 0
2 For j = 1, . . . , J do
3 Draw X∗

j %Algorithm 3.1 for single policies,

information on j’th policy read from file

4 X ∗ ← X ∗ + X∗
j

5 Return X ∗

This second algorithm takes us through the entire portfolio, which could be a long loop, but that
doesn’t matter much. Modern computational facilities are up to it, and often most of the computer
work is to draw the claims anyway (which is the same amount of work with both algorithms). How
the set-up is modified to deal with re-insurance is explained below.

Checking the program

1A captive is an insurance company set up by a mother firm to handle its insurance, often for reasons of
taxation.

4



95% reserve 99% reserve
m Repeated experiments Repeated experiments

1000 20.8 21.0 21.6 19.9 19.9 27.9 27.5 31.3 29.6 31.3
10000 20.7 20.7 21.4 20.8 20.8 30.2 30.1 30.5 31.0 31.1

Table 3.1 Reserve for the Section 3.3 portfolio. No limit on responsibility

Does the program work as intended? Anyone who has attempted computer programming, knows
how easily errors creep in. Bug detection technique may belong to computer science, but we
shouldn’t ignore it, and many situations offer tricks that can be used for control. In the present
instant one way is to utilize that

E(X ) = JµTξz and sd(X ) =
√

JµT (ξ2
z + σ2

z),

which is proved in Section 6.3. Though the simulations may have been meant for the percentiles
of X , we can always compute their average and standard deviation and compare them to the the
exact ones. Most programming errors will then materialize.

For the portfolio described in Section 3.1 a test based on 1000 simulations gave the following results:

Exact premium Monte Carlo X̄∗ Exact standard deviation Monte Carlo s∗.
10 9.84 (0.22) 6.32 6.84 (0.77)

The number of simulations is not large, and there are discrepancies between the exact values
and the Monte Carlo approximations. Are they within a plausible range? If not, the reason can
only be programming error. Here both Monte Carlo assessments are within ± two standard devia-
tions (in parenthesis), and there is no sign of anything being wrong. Method: Estimated standard
deviations are

s∗√
m

(for X̄∗) and
s∗√
2m

√

1 + κ∗/2 (for s∗);

see (??) and (??). The kurtosis κ∗ (value: 48.6 here) can be taken from the simulations X ∗
1 , . . . ,X ∗

m

as explained in Exercise 2.2.8. Insert s∗ = 6.84, κ∗ = 48.6 and m = 1000 and you get the values
above.

Computing the reserve
Simulations produce simple assessments of the reserve (no theoretical expressions now!). They must
then be ranked, say in in descending order as

X ∗
(1) ≥ X ∗

(2) ≥ . . . ≥ X ∗
(m),

and X ∗
(mε) is used for the ε-percentile. The Monte Carlo variability of such assessments have

been indicated in Table 3.1 which lists results from five repeated experiments. The uncertainty
appears uncomfortably high when m = 1000, but is much dampened for m = 10000. Are your
standards so strict that even the latter isn’t enough? Arguably even m = 1000 suffices in a case
like the present one where model parameters are almost certain to be hugely in error; see Chapter 7.

It seems to be a growing trend towards ǫ = 1% as international standard. If adopted here, a
company has to set aside around 30 − 31 (say million) as guarantee for its solvency, about three
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Total claim with limited responsibility: Density function

Figure 3.1 Density function of portfolio in Section 3.3 without (left) and with (right) limit on
responsibility. Note: Scales on axes differ.

times as much as the average loss of the portfolio. But expenses could go higher. In Figure 3.1 left
the probability density function of X has been estimated (using 100000 simulations). Skewness is
very pronounced, and variation stretches all the way up to 100 million. These high values are so
rare that the solvency criterion does not capture them.

When responsibility is limited
The modification when compensations are H(Z) instead of Z was indicated in Algorithm 3.1; see
comment on Line 5. Instead of the command X ∗ ← X ∗ + Z∗ take

X ∗ ← X ∗ + H∗ where H∗ ← H(Z∗).

A sub-algorithm is needed to compute the Monte Carlo compensation H∗ to the insured. It runs
as follows when H(z) is the payment function (1.4):

Algorithm 3.3 Deductible and maximum responsibility
0 Input Z∗ and limits a, b
1 H∗ ← Z∗ − a
2 If(H∗ < 0) then H∗ ← 0

else if H∗ > b then H∗ ← b
3 Return H∗

The logic is easy. Start by subtracting the deductible a. If we now are below zero or above
the upper limit, output is modified accordingly, and the original claim Z∗ has been changed to the
amount H∗ actually reimbursed.

The effect on the reserve has been indicated by means of the following experiment. Let a be a
common deductible and allow the upper limits of responsibility b1, . . . , b100 to vary over portfolio.
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Scenarios examined were

a = 0.5, b1 = . . . = b100 = 3.5 a = 0.5, b1 = . . . = b50 = 1.5, b51 = . . . = b100 = 5.5.
Fixed limit scenario Variable limit scenario

On the left all contracts are equal with maximum responsibility 3.5 times the average claim, and
on the right the upper limit was either 1.5 or 5.5, still with 3.5 as the average.

Running m = 100000 simulations under the two regimes lead to the following assessments of
the reserve under variation of the solvency level:

90% 95% 99% 99.97% 90% 95% 99% 99.97%
10.2 12.0 15.6 21.9 9.7 11.5 15.2 21.7

Upper limits: Fixed Upper limits: Variable

Values at 99% (about 15 now for both regimes) has been halved compared to the unlimited case,
and it doesn’t matter too much that the upper limit depends on policy. Estimated density functions
of the portfolio claims are plotted in Figure 3.1 right. The distribution is still skew, but no longer
with those super-heavy tails you find on the left.

Dealing with re-insurance
Re-insurance in terms of single events is computationally very much the same as in the preceding
example, but contracts that apply to the aggregated claim X are different. Now the re-insurer
share is X re = H(X ) which leads to the pure re-insurance premium

πre = E{H(X )} approximated by πre∗ =
1

m

m
∑

i=1

H∗
i where H∗

i = H(X ∗
i ).

Cedent net responsibility is X ce = X − H(X ). Let C = X ce to ease notation. Then cedent net
reserve becomes

C∗
(mε) where C∗

(1) ≥ C∗
2 ≥ · · · ≥ C∗

m, sorted from C∗
i = X ∗

i −H(X ∗
i ), i = 1, . . . ,m.

Re-insurer share H∗
i is computed by applying Algorithm 3.3 to the output from Algorithm 3.1 or

3.2; see comments in Algorithm 3.1.

The portfolio of the preceding section with Pareto distributed claims is used as illustration in Table
3.2. Original cedent responsibility was unlimited (not common in practice), and the re-insurer
part X re = max(X − a, 0). This makes re-insurance coverage unlimited too (again uncommon).
Contracts of this particular type is known as stop loss. Table 3.2 shows re-insurance premium
and cedent net reserve (99%) as the retention limit a is varied. Note how the reserve of around 30
million is cut down to one third (10 million) when the re-insurer covers all obligations above a = 10
million. The cost is 2.2 million in pure premium (and usually more in premium paid). In practice
companies taylor the amount of re-insurance by balancing capital saved against extra cost.

1.4 Life insurance: A different story

Introduction
Liabilities in life and pension insurance are rarely handled by the approach of the preceding section
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m = 1000000 simulations

Retention limit (a) 0 10 20 30 40 50
99% cedent reserve 0 10 20 30 30.7 30.7
Re-insurance pure premium 10 2.23 0.39 0.11 0.041 0.021

Table 3.2 Cedent reserve and pure re-insurance premium for arrangement
described in the text. Unlimited re-insurance coverage

and for good reason too. This section indicates what lies behind by examining common arrange-
ments such as life annuities where individuals receive fixed benefits until they die and term
insurance where a lump sum is released upon the death of the policy holder. The uncertainty
is due to how long people live. This is expressed mathematically through life tables which are
probabilities kpl of an individual of age yl = lh living k periods longer. The time increment h may
for example be a year or a month; see Chapter 12 for more on these quantities.

A simple calculation
Uncertainty in life insurance can be understood through a simplified portfolio where all individuals
are of the same age y = lh and of the same sex so that the survival probabilities kpl are the same for
everybody. Consider a pension scheme of J policy holders collecting each period benefits s1, . . . , sJ

until they die. The amount Xjk received by individual j at time tk is sj or zero, according to the
probabilities

Pr(Xjk = 0) = 1− kpl and Pr(Xjk = sj) = kpl.
policy holder dead at tk policy holder alive at tk

Hence

E(Xjk) = sj kpl = ξjk and var(Xjk) = s2
j kpl(1− kpl) = σ2

jk,

almost mean and variance for ordinary Bernoulli variables, see also Exercise 3.2.1. Our target (as
in Section 3.2) is the portfolio aggregate Xk = X1k + . . . + XJk. Introduce

s̄ =
1

J

J
∑

j=1

sj and σ̄2
s =

1

J

J
∑

j=1

(sj − s̄)2 =
1

J





J
∑

j=1

s2
j



− s̄2,

where you should verify the identity on the very right yourself if it is unfamiliar. It follows that

ξ̄k =
1

J

J
∑

j=1

ξjk =





1

J

J
∑

j=1

sj





kpl = s̄ kpl

and that

σ̄2
k =

1

J

J
∑

j=1

σ2
jk =





1

J

J
∑

j=1

s2
j





kpl(1− kpl) = (σ̄2
s + s̄2)kpl(1− kpl).

These expressions may be inserted into (1.7) which yields after some manipulations

sd(Xk)

E(Xk)
=

σ̄k/ξ̄k√
J

=

(

(1/kpl − 1)(1 + (σ̄s/s̄)
2)

J

)1/2

. (1.8)
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How much is this? Try kpl = 0.98, σ̄s = s̄ and J = 100 and you get 0.02; i.e. standard deviation
is no more that 2% of the expected value even for a portfolio of micro-size, and goes further down
to 0.2% for ten thousand policies and 0.02% for one million. At portfolio level randomness doesn’t
amount to much, and usually only expectations E(Xk) are reported.

Term insurance isn’t quite the same. Now pay-off follows death and not survival, and in (1.8)

kpk must be replaced by 1 − kpl. This increases uncertainty considerably although still usually
ignored by tradition; consult also the term insurance portfolio simulated in Section 1.5.

Simulating pension schemes
The preceding argument suggests that simulation doesn’t play one of the leading roles in life in-
surance. That is true and yet a bit premature. Monte Carlo is a highly relevant tool with other
aspects; see Chapter 15. But even in the present context where random effects are largely unim-
portant, it isn’t such a bad idea to build simulation models to visualize what happens. Traditional
pension arrangements (known as defined benefit schemes) has a build-up stage where premium
π is contributed. After retirement at age lr a pension ζ is drawn. Such cash flows will be denoted
{ζl}. In the present case

ζl = −π if l < lr and ζl = ζ if l ≥ lr,

where premium is counted negative. Uncertainty as to how long the policy holder lives converts the
fixed payment stream {ζl} into a random one {Xk} which in turn defines a random present value

PV0 =
∞
∑

k=0

dkXk where dk =
1

(1 + r)k
. (1.9)

Simulations are organized as follows:

Algorithm 3.4 Pension cash flow for single individual
0 Input: {1pl}, {ζl}, initial age l
1 Initial: PV∗

0 ← 0, d← 1
2 For k = 0, 1, . . . ,K do %Present value including K periods ahead

3 PV∗
0 ←PV∗

0 + ζld %Payment in advance

4 l← l + 1 and d← d/(1 + r) %Update and discount

5 Draw U∗ ∼ uniform
6 If (U∗ > 1pl) stop and return PV∗

0 %Policy holder has died

The algorithm goes through the life of the policy holder up to K years ahead and tests (on Line
6) whether he (or she) stays alive. If so, the discounted benefit is added to the present value the
next time. The cash flow {ζl} must be stored on input and is arbitrary. Payments in Algorithm
3.4 are in advance, and the set-up requires a slight change if they are made in arrears; i.e. at
the termination of each period; see Chapter 12. To simulate the entire portfolio run the algorithm
once for each policy holder and add the output.

Example: A run-off portfolio
Run-off status means a portfolio where existing obligations are being liquidated. There is no
premium income and no new recrutes. Such situations occur in all forms of insurance. Here a

9



Years ahead
0 5 10 15 20

0
2

0
4

0
6

0
8

0
1

0
0

Present value

One hundred policies

50 replications

Years ahead
0 5 10 15 20

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

Present value

50 replications

One thousand policies

Figure 3.2 Simulated present values for portfolios of pension liabilities. Conditions outlined in the
text.

pension scheme with members past the retirement age is being considered. The question is how
much money it takes to support the benefit they receive until they die.

Such evaluations are based on specific life tables. The one selected is of the Gomperz-Makeham
type. An invidual of age l survives until next year with probability

log(1pl) = −0.0009 − 0.0000462e0.090767 × l

where parameters are for males in a developed country and correspond to a life expectancy of 75
years; see Section 12.3. All individuals were past 60 (drawing pension) with 93 as the oldest. The
age distribution between these extremes were laid out as explained in Section 15.2. Additional
assumptions were

ζ = 0.1, lr = 60, r = 3%, J = 100 or J = 1000,

where the money unit could be million US$ (correspond to an annual pension of 100000).

The portfolios are small since the idea is to indicate that the uncertainty due to how long people
live isn’t very important. In Figure 3.2 the present values of payments up to K years ahead have
been computed and plotted against K. The downward curvature is caused by the discounting (and
also by mortality increasing with age), but the main thing is random variation. It is quite small on
the right, somewhat larger when J = 100 on the left.

1.5 Financial risk: Derivatives as safety

Introduction
Financial risk can be reduced by spreading investments on different assets. Another way is through
financial derivatives or options which protect against market movements that generate loss.
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Numerous types of arrangements are in practical use (with the academic literature containing still
more). The so-called European contracts (the only ones to be considered) release at a future date
the amount

X = H(R)v0, (1.10)

whereR is the return of a financial investment at that time, H(r) a function containing the detailed
payment clauses and v0 the original value of the investment. Derivatives are secondary risk prod-
ucts, derived from primary ones, much like re-insurance being secondary products in the insurance
world.

The right to future compensation against unwelcome market news has to be paid for. This sec-
tion explains how such fees (called option premia) are calculated. The underlying mathematical
argument (which is complicated) is deferred to Chapter 14, and equity is the only type of asset
considered. Derivatives in the money market is at least as important, but you have to consult
Chapter 14 for those.

Equity puts and calls
There are no limits on the number of functions H(r) you could use in (1.10). Two of the most
widely used ones are

X = max(rg −R, 0)v0 and X = max(R− rg, 0)v0,
put option call option

(1.11)

where rg is a given rate of interest and v0 the initial value of the underlying asset (assumed to be
equity). The put option on the left releases compensation whenever the return R falls below the
floor rg. This provides a guaranteed return in the sense that

(1 +R)v0 + X = (1 +R)v0 + max(rg −R, 0)v0 ≥ (1 + rg)v0

and rg is a minimum return on the investment (but only when the fee is not counted). Many life
insurance products are drawn up with such clauses. Call options are the opposite. Now there is
extra money if R exceeds rg; see (1.11) right, and a borrower is protected against high financial cost.

How equity options are valued
Derivatives are paid for up-front when contracts are drawn up. If that occurs at t0 = 0 and the
expiry is at T , possible valuations could be

π = e−rT E(X) or π = e−rT EQ(X),
actuarial pricing risk neutral pricing

(1.12)

where e−rT is an ordinary discount. The central feature is the expected pay-off. Why on earth
shouldn’t we use ordinary actuarial pricing on the left? That’s how we operate in insurance and
re-insurance, but financial derivatives are different in that they can be hedged in a way ordinary
insurance can not. Consider call options. Sellers of such contracts lose in a rising market when
R > rg but they may hold the underlying stock on the side and in this way off-set the loss (at least
partially). Their real risk must then be smaller than X itself, and E(X) isn’t a break-even price
as in insurance.
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The issue requires a big dose of mathematics. A series of fine-tuned hedging operations will in
Chapter 14 lead to the so-called risk-neutral price in (1.12) right. It doesn’t look that different
from the other! Yet there is a crucial difference. The expectation is now calculated with respect to
a special valuation model (usually denoted Q) which is as follows. Suppose the option X = H(R)
applies to a single equity asset with return R following the usual log-normal model. Mean and
variance are then proportional to T (you’ll see why in Section 5.7) so that R = exp(ξT +σ

√
Tε)−1

where ε is N(0, 1). The Q-model then turns out to be

R = exp(ξqT + σ
√

Tε)− 1 where ξq = r − 1
2σ2,

Q-model
(1.13)

the same as the other one with the exception of the different ξ. Now

EQ(R) = exp(ξqT + σ2T/2) − 1 = exp(rT )− 1

and the expected return of holding stock coincides with what you get from a bank account. That’s
not much to get from risky shares, but then it is for valuation only. What lies behind is a hedging
so perfect that all risk for the option seller (in theory) disappears(!). Consequence: Derivatives are
valued as if equity risk does not matter.

The Black-Scholes formula
The put option in (1.11) has premium

π(v0) = EQ{max(rg −R, 0)}v0 where R = exp(ξqT + σ
√

Tε)− 1

for which a closed formula is available.. Indeed,

π(v0) = {(1 + rg)e
−rT Φ(a)− Φ(a− σ

√
T )}v0, a =

log(1 + rg)− rT + σ2T/2

σ
√

T
, (1.14)

where Φ(x) is the standard normal integral. The result, verified in Section 3.7, is known as the
Black-Scholes formula and is one of the most prominent results in modern finance. If you take
the trouble of differentiating it with respect to σ, you will discover that

∂π(v0)

∂σ
= ϕ(a− σ)v0 where ϕ(x) =

1√
2π

e−x2/2.

This is always positive which means that higher uncertainty makes put options more expensive.
That seems plausible, but it isn’t a general result, and other derivatives are different. A simialr
pricing formula for calls will be detailed in Chapter 14.

Options may be traded, and we need their value at time tk. This is an easy matter. In the
Black-Scholes formula replace v0 with the value of the underlying stock at tk and T with the re-
maining time T − tk to expiry.

Options on portfolios
Valuation for derivatives that apply to several assets jointly is a direct extension of the one-asset
case. Now the risk-neutral model for J equity returns R1, . . . , RJ is

Rj = exp(ξqjT + σj

√
Tεqj)− 1, ξqj = r − 1

2σ2
j , for j = 1, . . . , J,

Q-model

(1.15)
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where ε1, . . . , εJ are N(0, 1) and usually correlated. Correlations and volatilities are inherited
from the real model whereas the original expectations ξj are replaced by the risk-neutral version
ξqj = r − σ2

j /2. What is not the same as in the one-asset case is computation. Closed pricing
formulae do not exist, and Monte Carlo is the usual method. The algorithm runs as follows:

Algorithm 3.5. Simulating equity options
0 Input: r, v0 volatilities and correlations, asset weights w1, . . . , wJ

1 Draw ε∗1, . . . , ε
∗
J %All N(0, 1) and correlated, Algorithm 2.4 or 5.2

2 R∗ ← 0
3 Repeat for j = 1, . . . , J
4 R∗ ← exp(rT − σ2

j T/2 + σj

√
Tε∗)− 1 %Return j’th asset

5 R∗ ←R∗ + wjR
∗ %Updating portfolio return

6 X∗ ← H(R∗)v0 %For put options:

If R∗ ≥ rg then X∗ ← 0 else X∗ ← (rg −R∗)v0

7 Return X∗.

The program converts a correlated sample of standard normal Monte Carlo variables ε∗1, . . . , ε
∗
J

into the portfolio return R∗ and a pay-off X∗. From m replications X∗
1 , . . . ,X∗

m we may compute
the discounted average

π∗ =
e−rT

m

m
∑

i=1

X∗
i

and use that as an approximate option premium. This kind of simulation will also be needed in
Chapter 15 when financial risk is examined from a broader perspective.

Are equity options expensive?
The minimum return of a put option cited above was after premium has been paid, and the effec-
tive minimum is lower. When this expense is drawn from the original capital v0, the balance sheet
becomes

v0

1+π(1)
+ π(1)

v0

1+π(1)
= v0

equity protected option premium original capital

where value of the equity is reduced to v0/{1+π(1)} after the option premium has been subtracted.
At expiry the investor is guaranteed

v0

1 + π(1)
(1 + rg) = (1 + r′g)v0 where r′g =

rg − π(1)

1 + π(1)
< rg − π(1),

and the effective minimum return is a little lower than rg − π(1).

How much is the option premium π(1) eating up? It depends on the circumstances. Here is
an example with J = 4 risky assets with equal weights w1 = . . . w4 = 0.25. Their model is assumed
log-normal and equi-correlated (as in Section 2.3) and with common volatility. The annual guaran-
tee rg = 7% and the risk-free rate r = 4% lead through Algorithm 3.5 to the prices in Figure 3.3 left
where π(1) is plotted (in per cent) against asset volatility for two different values of the correlation.
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Figure 3.3 Prices of put options (left) and cliquet options (right), quoted in per cent of the original
holding. Conditions given in the text.

Options are expensive! Annual volatilities of 25% (not unrealistic at all) would lead to a cost of
6−10% depending on the correlation. High volatility and high correlation increase the uncertainty
and make the price higher. Ten replications, each based on m = 10000 simulations, are plotted
jointly2 and indicate a Monte Carlo uncertainty that might in practice be found unacceptable for
fixing the price.

One way to lower the cost is to allow the option seller to keep the top of the return. Such in-
struments, sometimes called cliquet options, have the pay-off

rg −R, R ≤ rg

H(R) = 0, rg < R ≤ rc

−(R− rc), R > rc,
(1.16)

where the third line signals that return above a ceiling rc is kept by the option seller. The guarantee
is still rg, but this trick makes the instrument cheaper; see Figure 3.3 right where the underlying
conditions are as before (correlation between assets are 0.5) When the ceiling is rc = 15% and the
volatility 25%, the price of the cliquet is close to half of that of the put.

1.6 Risk over long

Introduction
Life insurance in Section 3.4 looked many years ahead and investments of such funds must too.
Even general insurance (often on an annual basis) may benefit from a long-term view, for example
for planning capital requirements. We are then dealing with recursions like

Yk = Yk−1 + RkYk−1 + Πk − Ok − Xk,
financial income premium overhead liabilities

(1.17)

2Smoothness of the curves was achieved by using common random numbers; see Section 4.3.
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for k = 1, 2 . . .. Here financial income (RkYk−1), premium income (Πk), overhead cost (Ok) and
liabilitites (Xk) are integrated into summaries that yield net assets {Yk}. There could be other
contributions as well, and both liabilities and financial return could be complex affairs with many
sub-contributions; see the extensions in Chapter 11 (general insurance) and Chapter 15 (life insur-
ance). Here details are kept very simple.

The ruin problem
The recursion (1.17) starts at Y0 = v0. How the the inital capital v0 should be determined under a
long-term view is a classic of actuarial science. A commonly used criterion is that net assets should
be positive at all times up to some terminating tK . In mathematical terms the event Y1, . . . ,YK > 0
must occur with high probability or the opposite that the ruin probability

pru(v0) = Pr(Y < 0|Y0 = v0) where Y = min(Y1, . . . ,YK) (1.18)

is small. If Y < 0, the portfolio at some point is out of money, and this outcome should be a remote
one.

The phrase ‘ruin’ is not to be taken too literally as companies (and regulators) are supposed to
intervene long before that happens. Ruin probabilities are for planning and to indicate a suitable
amount of capital. A standard yardstick is the equation

pru(v0) = ǫ with solution v0 = v0ε, (1.19)

and if v0ε is put up in the beginning, the chance of net assets falling below zero during the next
K periods is no more than ǫ. Solutions can in special cases be approximated by mathematical
formulae; see Section 3.8. Monte Carlo is usually easier and often more accurate too.

A skeleton algorithm
Computer simulations of net asset values {Yk} from the recursion (1.17) can be organized as follows:

Algorithm 3.6 Integrating assets and liabilities
0 Input: Models for Rk and Xk, sequences {Πk} and {Ok}
1 Y∗

0 ← v0 and Y∗ ← large value % Intial reserve and initial minmum

2 For k = 1, . . . ,K do
3 Generate X ∗ %Liability in period k, could be life or non-life,

simple possibilities: Algorithms 3.1 or 3.2

4 Generate R∗ %Financial return in period k,

simple possibility: Algorithm 2.4

5 Y∗
k ← (1 +R∗)Y∗

k−1 + (Πk −Ok)−X ∗

6 If Yk < Y∗ then Y∗ ← Yk %Updating the minimum

7 Return Y∗
0 , . . . ,Y∗

K and Y∗

The scheme is a loop over k with procedures generating liabilities (Line 3) and financial return
(Line 4). Both may be the end product of complex simulations with countless sub-components,
and liabiltities may be both life and non-life. Only simple versions drawing on earlier algorithms
are considered below, and premium income Πk and overhead Ok are fixed, therefore not ∗-marked
(but there will be stochastic versions in Chapter 11). It is implicit in Algorithm 3.6 that liabilities
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and financial return are unrelated and generated independently of each other. Does that appear
obvious? There are in real life many situations (especially in life insurance) where economic factors
influence both and create links between them. Such issues are discussed in Chapter 15.

The algorithm returns a minimum value Y∗ over K periods. This has been built into the re-
cursion (Line 6) by updating the preceding minimum if the current asset Y∗

k is smaller. With m
replications Y∗

1, . . . ,Y∗
m the ruin probability is approximated by

pru∗(v0) =
1

m
(I∗1 + . . . + I∗m) where

I∗i = 0 if Y∗
i > 0

= 1 otherwise,
(1.20)

which is simply a count how many times the net assets at some point has become negative. We
would like to solve the equation

pru∗(v∗0ǫ) = ǫ

so that v∗0ǫ can be used as an approximation to the exact value v0ǫ in (1.19). There is in general
no simple way to do this, and the ususal method is by trial and error; see below.

Underwriter risk
Underwriting is the insurance part of the business with the financial side ignored. Many actuarial
evaluations are of this type. Algorithm 3.6 still applies if you take R∗ = 0 on Line 5. Unlike the
general case there is now a smart way to determine the approximate solution of the ruin problem.
Start at v0 = 0 with no initial capital. The account will often go into minus (economically this
means that money is borrowed from somewhere), but we may still run it and generate Y∗

1, . . . ,Y∗
m

as m realisations of the minimum. Rank them in ascending order as Y∗
(1) ≤ . . . ≤ Y∗

(m). An
approximation of the exact v0ǫ is then

v∗0ǫ = −Y∗
(ǫm) where v∗0ǫ → v0ǫ as m→∞; (1.21)

see Section 3.7 where the result is proved.

As an example consider the large claims portfolio of Section 3.3. There were on average ten
claims per year of the heavy-tailed Pareto type with limited responsibility (same for all portfolios).
Simulated scenarios (100 replications) have been plotted jointly in Figure 3.4 left. All were started
from v0 = 15 million (the 99% annual reserve for this portfolio, see Section 3.3) The net premium
Πk − Ok was fixed at 6.0 exceeding the pure premium (5.4) by about 10%, which accounts for a
slight average drift upwards, barely discernable and over-shaddowed by the enormous uncertainty.
Earnings are sometimes huge, (up to 100% and more over ten years), but losses may be severe too
(despite coverage being limited). These matters have now been learned in advance and may be
used as input to our business strategy.

Evaluations of ruin probabilities over five years are shown in Figure 3.4 right under variation
of the initial capital v0. Recall that the annual 99% reserve for this portfolio was 15 million, but
over five years this corresponds to no more than 92 − 93%, and it must now be doubled to reach
99%. There are two versions in Figure 3.4 right. The smooth, solid line is based on the same
sequence of random numbers for each v0. This approach, known as common random numbers,
leads to smooth pictures, well suited for presentation. The alternative dotted line took different
random sequences for each v0 plotted. That leads to annoying bumps due to randomness and is an
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Figure 3.4 Underwriter results for the portfolio of Section 3.3. Left: One hundred simulated
scenarios. Right: Ruin probabilities (5 years) against initial capital from m = 10000 simulations

inferior simulation strategy for other reasons too; see Chapter 4.

Financial income added
How much are underwriter results changed when financial earnings are included? A first example
is given in Figure 3.5 left where a fixed annual return R = 5% of capital has been added the
simulations in Figure 3.4 left. There is now a noticeable lift upwards, yet the dominant force is still
insurance uncertainty. If the original capital is placed at 5% annually in a bank, it has after ten years
grown to 15× 1.0510 .

= 24.4, right in the middle of the heap. In practice there is not only financial
income, but also financial risk. If investments are in equity, the portfolio returns R∗ can be simu-
lated through the commands on Lines 1-5 in Algorithm 3.5 and inserted on Line 4 in Algorithm 3.6.

As an example, consider a financial portfolio with J = 4 equally weighted, risky assets and a
risk-less bank account earning a fixed rate of interest r. This leads to the portfolio return

Rk = w0r +
J
∑

j=1

wRjk, where w0 + Jw = 1.

The weights w0 and w are kept constant at all times during simulations. It was assumed that equity
returns R1k, . . . , RJk followed a log-normal model with common annual drift ξ, and their volatilities
σ = 15.97% and correlations ρ = 0.5. were common too. The model scenarios were varied as follows:

Model scenario r w0 w ξ Expected portfolio return
I (no financial risk) 5% 1 0 5% 5%
II (low yield) 5% 0.4 0.15 0.0360 5%
III (high yield) 5% 0.4 0.15 0.1006 12%.

Ruin probabilities are plotted in in Figure 3.5 right. They are all much lower than those in Fig-
ure 3.4 where financial income wasn’t taken into account. Note how the low-yield, risky financial
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Figure 3.5 Left: Simulated portfolio returns (100 replications) with 5% fixed annual financial
return added those in Figure 3.4 left. Right: Ruin probabilities (over five years) against initial
reserve under the conditions described in the text.

scenario II raises the curve compared to the risk-less scenario I. Lowest risk of ruin is scenario
III where the high expected yield pushes the assessments down despite the financial risk carried.
There are no simple criteria like (1.21) to approximate v0ǫ, but it is possible to read the required
percentiles off from the plots.

1.7 Mathematical arguments

Section 3.5
The Black-Scholes formula Premium for the put options in terms of single assets is

π(v0) = e−rT EQ{max(rg −R, 0)}v0 where R = exp(ξqT + σ
√

Tε)− 1,

and where ε ∼ N(0, 1). There is a positive pay-off if

R < rg or equivalently if ε ≤ a =
log(1 + rg)− ξqT

σ
√

T
,

and the option premium becomes

π(v0) = e−rT v0

∫ a

−∞
(1 + rg − eξqT+σ

√
Tx)ϕ(x)dx

where ϕ(x) = (2π)−1/2 exp(−x2/2). Splitting the integrand yields

π(v0) = e−rT v0

(

1 + rg)Φ(a)− eξqT
∫ a

−∞
eσ

√
Txϕ(x)dx

)

,

where the integral on the right equals
∫ a

−∞
eσ

√
Tx(2π)−1/2e−x2/2dx = eσ2T/2

∫ a

−∞
(2π)−1/2e−(x−σ

√
T )2/2 = eσ2T/2Φ(a− σ

√
T )
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so that

π(v0) = e−rT v0{(1 + rg)Φ(a)− eξqT+σ2T/2Φ(a− σ
√

T )}.

Inserting ξq = r − σ2/2 from the Q-model on the right in (1.13) yields (1.14).

Section 3.6
Solvency without financial earning. We shall prove (1.21) which applies to the recursion (1.17)
without financial income. Let Y(v0) signify that the initial capital is v0. Then

Y(v0) = Y(0) + v0;

i.e. the effect of adding capital that does not earn interest, is to lift all simulations a fixed amount
v0. Note that Y∗

(ǫm) is approximately the ǫ-percentile of Y(0). Hence

ǫ
.
= Pr(Y(0) ≤ Y∗

(ǫm)) = Pr(Y(v0)− v0 ≤ Y∗
(ǫm))

and

ǫ
.
= Pr(Y(v0) ≤ 0) if v0 = −Y∗

(ǫm),

as was to be proved.

1.8 Bibliographical notes

General references Property insurance, life insurance and financial derivatives are all treated
in later parts of this book. If you seek simple mathematical introductions to these subjects right
away, try Straub (1998), Mikosch (2004) or Boland (2007) (property insurance), Gerber (1990) (life
insurance) and Roman (2003) or Benth (2004) (financial derivatives).

Monte Carlo and implementation The main theme of the present chapter has been Monte
Carlo as a problem solver. Introductory books emphasizing the role of the computer are scarce in
insurance (Daykin, Pentikäinen and Pesonen (1994) is an exception), but there are more of them
in finance, for example Shaw (1998), Benninga (2001) and Evans and Olson (2002). Coding and
implementation is a fairly young scientific discipline, but old enough for reviews on how it’s done
having started to appear in computer science. Hanson (1999) discusses program re-use and Baier
and Katoen (2008) treats program verification with stochastic models included; see also Kaner,
Falk and Ngyuen (1999). These are themes that may may merit more attention that has been
provided here. Section 3.3 gave examples where output was tested against known mathematical
formulae for special cases. This is often a helpful type of technique.

Other numerical methods Compound distributions of portfolio liabilities (Section 3.3) and
ruin probabilities (Section 3.6) have often been tackled by methods other than Monte Carlo. Sim-
ple approximations coming from the central limit theorem and its Cornish-Fisher extension will be
presented in Section 10.2. So-called saddlepoint approximations is another possibility (see Jensen,
1995). Very popular in certain quarters is the Panjer recursion which works with discrete claim
size distributions. A continuous distribution is always approximately discrete (see Section 4.2), and
the discretization is no limitation on practical use. The approach was popularized by Panjer (1981)
following earlier work by Adelson (1966). Later contributions have extended the original idea to
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1.9 Exercises

Section 3.2
Exercise 3.2.1 Let B be a Bernoulli variable, i.e.

Pr(B = 0) = 1− p and Pr(B = 1) = p,

and define X = sB where s is fixed. This model covers both term insurance (a one-time payment in case of
death) and pension insurance (payment if the policy holder is alive). Here X may be an obligation for the
coming time period. a) Explain the model. b) Show that

E(X) = ps and var(X) = p(1 − p)s2 so that
sd(X)

E(X)
=

√

1

p
− 1.

c) When is randomness connected to survival/death most important, in term insurance or pension insur-
ance? Insert suitable values for p.
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Exercise 3.2.2 Let X be the total claim from a policy holder, as defined in (1.1). Suppose the claim
frquency is Poisson distributed. Then (proof in Exercise 6.3.1)

π = E(X) = µTξz and var(X) = µT (σ2
z + ξ2

z )
pure premium

where ξz = E(Z) and σz = sd(Z). a) Use these formulas to verify that

sd(X)

E(X)
=

1√
π

(

σ2
z

ξz
+

π

µT

)

.

b) Deduce from this expression that the insurance of rare events with (possibly) very large claims contain
much higher relative uncertainty than when claims are more frequent and smaller [Hint: Both terms on the
right contribute to the conclusion, more in the next exercise].

Exercise 3.2.3 Suppose the claim size of the preceding exercise is log-normal. Then Z = β exp(τε),
where β, τ > 0. We shall need for formulae for ξz and σz. Those are given in the introduction to the Section
3.3 exercises below (and also in Section 2.3). Consider two sets of parameters (µ1, τ1) and (µ2, τ2) for which

µ2 = µ1/5 and τ2 =
√

log(25) + τ2
1 .

a) Verify that the pure premium E(X) is the same in both cases. b) Show that the ratio sd(X)/E(X) is
5
√

5
.
= 11 times larger under (µ2, τ2). c) What does this tell you about risk in different branches of property

insurance?

Exercise 3.2.4 Proportional re-insurance means that the claim is split in two fixed fractions between cedent
and re-insurer so that H(z) = γz is the re-insurer obligation. Here γ is a fixed by the contract (0 < γ < 1).
a) Show that the re-insurer responsibility is X = γ(Z1 + . . . + ZN) where N is the number of claims b)
Derive the pure premium of the re-insurance when Z = β exp(τε) as in the preceding exercise.

Exercise 3.2.5 It is quite common that a re-insurer parts with some of his risk to a second re-insurer.
The situation is then:

Z −→ Z1 = H1(Z) −→ Z2 = H2(Z1)
cedent first reinsurer second re-insurer

Suppose the first re-insurance H1(z) is the a× b contract (1.4) and the second the proportional one H2(z1)
in the preceding exercise. Express the risk Z2 carried by the second re-insurer in terms of Z.

Section 3.3
All exercises in this section assumes the log-normal as claim distribution; i.e.

Z = β exp(τε) where ε ∼ N(0, 1),

and where β and τ are positive parameters. From (??) and (??) in Section 6.3

ξz = E(Z) = β exp(τ2/2) and σz = sd(Z) = ξz

√

exp(τ2)− 1.

Exercise 3.3.1 a) Implement Algorithm 3.3. when Z is lognormal. b) Check the program by taking a = 0
and b = large value. If you simulate 10000 times and compute mean and standard deviation they should
match the theoretical ones given above. Carry out this test when β = 1 and τ = 1 and use these values for
the rest of the exercise. c) Suppose µ = 5% annually and that a = 0.5. Determine (by simulation) the pure
premium for a re-insurance of one policy when b = 2, 3 and 5. d) How many simulations are necessary to
prevent Monte Carlo error to be less than 0.1%?
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Exercise 3.3.2 Do you believe it simpler to compute the pure premium of the preceding exercise through
mathematics? Formulas can be worked out for which you only need the normal integral. But consider the
case where there is a second re-insurer taking a part of the risk of the first, as depicted in Exercise 3.2.5. a)
Justify the following command sequence for the claim against the second re-insurer:

Generate Z∗, Z∗

1 ← H1(Z
∗), Z∗

2 ← H2(Z
∗

1 ).

b) How do you proceed when both re-insurance contracts are of the a × b type detailed in (1.4) [Answer:
You use Algorithm 3.3 twice.]. c) Determine the pure premium for the second re-insurance when

µ = 5%, β = 1, τ = 1, a1 = 0.5, b1 = 3 a2 = 2, b2 = 3
annual first re-insurance second re-insurance

d) Suppose the second contract is a maverick one where H2(z) = z/(1 + z). Determine the pure premium
of the re-insurance now.

Exercise 3.3.3 a) Implement Algorithm 3.1 for the total claim X against the company (i.e. the cedent).
b) Explain how the program can be tested against the formulas in Exercise 3.2.2. [Hint: You use the output
X ∗

1 , . . . ,X ∗

m from m runs and compute X̄∗ and s∗.]. c) Carry out the test when

µ = 5%, β = 1, τ = 1, J = 1000
annual number of policies

d) If the test works well, run so many simulations that a plot of the density function of X can be made. e)
Determine the 1% upper percentile (Value-at-Risk) for the portfolio. Use m = 10000 and repeat five times
so that you get a feeling for the simulation variability.

Exercise 3.3.4 a) Repeat the density plot in d) of the preceding exercise when Jµ = 1000 (instead of
50). b) Compare with the normal distribution, for example through a Q-Q plot (see e.g. Exercise 2.2.3).
Comments? c) Repeat d) of Exercise 3.3.3 one more time, now use Jµ = 50, but change to τ = 0.5. Closer
to the normal than when τ = 1?

Exercise 3.3.5 Suppose the portfolio is the same as in Exercise 3.3.3, but that now the cedent is pro-
tected by a re-insurance treaty of the a×b type that applies to single events. a) Compute the 1% percentiles
of the cedent net responsibility when a = 0.5 and b = 2, 3, 5. b) The same exercise for the re-insurer.

Exercise 3.3.6 Suppose a cedent carries responsibility for the portfolio in Exercise 3.3.3c). and has pro-
tected risk through an a× b re-insurance treaty that applies to the total claim X . Compute the re-insurance
pure premium when a = 40 and b = 60, 80 and 100.

Section 3.4
Exercise 3.4.1 Consider a portfolio of term insurance where the sums insured are s1, . . . , sJ and where each
policy holder has the the same probability p of dying during the coming year. a) Calculate the sd-to-mean
ratio (1.9) when p = 1% and the standard deviation s of the sums insured equal half their mean ζ̄. b) How
large must portfolio size J for the ratio to be below 1%? Compare with pension insurance treated in the text.

Exercise 3.4.2 Consider Ja individuals of age a years entering a pension or life insurance portfolio. Such
a group is sometimes called a cohort. The diagram shows how it evolves up to some final, high age b, in
practice many decades after.

Ja
pa−→ Ja+1

pa+1−→ Ja+2

pa+2−→ · · · pb−1−→ Jb

fixed first year second year last year

Here, pl = 1pl is the survival probability, and Jl is the number individuals still alive at age l. a) Argue that

E(Ja+1) = paJa, E(Ja+2) = (pa+1pa)× Ja,
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b) and in general

E(Jl) = (pl−1 · · · pa)× Ja, or E(Jl) =

(

l−1
∏

k=a

pk

)

× Ja.

[Hint: For example, interprete Jl as a binomial random variable.]

Exercise 3.4.3 The purpose of this execise is to define a portfolio to run experiments in life and pen-
sion insurance on. One way is to imagine that during a long period of time Ja individuals at age a enter
the portfolio each year. Suppose they stay until they die, and that there is no other recrutement. When we
take responsibility for the portfolio, there will be a mixture of all age groups. a) Use the preceding exercise
to argue the number of persons of age l might be approximately

Jl = (pl−1 · · · pa)× Ja l = a + 1, a + 2, . . .

b) Often we want to work with a given portfolio size J . Explain why we achive this by determining Ja from
the equation

Ja{1 + pa + (pa+1pa) + . . . + (pb−1pb−2 · · · pa)} = J.

c) Verify that the following algorithm lays out the portfolio:

Algorithm 3.9 Creating a life insurance portfolio
0 Input: a, b and pa, . . . , pb %pl is a survival probability
1 q0 ← 1, s← 0
2 For l = a + 1, . . . , b do
3 ql ← pl−1ql−1 %ql is also denoted lpa

4 s← s + qk

% Loop terminated
5 For l = a, . . . , b do
6 Jl ← ql(J/s)
7 Return Ja, . . . , Jb

The output are not integers. A simple way to deal with that is to round off to the nearest one. The
portfolio is to be used for experimentation. Details in its inception do not matter.

Exercise 3.4.4 a) Lay out a portfolio of 1000 policies using the algorithm of the preceding exercise. Use the
survival probabilities in Section 3.4 with a = 30 and b = 90 years. b) Implement Algorithm 3.2 with policy
information drawn from this portfolio. c) Run the algorithm under the experimental conditons in Section
3.4. and investigate the variation in output.

Exercise 3.4.5 Consider a simplified pension scheme where all members have the same contract, each
receiving a net payment ζl (if he is alive) during the period at age l. It is useful to count ζl negative if there
is a contribution (premium) from the member to the scheme. In practice ζl shifts from negative to positive
when retirement age is reached. Suppose there are to-day Jl members of age l. Future recrutement into
the scheme is not taken into account, and members only leaves when they die. a) Show that the expected
payment k years from now is

E(Xk) =
b
∑

l=a

Jl kpl ζl+k

b) Computations can be organized as follows:
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Algorithm 3.10 Expected net life insurance payment in k years
0 Input: k, Jl, pl, and ζl

1 ek ← 0 and q ← 1 %Here ek = E(Xk).
2 For l = a, . . . , b do
3 q ← qpl %Here q is also denoted lpa.
4 ek ← ek + Jlqζl+k %Adding the contributions to ek.
5 Return ek = E(Xk).

c) Justify the algorithm. It will be used with and without financial risk.

Exercise 3.4.6. Let PVk be the present value of all payments into and out of the scheme up to (and
including) period k. a) Show that its expectation can be computed according to the recursion

E(PVk) = E(PVk−1) +
E(XK)

(1 + r)k
, k = 1, 2, . . . ,

starting at E(PV0) = 0. b) How is Algorithm 3.10 put to use to compute the present value of all payments?

Exercise 3.4.7. This is a follow-up of Exercise 3.4.5. A common payment function is

ζl = −π if a ≤ l < c (π is premium per period)
= s if l ≥ c (s is pension per period)

where c is the retirement age. a) Explain how it is incorporated in Algorithm 3.10 of Exercise 3.4.5. b)
Apply it with the portfolio laid out in Exercise 3.4.4 and the survival probabilities used there. The insurance
contracts are defined by

π = 0.1365, ζ = 1, c = 65.

Plot the output as a function of k up to k = 90. c). Compute and plot the expected present value E(PVk)
when r = 4%. d) Redo c) for a portfolio of 10000 individuals, all of age 30. Follow the portfolio 70 years
ahead. Any comments?

Exercise 3.4.8 Suppose the situation is the same as in Exercise 3.4.5, but that we now are dealing with
term insurance with a one-time payment ζ at the end of the period the policy holder dies. a) Modify Algo-
rithm 3.10 so that it delas with this situation. b) Run it under the circumstances described in Exercise 3.4.7.

Section 3.5
Exercise 3.5.1 What is the difference between a risk-neutral and an ordinary model?

Exercise 3.5.2 Suppose r = 4% and rg = 7% in the Black-Scholes formula (1.14). Use it to compute
the put option premium (in per cent) for a single-asset option when σ = 5%, 15%, 25% 35%. Comment on
the variation in price.

Exercise 3.5.3 Suppose the time to maturity of a Black-Scholes put option is T . Since we are dealing
with continously compounded rates, we may let rT be the risk-free and rgT the guranteed rate of interest

over a period of length T . a) Explain that the volatility up to T is σ
√

T . b) Rewrite the Black-Scholes
formula (1.14) so that it covers a general time to expiry T . .

Exercise 3.5.4 Consider a single-asset equity option where r = 4% and rg = 6% and σ = 25%, all
quoted as annual values. a) Compute the option premium in percent when T = 1 (a year), T = 1/12 (a
month) and (T = 1/52) a week. b) Any problem with the model as T becomes small? More on that in
Section 5.5.
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Exercise 3.5.5 Suppose K is invested in equities according to a cautious strategy where a put option
is purchased, guaranteeing minimum return rg on the remaining capital v0 after the premium π(v0) has been
subtracted. a) Explain why v0 is determined by the two equations

v0 + π(v0) = K and π(v0) = π(1)v0;

see (1.14). b) Let K1 be the capital at the end of period one and R1 = (K1/K) − 1 the return under the
strategy adopted. Show that if the standard log-normal model is assumed, then

K1 = max(eξ+σε − 1, rg)×
K

1 + π(1)
so that R1 =

max(eξ+σε − 1, rg)

1 + π(1)
− 1.

c) Write down a simple algorithm that simulates the return under this strategy.

Exercise 3.5.6 We shall in this exercise experiment with the program of the preceding exercise, assuming
that r = 4%, rg = 6% and σ = 25%. The drift parameter ξ will be varied. All options run over an entire year.
a) Use the formulas for mean and standard deviation of log-normal variables to deduce that as rg → −∞

E(R1) =
eξ+σ2/2

1 + π(1)
− 1 and sd(R1) =

eξ+σ2/2

1 + π(1)

√

eσ2 − 1.

b) Check that the program of c) of Exercise 3.7.5 is correct by running it 10000 times with some small
value of rg, say rg = −100%. Compute the mean and standard deviation of the simulations and verify that
they match the theoretical values. c) Sample the returns 10000 times when ξ = 5%, 10% and 15%. Plot
estimated density functions and compute means, lower and upper 5% percentiles.

Exercise 3.5.7 This is a continuation of the previous exercise. Suppose no protection is bought at all
so that the entire capital is used to buy equity. a) Derive mean return and lower and upper 5% percentiles
under this strategy. a) Compare with what we got under the first strategy. Comments?

Exercise 3.5.8 Let XP and XC be the pay-off functions in (1.11) and (1.12) for put and call options,
and suppose they are based on the same guranteed return rg. a) Show that

XC −XP = (R− rg)v0.

b) Use this to deduce that their option premia, now written πP (v0) and πC(v0), are linked through

πC(v0)− πP (v0) = e−r(EQ(R)− rg)v0

which implies that

πC(v0) = πP (v0) + {1− e−r(1 + rg)}v0.

This is known as a parity relation. c) use the Black-Scholes put option formula (1.14) to prove that

πC(v0) = πC(1)v0 where πC(1) = Φ(−a + σ) − (1 + rg)e
−rΦ(−a).

Here a is defined in (1.14). [Hint: Use that Φ(x) = 1− Φ(−x) for the normal integral Φ(x).]

Exercise 3.5.9 Let XP (rg) and XC(rg) be the pay-off functions for put and calls, the guranteed return
now being visible in the mathematica notation. a) Show that the pay-off function (??) for cliquet options
can be written

X = XP (rg)−XC(rc)
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and b) so that the option premium for the cliquet becomes

π = πP (rg)− πC(rc).

c) Compute the cliquet option premium when r = 4%, rg = 6%, σ = 25% and rc = 9%, 12%, 15% and 20%.
Comment?

Section 3.6
All exercises for this section make use of Algorithm 3.5. We shall be dealing with a property insurance port-
folio for which there in period k are Jk policies. Claim frequency per policy and period is µ and expected
claim size E(Z) = 1 per incident. The pure premium is then µ and portfolio premium income in period k

Πk = Jk(1 + γ)µ.

where γ is the loading; see Section 1.3. Claim severities are of the form

Z = exp(−τ2/2) + τε),

which makes E(Z) = 1 and var(Z) = exp(τ2) − 1. We shall consider the value Vk of the account in period
k, which propagates according to

Vk = Vk−1 + Πk −Ok −Xk, k = 1, 2, . . . V0 = v0;

see (??). Until Exercise 3.5.6 overrhead costs will be ignored (i.e Ok = 0), and portfolio size Jk = J will be
constant.

Exercise 3.6.1 a) Use formulas in the Introduction to Exercises for Section 3.3 to show that

E(Xk) = Jµ and var(Xk) = Jµ exp(τ2).

b) Suppose V0 = v0. Verify that

E(Vk) = v0 + kγJµ and var(Vk) = kJµ exp(τ2).

Exercise 3.6.2 a) Implement Algorithm 3.5 under the assumptions stated above. b) Check the program
against the formulas in Exercise 3.5.1 by running the program it 10000 times up to K = 5 when

v0 = 10 Jµ = 50, τ = 0.5, γ = 10%.

Exercise 3.6.3 a) Run the program 50 times up to K = 20 years under the assumptions in Exercise 3.5.2
and plot these 50 scenarios against time, as in Figure 3.3 left. b) Repeat the simulations when τ = 1. Any
comments? c) Run the program 1000 times and plot the estimated density functions of X5 and X20 both
when τ = 0.5 and when τ = 1. Comments now. d) Determine the 1% Value-at-Risk for all cases in c) (now
use 10000 simulations).

Exercise 3.6.4 Determine the probability of ruin after 5,10 and 20 years both when τ = 0.5 and τ = 1
when v0 =?? is reserved initially.

Exercise 3.6.5 Determine the solvency requirement over 5,10 and 20 years under the same conditions
as in the preceding exercise [Hint: use (1.21)].

Exercise 3.6.6 In the present (and the next) exercise future portfolio size Jk and overhead cost Ok will be
allowed to vary with k. Assume that

Jk+1 = (1 + δk)Jk, k = 1, 2, . . . where δk = δ1 exp{α(k − 1)}.
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This is model of progressive or regressive growth depending on whether α is positive or negative. a) Plot it
when α = −0.2 and J1 = 100. Overhead cost are assmued related to the size of the portfolios through

Ok

Jk
= νkc1 + (1− νk)c∞, where νk = exp{β(Jk − J1)},

for k = 1, 2, . . .. Here c1 and c∞ is overhead cost per policy when there are J1 and infinitely many policies
respectively. The third parameter β defines how fast the cost moves. b) Plot both the relative (i.e Ok/Jk)
and total cost Ok as a function of k when

c1 = 50%, c∞ = 10%, β = −0.0005 (and α = −0.2 and J1 = 100 as before)

Exercise 3.6.7 We shall analyse the capital requirement for a newly formed company which expects to
grow using the growth function and cost structure of the previous exercise. a) Implement these functions in
Algorithm 3.5. b) Simulate 10 years ahead and plot 20 repeated scenarios with the parameters given in the
preceding exercise and in addition

µ = 5% τ = 0.5 or τ = 1, γ = 10%

for claim frequency, size and premium loading. c) What is the initial capital needed to cover all liabiltities
10 years ahead when premium income is incorporated?

The exercises in this section redo some of those for Sections 3.4 and 3.5 with financial earnings added.
Financial portfolios will be a mixture of the risk-free rate r and returns on equitites. Portfolio return is then

R = (1− w)r + wR, where R = exp(ξ + σε)− 1,

using the standard log-normal model for equity returns. Here w is the weight placed on equity. The portfolio
is rebalanced all the time to keep the weight fixed.

Exercise 3.6.8 Recall from Section 1.4 that the k-step return R0:k evolves accoding to

R0:k = (1 +Rk)R0:k−1, k = 1, 2, . . . R0:0 = 1.

a) Simulate the k-step retun over 30 years development when

r = 4%, ξ = 6%, σ = 25%, w = 0.3

and plot 20 replications jointly. b) Repeat when w = 0.1.

Exercise 3.6.9 a) Add financial income to Algorithm 3.5; i.e implement Algorithm 3.6 for property in-
surance with the investment strategy introduced above. b) Run scenarios with w = 0 and w = 0.3 under
the conditions in Exercise 3.5.2. Plot joint scenarios and discuss the effect of including financial earnings.

Exercise 3.6.10 a) Use the the model scenario in Exercise 3.6.2 to compute the probability of ruin over 10
years when

w = 0.3 and v0 = 10, 20, 30 and w = 0 and v0 = 10, 20, 30.

b) Comments? What is approximately the required initial capital to keep the ruin probability at 5%?

Exercise 3.6.11 Combine the financial asset model of Exercise 3.6.1 with the liability model of Exercise
3.4.5. This means that the portfolio account evolves according to

Vk = Vk−1 + Πk −Ok − E(Xk), k = 1, 2, . . . V0 = v0;
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The difference from property insurance is that only theexpected portfolio payment is included, since the

uncertainty inthe sequence {Xk} is small compared to asset risk. a) How do you simulate Vk now? b) Run

simulations over 30 years when the conditions in Exercise 3.4.7 b) are combined with those in Exercise 3.6.2.

Starting at v0 =?. Repeat 20 times and plot.

Exercise 3.6.12 a) Repeat the simulations in Exercise 3.6.4 for v0 =??, ??, ??and??. b) How much ini-

tial capital is needed to for the scheme to be solvent with probability 95%? and 20%. Comment?
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