
1 Modelling claim size

1.1 Introduction

Models describing variation in claim size lack the theoretical underpinning provided by the Poisson
point process in Chapter 8. The traditional approach is to impose a family of probability dis-
tributions and estimate their parameters from historical claims z1, . . . , zn (corrected for inflation
if necessary). Even the family itself is often determined from experience. An alternative with
considerable merit is to throw all prior matematical conditions over board and rely solely on the
historical data. This is known as a non-parametric approach. Much of this chapter is on the use
of historical data.

How we proceed is partly dictated by the size of the historical record, and here the variation
is enormous. With automobile insurance the number of observations n is often large, providing
a good basis for the probability distribution of the claim size Z. By contrast, major incidents in
industry (like the collapse of an oil rig!) are rare, making the historical material scarce. Such
diversity in what there is to go on is reflected in the presentation below. The extreme right tail of
the distribution warrants special attention. Lack of historical data in the region that matters most
financially is a challenge. What can be done is discussed in Section 9.5.

1.2 Parametric and non-parametric modelling

Introduction
Claim size modelling can be parametric through families of distributions such as the Gamma,
log-normal or Pareto with parameters tuned to historical data or non-parametric where each
claim zi of the past is assigned a probability 1/n of re-appearing in the future. A new claim is then
envisaged as a random variable Ẑ for which

Pr(Ẑ = zi) =
1

n
, i = 1, . . . , n. (1.1)

This is an entirely proper distribution (the sum over all i is one). It may appear peculiar, but there
are several points in its favour (and one in its disfavour); see below. Note the notation Ẑ which
is the familiar way of emphasizing that estimation has been involved. The model is known as the
empirical distribution function and will in Section 9.5 be employed as a brick in an edifice
which also involves the Pareto distribution. The purpose of this section is to review parametric
and non-parametric modelling on a general level.

Scale families of distributions
All sensible parametric models for claim size are of the form

Z = βZ0, (1.2)

where β > 0 is a parameter, and Z0 is a standardized random variable corresponding to β = 1.
This proportionality is inherited by expectations, standard deviations and percentiles; i.e. if ξ0, σ0

and q0ǫ are expectation, standard deviation and ǫ-percentile for Z0, then the same quantities for Z
are

ξ = βξ0, σ = βσ0 and qǫ = βq0ǫ. (1.3)
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To see what β stands for, suppose currency is changed as a part of some international transaction.
With c as the exchange rate the claim quoted in foreign currency becomes cZ, and from (1.2)
cZ = (cβ)Z0. The effect of passing from one currency to another is simply that cβ replaces β, the
shape of the density function remaining what it was. Surely anything else makes little sense. It
would be contrived to take a view on risk that differed in terms of US$ from that in British £ or
euros, and this applies to inflation too (Exercise 9.2.1).

In statistics β is known as a parameter of scale and parametric models for claim size should
always include them. Consider the log-normal distribution which has been used repeatedly. If it is
on the form Z = exp(θ + τε) where ε is N(0, 1), it may also be rewritten

Z = ξZ0 where Z0 = exp(−1

2
τ2 + τε) and ξ = exp(θ +

τ2

2
).

Here E(Z0) = 1, and ξ serves as both expectation and scale parameter. The mean is often the
most important of all quantities associated with a distribution, and it is useful to make it visible
in the mathematical notation.

Fitting a scale family
Models for scale families satisfy the relationship

Pr(Z ≤ z) = Pr(Z0 ≤ z/β) or F (z|β) = F0(z/β).

where F0(z) is the distribution function of Z0. Differentiating with respect to z yields the family
of density functions

f(z|β) =
1

β
f0(

z

β
), z > 0 where f0(z) = F ′

0(z). (1.4)

Additional parameters describing the shape of the distributions are hiding in f0(z). All scale fam-
ilies have density functions on this form.

The standard way of fitting such models is through likelihood estimation. If z1, . . . , zn are the
historical claims, the criterion becomes

L(β, f0) = −n log(β) +
n
∑

i=1

log{f0(zi/β)}, (1.5)

which is to be maximized with respect to β and other parameters. Numerical methods are usually
required. A useful extension covers situations with censoring. Typical examples are claims only
registered as above or below certain limits, known as censoring to the right and left respectively.
Most important is the situation where the actual loss is only given as some lower bound b. The
chance of a claim Z exceeding b is 1− F0(b/β), and the probability of nr such events becomes

{1− F0(b1/β)} · · · {1 − F0(bnr
/β)}.

Its logarithm is added to the log likelihood (1.5) of the fully observed claims z1, . . . , zn making the
criterion

L(β, f0) = −n log(β) +
n
∑

i=1

log{f0(zi/β)} +
nr
∑

i=1

log{1− F0(bi/β)}, (1.6)

complete information censoring to the right
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which is to be maximized. Censoring to the left is similar and discussed in Exercise 9.2.3. Details
for the Pareto family will be developed in Section 9.4.

Shifted distributions
The distribution of a claim may start at some some threshold b instead of at the orgin. Obvious
examples are deductibles and contracts in re-insurance. Models can be constructed by adding b to
variables Z starting at the origin; i.e.

Z>b = b+ Z = b+ βZ0.

Now

Pr(Z>b ≤ z) = Pr(b+ βZ0 ≤ z) = Pr

(

Z0 ≤
z − b
β

)

,

and differentiation with respect to z yields

f>b(z|β) =
1

β
f0

(

z − b
β

)

, z > b, (1.7)

which is the density function of random variables starting at b.

Sometimes historical claims z1, . . . , zn are known to exceed some unknown threshold b. Their
minimum provides an estimate, precisely

b̂ = min(z1, . . . , zn)−C, for unbiasedness: C = β

∫ ∞

0
{1− F0(z)}n dz; (1.8)

see Exercise 9.2.4 for the unbiasedness correction. It is rarely worth the trouble to take that too
seriously, and accuracy is typically high even when it isn’t done1. The estimate is known to be
super-efficient, which means that its standard deviation for large sample sizes is proportional to
1/n rather than the usual 1/

√
n; see Lehmann and Casella (1998). Other parameters can be fitted

by applying other methods of this section to the sample z1 − b̂, . . . , zn − b̂.

Skewness as simple description of shape
A major issue is asymmetry and the right tail of the distribution. A useful, simple summary is the
coefficient of skewness

ζ = skew(Z) =
ν3

σ3
where ν3 = E(Z − ξ)3. (1.9)

The numerator is the third order moment. Skewness should not depend on the currency being
used and doesn’t since

skew(Z) =
E(Z − ξ)3

σ3
=
E(βZ0 − βξ0)3

(βσ0)3
=
E(Z0 − ξ0)3

σ3
0

= skew(Z0)

after inserting (1.2) and (1.3). Nor is the coefficient changed when Z is shifted by a fixed amount;
i.e. skew(Z+ b) = skew(Z) through the same type of reasoning. These properties confirm skewness

1The adjustment requires C to be estimated. It is in any case sensible to subtract some small number
C > 0 from the minimum to make zi − b̂ strictly positive to avoid software crashes.
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as a simplified measure of shape.

The standard estimate of the skewness coefficient ζ from observations z1, . . . , zn is

ζ̂ =
ν̂3

s3
where ν̂3 =

1

n− 3 + 2/n

n
∑

i=1

(zi − z̄)3. (1.10)

Here ν̂3 is the natural estimate of the third order moment2 and s the sample standard deviation. The
estimate is for low n and heavy-tailed distributions severely biased downwards. Under-estimation
of skewness, and by implication the risk of large losses, is a recurrent theme with claim size mod-
elling in general and is common even when parametric families are used. Several of the exercises
are devoted to the issue.

Non-parametric estimation
The random variable Ẑ that attaches probabilities 1/n to all claims zi of the past is a possible
model for future claims. Its definition in (1.1) as a discrete set of probabilities may seem at odds
with the underlying distribution being continuous, but experience in statistics (see Efron and Tib-
shriani, 1993) suggests that this matters little. Expectation, standard deviation, skewness and
percentiles are all closely related to the ordinary sample versions. For example, the mean and
standard deviation of Ẑ are by definition

E(Ẑ) =
n
∑

i=1

1

n
zi = z̄, and sd(Ẑ) =

(

n
∑

i=1

1

n
(zi − z̄)2

)1/2
.
= s, (1.11)

and the upper percentiles are (approximately) the historical claims in descending order; i.e.

q̂ε = z(εn) where z(1) ≥ . . . ≥ z(n).

The skewness coefficient of Ẑ is similar; see Exercise 9.2.6.

The empirical distribution function can only be visualized as a dot plot where the observations
z1, . . . , zn are recorded on a straight line to make their tightness indicate the underlying distribu-
tion. If you want a density function, turn to the kernel estimate in Section 2.2, which is related to
Ẑ in the following way. Let ε be a random variable with mean 0 and standard deviation 1, and
define

Ẑh = Ẑ + hsε, where h ≥ 0. (1.12)

Then the distribution of Ẑh coincides with the estimate (??); see Exercise 9.2.7. Note that

var(Ẑh) = s2 + (hs)2 so that sd(Ẑh) = s
√

1 + h2,

a slight inflation in uncertainty over that found in the historical data. With the usual choices of h
that can be ignored. Sampling is still easy (Exercise 9.2.8), but usually there is not much point in
using a positive h for other things than visualization.

2Division on n− 3 + 2/n makes it unbiased.
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The empirical distribution function is in finance often called historical simulation. It is ultra-
rapidly set up and simulated (use Algorithm 4.1), and there is no worry as to whether a parametric
family fits or not. On the other hand, no simulated claim can be larger than what has been seen
in the past. This is a serious drawback. It may not matter too much when there is extensive ex-
perience to build on, and in the big consumer branches of motor and housing we have presumably
seen much of the worst. The empirical distribution function can also be used with big claims when
the responsibility per event is strongly limited, but if it is not, the method can go seriously astray
and under-estimate risk substantially. Even then is it possible to combine the method with specific
techniques for tail estimation, see Section 9.5.

1.3 The Log-normal and Gamma families

Introduction
The log-normal and Gamma distributions are among the most frequently applied models for claim
size. Both are of the form Z = ξZ0 where ξ is the expectation. The standard log-normal Z0 can
be defined through its stochastic representation

Z0 = exp(−1

2
τ2 + τε) where ε ∼ N(0, 1) (1.13)

whereas we for the standard Gamma must be use its density function

f0(z) =
αα

Γ(α)
zα−1 exp(−αz), z > 0; (1.14)

see (??). This section is devoted to a brief exposition of the main properties of these models.

The log-normal: A quick summary
Log-normal density functions were plotted in Figure 2.4. Their shape depends heavily on τ and are
highly skewed when τ is not too close zero; see also Figure 9.2 below. Mean, standard deviation
and skewness are

E(Z) = ξ, sd(Z) = ξ{exp(τ2)− 1}1/2, skew(Z) =
exp(3τ2)− 3 exp(τ2) + 2

(exp(τ2)− 1)3/2
;

see Section 2.3. The expession for the skewness coefficient is derived in Exercise 9.3.4.

Parameter estimation is usually carried out by noting that

Y = log(Z) = log(ξ)− 1
2τ

2 + τ · ε.
mean sd

The original log-normal sample z1, . . . , zn is then transformed to a Gaussian one y1 = log(z1), . . . , yn =
log(zn) and its sample mean and variance ȳ and sy computed. The estimates of ξ and τ become

log(ξ̂)− 1

2
τ̂2 = ȳ, τ̂ = sy which yields ξ̂ = exp(

1

2
s2y + ȳ), τ̂ = sy.

The log-normal distribution is used everywhere in this book.

Properties of the Gamma model
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Figure 9.1 Left: Q-Q plot of standard Gamma percentiles against the normal. Right: Standard

Gxamma density functions.

Good operational qualities and flexible shape makes the Gamma model useful in many contexts.
Mean, standard deviation and skewness are

E(Z) = ξ, sd(Z) = ξ/
√
α and skew(Z) = 2/

√
α, (1.15)

and the model possesses a so-called convolution property. Let Z01, . . . , Z0n be an independent
sample from Gamma(α). Then

Z̄0 ∼ Gamma (nα) where Z̄0 = (Z01 + . . .+ Z0n)/n.

The average of independent, standard Gamma variables is another standard Gamma variable, now
with shape nα. By the central limit theorem Z̄0 also tends to the normal as n → ∞, and this
proves that Gamma variables become normal as α → ∞. This is visible in Figure 9.1 left where
Gamma percentiles are Q-Q plotted aganst Gaussian ones. The line is much straightened out when
α = 10 is replaced by α = 100. A similar tendency is seen among the density functions in Fig-
ure 9.1 right where two of the distributions were used in Section 8.3 to describe stochastic intensies.

Fitting the Gamma familiy
The method of moments (Section 7.3) is the simplest way to determine Gamma parameters ξ and
α from a set of historical data z1, . . . , zn. Sample mean and standard deviation z̄ and s are then
matched the theoretical expressions. This yields

z̄ = ξ̂, s = ξ̂/
√
α with solution ξ̂ = z̄, α̂ = (z̄/s)2.

Likelihood estimation (a little more accurate) is available in commercial software, but is not difficult
to implement on your own. The logarithm of the density function of the standard Gamma is

log{f0(z)} = α log(α) − log{Γ(α)} + (α− 1) log(z)− αz
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which can be inserted into the log likelihood function (1.5). After some simple manipulations this
yields

L(ξ, α) = nα log(α/ξ) − n log Γ(α) + (α− 1)
n
∑

j=1

log(zj)−
α

ξ

n
∑

j=1

zj . (1.16)

Note that

∂L
∂ξ

= −nα
ξ

+
α

ξ2

n
∑

i=1

zi = 0 when ξ = (z1 + . . . + zn)/n = z̄.

It follows that ξ̂ = z̄ is the likelihood estimate and L(z̄, α) can be tracked under variation of α
for the maximizing value α̂. A better way is by the bracketing method in Appendix C.4. Use the
approximation in Table 8.2 for the Gamma function.

Regression for claims size
Sometimes you may want to examine whether claim size tend to be systematically higher with
certain customers than with others. To the author’s experience the issue is often less important
than for claim frequency, but we should at least know how it’s done. Basis are historical data
similar to those in Section 8.4, now of the form

z1 x11 · · · x1v

z2 x21 · · · x2v

· · · · · ·
· · · · · ·
zn xn1 · · · xnv,

losses covariates

and the question is how we use them to understand how a future, reported loss Z are connected to
explanatory variables x1, . . . , xv . The standard approach is through

Z = ξZ0 where log(ξ) = b0 + b1x1 + . . .+ bvxv,

and E(Z0) = 1. As the explanatory variables fluctuate, so does the mean loss ξ.

Frequently applied models for Z0 are log-normal and Gamma. The former simply boils down
to ordinary linear regression and least squares with the logarithm of losses as dependent variable.
Gamma regression, member of the family of generalized linear models (Section 8.7) is available in
free or commercial software and implemented through an extension of (1.16). An example is given
in Section 10.4.

1.4 The Pareto families

Introduction
The Pareto distributions, introduced in Section 2.6, are among the most heavy-tailed of all models
in practical use and potentially a conservative choice when evaluating risk in property insurance.
Density and distribution functions are

f(z) =
α/β

(1 + z/β)1+α
and F (z) = 1− 1

(1 + z/β)α
, z > 0.
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Simulation ss easy (Algorithm 2.9), and the model was used for illustration in several of the ear-
lier chapters. Pareto distributions also play a special role in the mathematical description of the
extreme right tail (see Section 9.5). How they were fitted historical data was explained in Section
7.3 (censoring is added below). A useful generalization to the extended Pareto family is covered
at the end.

Elementary properties
Pareto models are so-heavy-tailed that even the mean may fail to exist (that’s why another param-
eter β represents scale). Formulae for expectation, standard deviation and skewness are

ξ = E(Z) =
β

α− 1
, sd(Z) = ξ

(

α

α− 2

)1/2

, skew(Z) = 2

(

α− 2

α

)1/2 α+ 1

α− 3
, (1.17)

valid for α > 1, α > 2 and α > 3 respectively. It is to the author’s experience rare in practice that
the mean is infinite, but infinite variances with values of α between 1 and 2 are not uncommon.
We shall later need the median too which equals

med(Z) = β(21/α − 1). (1.18)

The exponential distribution appears in the limit when the ratio ξ = β/(α − 1) is kept fixed and
α raised to infinity; see Section 2.6. There is in this sense overlap between the Pareto and the
Gamma families. The exponential distribution is a heavy-tailed Gamma and the most light-tailed
Pareto. It is common to include the exponential distribution in the Pareto family.

Likelihood estimation
The Pareto model was used as illustration in Section 7.3, and likelihood estimation was developed
there. Censored information are now added. Suppose observations are in two groups, either the
ordinary, fully observed claims z1, . . . , zn or those (nr of them) known to have exceeded certain
thresholds b1, . . . , bnr

(by how much isn’t known). The log likelihood function for the first group is
as in Section 7.3

n log(α/β) − (1 + α)
n
∑

i=1

log(1 +
zi
β

),

whereas the censored part adds contributions from knowing that Zi > b. The probability that
Pr(Zi > bi) is

Pr(Zi > bi) =
1

(1 + bi/β)α
or log{Pr(Zi > bi)} = −α log(1 +

bi
β

),

and the full log likelihood becomes

L(α, β) = n log(α/β) − (1 + α)
n
∑

i=1

log(1 +
zi
β

) − α
nr
∑

i=1

log(1 +
bi
β

).

complete information Censoring to the right

This is to be maximized with respect to α and β, a numerical problem very much the same as the
one discussed in Section 7.3
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Over-threshold under Pareto
One of the most important properties of the Pareto family is its behaviour at the extreme right
tail. The issue is defined by the over-threshold model which is the distribution of Zb = Z − b
given Z > b. Its density function (derived in Section 6.2) is

fb(z) =
f(b+ z)

1− F (b)
, z > 0;

see (??). Over-threshold distributions becomes particularly simple for Pareto models. Inserting
the expressions for f(z) and F (z) yields

fb(z) =
(1 + b/β)αα/β

(1 + (z + b)/β)1+α
=

α/(β + b)

{1 + z/(β + b)}1+α
,

Pareto density function

which is another Pareto density. The shape α is the same as before, but the parameter of scale has
now changed to βb = β+ b. Over-threshold distributions preserve the Pareto model and the shape.
The mean (if it exists) is known as the mean excess function, and becomes

E(Zb|Z > b) =
βb

α− 1
=
β + b

α− 1
= ξ +

b

α− 1
(requires α > 1). (1.19)

It is larger than the original ξ and increases linearly with b.

These results hold for infinite α as well. Insert β = ξ(α − 1) into the expression for fb(z), and it
follows as in Section 2.6 that

fb(z)→
1

ξ
exp(−z/ξ) as α→∞.

The over-threshold model of an exponential distribution is the same exponential. Now the mean
excess function is a constant which follows from (1.19) when α→∞.

The extended Pareto family
A valuable addition to the Pareto family is to include a polynomial term in the numerator so that
the density function reads

f(z) =
Γ(α+ θ)

Γ(α)Γ(θ)

1

β

(z/β)θ−1

(1 + z/β)α+θ
where β, α, θ > 0. (1.20)

Shape is now determined by two parameters (α and θ) which creates useful flexibibility; see below.
The density function is either decreasing over the entire real line (if θ ≤ 1) or has a single maximum
(if θ > 1). Mean and standard deviation are

ξ = E(Z) =
θβ

α− 1
and sd(Z) = ξ

(

α+ θ − 1

θ(α− 2)

)1/2

, (1.21)

which are valid when α > 1 and α > 2 respectively whereas skewness is

skew(Z) = 2

(

α− 2

θ(α+ θ − 1)

)1/2 α+ 2θ − 1

α− 3
, (1.22)
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provided α > 3. These results, verified in Section 9.7, reduce to those for the ordinary Pareto
distribution when θ = 1; the conditions for their validity are the same too.

The model has an interesting limit when α → ∞. Suppose θ and the mean ξ are kept fixed.
By (1.21) left β = ξ(α − 1)/θ, and when this is inserted into (1.20), it emerges (proof in Section
9.7) that

f(z)→ θθ

Γ(θ)ξ
(z/ξ)θ−1e−θz/ξ as α→∞,

which is the density function of a Gamma model with mean ξ and shape θ! This generalizes a similar
result for the ordinary Pareto distribution and is testemony to the versatility of the extended family
which comprises heavy-tailed Pareto (θ = 1 and α small) and light-tailed (almost Gaussian) Gamma
(both α and θ large). In practice you let historical experience decide by fitting the model to past
claims z1, . . . , zn. The likelihood function is

L(α, θ, β) = n[log{Γ(α + θ)} − log{Γ(α)} − log{Γ(θ)} − θ log(β)]

+(θ − 1)
n
∑

i=1

log(zi)− (α+ θ)
n
∑

i=1

log(1 + zi/β)

which follows from (1.20). To determine the likelihood estimates this criterion must be maximed
numerically.

The distribution functions are complicated (unless θ = 1), and it is not covenient to simulate by
inversion. A satisfactory alternative is to utilize that an extended Pareto variable with parameters
(α, θ, β) can be represented as

Z =
θβ

α

G1

G2
where G1 ∼ Gamma(θ), G2 ∼ Gamma(α). (1.23)

Here G1 and G2 are two independent Gamma variables with mean one. The result which is proved
in Section 9.7, leads to the following algorithm:

Algorithm 9.1 The extended Pareto sampler
0 Input: α,θ,β and η = θβ/α
1 Draw G∗

1 ∼ Gamma(θ) %Standard Gamma, Algorithm 2.13 or 2.14

2 Draw G∗
2 ∼ Gamma(α) %Standard Gamma, Algorithm 2.13 or 2.14

3 Return Z∗ ← η G∗
1/G

∗
2

1.5 Extreme value methods

Introduction
Large claims play a special role because of their importance financially. It is also hard to assess
their distribution. They (luckily!) do not occur very often, and historical experience is therefore
limited. Insurance companies may even cover claims larger than anything that has been seen before.
How should such situations be tackled? The simplest would be to fit a parametric family and try
to extrapolate beyond past experience. That may not be a very good idea. A Gamma distribution
may fit well in the central regions without being reliable at all at the extreme right tail, and such a
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procedure may easily underestimate big claims severely; more on this in Section 9.6. The purpose
of this section is to enlist help from a theoretical charaterization of the extreme right tail of all
distributions.

Over-threshold distributions in general
It was established earlier that over-threshold distributions of Pareto models remain Pareto. There
is, perhaps surprisingly, a general extension. All random variation exceeding a very large threshold
b is approximately of the Pareto type, no matter (almost) what the distribution is! The prereq-
uisite is that the random variable Z has no upper limit and is continuously distributed. There is
even a theory when Z is bounded by some given maximum; for that extension consult Embrects,
Klüppelberg and Mikosch (1997).

To express the result in mathematical terms let P (z|α, β) be the distribution function of the Pareto
model with parameters α and β and define

Fb(z) = Pr(Zb ≤ z|Z > b) = Pr(Z ≤ b+ z|Z > b).

as the over threshold distribution function of an arbitrary random variable Z. Let Z be unlimited
with continuous distribution. Then there exists a positive parameter α (possibly infinite) such that
there is for all thresholds b a parameter βb that makes

max
z≥0
|Fb(z)− P (z|α, βb)| → 0, as b→∞.

This tells us that discrepancies between the two distribution functions vanish as the threshold
grows. At the end they are equal, and the over-threshold distribution has become a member of the
Pareto family. The result is exact and applies for finite b (with βb = β+ b) when the original model
is Pareto itself.

Whether we get a Pareto proper (with finite α) or an exponential (infinite α) depends on the
right tail of the distribution function F (z). The determining factor is how fast 1 − F (z) → 0 as
z → ∞. A decay of order 1/zα leads to Pareto models with shape α. A simple example of such
polynomial decay is the Burr distribution of Exercise 2.5.4 for which the distribution function is

F (z) = 1− {1 + (z/β)α1}−α2 or for z large 1− F (z)
.
= {(z/β)α1}−α2 = (z/β)−α1α2 ,

and α = α1α2. Many distributions have lighter tails. The Gamma and the log-normal are two
examples where the limiting over-threshold model is the exponential; see Exercises 9.4.3-6 for illus-
trations.

The Hill estimate
The decay rate α can be determined from historical data (though they have to be plenty). One
possibility is to select observations exceeding some threshold, impose the Pareto distribution and
use likelihood estimation as explained in Section 9.4. This line is tested in the next section. An
alternative is the Hill estimate

α̂−1 =
1

n− n1

n
∑

i=n1+1

log

(

z(i)
z(n1)

)

(1.24)
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where z(1) ≤ . . . ≤ z(n) are the data sorted in ascending order and n1 is user selected. Note
that the estimate is non-parametric (no model assumed). It is thoroughly discussed in Embrects,
Klüppelberg and Mikosch (1997) where it is shown to converge to the true value when n→∞ and
n1/n→ 1. In other words, n1/n should be close to one and n− n1 large, and this requires n huge.
A simple justification of the Hill estimate is given in Section 9.7.

We may want to use α̂ as an estimate of α in a Pareto distribution imposed over the thresh-
old b = z(n1), and would then need an estimate of the scale parameter βb. The likelihood method
is a possibility, but requires numerical computation, and a simpler way is

β̂b =
z(n2) − z(n1)

21/α̂ − 1
where n2 = 1 +

n1 + n

2
. (1.25)

To justify it note that the the over-theshold observations

z(n1+1) − z(n1), . . . , z(n) − z(n1) have median z(n2) − z(n1),

and the median (1.18) under Pareto distributions suggests that β̂b can be determined from the
equation β̂b(2

1/α̂ − 1) = z(n2) − z(n1) which yields (1.25).

The entire distribution through mixtures
How can the tail characterisation result be utilized to model the entire distribution? Historical
claims look schematically like the following:

Ordinary size Large

Claims: z(1), . . . , z(n1) b z(n1+1), . . . , z(n)

rrr r r rrrrrr r r r rrr r

There are many values in the small and medium range to the left of the vertical bar and just
a few (or none!) large ones to the right of it. What is actually meant by ‘large’ is not clear-cut, but
let us say that ‘large’ claims are those exceeding some threshold b. If the original claims z1, . . . , zn
are ranked in ascending order as

z(1) ≤ z(2) . . . ≤ z(n),

then observations from z(n1) and smaller are below the threshold. How b is chosen in practice is
discussed below; see also Section 9.6 for numerical illustrations.

One strategy is to divide modelling into separate parts defined by the threshold. A random variable
(or claim) Z may always be written

Z = (1− Ib)Z≤b + IbZ>b (1.26)

where

Z≤b = Z|Z ≤ b, Z>b = Z|Z > b
central region extreme right tail

and Ib = 0 if Z ≤ b
= 1 if Z > b.

(1.27)
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The random variable Z≤b is Z confined to the region to the left of b, and Z>b is similar to the
right. It is easy to check that the two sides of (1.26) are equal, but at first sight this merely looks
complicated. Why on earth can it help? The point is that we reach out to two different sources
of information. There is to the left of the threshold historical data with which a model may be
identified. On the right the result due to Pickands suggests a Pareto distribution. This defines a
modelling strategy which will now be developed.

The empirical distribution mixed with Pareto
The preceding two-component approach can be implemented in more ways than one. For moderate
claims to the left of b a parametric family of distributions can be used. There would be data to fit
it, and when it was sampled, simulations exceeding the theshold would be discarded. An alterna-
tive is non-parametric modelling, and this is the method that will be detailed. Choose some small
probability p and let n1 = n(1− p) and b = z(n1). Then take

Z≤b = Ẑ and Z>b = z(n1) + Pareto(α, β), (1.28)

where Ẑ is the empirical distribution function over z(1), . . . , z(n1); i.e.

Pr(Ẑ = z(i)) =
1

n1
, i = 1, . . . , n1. (1.29)

The remaining part (the delicate one!) are the parameters α and β of the Pareto distribution and
the choice of p. Plenty of historical data would deal with everything. Under such circumstances
p can be determined low enough (and hence b high enough) for the Pareto approximation to be a
good one, and historical data to the right of b would provide accurate estimates α̂ and β̂.

This rosy picture is not the common one, and limited experience often makes it hard to avoid
a subjective element. One of the advantages of dividing modelling into two components is that
it clarifies the domain where personal judgement enters. You make take the view that a degree
of conservatism is in order when there is insufficient information for accuracy. If so, that can be
achieved by selecting b relatively low and use Pareto modelling to the right of it. Numerical ex-
periments that supports such a strategy are carried out in the next section. Much material on
modelling extremes can be found in Embrects, Klüppelberg and Mikosch (1997).

Sampling mixture models
As usual a sampling algorithm is also a summary of how the model is constructed. With the em-
pirical distribution used for the central region it runs as follows:

Algorithm 9.2 Claims by mixtures
0 Input: Sorted claims z(1) ≤ . . . ≤ z(n),

and p, n1 = n(1− p), α and β.
1 Draw uniforms U∗

1 , U∗
2

2 If U∗
1 > p then

3 i∗ ← 1 + [n1U
∗
2 ] and Z∗ ← z(i∗) %The empirical distribution, Algorithm 4.1

else
4 Z∗ ← b+ β{(U∗

2 )−1/α − 1} %Pareto, Algorithm 2.8

5 Return Z∗

13



The algorithm operates by testing whether the claim comes from the central part of the distri-
bution or from the extreme, right tail over b. Other distributions could have been used on Line 3.
The preceding version is extremely quick to implement.

1.6 Searching for the model

Introduction
How is the final model for claim size selected? There is no single recepy, and it is the kind of
issue that can only be learned by example. How we go about is partly dictated by the amount of
historical data. Useful tools are transformations and Q-Q plots. The first example below is the
so-called Danish fire claims, used by many authors as a test case; see Embrechts, Klüppelberg and
Mikosch (1997). These are losses from more than two thousand industrial fires and serve our need
for a big example that offers many opportunities for modelling. Several distributions will be fitted
and used later (Section 10.3) to calculate reserves.

But what about cases such as the Norwegian fund for natural disasters in chapter 7 where there
were just n = 21 historical incidents? It is from records this size quite impossible to determine the
underlying distribution, and yet we have to come up with a solution. The errors involved and what
strategies to employ are discussed in the second half of this section.

Using transformations
A useful tool is to change data by means of transformations. These are monotone, continuous
functions which will be denoted H(z). The situation is then as follows:

z1, . . . , zn y1 = H(z1), . . . , yn = H(zn),
original data new data

and modelling is attacked through y1, . . . , yn. The idea is to make standard families of distributions
fit the transformed variable Y = H(Z) better than the orginal Z. At the end re-transform through
Z = H−1(Y ) with Z∗ = H−1(Y ∗) for the Monte Carlo.

A familiar example is the log-normal. Now H(z) = log(z) and H−1(y) = exp(y) with Y nor-
mal. General constructions with logarithms are

Y = log(1 + Z) Y = log(Z),
Y positive Y over the entire real line

opening for entirely different families of distributions for Y . The logarithm is arguably the most
commonly applied transformation. Alternatives are powers Y = Zθ where θ 6= 0 is some given
index; see also Exercise 9.6.2. The final choice of transformations is often made by trial and error.

Example: The Danish fire claims
Many authors have used the Danish fire claims as testing ground for their methods. There are
n = 2167 industrial fires with damages starting at one million Danish kroner (around eight Dan-
ish kroner in one euro). The largest among them is 263, the average z̄ = 3.39 and the standard
deviation s = 8.51. A huge skewness coefficient ζ̂ = 18.7 signals that the right tail is heavy with
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Figure 9.2 The log-normal model fitted the Danish fire data on log-scale. Density function with

kernel density estimate (left) and Q-Q plot (right).

considerable scope for large losses. This is confirmed in Figure 9.2 left where the non-parametric
density estimate is shown as the dashed line.

Standard models such as Gamma, log-normal or Pareto do not fit these data (Pareto is attempted
below), but matters may be improved by using transformations. The logarithm is often a first
choice. The claims start at 1 so that Y = log(Z) is positive. Could the log-normal be a possibility?
With ε ∼ N(0, 1) the model reads

Z = eY , Y = ξe−τ2/2+τε with likelihood estimates ξ̂ = 1.19, τ̂ = 1.36,

but this doesn’t work. Neither the the estimated density function on the left in Figure 9.2 nor the
Q-Q plot on the right matches the historical data. The right tail is too heavy and exaggerates the
risk of large claims3.

An second attempt with more success is the extended Pareto family (still applied on log-scale).
The best-fitting among those turned out to be a Gamma distribution, i.e.

Z = eY , Y = ξGamma(α) with likelihood estimates ξ̂ = 0.79, α̂ = 1.16,

where Gamma(α) has mean one. Note the huge discrepancy in the estimated mean ξ̂ from the
log-normal mean, indicating that one of the models (or both) is poor. Actually the Gamma fit is
none too bad as the Q-Q plot on the right in Figure 9.3 bears evidence. Perhaps the extreme right
tail is slightly too light, but fit isn’t an end in itself, and consequences when the reserve is evaluated
is not necessarily serious; see Section 10.3. A slight modification in Exercise 9.6.2 improves the fit.

3The 167 largest observations have been left out of the Q-Q plot to make the resolution in other parts of
the plot better
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Figure 9.3 The Gamma model fitted the Danish fire data on log-scale. Density function with

kernel density estimate (left) and Q-Q plot (right).

Pareto mixing
With so much historical data it is tempting to forget all about parametric families and use the
strategy advocated in Section 9.5 instead. The central part is then described by the empirical
distribution function and the extreme right tail by Pareto. Table 9.2 shows the results of fitting
Pareto distributions over different thresholds (maximum likelihood used). If the parent distribu-
tion is Pareto, the shape parameter α is the same for all thresholds b whereas the scale parameter
depends on b through βb = ξ + β/(α − 1), and there are reminiscences of this in Table 9.1; details
in Exercise 9.4.1.

But it would be a gross exaggeration to proclaim the Pareto model for these data. Consider
the Q-Q plots in Figure 9.4 where the upper half of the observations have been plotted on the left
and the 5% largest on the right. There is a reasonable fit on the right, and this accords with the
theoretical result for large thresholds, but it is different on the left where the Pareto distribution
overstates the risk of large claims. Table 9.1 tells us why. The shape parameters 1.42 for the 50%
largest observations and 2.05 over the 5% threshold correspond to quite different distributions, the

Unit: Million Danish kroner

Part of data fitted
All 50% largest 10% largest 5% largest

Threshold (b) 1.00 1.77 5.56 10.01
Shape (α) 1.64 1.42 1.71 2.05
Scale (β) 1.52 1.82 7.75 14.62

Table 9.1 Pareto parameters for the over threshold distribution of the fire claims.

16



••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••

••••••••
•••

• ••
•

•

•

•

0 50 100 150 200 250

0
1

0
0

2
0

0
3

0
0

4
0

0

Sorted claims

Quantiles (lower)
for fitted Pareto

Unit both axes:
million DKK

50% largest
claims

Fitted Pareto against EDF

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••

•••••••
••••

• ••
•

•

•

•

0 50 100 150 200 250

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

Sorted claims

Quantiles (lower)
for fitted Pareto

Unit both axes:Unit both axes:
million DKK

5% largest
claims

Fitted Pareto against EDF

Figure 9.4 Q-Q plots of fitted Pareto distributions against the empirical distribution function,

50% largest observations (left) and 5% largest (right).

tails of the former being heavier.

When data are scarce
How should we confront a situation like the one in Table 7.1 (the Norwegian natural disasters) where
there were no more than n = 21 claims and where the phenomenon itself surely is heavy-tailed with
potential losses much larger than those on record? The underlying distribution can’t be determined
with any accuracy, yet somehow a model must be found. Geophysical modelling where natural dis-
asters and their cost are simulated in the computer is a possibility, but such methods are outside
our natural range of topics, and we shall concentrate on what can be extracted from historical losses.

The parameters are bound to be highly inaccurate, but how important is the family of distri-
butions? When Gamma and Pareto distribution are fitted the natural disasters (by maximum
likelihood), the results look like this:

percentiles percentiles
Shape (α) Mean 5% 1% Shape (α) Mean 5% 1%

0.72 179 603 978 1.71 200 658 1928
Gamma family Pareto family

These are very unequal models, yet their discrepancies, though considerable, are not enormous
in the central region (differing around 10% up to the upper 5% percentile). Very large claims are
different, and the Pareto 1% percentile is twice that of Gamma. There is a lesson here. Many fami-
lies fit reasonably well up to some moderate threshold. That makes modelling easier when there are
strong limits on responsibilities. If it isn’t, the choice between parametric families becomes more
delicate.
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Shapes in true models: 1.71 in Pareto, 0.72 in Gamma. 1000 repetitions.

True Historical record: n = 21 Historical record: n = 80
model Models found Models found

Pareto Gamma log-normal Pareto Gamma log-normal
Pareto .49 .29 .22 .72 .12 .16
Gamma .44 .51 .05 .34 .66 0

Table 9.2 Probabilites of selecting given models (Bold face: Correct selection).

Can the right family be detected?
Nothing prevents us from using Q-Q plots to identify parametric families of distributions even with
small amounts of data. Is that futile? Here is an experiment throwing light on the issue. The entire
process of selecting models according to the Q-Q fit must first be formalized. Percentiles q̂i under
some fitted distribution function F̂ (z) are then compared to the observations, sorted in ascending
order as z(1) ≤ . . . ≤ z(n). What is actually done isn’t clearcut (different ways for different people),
but suppose we try to minimize

Q =
n
∑

i=1

|q̂i − z(i)| where q̂i = F̂−1
(

i− 1/2

n

)

, i = 1, . . . , n, (1.30)

a criterion that has been proposed as basis for formal goodness of fit tests; see Devroye and László
(1985). Competing models are then judged accoring to their Q-score and the one with the smallest
value selected.

The Monte Carlo experiments in Table 9.2 reports on results by following this strategy. Simulated
historical data were generated under Pareto and Gamma distributions, and parametric families of
distributions (possibly different from the true one) fitted. The main steps of the scheme are:

True model Parametric family tried

Pareto fitting q̂∗1 ≤ . . . ≤ q̂∗n
or −→ z∗1 ≤ . . . ≤ z∗n −→ −→ Q∗ =

∑

i |z∗(i) − q̂∗i |.
Gamma historical data sorting z∗(1) ≤ . . . ≤ z∗(n)

Three parametric families (Pareto, Gamma, log-normal) were applied to the same historical data,
and the one with the smallest Q∗-value picked. How often the right model was found could then
be investigated. Table 9.2 shows the selection statistics. It is hard to choose between the three
models when there are only n = 21 claims. Prospects are improved with n = 80 and with n = 400
(not shown) the success probability was in the range 90− 95%.

Consequences of being wrong
The preceding experiment met (not surprisingly) with mixed success, and when historical data are
that scarce, the fitted model is not likely to be very accurate. The impact on how risk is projected
has much to do with the maximum responsibility b per claim. The smaller it is, the better the
prospects since many distributions fit in the central region. If b is less than the largest observation
z(n), a case can be made for for the empirical distribution function. Another factor is the sign of the
error. If inaccuracy is inevitable, perhaps our risk strategy should invite over-estimation? Recall
that error in estimated parameters typically has the opposite effect. Now there is a tendency of
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m = 1000 replications

True model: Pareto, shape = 1.71 True model: Gamma, shape = 0.72
Record: n=21 Record: n=80 Record: n=21 Record: n=80

Percentiles (%) 25 75 90 25 75 90 25 75 90 25 75 90
Fitted Pareto 0.4 1.5 2.9 0.7 1.3 1.7 0.8 1.4 2.2 0.9 1.3 1.6
Fitted Gamma 0.3 0.6 1.0 0.4 0.7 0.9 0.8 1.1 1.3 0.9 1.1 1.2
Best-fitting 0.4 1.2 2.3 0.6 1.2 1.6 0.8 1.2 1.5 0.9 1.1 1.3

Table 9.3 The distribution (as 25 70 and 90 percentiles) of q̂0.01/q0.01 where q̂0.01 is
fitted and q0.01 true 1% percentiles of claims. Bold face: Correct parametric family used.

under-estimation of risk even if the the right family of distributions has been picked; see Section 7.3.

It is tempting to promote Pareto models in situations with large claims and limited historical
experience, though the inherent conservatism in that choice is threatened by estimation error. This
is illustrated in Table 9.3 where the true (upper) percentile qǫ of the loss distribution is compared
to an estimated q̂ǫ. The criterion used is the ratio

ψ̂ǫ =
q̂ε
qε
, where ǫ = 0.01.

Historical data were generated under a Pareto distribution (on the left of Table 9.3) and under a
Gamma distribution (on the right). Both models were fitted both sets of data, reflecting that in
practice you do not know which one to use. The error in q̂ǫ is conveyed by the 25%, 75% and 90%
percentiles of ψ̂ǫ. What are the consequences of choosing the wrong family of distributions? Using
Gamma when true model is Pareto is almost sure to underestimate risk (the 90% percentile of ψ̂ǫ

being less than one). The opposite (Pareto when the truth is Gamma) is prone to over-estimation,
though not so much when n = 21.

Pareto modelling as a conservative choice seems confirmed by this, but we could also let the
data decide. Several families of distributions are then tried, and the best-fitting one picked as the
model. This strategy has been followed on the last row of Table 9.3 where the computer chose
between Pareto and Gamma distributions according to the criterion (1.30). Errors in the estimated
percentiles are still huge, but the method does come out slightly superior.

1.7 Mathematical arguments

Section 9.4
Moments of the extended Pareto Note that

E(Zi) =

∫ ∞

0
zif(z) dz = βi Γ(α+ θ)

Γ(α)Γ(θ)

∫ ∞

0

1

β

(z/β)θ+i−1

(1 + z/β)α+θ
dz

when inserting for f(z) from (1.20). The integrand is (except for the constant) an extended Pareto
density function with shape parameters α − i and θ + i. It follows that that the integral equals
Γ(α− i)Γ(θ + i)/Γ(α + θ) and

E(Zi) = βi Γ(α− i)Γ(θ + i)

Γ(α)Γ(θ)
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which can be simplified by utilizing that Γ(s) = (s− 1)Γ(s − 1). This yields

E(Z) = β
θ

α− 1
= ξ and E(Z2) = β2 (θ + 1)θ

(α− 1)(α − 2)

and the left hand shows that the expecation is as claimed in (1.21). To derive the standard deviation
we must utilize that var(Z) = E(Z2)− (EZ)2 and simplify. In a similar vein

E(Z3) = β3 (θ + 2)(θ + 1)θ

(α− 1)(α − 2)(α − 3)

which is combined with

E(Z − ξ)3 = E(Z3 − 3Z2ξ + 3Zξ2 − ξ3) = E(Z3)− 3E(Z2)ξ + 2ξ3.

When the expressions for E(Z3), E(Z2) and ξ are inserted, it follows after some tedious calculations
(which are omitted) that

E(Z − ξ)3 = β3θ
2α2 + (6θ − 4)α+ 4θ2 − 6θ + 2

(α− 1)3(α− 2)(α − 3)
= 2β3θ

(α+ θ − 1)(α + 2θ − 1)

(α− 1)3(α− 2)(α − 3)

and the formula (1.22) for skew(Z) follows by diving this expression on sd(Z)3.

Gamma distribution in the limit To show that extended Pareto density functions become
Gamma as α → ∞, insert β = ξ(α − 1)/θ into (1.20) which after some reorganisation may be
written

f(z) =

(

θ

ξ

)θ zθ−1

Γ(θ)
× Γ(α+ θ)

Γ(α)(α − 1)θ
×
(

1 +
θz/ξ

α− 1

)−(α+θ)

The first factor on the right is a constant, the second tend to one as α→∞ (use the expression in
the heading of Table 8.2 to see this) and the third becomes e−θz/ξ (after the limit (1+x/a)−a → e−x

as a→∞). It follows that

f(z)→ θθ

Γ(θ)ξ
(z/ξ)θ−1e−θz/ξ as α→∞,

as claimed in Section 9.4.

The ratio of Gamma variables Let Z = X/Y where X and Y are two independent and positive
random variables with density functions g1(x) and g2(y) respectively. Then

Pr(Z ≤ z) = Pr(X ≤ zY ) =

∫ ∞

0
Pr(X ≤ zy)g2(y) dy

and when this is differentiated with respect to z, the density function of Z becomes

f(z) =

∫ ∞

0
yg1(zy)g2(y) dy
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Let X = θG1 and Y = αG2 where G1 and G2 are Gamma variables with mean one and shape θ
and α respectively. Then g1(x) = xθ−1e−x/Γ(θ) and g2(y) = yα−1e−y/Γ(α) so that

f(z) =
zθ−1

Γ(θ)Γ(α)

∫ ∞

0
yα+θ+−1e−y(1+z) dy =

zθ−1

Γ(θ)Γ(α)

1

(1 + z)α+θ

∫ ∞

0
xα+θ−1e−x dx

after substituting x = y(1 + z) in the last integral. This is the same as

f(z) =
Γ(α+ θ)

Γ(θ)Γ(α)

zθ−1

(1 + z)α+θ

which is the extended Pareto density when β = 1.

Section 9.5
Justification of the Hill estimate Suppose first that z1, . . . , zn come from a pure Pareto dis-
tribution with known scale parameter β. The likelihood estimate of α was derived in Section 7.3
as

α̂−1
β =

1

n

n
∑

i=1

log(1 +
zi
β

).

We may apply this result to observations exceeding some large threshold b, say to z(n1+1) −
b, . . . , z(n) − b. For large enough b this sample is approximate Pareto with scale parameter b + β.
It follows that the likelihood estimate becomes

α̂−1
β =

1

n− n1

n
∑

i=n1+1

log

(

1 +
z(i) − b
b+ β

)

=
1

n− n1

n
∑

i=n1+1

log

(

z(i) + β

b+ β

)

.

But we are assuming that b (and by consequence all z(i)) is much larger than β. Hence

log

(

z(i) + β

b+ β

)

.
= log

(

z(i)
b

)

= log

(

z(i)
z(n1)

)

if b = z(n1),

which leads to α̂ in (1.24).

1.8 Bibliographic notes

Specialist monogrpahs on claim size distributions are Klugman, Panjer and Willmot (1998) and
Kleiber and Kotz (2003), but all textbooks on general include contain this topic. The literature
contains many distributions that have been neglected here, and but there are not many problems
that are not solved well with what has been presented. Curiously, the empirical distribution func-
tion often fails to be mentioned at all. Daykin, Pentikäinen and Pesonen (1994) (calling it the
tabular method) and Mikosch (2004) are exceptions.

Large claims and extremes are big topics in actuarial science and elsewhere. If you want to study
the mathematical and statistical theory in depth, a good place to start is Embrects, Klüppelberg
and Mikosch (1997). Other reviews at about the same mathematical level are Beirlant, Goegebeur,
Segers, and Teugels (2004) and Resnik (2006). You might also try De Haan and Ferreira (2004)
or even the short article Beirlant (2004). Beirlant, Teugels and Vynckier (1996) treats extremes in
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and Falk, Hüssler and Reiss (2004) are also principally preoccupied with the mathematical side.
Finkelstädt and Rootzén (2004) and Castillo, Hadi, Balakrishnan and Sarabia (2005) contain many
applications outside insurance and finance.

The idea of using a Pareto model to the right of a certain limit (Section 9.5) goes back at least to
Pickands (1975). Modelling over thresholds is discussed in Davison and Smith (1990) from a sta-
tistical point of view. Automatic methods for threshold selection are developed in Dupuis (1999),
Frigessi, Haug and Rue (2002) and Beirlant and Goegebur (2004). This is what you need if asked
to design computerized systems where the computer handles a large number of portfolios on its
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1.9 Exercises

Section 9.2
Exercise 9.2.1 The cost of settling a claim changes from Z to Z(1 + I) if I is the rate of inflation between
two time points. a) Suppose claim size Z is Gamma(α, ξ) in terms of the old price system. What are the
parameters under the new, inflated price? b) The same same question when the old price is Pareto(α, β). c)
Again the same question when Z is log-normally distributed. d) What is the general rule for incorporating
inflation into a parametric model of the form (1.4)?

Exercise 9.2.2 This is a follow-up of the preceding exercise. Let z1, . . . , zn be historical data collected
over a time span influenced by inflation. We must then associate each claim zi with a price level Qi = 1+ Ii
where Ii is the rate of inflation. Suppose the claims have been ordered so that z1 is the first (for which
I1 = 0) and zn the most recent. a) Modify the data so that a model that can be fitted from them. b) Ensure
that the model applies to the time of the most recent claim. Imagine that all inflation rates I1, . . . , In can
be read off from some relevant index.

Exercise 9.2.3 Consider nl observations censored to the left. This means that each Zi is some bi or
smaller (by how much isn’t known). With F0(z/β) as the distribution function define a contribution to the
likelihood similar to right censoring in (1.6).

Exercise 9.2.4 Families of distribution with unknown lower limits b can be defined by taking Y = b + Z
where Z starts at the orgin. Let Yi = b+ Zi be an independent sample (i = 1, . . . .n) and define

My = min(Y1, . . . , Yn) and Mz = min(Z1, . . . , Zn).

a) Show that E(My) = b+ E(Mz). b) Also show that

Pr(Mz > z) = {1− F (z)}n so that E(Mz) =

∫

∞

0

{1− F (z)}n dz,

where F (z) is the distribution function of Z [Hint: Use Exercise ??? for the expectation.]. c) With F (z) =
F0(z/β) deduce that

E(My) = b+

∫

∞

0

{1− F0(z/β)}n dz = b+ β

∫

∞

0

{1− F0(z)}n dz

and explain how this justifies the bias correction (1.8) when b̂ = My is used as estimate for b.
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Exercise 9.2.5 We shall in this exericise consider simulated, log-normal historical data, estimate skew-
ness through the ordinary estimate (1.10) and examine how it works when the answer is known (look it up
in Exercise 9.3.5 below). a) Generate n = 30 log-normal claims using θ = 0 and τ = 1 and compute the
skewness coefficient (1.10). b) Redo four times and remark on the pattern when you compare with the true
value. c) Redo a),b) when τ = 0.1. What about the patterns now? d) Redo a) and b) for n = 1000. What
has happened?

Exercise 9.2.6 Consider the pure empirical model Ẑ defined in (1.1). Show that third order moment
and skewness become

ν3(Ẑ) =
1

n

n
∑

i=1

(zi − z̄)3 so that skew(Ẑ) =
n−1

∑n
i=1(zi − z̄)3
s3

,

where z̄ and s are sample mean and standard deviation.

Exercise 9.2.7 Consider as in (1.12) Zh = Ẑ + hsε where ε ∼ N(0, 1), s the sample standard devia-
tion and h > 0 is fixed. a) Show that

Pr(Zh ≤ z|Ẑ = zi) = Φ

(

z − zi

hs

)

(Φ(z) the normal integral).

b) Use this to deduce that

Pr(Zh ≤ z) =
1

n

n
∑

i=1

Φ

(

z − zi

hs

)

.

c) Differentiate to obtain the density function of Zh and show that it corresponds to the kernel density
estimate (??) in Section 2.2.

Exercise 9.2.8 Show that a Monte Carlo simulation of Zh can be generated from two uniform variables U∗

1

and U∗

2 through

i∗ ← [1 + nU∗

1 ] followed by Z∗

h ← zi∗ + hsΦ−1(U∗

2 )

where Φ−1(u) is the percentile function of the standard normal. [Hint: Look up Algorithms 2.3 and 4.1].

Section 9.3
Exercise 9.3.1 The convolution property of the Gamma distribution is often formulated in terms of an
independent Gamma sample of the form Z1 = ξZ01, . . . , Zn = ξZ0n where Z01, . . . , Z0n are distributed as
Gamma(α). a) Verify that S = Z1 + . . .+ Zn = (nξ)Z̄0 where Z̄0 = (Z01 + . . .+ Z0n)/n. b) Use the result
on Z̄0 cited in Section 9.3 to deduce that S is Gamma distributed too. What are its parameters?

Exercise 9.3.2 The data below, taken from Beirlant, Teugels and Vynckier (1996) were originally com-
piled by The American Insurance Association and show losses due to single hurricanes in the US over the
period from 1949 to 1980 (in money unit million US$).

6.766 7.123 10.562 14.474 15.351 16.983 18.383 19.030 25.304
29.112 30.146 33.727 40.596 41.409 47.905 49.397 52.600 59.917
63.123 77.809 102.942 103.217 123.680 140.136 192.013 198.446 227.338

329.511 361.200 421.680 513.586 545.778 750.389 863.881 1638.000

Correction for inflation has been undertaken up to the year 1980 which means that losses would have
been much larger today. a) Fit a log-normal and check the fit through a Q-Q plot. b) Repeat a), but now
subtract b = 5000 from all the observations prior to fitting the log-normal. c) Any comments?
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Exercise 9.3.3 Alternatively the hurricane loss data of the preceding exercise might be described through
Gamma distributions. You may either use likelihood estimates (software needed) or the moment estimates
derived in Section 9.3; see (1.15). a) Fit gamma distributions both to the orginal data and when you sub-
tract 5000 first. Check the fit by Q-Q plotting. Another way is to fit transformed data, say y1, . . . , yn. One
possibility is to take yi = log(zi − 5000) where z1, . . . , zn are the original losses. b) Fit the Gamma model
to y1, . . . , yn and verify the fit though Q-Q plotting. c) Which of the models you have tested in this and the
preceding exercise should be chosen? Other possibiltities?

Exercise 9.3.4 Consider a log-normal claim Z = exp(θ + τε) where ε ∼ N(0, 1) and θ and τ are pa-
rameters. a) Argue that skew(Z) does not depend on θ [Hint: Use a general property of skewness.]. To
calculate skew(Z) we may therefore take θ = 0, and we also need the formula E{exp(aε)} = exp(a2/2). b)
Show that

(Z − eτ2/2)3 = Z3 − 3Z2eτ2/2 + 3Zeτ2 − e3τ2/2

so that c) the third order moment becomes

ν3(Z) = E(Z − eτ2/2)3 = e9τ2/2 − 3e5τ2/2 + 2e3τ2/2.

d) Use this together with sd(Z) = eτ2/2
√
eτ2 − 1 to deduce that

skew(Z) =
exp(3τ2)− 3 exp(τ2) + 2

(exp(τ2)− 1)3/2
.

e) Show that skew(Z)→ 0 as τ → 0 and calculate skew(Z) for τ = 0.1, 1, 2. The value for τ = 1 corresponds
to the density function plotted in Figure 2.4 right.

Exercise 9.3.5 This exercise is a follow-up of Exercise 9.2.5, but it is now assumed that that the un-
derlying model is known to be log-normal. The natural estimate of τ is then τ̂ = s where s is the sample
standard deviation of y1 = log(z1), . . . , yn = log(zn). As usual z1, . . . , zn is the orginal log-normal claims.
Skewness is then estimated by inserting τ̂ for τ in the skewness formula in Exercise 9.3.4 d). a) Repeat
a), b) and c) in Exercise 9.2.5 with this new estimation method. b) Try to draw some conclusions about
the patterns in the estimation errors. Does it seem to help that we know what the underlying distribution is?

Section 9.4
Exercise 9.4.1 Let Z be exponentially distributed with mean ξ. a) Show that the over-threshold variable
Zb has the same distribution as Z. b) Comment on how this result is linked to the similar one when Z is
Pareto with finite α.

Exercise 9.4.2 Suppose you have concluded that the decay parameter α of a claim size distribution is
infinite so that the over-threshold model exponential. We can’t use the scale estimate (1.25) now. How will
you modify it? Answer: The method in Exercise 9.4.6.

Exercise 9.4.3 a) Simulate m = 10000 observations from a Pareto distribution with α = 1.8 and β = 1
and pretend you do not known the model they are coming from. b) Use the Hill estimate on the 100 largest
observations. c) Repeat a) and b) four times. Try to see some pattern in the estimates compared to the
true α (which you know after all!) d) Redo a), b) and c) with m = 100000 simulations and compare with
the earlier results.

Exercise 9.4.4 The Burr model, introduced in Exercise 2.5.4, had distribution function

F (x) = 1− {1 + (x/β)α1}−α2 , x > 0.
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where β, α1 and α2 are positive parameters. Sampling was by inversion. a) Generatem = 10000 observations
from this model when α1 = 1.5, α2 = 1.2 and β = 1. b) Compute α̂ as the Hill estimate from the 100 largest
observations. c) Comment on the discrepancy from the product α1α2. Why is this comparision relevant? d)

Compute β̂b from the 100 largest simulations using (1.25). e) Q-Q plot the 100 largest observations against

the Pareto distribution with parameters α̂ and β̂. Any comments?

Exercise 9.4.5 a) Generate m = 10000 observations from the lognormal distribution with mean ξ = 1
and τ = 0.5. b) Compute the Hill estimate based on the 1000 largest observations c) Repeat a) and b) four
times. Any patterns? d) Explain why the value you try to estimate is infinite. There is a strong bias in
the estimation that prevents that to be reached. It doesn’t help you much to raise the threshold and go to
m = 100000!

Exercise 9.4.6 a) As in the preceding exercise generate m = 10000 observations from the lognormal
distribution with mean ξ = 1 and τ = 0.5. The over-threshold distribution is now for large b exponential.
b) Estimate its mean ξ through the sample mean of the 1000 largest observations subtracted b = z9000 and
Q-Q plot the 1000 largest observations against this fitted exponential distribution. Comments?

Section 9.5
Exercise 9.5.1 Consider a mixture model of the form

Z = (1− Ib)Ẑ + Ib(b+ Zb) where Zb ∼ Pareto(α, β), Pr(Ib = 1) = 1− Pr(Ib = 0) = p

and Ẑ is the empirical distribution function over z(1), . . . , z(n1). It is assumed that b ≥ z(n1) and that Ẑ,
Ib and Zb are independent. a) Determine the (upper) percentiles of Z. [Hint: The expression depend on
whether ǫ < p or not.] b) Derive E(Z) and var(Z), [Hint: One way is to use the rules of double expectation
and double variance, conditioning on Ib.]

Exercise 9.5.2 a) Redo the following exercise when Zb is exponential with mean ξ instead of a Pareto
proper. b) Comment on the connection by letting α→∞ and keeping ξ = β/(α− 1) fixed.

Exercise 9.5.3 a) How is Algorithm 9.2 modified when the over-threshold distribution is exponential with
mean ξ? b) Implement the algorithm.

Exercise 9.5.4 We shall use the algorithm of the preceding exercise to carry out an experiment based
on the log-normal Z = exp(−τ2/2+τε) where ε ∼ N(0, 1) and τ = 1. a) Generate a Monte Carlo sample of
n = 10000 and use those as historical data after sorting them as z(1) ≤ . . . ≤ z(n). In practice you would not
that they are log-normal, but assume that they are known to light-tailed enough for the the over-threshold
distribution to be exponential. The empirical distribution function is used to the left of the threshold. b)
Fit a mixture model by taking p = 0.05 and b = z(9500) [Hint: You take the mean of the 500 obervations
above the threshold as estimate of the parameter ξ of the exponential.]. c) Generate a Monte Carlo sample
of m = 10000 from the fitted mixture distribution and estimate the upper 10% and 1% percentiles from the
simulations. d) Do they correspond to the true ones? Compare with their exact values you obtain from
knowing the underlying distribution in this laboratory experiment.

Section 9.6
Exercise 9.6.1 We shall in this exercise test the Hill estimate α̂ defined in (1.15) and the corresponding β̂b

in (1.16) on the the Danish fire data (downloadable from the file danishfire.txt.). a) Determine the estimates
when p = 50%, 10% and p = 5%. b) Compare with the values in Table 9.1 whivh were obtained by likelihood
estimation.
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Exercise 9.6.2 Consider historical claim data starting at b (known). A useful family of transformations is

Y =
(Z − a)θ − 1

θ
for θ 6= 0,

where θ is selected by the user. a) Show that Y → log(Z − b) as θ → 0 [Hint: L’hôpital’s rule]. This
shows that the logarithm is the special case θ = 0. The family is known as the Box-Cox transformations.
We shall use it to try to improve the modelling of the Danish fire data in Section 9.6. Download the data
from danishfire.txt. b) Use a = −0.00001 and θ = 0.1 and fit the Gamma model to the Y -data. [Hint:
Either likelihood or moment, as in Section 9.3]. c) Verfy the fit by Q-Q plotting. d) Repeat b) and c) when
θ = −0.1. e) Which of the transformations appears best, θ = 0 (as in Figure 9.6.3) or one of those in this
exercise?

Exercise 9.6.3 Suppose a claim Z starts at some known value b. a) How will you select a in the Box-Cox
transformation of the preceding exercise if you are going to fit a positive family of distributions (gamma,
log-normal) to the transformed Y -data? b) The same question if you are going to use a model (for example
the normal) extending over the entire real axis.
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