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In the present paper we study how to optimize oil production with respect to revenue in a situation where the
production rate is uncertain. The oil production in a given period is described in terms of a difference equation,
where this equation contains several uncertain parameters. The uncertainty about these parameteres is expressed
in terms of a suitable prior distribution. As the production develops, more information about the production
parameters is gained. Hence, the uncertainty distributions need to be updated. However, the information comes
in the form of inequalities and equalities which makes it very difficult to obtain exact analytical expressions
for the posteriors. Still it is possible to estimate the distributions using a combination of rejection sampling
and the well-known Metropolis-Hastings algorithm. Armed with these techniques it is possible to solve the
optimization problem using stochastic programming. The methods will be demonstrated on a few examples.

1 INTRODUCTION
Optimization is an important element in the manage-
ment of multiple-field oil and gas assets, since many
investment decisions are irreversible and finance is
committed for the long term. Optimization of oil and
gas recovery in petroleum engineering is a consider-
able research field. Recent studies of production opti-
mization include (Horne, 2002), (Merabet & Bellah,
2002) and (Neiro & Pinto, 2004).

(Huseby & Haavardsson, 2009) considered the
problem of production optimization in an oil or gas
field consisting of many reservoirs sharing the same
processing facility. In order to satisfy the processing
limitations of the facility, the production needs to be
choked. Thus, at any given point of time the produc-
tion from each of the reservoirs are scaled down by
suitable choke factors chosen so that the total produc-
tion does not exceed the processing capacity. A pro-
duction strategy is a vector valued function defined
for all points of time t≥ 0 representing the choke fac-
tors applied to the reservoirs at time t. Based on the
production profile models introduced in (Arps, 1945),
(Haavardsson & Huseby, 2007) developed a general
model for oil and gas production using a set of or-
dinary differential equations. (Huseby & Haavards-
son, 2009) used this approach in order to develop a
general framework for finding a production strategy
which is optimal with respect to various types of ob-

jective functions. In (Huseby & Haavardsson, 2010)
this work was extended to cases where the production
is uncertain.

In the present paper we consider a new variant of
this problem where the oil production from a given
single reservoir is described relative to a sequence of
time periods. In each time period the production is
limited by two factors: the potential production vol-
ume and the amount of oil that can be processed at the
processing facility. Typically, many reservoirs share
the same processing facility, so at the start of each
period one needs to book a certain processing quota.
This quota has a cost which is proportional to the size
of the quota. At the same time the production gener-
ates an income proportional to the processed volume.
If the quota is greater than the potential production
volume, one ends up with paying too much for the
quota. On the other hand, if the quota is less than the
potential production volume, the income from the pe-
riod is reduced. If the latter situation occurs, this im-
plies that same the oil have to be produced in a later
period. From an economical point of view, this re-
duces the present value of the oil production. Thus,
for each period the aim is to find the optimal process-
ing quota, i.e., the quota that maximizes the revenue.
If the potential production volume is known, this is
trivial since the obvious choice is to choose a quota
that is equal to this volume. However, the potential
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production volume typically depends on a number
of uncertain reservoir parameters. Thus, in order to
choose the optimal quota, one has to take this uncer-
tainty into account.

The uncertainty about the reservoir parameters is
expressed in terms of a suitable prior distribution. As
the production develops, more information about the
production parameters is gained. Hence, the uncer-
tainty distributions need to be updated. In the present
paper we show how this updating can be accom-
plished. Moreover, we show how to find the optimal
quota using Monte Carlo simulation.

2 A GENERAL SAMPLING PROCEDURE
In a situation where decisions are made sequentially,
one needs to model how the uncertainty changes as
time goes by. In order to take a closer look at this
we consider a sequence of n decisions, where the
first decision is made at time zero, the second at
time 1 etc. We assume that the outcomes of the de-
cisions depend on a vector of uncertain quantities,
X = (X1, . . . ,Xm). Moreover, we let Ii denote the
set of information about X available at the point of
time when the ith decision is made, and let π(x|Ii)
denote the joint conditional density of the Xjs given
Ii, i= 0,1, . . . , n− 1. In the calculations we are about
to describe, we need to be able to run Monte Carlo
simulations where we sample from these conditional
distributions.

A typical example of such a model is a discrete time
stochastic process, where the Xjs represent the states
of the process. In such cases the Xjs are observed se-
quentially. In the litterature there are many such mod-
els, including various types of Markov chains. Given
such a structure it is usually very easy to derive the
sequence of conditional distributions.

When modeling uncertainty related to oil produc-
tion, however, the uncertain quantities are parame-
ters characterizing properties of the reservoir. Such
quantities are typically not directly observable, but as
the oil in the reservoir is produced, the uncertainty is
gradually reduced. Thus, we let X = (X1, . . . ,Xm)
represent the uncertain reservoir parameters. As more
and more oil is produced, we get information about
these parameters. This information typically limits the
variability of X to smaller and smaller sets. Thus, if
X denotes the initial set of possible values for X , and
A1, . . . ,An−1 are subsets of X , for i = 1, . . . , n − 1
we assume that Ii is of the following form:

Ii = {X ∈
i⋂

j=1

Aj}. (1)

Moreover, π(x|I0) is simply the prior density of X ,
which we denote by π(x).

As long as P (X ∈ ∩ij=1Aj)> 0, the corresponding
conditional density can be derived as:

π(x|Ii) =
π(x)

P (X ∈ ∩ij=1Aj)
, (2)

for i = 1, . . . , n − 1. Given that it is easy to sample
from the prior distribution, sampling from the con-
ditional distributions is easily accomplished as well
using a standard rejection method. That is, in each it-
eration of the Monte Carlo simulation we sample re-
peatedly from π(x) until we get a value x ∈ ∩ij=1Aj .

However, if P (X ∈ ∩ij=1Aj) = 0, rejection sam-
pling will not work. This situation occurs if we ob-
serve the value of a function of the uncertain quan-
tities. Assume e.g., that Y1 = Φ1(X), and that we
at the jth step observe that Y1 = y1. Moreover, let
Aj = {X ∈ X : Φ1(X) = y1}. Then, assuming that
the prior is an absolutely continuous distribution, we
typically get that P (X ∈ Aj) = 0.

Before we explain how to sample from the con-
ditional distribution of X given Y1, we simplify
the problem by assuming that we can find (m − 1)
functions Φ2, . . . ,Φm such that Y = (Y1, . . . , Ym) =
(Φ1(X), . . . ,Φm(X)) forms a one-to-one mapping.
Given that this holds true, we can also find an
inverse mapping such that X = (X1, . . . ,Xm) =
(Ψ1(Y ), . . . ,Ψm(Y )).

By elementary probability theory, the distribution
of Y has a prior density, ν(y), given by:

ν(y) = π(Ψ1(y), . . . ,Ψm(y))|J |, (3)

where J is the Jacobian determinant of the mapping.
Furthermore, the conditional density of Y2, . . . , Ym
given Y1 = y1, denoted ν(y2, . . . , ym|y1) is given by:

ν(y2, . . . , ym|y1) =
ν(y)∫

ν(y)dy2 · · ·dym
. (4)

Having derived this, we then get the following sam-
pling algorithm:

Algorithm 2.1 Assume that we observe that Y1 =
Φ1(X) = y1. We can then sample X as follows:

STEP 1. Sample Y2, . . . , Ym from the conditional dis-
tribution (4). Let y = (y1, . . . , ym) denote the resulting
value of Y .

STEP 2. Calculate the resulting value of X using the
inverse mapping, i.e., x = (Ψ1(y), . . . ,Ψm(y)).

The only remaining problem is how to carry out the
first step of Algorithm 2.1. In order to do so, we note
that the integral in the denominator of (4) is simply a
normalizing constant. Hence, we may rewrite (4) as:

ν(y2, . . . , ym|y1) ∝ ν(y). (5)
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Thus, ν(y) can be considered to be an unnormalized
density of the conditional distribution of Y2, . . . , Ym
given Y1 = y1. Sampling from this distribution can
easily be done using the well-known Metropolis-
Hastings algorithm (Hastings, 1970).

Note that in many situations it is possible to sim-
plify the calculations by letting Φ2, . . . ,Φm be iden-
tity functions. That is, we let Yj = Φj(X) = Xj ,
j = 2, . . . ,m. In such cases (3) simplifies to the fol-
lowing:

ν(y) = π(Ψ1(y), y2, . . . , ym)|∂Ψ1(y)

∂y1
|. (6)

More generally, the information available at the ith
step, Ii is a combination of sets A1, . . . ,Ai such that
P (X ∈ Aj) is positive for some of the js and zero
for the others. In such case we use a combination
of Metropolis-Hastings algorithm and rejection sam-
pling. We assume that whenever P (X ∈ Aj) = 0,
this corresponds to observing some function of X . If
this is the case for several js, it is easy to extend Al-
gorithm 2.1 to allow conditioning on more than one
variable. Using the Metropolis-Hastings algorithm to
sample an x satisfying all the constraints imposed by
these functions, we proceed by considering the re-
maining restrictions on x corresponding to the sets
where P (X ∈Aj)> 0. If the sampled x does not sat-
isfy all these constraints, it is rejected. Thus, in each
iteration the Metropolis-Hastings algorithm is used
repeatedly until we end up with an x satisfying all
constraints.

3 STEPWISE OPTIMIZATION OF PROCESSING
QUOTAS

Having established the general sampling procedure,
we now apply this to a more specific situation. That
is, we consider an oil reservoir, and assume that the
production is described in terms of a discrete time
process, where qi denotes the production from the ith
period, i = 1,2, . . .. We also introduce the cumula-
tive production from the periods 1, . . . , i, denoted Qi,
i = 1,2, . . .. That is, we let:

Qi =
i∑

j=1

qj, i = 1,2, . . . . (7)

We also let Q0 = 0.
The amount of oil that can be produced within a

period is limited by the characteristics of the reser-
voir determined by a set of uncertain parameters. The
main reservoir parameters are the amount of recover-
able oil, denoted by V , and the so-called decline rate,
denoted by D. The decline rate represents the frac-
tion of remaining oil that can be produced per unit
of time. In general the decline rate may change over

time. Still using a production model with a constant
decline rate may serve as a satisfactory approxima-
tion. The amount of oil that can be produced within
the ith period given no other restrictions, can then be
expressed as:

f(Qi−1) = D(V −Qi−1), i = 1,2, . . . . (8)

We refer to the function f as the potential production
rate function, or PPR function.

Obviously, the amount of recoverable oil is some
non-negative number, while the decline rate must be
a number between zero and one. Thus, using the nota-
tion from Section 2, the set of possible values for the
vector (V,D) is given as:

X = R+ × [0,1]. (9)

Moreover, we assume that the distribution of (V,D)
has a prior density π(v, d) defined over the set X .

In addition to the restrictions imposed by the reser-
voir itself, the actual production is typically restricted
by the available processing capacity. Often the pro-
cessing facilities are shared between a number of
reservoirs. As a result the reservoir manager needs
to book a certain processing quota at the start of
each period. Thus, we let Ki denote the process-
ing quota available during the ith production period,
i = 1,2, . . .. Hence, the actual production from the ith
period is given by:

qi = min{f(Qi−1),Ki}, i = 1,2, . . . . (10)

By booking the quota Ki at the start of the ith pe-
riod, the reservoir manager is guaranteed to have this
amount of processing capacity available. However,
this comes at a price. For simplicity we assume a lin-
ear cost model where the quota cost from the ith pe-
riod is given by κ ·Ki for some suitable positive con-
stant κ. Similarly, the income from the ith period is
given by δ · qi for some suitable positive constant δ,
where we typically have δ > κ. The revenue from the
ith period, denoted Ri(Ki) then becomes:

Ri(Ki) = δ · qi − κ ·Ki, i = 1,2, . . . . (11)

We then consider the revenue from the ith period and
observe that if Ki < f(Qi−1), then qi = Ki. Hence,
in this case Ri(Ki) = (δ − κ) ·Ki. If, on the other
hand, Ki > f(Qi−1), then qi = f(Qi−1). Hence, in
this case Ri(Ki) = δ · f(Qi−1)− κ ·Ki. Thus, in or-
der to maximize the revenue, one should ideally let
Ki = f(Qi−1). Since, however, f(Qi−1) depends on
the uncertain reservoir parameters V and D, the op-
timal quota becomes uncertain as well. By running
a Monte Carlo simulation where V and D are sam-
pled from a suitable joint distribution, we can esti-
mate the expected revenue, E[Ri(Ki)] as a function
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of the quota Ki, and then choose Ki as the value
that maximizes this. Alternatively, we can estimate
the derivative of the expected revenue as a function of
the quota Ki, and then choose Ki so that this deriva-
tive becomes zero. It turns out that the latter approach
is both easier and produces more stable results, so this
method will be used here.

In order to estimate the derivative of E[Ri(Ki)]
with respect to Ki, we argue that:

∂

∂Ki

E[Ri(Ki)] = E[
∂

∂Ki

Ri(Ki)]. (12)

This relation can be established using e.g., the well-
known Lebesgue’s dominated convergence theorem.
Furthermore, we observe that:

∂

∂Ki

Ri(Ki) =

{
(δ− κ) if Ki < f(Qi−1)
−κ if Ki > f(Qi−1)

(13)

If Ki = f(Qi−1), the derivative is undefined. How-
ever, this event typically occurs with probability zero,
so this will not contribute to the expected value of the
derivative. As a result we get:

E[
∂

∂Ki

Ri(Ki)] = (14)

(δ− κ)P (f(Qi−1) > Ki)− κP (f(Qi−1) < Ki).

From this it follows that the derivative is zero if:

P (f(Qi−1) < Ki) =
δ− κ
δ

. (15)

Hence, for i = 1,2, . . ., the optimal quota Ki can eas-
ily be found by estimating the cumulative distribution
of f(Qi−1).

For i = 1 it follows by (8) that f(Qi−1) = f(Q0) =
DV . Hence, the cumulative distribution of f(Q0) can
be estimated by sampling from the prior distribution
of (V,D), i.e., π(v, d). By (10) the actual production
from the first period, q1, then becomes the minimum
of the true value of f(Q0) and the chosen quota K1.

After the first period is completed, the value of q1 is
observed. If q1 = K1, this implies that the true value
of f(Q0) is greater than or equal to the observed pro-
duction q1. If on the other hand q1 < K1, this implies
that the true value of f(Q0) is equal to the observed
production q1. Using the notation from Section 2, this
means that if q1 = K1, then:

A1 = {(v, d) ∈ X : dv ≥ q1}. (16)

Similarly, if q1 < K1, then:

A1 = {(v, d) ∈ X : dv = q1}. (17)

We then proceed to the second period where
f(Qi−1) = f(Q1) =D(V −Q1), and where of course
Q1 is equal to the observed production in the first pe-
riod, q1. In order to estimate the cumulative distribu-
tion of f(Q1) we must sample from the conditional
distribution of (V,D) given that (V,D) ∈ A1. In ei-
ther case this can be done using the methods presented
in Section 2. As in the previous step the actual pro-
duction from the second period, q2, then becomes the
minimum of the true value of f(Q1) and the chosen
quota K2.

After the second period is completed, the value of
q2 is observed. If q2 = K2, the true value of f(Q1)
must be greater than or equal to q2, while if q2 < K2,
we must have f(Q1) = q2. Thus, if q2 = K2,

A2 = {(v, d) ∈ X : d(v−Q1) ≥ q2}, (18)

while, if q2 < K2, then:

A2 = {(v, d) ∈ X : d(v−Q1) = q2}. (19)

Continuing on to the third period where f(Qi−1) =
f(Q2) = D(V − Q2) and where Q2 = q1 + q2, we
proceed in a similar fashion. In particular the cumu-
lative distribution of f(Q2) is estimated by sampling
from the conditional distribution of (V,D) given that
(V,D)∈A1∩A2. Note, however, that if both q1 <K1

and q2 <K2, then the setA1 ∩A2 consists of a single
point in which case the true values of V and D can
be computed. If this happens, the exact optimal quota
can be found without the need of a Monte Carlo sim-
ulation. If on the other hand q1 = K1 or q2 = K2, we
have a situation which can be handled by using the
sampling procedure from Section 2.

In this way the process continues throughout the
periods. At the start of the ith period we determine the
optimal quota, Ki by considering the conditional dis-
tribution of (V,D) given the observed production val-
ues from the previous periods, q1, . . . , qi−1. By com-
paring these numbers with their respective quotas
K1, . . . ,Ki−1, we determine the sets A1, . . . ,Ai−1. If
A1 ∩ · · · ∩ Ai−1 consists of a single point, the true
value of V and D can be computed, while if this is
not the case, we determine the optimal quota Ki us-
ing the sampling procedure from Section 2.

We observe that in cases where qj < Kj , the corre-
sponding Aj is of the form:

Aj = {(v, d) ∈ X : d(v−Qj−1) = qj}. (20)

Once again using the notatation from Section 2, we
introduce transformed random variables Y1, Y2, given
by:

Y1 = Φ1(V,D) = D(V −Qj−1), (21)

Y2 = Φ2(V,D) = D. (22)
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Hence, the inverse transformation is given by:

V = Ψ1(Y1, Y2) = Qj−1 + Y1/Y2, (23)

D = Ψ2(Y1, Y2) = Y2. (24)

Since Ψ2 is an identity function the Jacobian in (3)
takes the special form given in (6). Thus, we get:

|J | = |∂Ψ1(y1, y2)

∂y1
| = y−1

2 . (25)

4 NUMERICAL EXAMPLES
In this section we consider more specific cases. In
all these cases V and D are assumed to be indepen-
dent. The volume, V , is assumed to be lognormally
distributed with E[V ] = 12.0 million barrels of oil
and SD[V ] = 1.0. The decline rate, D is assumed
to be uniformly distributed on the interval [0.1,0.3].
The cost and income rates are chosen to be κ = 30
USD/barrel, and δ = 50 USD/barrel. Finally, we con-
sider the results from 8 production periods.

In all examples the quotas, K1, . . . ,K8 are found
using (15), where the cumulative distribution of
f(Qi−1) is estimated by running a Monte Carlo sim-
ulation. All revenues are presented with a unit of mil-
lion USD.

In the first case we assume that the true values of
V and D are 12 and 0.2 respectively. Thus, the true
values are equal to the expected values in the respec-
tive prior distributions. The results of the simulation
are shown in Table 1.

Table 1: Results from simulation where the V = 12.0 and
D = 0.2.

i Qi−1 Ki qi f(Qi−1) Ri

1 0.00 2.14 2.14 2.40 42.82
2 2.14 2.23 1.97 1.97 31.70
3 4.11 1.56 1.56 1.58 31.24
4 5.67 1.28 1.27 1.27 24.82
5 6.94 1.01 1.01 1.01 20.24
6 7.95 0.81 0.81 0.81 16.19
7 8.76 0.65 0.65 0.65 12.95
8 9.41 0.52 0.52 0.52 10.36

The total result, i.e., R1 + · · ·+R8, is 190.32 mil-
lion USD, while the total discounted result given a
discount rate of 5% per period is 169.15 million USD.

We observe that q1 = K1 = 2.14. Thus, the set A1

is given by;

A1 = {(v, d) ∈ X : dv ≥ 2.14}. (26)

Furthermore, q2 = 1.97 < K2 = 2.23. Thus, since
Q1 = 2.14 the set A2 is given by;

A2 = {(v, d) ∈ X : d(v− 2.14) = 1.97}. (27)

Continuing in this way, we get that:

A3 = {(v, d) ∈ X : d(v− 4.11) ≥ 1.56}, (28)

and:

A4 = {(v, d) ∈ X : d(v− 5.67) = 1.27}, (29)

At this stage the intersection A1 ∩ · · · ∩ A4 consists
of a single point, (v, d) = (12,0.2). Thus, given all
the available information the true value of (V,D) can
be computed. As a result we see that the remaining
quotas are determined without any uncertainty, i.e.,
Ki = f(Qi−1) for i = 5,6,7,8.

In the second case we assume that the true values
of V and D are 12 and 0.1 respectively. Thus, the true
value of the volume is equal to the expected value,
while the decline rate is just half of its expectation.
The results of the simulation are shown in Table 2.

Table 2: Results from simulation where the V = 12.0 and
D = 0.1.

i Qi−1 Ki qi f(Qi−1) Ri

1 0.00 2.14 1.20 1.20 -4.30
2 1.20 1.07 1.07 1.08 21.41
3 2.27 0.96 0.96 0.97 19.26
4 3.23 0.87 0.87 0.88 17.36
5 4.10 0.78 0.78 0.79 15.66
6 4.88 0.70 0.70 0.71 14.10
7 5.59 0.63 0.63 0.64 12.69
8 6.22 0.57 0.57 0.58 11.47

The total result is reduced to 107.64 million USD,
while the total discounted result is reduced to 90.10
million USD. This reduction is not surprising since a
lower decline rate implies that one can produce much
less oil per period.

In this case we see that the first quota, K1 = 2.14 is
way too high. This is of course due to the fact that
our prior distribution of D is optimistic compared
to the true value of D. As a result we actually lose
money during the first period. In the other periods,
however, we reduce the quotas according to the infor-
mation we have and obtain near optimal results. Thus,
even though we started out with a far too optimistic
prior, the chosen quotas are quickly adjusted in order
to minimize loss.

Note that in this case we have:

A1 = {(v, d) ∈ X : d(v−Q0) = q1}, (30)

while:

Aj = {(v, d) ∈ X : d(v−Qj−1) ≥ qj}, (31)
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for j = 2, . . . ,7. Thus, the true value of (V,D) is not
determined. Still the uncertainty about (V,D) is re-
duced considerable after the first period of produc-
tion.

In the third case we assume that the true values of
V and D are 12 and 0.3 respectively. Thus, the true
value of the volume is kept at its expected value, while
the decline rate is now increased by 50% with respect
to its expectation. The results of the simulation are
shown in Table 3.

Table 3: Results from simulation where the V = 12.0 and
D = 0.3.

i Qi−1 Ki qi f(Qi−1) Ri

1 0.00 2.14 2.14 3.60 42.74
2 2.14 2.23 2.23 2.96 44.59
3 4.37 1.95 1.95 2.29 38.97
4 6.32 1.61 1.61 1.71 32.12
5 7.92 1.30 1.22 1.22 22.06
6 9.15 0.88 0.86 0.86 16.30
7 10.00 0.60 0.60 0.60 11.99
8 10.60 0.42 0.42 0.42 8.39

The total result is increased to 217.18 million USD,
while the total discounted result is increased to 194.15
million USD. Again this increase is not surprising
since a higher decline rate implies that one can pro-
duce much more oil per period.

In this case the chosen quotas are too small in the
beginning. Thus, the quotas are utilized completely
during the first four periods, i.e., qj = Kj for j =
1,2,3,4. As a result we see that the sets A1, . . . ,A4

are given by:

Aj = {(v, d) ∈ X : d(v−Qj−1) ≥ qj}, (32)

for j = 1,2,3,4. Then in periodes 5 and 6 we see that
the chosen quotas become too large, i.e., q5 <K5 and
q6 < K5. Thus, A5 and A6 are given by:

Aj = {(v, d) ∈ X : d(v−Qj−1) = qj}, (33)

for j = 5,6. At this stage we can compute the true
values of V and D. Thus, in the remaining periods we
obtain the optimal quotas without any uncertainty.

In the final example we return to the case where the
true values of V and D are 12 and 0.2 respectively.
However, in this case we run the simulations in such a
way that only information from the most recent period
is used in the optimization of the quotas. The results
of the simulation are shown in Table 4.

Compared to the first case we see that total result is
reduced from 190.32 million USD to 174.94 million
USD, while the total discounted result is reduced from
169.15 million USD to 156.85 million USD.

Table 4: Results from simulation where the V = 12.0 and
D = 0.2, and where only information from the most recent
period is used in the optimization.

i Qi−1 Ki qi f(Qi−1) Ri

1 0.00 2.14 2.14 2.40 42.86
2 2.14 2.23 1.97 1.97 31.80
3 4.11 1.56 1.56 1.58 31.21
4 5.67 1.50 1.27 1.27 18.26
5 6.94 0.99 0.99 1.01 19.88
6 7.93 0.97 0.81 0.81 11.53
7 8.75 0.64 0.64 0.65 12.71
8 9.38 0.65 0.52 0.52 6.70

We observe that in the first three periods the re-
sults are essentially the same as in the first example.
In the fourth period, however, the substantial infor-
mation gathered in the two first periods is lost. As a
result the chosen quota, K4 = 1.50 is too high com-
pared to the potential production rate f(Q3) = 1.27.
The same problem occurs in periods 6 and 8 as well.
This implies that the total result is significantly worse
compared to the case where all information is utilized
in the optimization. Note that the effect on the dis-
counted result is less severe since the differences typi-
cally occur in the later periods which have less impact
on the discounted result. This last example demon-
strates the significance of including all available in-
formation in the optimization.

5 CONCLUSIONS
In the present paper we have presented a general
method for running Monte Carlo simulations in a case
where all the distributions are conditioned on a set of
equalities and inequalities. This method is then ap-
plied to the problem of optimizing production quotas
under uncertainty in a discrete time production model.
The numerical examples demonstrate how this en-
ables us to fine-tune the quotas as more and more in-
formation is gathered. The performance of the method
depends on the quality of the prior information. Still
even in cases where this true values are significantly
different from their respective prior expectations, this
is quickly picked up by the updating scheme.

Throughout the paper we have focussed on cases
where all the optimization is done based on a short-
term perspective. That is, a quota is considered opti-
mal if it is optimal for the upcoming production pe-
riod. Long-term effects of the quotas, on the other
hand, are not considered. It may e.g., happen that by
choosing larger quotas in the first periods, more in-
formation is gathered, and thus the uncertainty is re-
duced for the later periods. In order to handle this,
one needs to consider a simultaneous optimization of
all the quotas. Alternatively, the problem can be an-
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alyzed using stochastic dynamic programming. We
will return to this issue in an extended study of this
problem.
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