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1. Introduction

Discrete event models are typically used in simulation studies to model and analyze pure
jump processes. For an extensive introduction to discrete event models we refer to Glasserman
& Yao (1994). A discrete event model can be viewed as a system consisting of a collection of
stochastic processes, where the states of the individual processes change as results of various
kinds of events occurring at random points of time. Between these events the states of the
processes are considered to be constant. We refer to the processes included in the collection,
as the elementary processes of the system. In our context we always assume that each event only
affects one of the elementary processes.
More formally we consider a pure jump process S, and let S(t) denote the state of the process
at time t ≥ 0. Moreover, we let T1 < T2 < · · · denote the points of time of the events affecting
the process, and let T0 = 0. In our context a pure jump process is a process where the state
function, S(t), can be written in the following form:

S(t) = S(0) +
∞

∑
j=1

I(Tj ≤ t)Jj, t ≥ 0, (1)

where I(·) denotes the indicator function, and Jj denotes the change in the state of the process
at time Tj. The representation (1) implies that the state function S(t) is piecewise constant
and right-continuous in t, with jumps at T1 < T2 < · · · . In particular, for j = 0,1, . . ., we have
S(t) = S(Tj) for all t ∈ [Tj, Tj+1), implying that limt→T+

j
S(t) = S(Tj).

The fact that a pure jump process is right-continuous and piecewise constant in t is convenient
during simulations. Hence, in order to keep track of how the process evolves and to update



the value of the state function, only the points of time where the events happen need to be
considered.
The infinite sum in (1) indicates that the number of events occurring in the interval [0, t] is
unbounded. The possibility of having an infinite number of events in [0, t], however, may
cause various technical difficulties. In particular, this may cause simulations to break down
since an infinite number of events need to be generated and handled. See Glasserman (2004)
for a further discussion of this issue. To avoid these difficulties, we always assume that the
number of events occurring in any finite interval is finite with probability one. A pure jump
process satisfying this assumption is said to be regular. Some basic results on regularity are
included in the appendix. See also Klebaner (2005).

Stationary statistical properties of a system, can easily be estimated by running a single discrete
event simulation on the system over a sufficiently long time horizon, or by working directly
on the stationary probability distributions of the elementary processes. Sometimes, however,
one needs to estimate how the statistical properties of the system evolve over time. In such
cases it is necessary to run many simulations to obtain stable results. Moreover, one must
store much more information from each simulation. A crude approach to this problem is to
sample the system state at fixed intervals of time, and then use the mean values of the states at
these points as estimates of the corresponding statistical properties. Using a sufficiently high
sampling rate, i.e., short intervals between sampling points, a satisfactory estimate of the full
curve can be obtained. Still, all information about the process between the sampling points is
thrown away. Thus, we propose an alternative sampling procedure where we utilize process
data between the sampling points as well.
In order to illustrate the main ideas we use discrete events in order to analyze a multicomponent
binary monotone system of repairable components. In Natvig et al. (2009) the simulation meth-
ods developed in the present chapter, are used to estimate the Natvig measures of component
importance in repairable binary systems of binary components and applied to an offshore
oil and gas production system. For nonrepairable systems the Natvig measure is treated in
Natvig (1979), Natvig (1982) and Natvig (1985).

2. Basic reliability theory

We start out by briefly reviewing basic concepts of reliability theory. See Barlow & Proschan
(1981). A binary monotone system is an ordered pair (C,φ) where C = {1, . . . ,n} is a nonempty
finite set, and φ is a binary function. The elements of C are interpreted as components of some
technological system. Each component, as well as the system itself can be either functioning
or failed. We denote the state of component i at time t ≥ 0 by Xi(t), where Xi(t) = 1 if i
is functioning at time t, and zero otherwise, i = 1, . . . ,n. We also introduce the component
state vector XXX(t) = (X1(t), . . . , Xn(t)). The function φ is called the structure function of the
system, and expresses the state of the system as a function of the component state vector, and
is assumed to be non-decreasing in each argument. Thus, φ = φ(XXX(t)) = 1 if the system is
functioning at time t and zero otherwise.
In the present chapter we consider systems with repairable components. Thus, for i = 1, . . . ,n
and j = 1,2, . . . let:

Uij = The jth lifetime of the ith component.

Dij = The jth repair time of the ith component.



We assume that Uij has an absolutely continuous distribution with a positive mean value
µi < ∞, while Dij has an absolutely continuous distribution with a positive mean value νi < ∞,
i = 1, . . . ,n, j = 1,2, . . .. All lifetimes and repair times are assumed to be independent. Thus, in
particular the component processes X1, . . . , Xn are independent of each other.
Let Ai(t) be the availability of the ith component at time t, i.e., the probability that the com-
ponent is functioning at time t. That is, for i = 1, . . . ,n we have:

Ai(t) = Pr(Xi(t) = 1) = E[Xi(t)].

The corresponding stationary availabilities are given by:

Ai = lim
t→∞

Ai(t) =
µi

µi + νi
, i = 1, . . . ,n. (2)

Introduce AAA(t) = (A1(t), . . . , An(t)) and AAA = (A1, . . . , An). The system availability at time t is
given by:

Aφ(t) = Pr(φ(XXX(t)) = 1) = E[φ(XXX(t))] = h(AAA(t)),

where h is the system’s reliability function. The corresponding stationary availability is given
by:

Aφ = lim
t→∞

Aφ(t) = h(AAA). (3)

The component i is said to be critical at time t if ψi(XXX(t)) = φ(1i, XXX(t))− φ(0i, XXX(t)) = 1. We
will refer to ψi(XXX(t)) as the criticality state of component i at time t. The Birnbaum measure of
importance of component i at time t, is defined as the probability that component i is critical

at time t, and denoted I(i)B (t). See Birnbaum (1969). Thus,

I(i)B (t) = Pr(ψi(XXX(t)) = 1) = E[ψi(XXX(t))] (4)

= h(1i, AAA(t))− h(0i, AAA(t)).

The corresponding stationary measure is given by:

I(i)B = lim
t→∞

I(i)B (t) = h(1i, AAA)− h(0i, AAA). (5)

3. Discrete event simulation

Let (C,φ) be a binary monotone system with component state processes X1, . . . , Xn. For
i = 1, . . . ,n we denote the events affecting the process Xi by Ei1, Ei2, . . ., listed in chronological
order. Since we assumed that all lifetimes and repair times have absolutely continuous distri-
butions, all these events happen at distinct points of time almost surely. We let Ti1 < Ti2, . . . be
the corresponding points of time for these events. We also let Ti0 = 0, i = 1, . . . ,n. As in (1) the
component state processes can then be expressed as:

Xi(t) = Xi(0) +
∞

∑
j=1

I(Tij ≤ t)Jij, t ≥ 0, i = 1, . . . ,n, (6)

where the jumps Jij are either −1 if Eij is a failure event, or +1 if Eij is a repair event. We
assume that all components start out by being functioning. Thus, we have Xi(0) = 1, and Jij =



(−1)j, for i = 1, . . . ,n and j = 1,2, . . .. Finally, for i = 1, . . . ,n we introduce the times between
the events defined as:

∆ij = Tij − Tij−1, i = 1, . . . ,n, j = 1,2, . . . . (7)

Then for i = 1, . . . ,n we have:

∆i1 = Ui1, ∆i2 = Di1, ∆i3 = Ui2, . . . (8)

Since Ui1,Ui2, . . . are independent and identically distributed with positive mean value µi, it
follows by Proposition A.1 that Xi is a regular pure jump process, i = 1, . . . ,n. Hence, by
Proposition A.4 the system state φ = φ(XXX) as well as the criticality states ψ1(XXX), . . . ,ψn(XXX) are
regular pure jump processes.
At the system level the event set is the union of all the component event sets. Note that since
we assumed that all lifetimes and repair times have absolutely continuous distributions, each
system event corresponds almost surely to a unique component event.

In order to simulate such a system, we use an object oriented approach where the components
as well as the system are represented as objects. The component objects are equipped with
methods for generating failure and repair events according to their respective life- and repair
time distributions. The system object determines the state of the system as a function of the
component states. To keep track of the events and process them in the correct order, they are
organized in a dynamic queue sorted with respect to the points of time of the events. The
component processes place their upcoming events into the queue where they stay until they
are processed.
More specifically, at time zero each component starts out by being functioning, and places its
first failure event into the queue. As soon as all these failure events have been placed into the
queue, the first event in the queue is processed. That is, the system time is set to the time of the
first event, and the event is taken out of the queue and passed on to the component responsible
for handling this event. The component then updates its state, generates a new event, in this
case a repair event, which is placed into queue, and notifies the system about its new state so
that the system state can be updated as well. Then the next event in the queue is processed
in the same fashion, and so forth until the system time reaches a certain predefined point of
time. Note that since the component events are generated as part of the event processing, the
number of events in the queue stays constant.

3.1 Sampling events
Although the system state and component states stay constant between events, it may still
be of interest to log the state values at predefined points of time. In order to facilitate this,
we introduce yet another type of event, called a sampling event. Such sampling events will
typically be spread out evenly on the timeline. Thus, if e1, e2, . . . denote the sampling events,
and t1 < t2 < · · · are the corresponding points of time, we would typically have tj = j · ∆ for
some suitable number ∆ > 0.
The sampling events will be placed into the queue in the same way as for the ordinary events.
As a sampling event is processed, the next sampling event will be placed into the queue. Thus,
at any time only one sampling event needs to be in the queue.



3.2 Updating system and criticality states
In principle one must update the system state every time there is a change in the component
states. For large complex systems, these updates may slow down the simulations consider-
ably. Thus, whenever possible one should avoid computing the system state. Fortunately,
since the structure function of a binary monotone system is non-decreasing in each argument,
it is possible to reduce the updating to a minimum. To explain this in detail, we consider the
event Eij affecting component i. Let Tij be the corresponding point of time, and let XXX(T−ij )
denote the value of the component state vector immediately before Eij occurs, i.e.,

XXX(T−ij ) = lim
t→T−ij

XXX(t).

Note that by Proposition A.2 these limits exist since the component state processes are regular.
If Eij is a failure event of component i, i.e., Xi(T−ij ) = 1 and Xi(Tij) = 0, then the event cannot

change the system state if the system is already failed, i.e., φ(XXX(T−ij )) = 0. Similarly, if Eij is

a repair event of component i, i.e., Xi(T−ij ) = 0 and Xi(Tij) = 1, this event cannot change the

system state if the system is already functioning, i.e., φ(XXX(T−ij )) = 1. Thus, we see that we
only need to recalculate the system state whenever:

φ(XXX(T−ij )) 6= Xi(Tij). (9)

Hence, the number of times we need to recalculate the system state is drastically reduced.
In cases where we keep track of the criticality state of each of the components, we can simplify
the calculations even further by noting that the system state is changed as a result of the event
Eij if and only if component i is critical at the time of the event. Moreover, if i is critical, and
Eij is a failure event, it follows that the system fails as a result of this event, i.e., φ(XXX(Tij)) = 0.
If on the other hand i is critical, and Eij is a repair event, it follows that the system becomes
functioning as a result of this event, i.e., φ(XXX(Tij)) = 1. Thus, we see that all the calculations
we need to carry out, are related to the updating of the criticality states.
A similar technique can be used when updating the criticality states of the components. Thus,
we consider the event Eij affecting the state of component i. We first note that the criticality
state function of component i, ψi(XXX(t)) = φ(1i, XXX(t)) − φ(0i, XXX(t)) does not depend on the
state of component i. Thus, the event Eij does not have any impact on the criticality state
of i. However, Eij may still change the criticality state of other components in the system
even when the system state remains unchanged. Thus, let k 6= i be another component, and
consider its criticality state function ψk(XXX(Tij)).
If Xk(Tij) = 1 and φ(XXX(Tij)) = 0, it follows that φ(1k, XXX(Tij)) = φ(0k, XXX(Tij)) = 0. Thus, in this
case we must have ψk(XXX(Tij)) = 0. On the other hand, if Xk(Tij) = 0 and φ(XXX(Tij)) = 1, it
follows that φ(1k, XXX(Tij)) = φ(0k, XXX(Tij)) = 1. Thus, we must have ψk(XXX(Tij)) = 0 in this case
as well. Hence, we see that a necessary condition for component k to be critical at time Tij is
that:

φ(XXX(Tij)) = Xk(Tij). (10)

Utilizing these observations reduces the need to recalculate the criticality states.

3.3 Estimating availability and importance
Stationary availability and importance measures are typically easy to derive. If the system
under consideration is not too complex, these quantities can be calculated analytically using



(2), (3) and (5). For larger complex systems one may estimate the availability and importance
using Monte Carlo simulations. A fast simulation algorithm for this is provided in Huseby &
Naustdal (2003). Alternatively, estimates can be obtained by running a single discrete event
simulation on the system over a sufficiently long time horizon.
Here, however, we focus on the problem of estimating the system availability Aφ(t) and the

component importance measures I(1)B (t), . . . , I(n)B (t) as functions of t for all t ∈ [0, tmax]. For
practical purposes, however, we have to limit the estimation to a finite evenly spaced set
of points. More specifically, we will estimate Aφ(t) for t ∈ {t1, . . . , tN}, where tj = j · ∆, j =
1, . . . , N, and tN = N · ∆ = tmax.
A simple approach to this problem is to run M simulations on the system, where each sim-
ulation covers the time interval [0, tmax]. In each simulation we sample the values of φ and
ψ1, . . . ,ψn at each sampling point t1, . . . , tN . We denote the sth simulated value of the compo-
nent state vector process at time t≥ 0 by XXXs(t), s = 1, . . . , M, and obtain the following estimates
for j = 1, . . . , N:

Âφ(tj) =
1
M

M

∑
s=1

φ(XXXs(tj)), (11)

Î(i)B (tj) =
1
M

M

∑
s=1

ψi(XXXs(tj)). (12)

We will refer to these estimates as pointwise estimates. It is easy to see that for j = 1, . . . , N, Âφ(tj)

and Î(i)B (tj) are unbiased and strongly consistent estimates of Aφ(tj) and I(i)B (tj) respectively.

In order to estimate Aφ(t) and I(i)B (t) between the sampling points, one may use interpolation.
Using a sufficiently high sampling rate, i.e., a high value of N or equivalently a small value
of ∆, a satisfactory estimate of the full curve can be obtained. Still, all information about the
process between the sampling points is thrown away.
We now present an alternative approach where we utilize process data between the sampling
points as well. As above we assume that the system is simulated M times over the interval
[0, tmax], and let XXXs(t) denote the sth simulated value of the component state vector process

at time t ≥ 0, s = 1, . . . , M. Then let E(1)
s , E(2)

s , . . . denote the events in the interval [0, tmax] in
the sth simulation, including sampling events at times t1, . . . , tN , and let T(1)

s < T(2)
s < · · · be

the corresponding points of time, s = 1, . . . , M. In this case we also include an extra sampling

event in each simulation at time t0 = 0, denoted E(0)
s , and let T(0)

s = 0, s = 1, . . . , M.
The idea now is to use average simulated availability and criticalities from each interval
[tj−1, tj), j = 1, . . . , N as respective estimates for the availability and criticalities at the mid-
points of these intervals. By using Proposition A.3, we obtain the following estimates for
j = 1, . . . , N:

Ãφ(t̄j) =
1
M

M

∑
s=1

1
∆

∫ tj

tj−1

φ(XXXs(t))dt

=
1

M∆

M

∑
s=1

∑
k∈E (j)

s

φ(XXXs(T
(k)
s ))(T(k+1)

s − T(k)
s ), (13)



Ĩ(i)B (t̄j) =
1
M

M

∑
s=1

1
∆

∫ tj

tj−1

ψi(XXXs(t))dt

=
1

M∆

M

∑
s=1

∑
k∈E (j)

s

ψi(XXXs(T
(k)
s ))(T(k+1)

s − T(k)
s ), (14)

where E (j)
s denotes the index set of the events in [tj−1, tj) in the sth simulation, and where we

have introduced the interval midpoints t̄j = (tj−1 + tj)/2, j = 1, . . . , N. We will refer to these
estimates as interval estimates.
By using the right-continuity of the component state processes, it is easy to see that for

j = 1, . . . , N, Ãφ(t̄j) and Ĩ(i)B (t̄j) are unbiased and strongly consistent estimates of the corre-
sponding average availability and criticality in the intervals [tj−1, tj) respectively. By choos-
ing ∆ so that the availabilities and criticalities are relatively stable within each interval, the

interval estimates are approximately unbiased estimates for Aφ(t̄j) and I(i)B (t̄j) as well. In fact
the resulting interval estimates tend to stabilize much faster than the pointwise estimates. In

order to estimate Aφ(t) and I(i)B (t) between the interval midpoints, one may again use inter-
polation. Note that since all process information is used in the estimates, satisfactory curve
estimates can be obtained for a much higher value of ∆ than the one needed for the pointwise
estimates. In the next section we will demonstrate this on some examples.

4. Numerical results

In order to illustrate the methods presented in Section 3 we consider a simple bridge system
shown in Figure 1. The components of this system are the five edges in the graph, labeled
1, . . . ,5. The system is functioning if the source node s can communicate with the terminal
node t through the graph. All the components in the system have exponential lifetime and
repair time distributions with mean values 1 time unit. The objective of the simulation is to

estimate Aφ(t) and I(1)B (t), . . . , I(5)B (t) for t ∈ [0, tmax], where tmax = 1000.

Figure 1. A bridge system.



All the simulations were carried out using a program called Eventcue1. This program has an
intuitive graphical user interface, and can be used to estimate availability and criticality of
any undirected network system.
Since all the lifetimes and repair times are exponentially distributed with the same mean, it
is easy to derive explicit analytical expressions for the component availabilities. To see this,
we consider the ith component at a given point of time t and introduce Ni(t) as the number
of failure and repair events affecting component i in [0, t]. With times between events being
independent and exponentially distributed with mean 1 it follows that Ni(t) has a Poisson
distribution with mean t. Moreover, component i is functioning at time t if and only if Ni(t) is
even. Thus, the ith component availability at time t is given by:

Ai(t) =
∞

∑
k=0

Pr(Ni(t) = 2k) =
∞

∑
k=0

t2k

(2k)!
e−t. (15)

Using (15) one can verify numerically that all the component availabilities converge very fast
towards their common stationary value, 0.5. As a result of this the system availability, Aφ(t),
converges very fast towards its stationary value, 0.5, as well. In fact, for t > 20, numerical
calculations show that |Aφ(t)− 0.5|< 10−15. Similarly, the Birnbaum measures of importance

converges so that for t > 20, |I(i)B (t) − 0.375| < 10−15, i = 1,2,4,5, while |I(3)B (t) − 0.125| <
10−15. Thus, for t > 20 the true values of all the curves are approximately constant. This
makes it easy to evaluate and compare the quality of the different Monte Carlo estimates in
this particular case.

Figure 2. Interval estimate (black curve) and pointwise estimate (gray curve) of the system
availability curve.

Figure 2 and Figure 3 show respectively the system availability curve and the criticality curve
of component 1. The black curves are obtained using the interval estimates, while the gray

1Eventcue is a java program developed at the Department of Mathematics, University of Oslo. The
program is freely available at http://www.riscue.org/eventcue/.



Figure 3. Interval estimate (black curve) and pointwise estimate (gray curve) of the impor-
tance curve of component 1.

curves show the corresponding pointwise estimate curves. In all cases we have used M = 1000
simulations and N = 100 sample points.
The plots clearly show the difference between the two methods. The black interval estimate
curves are much more stable, and thus much closer to the true curve values, compared to the
gray pointwise estimates.
One may think that increasing the number of sampling points would make the pointwise
curve estimate better as more information is sampled. However, it turns out that the main
effect of this is that the curve jumps more and more up and down. In fact with shorter intervals
between sampling points the interval estimate becomes more unstable as well, and in the limit
where the interval lengths go to zero, the two methods become equivalent. The only effective
way of stabilizing the results for the pointwise curve estimate is to increase the number of
simulations, i.e., M.

M 2000 4000 6000 8000
St.dev. 0.0121 0.0076 0.0062 0.0054

Table 1. Standard deviations for the pointwise curve estimates of the system availability curve.

In Table 1 we have listed estimated standard deviations for pointwise curve estimates of the
system availability curve for different values of M. We see that the standard deviation shows
a steady decline as M increases. The corresponding numbers for M = 1000 are 0.0055 for the
interval curve estimate and 0.0148 for the pointwise estimate. Thus, in this particular case we
see that to obtain a pointwise curve estimate with a comparable stability to the interval curve
estimate, one needs about eight times as many simulations.
For the interval curve estimate it is possible to obtain an even smoother curve simply by
increasing ∆. Still, in general ∆ should not be made too large, as this could produce a curve
where important effects are obscured. Thus, in order to obtain optimal results, one should try



out different values for ∆, and balance smoothness against the need of capturing significant
oscillation properties of the curve.
Now, if smoothness is important, it is of course possible to apply some standard smoothing
technique, such as moving averages or exponential smoothing, to the pointwise curve esti-
mate. While such post-smoothing would clearly make the curve smoother, this technique
does not add any new information to the estimate. The main advantage with the interval
curve estimates is that such estimates actually use information about all events. Especially in
cases where events occur at a very high rate, this turns out to be a great advantage.

5. Applications to importance measure estimation

In this section we shall explain how the sampling methods developed in Section 3 can be used
to estimate the more advanced importance measures introduced in Barlow & Proschan (1975)
and Natvig & Gåsemyr (2009).

5.1 Barlow-Proschan importance measure estimation
Let (C,φ) be a binary monotone system where C = {1, . . . ,n}, and introduce the following
pure jump processes for i = 1, . . . ,n and t > 0:

Ki(t) = The number of failures of the ith component in [0, t], (16)

Li(t) = The number of system failures caused by the ith component in [0, t]. (17)

We also introduce the mean value functions of the Ki- and Li-processes. That is, for i = 1, . . . ,n
and t > 0 we let:

κi(t) = E[Ki(t)], (18)

λi(t) = E[Li(t)]. (19)

In Barlow & Proschan (1975) it is proved heuristically that for i = 1, . . . ,n and t > 0:

λi(t) =
∫ t

0
I(i)B (u)dκi(u). (20)

The Barlow-Proschan importance measure is based on the quantity λi(t). According to this
measure a component which often causes system failure is considered to be important.
Now, for i = 1, . . . ,n and t > 0 it is very easy to estimate λi(t) directly by simply running M
simulations of the system over the time interval [0, t], and counting the number of times com-
ponent i causes system failures. Thus, if Lis(t) denotes the number of system failures caused
by the ith component in [0, t] in the sth simulation, we get the following strongly consistent
estimate of λi(t):

λ̄i(t) =
1
M

M

∑
s=1

Lis(t). (21)

However, in order to better understand the interaction between the criticality function ψi and
the Ki-process, it can sometimes be of interest to estimate λi(t) using (20) instead. In order

to accomplish this, we use the curve estimates for I(i)B obtained in the previous sections in
combination with curve estimates for κi.
Pointwise estimates for κi over a suitable time interval [0, tmax] are obtained by running M
simulations of component i and sampling the state of the Ki-process at evenly spaced points



t1, t2, . . . , tN , where as before tN = tmax. Thus, if Kis(t) denotes the number of failures of com-
ponent i in [0, t] in the sth simulation, we get the following strongly consistent estimate of
κi(tj), for i = 1, . . . ,n and j = 1, . . . , N:

κ̂i(tj) =
1
M

M

∑
s=1

Kis(tj). (22)

Furthermore, interval estimates for κi over the time interval [0, tmax] are obtained by running
M simulations of component i and calculating the average values of the Ki-process over the
intervals [tj−1, tj), j = 1, . . . , N and where t0 = 0.
We assume as before that each of these intervals has length ∆. Then for i = 1, . . . ,n, we let

E(1)
is , E(2)

is , . . . denote the events affecting the process Ki in the interval [0, tmax] in the sth sim-

ulation, including the sampling events, and let T(1)
is < T(2)

is < · · · be the corresponding points
of time, s = 1, . . . , M. As before we also include an extra sampling event in each simulation at

time t0 = 0, denoted E(0)
is , and let T(0)

is = 0, s = 1, . . . , M. By using Proposition A.3 we then get
the following interval estimates for i = 1, . . . ,n and j = 1, . . . , N:

κ̃i(t̄j) =
1
M

M

∑
s=1

1
∆

∫ tj

tj−1

Ki(t)dt

=
1

M∆

M

∑
s=1

∑
k∈E (j)

is

Kis(T
(k)
is )(T(k+1)

is − T(k)
is ), (23)

where E (j)
is denotes the index set of the events affecting the process Ki in [tj−1, tj) in the sth

simulation, and where the interval midpoints are t̄j = (tj−1 + tj)/2, j = 1, . . . , N.
By combining pointwise curve estimates or interval estimates with the respective estimates

for I(i)B we get the following estimates for λi(t), i = 1, . . . ,n and t > 0:

λ̂i(t) =
∫ t

0
Î(i)B (u)dκ̂i(u), (24)

λ̃i(t) =
∫ t

0
Ĩ(i)B (u)dκ̃i(u), (25)

where the integrals are easily calculated numerically.

5.2 Natvig importance measure estimation
In order to explain the ideas behind the Natvig importance measures introduced in Natvig
& Gåsemyr (2009), we consider once again a binary monotone system (C,φ). Moreover, let
i ∈ C be a component in the system, and let Ei1, Ei2, . . . be the events affecting this compo-
nent occurring respectively at Ti1 < Ti2 < · · · . For each of these events we then introduce
new fictive events E′i1, E′i2, . . . occurring respectively at T′i1, T′i2, · · · . We assume that the fictive
events always occur after their respective real events. That is, Tij < T′ij, j = 1,2, . . .. The fictive
events could represent the results of some sort of fictive action altering how the state of the
component interacts with the system throughout the interval between the real event and the
corresponding fictive event. If Eij is a failure event, then E′ij could e.g., be a fictive failure
event occurring as a result of the component undergoing a fictive minimal repair at Tij and



then functioning until T′ij. Similarly, if Eij is a repair event, one may consider fictive actions,
such as e.g., a fictive minimal failure at Tij that extends the repair interval until T′ij, where
a fictive repair event occurs. For a precise definition of the concept of minimal repairs and
failures, we refer to Natvig & Gåsemyr (2009). The effect on the system of such fictive ac-
tions typically says something about the importance of the component. In any case, however,
unless the component is critical at some point during the interval [Tij, T′ij), the system will
not be affected by the fictive action. This motivates the definition of the following pure jump
processes (i = 1, . . . ,n):

Zi(t) =
∫ t

0

∞

∑
j=1

cij · I(Tij ≤ u < T′ij)ψi(XXX(u))du, (26)

where cij = cF if Eij is a failure event, and cij = cR if Eij is a repair event, and where cF and
cR are suitable known constants, typically 0 or 1. Note that if cF = 1, all the fictive minimal
repairs occurring in [0, t] will be included as contributions to Zi(t), while if cF = 0, these fictive
actions will be ignored. Similarly, if cR = 1, all the fictive minimal failures occurring in [0, t]
will be included as contributions to Zi(t), while if cR = 0, these fictive actions will be ignored.
We also introduce the mean value functions of the Zi-processes. That is, for i = 1, . . . ,n and
t > 0 we let:

ζi(t) = E[Zi(t)]. (27)

The mean value functions ζ1(t), . . . ,ζn(t) now serve as a basis for an importance measure. In
particular, it can be shown that the importance measures introduced in Natvig & Gåsemyr
(2009) can be derived from these functions. The so-called extended Natvig measure is e.g.,
obtained by setting cF = cR = 1.
Since the process Zi(t) involves both real and fictive events, estimating its mean value func-
tion using standard discrete event simulation can be a complex task. While the real events
represent a single possible sequence of changes in the states of the system and its compo-
nents, each of the fictive events introduces an alternative sequence of state changes. Note in
particular that it may happen that a fictive event, E′ij, occurs after the next real event, Eij+1, in
which case the intervals [Tij, T′ij) and [Tij+1, T′ij+1) overlap. Hence, keeping track of all the dif-
ferent parallel sequences of events is indeed a challenge. Armed with the methods introduced
in the previous section, however, the problem can easily be solved. In order to study this in
further detail we first note that since the component processes are assumed to be independent,
we have:

ζi(t) =
∫ t

0
[

∞

∑
j=1

cij Pr(Tij ≤ u < T′ij)]I
(i)
B (u)du

=
∫ t

0
ωi(u)I(i)B (u)du, (28)

where we have introduced the weight function:

ωi(u) = E[
∞

∑
j=1

cij I(Tij ≤ u < T′ij)] =
∞

∑
j=1

cij Pr(Tij ≤ u < T′ij). (29)

Now, by running a separate discrete event simulation for each of the components the weight
functions, ω1, . . . ,ωn, can easily be estimated using similar techniques as the ones discussed in



the previous sections. More specifically, we introduce the processes W1(t), . . . ,Wn(t) defined
by:

Wi(t) =
∞

∑
j=1

cij I(Tij ≤ t < T′ij), t ≥ 0, i = 1, . . . ,n. (30)

To simplify the expressions it is convenient to introduce a common notation for all events, real
or fictive, affecting the process Wi(t), i = 1, . . . ,n. We sort these events in chronological order

and denote them by E(1)
i , E(2)

i , . . .. Moreover, we let T(1)
i < T(2)

i < · · · be the points of time
corresponding to these events.
Since we have assumed that the fictive events always occur after their respective real events,
it is easy to see that the processes W1(t), . . . ,Wn(t) are regular pure jump processes that can be
written as:

Wi(t) = Wi(0) +
∞

∑
j=1

I(T(j)
i ≤ t)J(j)

i , t ≥ 0, i = 1, . . . ,n, (31)

where W1(0) = · · · = Wn(0) = 0, and where the jumps are given by:

J(j)
i =


+cF if E(j)

i is a real failure event

−cF if E(j)
i is a fictive failure event

+cR if E(j)
i is a real repair event

−cR if E(j)
i is a fictive repair event

i = 1, . . . ,n, j = 1,2, . . . . (32)

From (29) and (30) we have E[Wi(t)] = ωi(t), t ≥ 0, i = 1, . . . ,n. Thus, in order to estimate the
weight functions ω1(t), . . . ,ωn(t) over a suitable time interval [0, tmax], we run M simulations
for each of the processes W1, . . . ,Wn over this interval, and sample the processes at the evenly
spaced points t1, t2, . . . , tN , where tN = tmax. Unbiased and strongly consistent pointwise esti-
mates of the weight functions are then obtained using the following formula:

ω̂i(tj) =
1
M

M

∑
s=1

Wis(tj), j = 1, . . . , N, i = 1, . . . ,n, (33)

where Wis(t) denotes the value of Wi(t) at time t ≥ 0 in the sth simulation, s = 1, . . . , M, i =
1, . . . ,n.

Alternatively, we can obtain interval estimates of the weight functions in the same way as we
did in the previous subsection. As above we assume that the processes W1, . . . ,Wn are simu-
lated M times over the interval [0, tmax], and let Wis(t) denote the value of Wi(t) at time t ≥ 0
in the sth simulation, s = 1, . . . , M, i = 1, . . . ,n. Then for i = 1, . . . ,n, we let E(1)

is , E(2)
is , . . . denote

the events affecting the process Wi in the interval [0, tmax] in the sth simulation, including the

sampling events, and let T(1)
is < T(2)

is < · · · be the corresponding points of time, s = 1, . . . , M. As
for the previous interval estimates we also include an extra sampling event in each simulation

at time t0 = 0, denoted E(0)
is , and let T(0)

is = 0, s = 1, . . . , M.
The interval estimates for the weight functions are then obtained by using average simulated
values of the processes W1, . . . ,Wn from each interval [tj−1, tj), j = 1, . . . , N as estimates for the



respective weight functions at the midpoints of these intervals. By using Proposition A.3 we
obtain the following estimates for i = 1, . . . ,n and j = 1, . . . , N:

ω̃i(t̄j) =
1
M

M

∑
s=1

1
∆

∫ tj

tj−1

Wis(t)dt

=
1

M∆

M

∑
s=1

∑
k∈E (j)

is

Wis(T
(k)
is )(T(k+1)

is − T(k)
is ), (34)

where once again E (j)
is denotes the index set of the events affecting the process Wi in [tj−1, tj)

in the sth simulation, and where the interval midpoints are t̄j = (tj−1 + tj)/2, j = 1, . . . , N.
By combining pointwise curve estimates or interval estimates with the respective estimates

for I(i)B we get the following estimates for ζi(t), i = 1, . . . ,n and t > 0:

ζ̂i(t) =
∫ t

0
ω̂i(u) Î(i)B (u)du, (35)

ζ̃i(t) =
∫ t

0
ω̃i(u) Ĩ(i)B (u)du, (36)

where the integrals are easily calculated numerically.

Note that in cases where several different importance measures are used, each with its own

weight function, the proposed methodology allows us to reuse the curve estimate for I(i)B
when calculating each of the measures. This makes it easier and faster to compare the differ-
ent measures like e.g., the Barlow-Proschan importance measure and the Natvig importance
measure.

5.3 Estimating importance in the bridge structure
We close this section by applying the proposed methods to the example considered in Section
4. That is, we consider once again the bridge system shown in Figure 1, and focus on com-
ponent 1. Our first goal is to estimate the weight function ω1(t) given in (29) for t ∈ [0, tmax],
where tmax = 1000.
In this particular case we let cF = 1.0 while cR = 0.0. Thus, only effects of the fictive failure
events are included. Moreover, if E1j is a (real) failure event occurring at time T1j then the
corresponding fictive failure event, denoted E′1j occurring at time T′1j is a result of component
1 being minimally repaired at T1j and then functioning until T′1j. The time between the real
and fictive events is easily generated using a standard rejection method.
In order to obtain an estimate of ω1(t), we run M = 1000 simulations of the process W1 defined
in (30) with N = 100 sample points. The resulting curve estimates are shown in Figure 4. As
before, the black curve is obtained using the interval estimates, while the gray curve shows the
corresponding pointwise estimate curve. As for the availability and criticality curve estimates,
the interval method produces more stable results.
Having estimates for both ω1(t) and IB(t) we can then proceed to estimating ζi(t) as defined
in (28). This is done by calculating numerically the integrals (35) and (36). Since, however,
ζi(t) typically is an unbounded function of t it is often more convenient to work with a nor-
malized version of the form ζi(t)/t. In Figure 5 we have plotted the resulting normalized
estimates as functions of t. The black curve is derived using the interval estimates, while the



Figure 4. Interval estimate (black curve) and pointwise estimate (gray curve) of the weight
function ω1(t)

gray curve is obtained using pointwise estimates. We observe that in this case the two meth-
ods produce almost identical results, although the interval estimates are slightly more stable,
especially for small values of t. The reason for this is that the integrals tend to smoothen the
curve estimates considerably. This effect makes the increased precision obtained by using in-
terval estimates less significant. For more examples of the use of this technique see Natvig et
al. (2009).

6. Conclusions

In the present chapter we have discussed two different approaches to curve estimation in dis-
crete event simulations. In particular, we have indicated that using interval estimates may
produce more stable curve estimates compared to pointwise estimates. The proposed meth-
ods are particularly useful in relation to importance measure estimation, especially when sev-
eral different importance measures are calculated and compared.
An important parameter used in the curve estimates is the distance between the sampling
points, i.e., ∆. Finding a suitable value for this parameter, may be challenging as it depends
on how fast the underlying processes converge to a stationary state. Note, however, that it is
not necessary to use the same distance between the sampling points throughout the sampling
period. Instead it is possible to use shorter distances between the sampling points in the early
stage, where the processes have not converged, and then use longer distances as soon as all
the processes have entered an approximate stationary state. By studying this issue further, we
think that the proposed methods can be improved considerably.
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A. Regular pure jump processes

In this appendix we present a few basic results on pure jump processes needed in the present
chapter. We consider a pure jump process S with jumps at T1 < T2 < · · · . We also let T0 = 0
and introduce the times between the events defined as:

∆j = Tj − Tj−1, j = 1,2, . . . . (37)

Using these quantities the event times can be expressed as:

Tk =
k

∑
j=1

∆j, k = 1,2, . . . . (38)

Obviously, the process S is regular if and only if T∞ = ∞ almost surely. Thus, it follows that
a necessary and sufficient criterion for regularity is that the series ∑∞

j=1 ∆j is divergent with
probability one. This condition can often be verified using the following simple result:

Proposition A.1 Let S be a pure jump process with jumps at T1 < T2 < · · · . Assume then that
the sequence {∆j} defined in (37) contains an infinite subsequence {∆k j

} of independent, identically
distributed random variables such that E[∆k j

] = d > 0. Then S is regular.

Proof: By the strong law of large numbers it follows that:

P( lim
n→∞

n−1
n

∑
j=1

∆k j
= d) = 1.

This implies that the series ∑∞
j=1 ∆k j

is divergent with probability one. Hence, since obviously
∑∞

j=1 ∆k j
≤ ∑∞

j=1 ∆j, the result follows. �

The regularity property implies that the set of points where the process jumps does not have
any accumulation points. The following result utilizes this to show the existence of left limits
of the state function of a regular pure jump process.

Proposition A.2 Let S be a regular pure jump process with jumps at T1 < T2 < · · · . Then
limt→s− S(t) exists for every s > 0 with probability one.

Proof: Let 0 ≤ t < s < ∞. We then consider the set T = {Tj : t ≤ Tj < s} ∪ {t}. Since S is
assumed to be regular, the number of elements in T is finite with probability one. Moreover,
T is non-empty since t ∈ T . Thus, this set contains a maximal element, which we denote by
t′. Moreover, since every element in T is less than s, then so is t′. From this it follows that
the interval (t′, s) is nonempty. At the same time (t′, s) does not contain any jumps, so S(t) is
constant throughout this interval. Hence, limt→s− S(t) exists. Since s was arbitrarily chosen,
this holds for any s > 0. �

Regularity is also of importance when considering the integral of a pure jump process:



Proposition A.3 Let S be a regular pure jump process with jumps at T1 < T2 < · · · , and let 0≤ u <

v < ∞. Assume that {Tj : u < Tj < v}= {T(1), . . . , T(k)}, where T(1) < · · ·< T(k). Moreover, we let
T(0) = u and T(k+1) = v. Then we have:∫ v

u
S(t)dt =

k

∑
j=0

S(T(j))(T(j+1) − T(j)).

Proof: We first note that since S is assumed to be regular, the number of elements in the set
{Tj : u < Tj < v} is finite with probability one. Thus, this set can almost surely be written in
the form {T(1), . . . , T(k)}, for some suitable k < ∞. Since S is right-continuous and piecewise
constant, it follows that S(t) = S(T(j)) for all t ∈ [T(j), T(j+1)), j = 0,1, . . . ,k. Thus, we have:

∫ T(j+1)

T(j)
S(t)dt = S(T(j))(T(j+1) − T(j)), j = 0,1, . . . ,k.

The result then follows by adding up the contributions to the integral from each of the k + 1
intervals [T(0), T(1)), . . . , [T(k), T(k+1)). �

We then consider a system consisting of a collection of n regular pure jump processes,
S1, . . . ,Sn. The state of the system is then typically expressed as a function of the states of
the elementary processes. It is easy to see that the system state also evolves as a regular pure
jump process. That is, we have:

Proposition A.4 Let SSS = (S1, . . . ,Sn) denote a vector of regular pure jump processes, and let H be a
process such that H = H(SSS). Then H is a regular pure jump process as well. That is, H(t) = H(SSS(t))
is piecewise constant and right-continuous in t, and the number of jumps in any finite interval is finite
with probability one.

Proof: Let Ti be the set of time points corresponding to the jumps of the process Si, i = 1, . . . ,n,
and let T be the set of time points corresponding to the jumps of the process H. Since the
state value of H cannot change unless there is a change in the state value of at least one of the
elementary processes, it follows that T ⊆ (T1 ∪ · · · ∪ Tn). Thus, H(t) is piecewise constant and
right-continuous in t. Moreover, for any finite interval [t, s] we also have:

T ∩ [t, s] ⊆ [(T1 ∩ [t, s]) ∪ · · · ∪ (Tn ∩ [t, s])].

Since by regularity (Ti ∩ [t, s]) is finite with probability one for i = 1, . . . ,n, it follows that
T ∩ [t, s] is finite with probability one as well. Hence, we conclude that H is regular. �
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