Monte Carlo Methods in Option Pricing

UiO-STK4510
Autumn 2015
The Basics of Monte Carlo Method

- **Goal**: Estimate the expectation $\theta = \mathbb{E}[g(X)]$, where g is a measurable function and X is a random variable such that $g(X)$ is integrable.

- Let $\{X_i\}_{i=1,\ldots,N}$ of i.i.d. random variables with law $\mathcal{L}(X)$. By the law of large numbers we have that

$$
\tilde{\theta}_N \triangleq \frac{1}{N} \sum_{i=1}^{N} g(X_i) \xrightarrow{N \to \infty} \theta,
$$

where the convergence may be a.s. (strong law of large numbers) or in probability (weak law of large numbers).

- If we assume in addition that $\mathbb{E}[|g(X)|^2] < \infty$ then by the central limit theorem we have that

$$
\sqrt{N} \frac{\tilde{\theta}_N - \theta}{\mathbb{V}[g(X)]} \xrightarrow{N \to \infty} \mathcal{N}(0,1).
$$
The Basics of Monte Carlo Method

• Assume that we can generate $x_1, x_2, ..., x_N$ random numbers from the distribution X, then the Monte Carlo estimation of θ will be

$$\tilde{\theta}_N = \frac{1}{N} \sum_{i=1}^{N} g(x_i).$$

• From the central limit theorem we can construct the 95% confidence interval for θ

$$\left(\tilde{\theta}_N - 1.96 \frac{\text{Var}[g(X)]}{\sqrt{N}}, \tilde{\theta}_N + 1.96 \frac{\text{Var}[g(X)]}{\sqrt{N}} \right).$$

• $\text{Var}[g(X)]$ is unknown, but can be estimated by

$$\hat{\sigma}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (g(x_i) - \tilde{\theta}_N)^2$$
The Basics of Monte Carlo Method

- Usually, the estimator $\hat{\sigma}^2_{N-1}$ converges fast to $\text{Var}[g(X)]$.
- One can run a pilot simulation with less samples $N_p < N$ and use $\hat{\sigma}^2_{N_p-1}$ instead of $\text{Var}[g(X)]$ to compute a confidence interval, i.e.,

$$\left(\tilde{\theta}_N - 1.96 \frac{\hat{\sigma}^2_{N_p-1}}{\sqrt{N}}, \tilde{\theta}_N + 1.96 \frac{\hat{\sigma}^2_{N_p-1}}{\sqrt{N}}\right).$$

- The important fact is that the rate of convergence of the method is $1/\sqrt{N}$.
- Variance reduction techniques: Note that

$$\text{Var}[\tilde{\theta}_N] = \frac{1}{N} \text{Var}[g(X)].$$

There are modifications of the Monte Carlo estimator $\hat{\theta}_N$ that allow to reduce $\text{Var}[\hat{\theta}_N]$ and get better confidence intervals using the same number of simulations.
The Basics of Monte Carlo Method

- However, these variance reduction techniques do not change the rate of convergence.
- Another important aspect is that the rate of convergence is independent of the dimension of the problem.
- As a rule of thumb when an expectation can be computed using numerical quadrature of integrals and this integrals are one dimensional, Monte Carlo methods perform worst than quadrature methods.
- If the dimension is high, Monte Carlo methods perform better than quadrature methods and it is usually simpler to implement.
Pricing Simple Contingent Claims

- Assume that we have a contingent claim of the form $H = h(S_T)$.
- By the risk-neutral pricing formula we get that
 \[f(t, x) = e^{-r(T-t)} \mathbb{E}_Q[h(S_T^{t,x})], \]
 where, under Q, $S_T^{t,x}$ is a geometric Brownian motion with drift $r - \frac{\sigma^2}{2}$, volatility σ and initial state $S_t^{t,x} = x$.
- Hence,
 \[f(t, x) = e^{-r(T-t)} \mathbb{E}_Q \left[h \left(x \exp \left(\left(r - \frac{\sigma^2}{2} \right) (T-t) + \sigma (\tilde{W}_T - \tilde{W}_t) \right) \right) \right], \]
 where \tilde{W} is a Brownian motion under Q.
- Note that $\tilde{W}_T - \tilde{W}_t \sim \sqrt{T-t}Z$ where $Z \sim \mathcal{N}(0,1)$ under Q.
Therefore, the Monte Carlo algorithm for pricing the contingent claim is:

1. Draw N independent samples from a $Z \sim \mathcal{N}(0, 1)$:

 $$(z_1, ..., z_N).$$

2. Compute

 $$e^{-r(T-t)} \frac{1}{N} \sum_{i=1}^{N} h \left(x \exp \left(\left(r - \frac{\sigma^2}{2} \right) (T - t) + \sigma \sqrt{T - t} z_i \right) \right)$$

- All statistical packages have implemented functions to generate random numbers from the most common distributions, in particular the normal distribution.
- If you use R or Matlab you can generate simultaneously vectors of samples from a standard normal distribution. This feature makes easy the vectorization of many simulation algorithms.
- Recall that these languages are interpreted and you must avoid the use of loops whenever possible.
Pricing Simple Contingent Claims

- Recall that using the density approach we can express the delta in the hedging strategy as an expectation

\[\frac{\partial f}{\partial x}(t, x) = e^{-r(T-t)} E_Q[g(t, x, S^t_T)], \]

where

\[g(t, x, s) = h(s) \frac{\log(s/x) - (r - \sigma^2/2)(T - t)}{x\sigma^2(T - t)} \].

- Moreover,

\[g(t, x, S^t_T) = h(S^t_T) \frac{\tilde{W}_T - \tilde{W}_t}{x\sigma^2(T - t)} \]

- Hence, to compute the delta we can use the Monte Carlo algorithm with a modified payoff.
Pricing Simple Contingent Claims

• An alternative approach is to use numerical differentiation.
• We can make the following approximation

\[
\frac{\partial f}{\partial x}(t, x) \approx \frac{f(t, x + h) - f(t, x)}{h}.
\]

• One can compute \(f(t, x) \) and \(f(t, x + h) \) using the Monte Carlo algorithm and then dividing the difference by \(h \).
• Although it seems more work to run two times the Monte Carlo simulation, one can use the same random numbers to compute \(f(t, x) \) and \(f(t, x + h) \).
• This technique is called common random numbers and is one of the simplest methods to reduce the variance of the Monte Carlo estimate of \(f(t, x + h) - f(t, x) \).
• Sometimes is used the symmetric difference

\[
\frac{\partial f}{\partial x}(t, x) \approx \frac{f(t, x + h) - f(t, x - h)}{2h}.
\]
Pricing of Path-Dependent Claims

- We consider the pricing of a knock-out call option, that is, a contingent claim with payoff

\[H = \max (0, S_T - K) \mathbf{1}_{\{S_t \leq b : t \in [0, T]\}}. \]

- This contingent claim pays the same as a call option whenever the price process never exceeds the threshold \(b \) during the life of the claim. Note that \(b > K \) for the contract to make sense.

- The price of this option depends on the whole path of the price process not only \(S_T \).

- From the risk-neutral pricing formula we get that the price of a knock-out call option at time 0 is given by

\[\pi_0(H) = e^{-rT} \mathbb{E}_Q[\max (0, S_T - K) \mathbf{1}_{\{S_t \leq b : t \in [0, T]\}}]. \]
Pricing of Path-Dependent Claims

- In order to simulate a non-zero outcome from the payoff H we must check if $S_t \leq b$ for all $t \in [0, T]$.
- Of course this is impossible to check.
- What we do is to simulate the values of S_t is a fine partition $\{t_i\}_{i=0,\ldots,M}$ of $[0, T]$ and check that $S_{t_i} \leq b$ for $i = 0, \ldots, M$.
- This procedure introduces an error or bias that tends to zero as M tends to infinity.
- The idea is to simulate the discretized path recursively.
- Fix $M \in \mathbb{N}$ large and set $\delta = T/M$. Consider $\{t_j = j\delta\}_{j=0,\ldots,M}$.
- Recall that
 \[S_t = S_0 \exp \left(\left(r - \frac{\sigma^2}{2} \right) t + \sigma \tilde{W}_t \right), \]
 where \tilde{W} is a Brownian motion under Q.
Pricing of Path-Dependent Claims

- We can write

\[S_{t_j} = S_0 \exp \left(\left(r - \frac{\sigma^2}{2} \right) t_j + \sigma \tilde{W}_{t_j} \right) \]

\[= S_0 \exp \left(\left(r - \frac{\sigma^2}{2} \right) (t_{j-1} + \delta) + \sigma \left(\tilde{W}_{t_{j-1}} + \tilde{W}_{t_j} - \tilde{W}_{t_{j-1}} \right) \right) \]

\[= S_0 \exp \left(\left(r - \frac{\sigma^2}{2} \right) t_{j-1} + \sigma \tilde{W}_{t_{j-1}} \right) \]

\[\times \exp \left(\left(r - \frac{\sigma^2}{2} \right) \delta + \sigma \left(\tilde{W}_{t_j} - \tilde{W}_{t_{j-1}} \right) \right) \]

\[= S_{t_{j-1}} \exp \left(\left(r - \frac{\sigma^2}{2} \right) \delta + \sigma \sqrt{\delta} Z_j \right), \]

for \(j = 1, \ldots, M \).
Pricing of Path-Dependent Claims

- The random variables $Z_j = \delta^{-1/2} \left(\tilde{W}_{t_j} - \tilde{W}_{t_{j-1}} \right)$ are distributed according to a $\mathcal{N}(0, 1)$ and are independent of $S_{t_{j-1}}$.
- With this recursion formula is easy to use a Monte Carlo approach to simulate the path of S_t at the times $\{t_j\}_{j=0,...,M}$ in the partition.
- Of course it may happen that $S_t > b$ for some $t \in (t_j, t_{j+1})$ while $S_{t_j} \leq b$ and $S_{t_{j-1}} \leq b$. The probability that this happens tends to zero as we increase the points in the partition but there always be a small bias.
- We simulate an outcome of H by simulating S_t at points $\{t_j\}_{j=0,...,M}$ while checking if the condition $S_{t_j} \leq b$ is fullfilled for all $j = 1, ..., M$. If this is the case the outcome is $\max(0, S_T - K)$, otherwise the outcome is zero.
Pricing of Path-Dependent Claims

The Monte Carlo algorithm for a Knock-Out call option.

1. For \(k = 1, \ldots, N \)

 1.1 For \(j = 1, \ldots, M \)

 - Draw one outcome \(z_j^k \) from \(Z_j \sim \mathcal{N}(0,1) \).
 - Compute
 \[
 s_j^k = s_{j-1}^k \exp \left(\left(r - \frac{\sigma^2}{2} \right) \delta + \sigma \sqrt{\delta} z_j^k \right).
 \]
 - If \(s_j^k > b \), let \(x^k = 0 \) and return to 1.

 1.2 Let \(x^k = \max \left(0, s_M^k - K \right) \).

2. Compute

\[
e^{-rT} \frac{1}{N} \sum_{k=1}^{N} x^k.
\]
In Benth’s book you will find:

- Pricing contingent claims on many underlying stocks.
- Pricing an Asian option

\[H = \max \left(0, \frac{1}{T} \int_0^T S_t dt - K \right). \]

An excellent reference book for Monte Carlo methods in finance is