Interest rate modelling via SPDE's (STK 4530) Exercises 4, 7.10.2016

Problem 1 (Estimation of the risk premium) Suppose that the dynamics of overnight rates r(t) is described by the Vasicek model

$$dr(t) = a(b - r(t))dt + \sigma dB_t.$$

Once more let us cast a glance at the data set of Exercises 3, Problem 1, that is consider the Canadian overnight money market financing rates during 9 consecutive trading days given by

Day	$\underline{r_i \%}$	Day	$r_i \%$
19/09/07	4.4502	27/09/07	4.5421
20/09/07	4.4722	28/09/07	4.5340
21/09/07	4.4555	01/10/07	4.5078
24/09/07	4.4690		
25/09/07	4.4717		
26/09/07	4.4663		

On 05/10/07 the yield of a 1 year Canadian treasury bill is quoted with 4.3800 and the overnight rate with 4.5132. Use the maximum likelihood estimators for a, b and σ in Exercises 3, Problem 1 and the market price of the treasury bill to determine (a rough) estimate for the risk premium.

Hint: Employ the theoretical bond pricing formula.

Problem 2 Assume that the overnight rates r(t) follow the Cox-Ingersoll-Ross model

$$dr(t) = (a - br(t))dt + \sigma \sqrt{r(t)}dB_t.$$

Derive a formula for the present value of a zero-coupon bond and use it to compute the bond price for a = 0.1, b = 0.045, $\sigma = 0.015$, maturity T = 1 year, r(0) = 0.046 and the risk premium $q(t) = -\sqrt{r(t)}$.