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Problem 1

a) To test if there is a significant effect of mother’s age, we use the t-test
statistic

t =
β̂age
ŝeage

,

where β̂age is the estimated effect of AGE and ŝeage is the corresponding
standard error. Using the output for Model 1, the test statistic takes the
value t = 0.00854/0.00399 = 2.14. The value 2.14 shall be compared with
the t-distribution with n − p − 1 = 500 − 3 − 1 = 496 degrees of freedom,
which is (almost) the same as the standard normal distribution. Using the
table for the standard normal distribution, we get the (two-sided) P-value
3.2%, so there is a significant effect of the age of the mother.

b) Using the output for Model 2, the t-test statistic now takes the value
t = 0.00206/0.00425 = 0.48. Comparing this value of the test statistic
with the t-distribution with 500 − 4 − 1 = 495 degrees of freedom, which
is (almost) the same as the standard normal distribution, we now get the
P-value 63%. Thus the effect of mother’s age is not significant in Model 2.

From Model 2, however, we see that there is a significant effect of FIRST,
showing that the first child of a woman on average has a lower birth weight
than later children. Moreover, since a woman who gets her first child tends
to be younger than a woman who has got at least one child, there will be
a positive correlation between AGE and FIRST. This implies that FIRST is a
confounder in Model 1, and that the effect of FIRST is taken up by AGE for
this model.

c) The estimated effects of the covariates in Model 3 have the following
interpretation:

• SEX: If we consider newborn boys and girls with the same values of the
covariates WEEKS and FIRST, the girls will on average weigh 0.114 kg
less than the boys.

• WEEKS: If we consider two groups of newborn babies with the same
values of the covariates SEX and FIRST, but where the pregnancies for
one of the groups lasted one week longer than for the other group, then
the group with the longest pregnancies will on average weigh 0.160 kg
more than the other group. Thus babies on average put on 0.160 kg
per week towards the end of the pregnancy.
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• FIRST: If we consider two groups of newborn babies with the same
values of the covariates SEX and WEEKS, but where one group is first-
born babies and the other groups is not, then the babies who are not
firstborn will on average weigh 0.173 kg more than the firstborn babies.

d) A 95% confidence interval for the effect of sex is given as

β̂sex ± t0.975 ŝesex,

where β̂sex is the estimated effect of SEX and ŝesex is the corresponding
standard error. Further t0.975 is the 97.5% percentile of the t-distribution
with 500 − 3 − 1 = 496 degrees of freedom, which is (almost) the same as
the 97.5% percentile of the standard normal distribution. Using the output
for Model 3, we get the confidence interval

−0.114± 1.96 · 0.038.

Thus we are 95% confident that a girl on average weighs between 0.040 kg
and 0.188 kg less than a boy with the same values of the covariates WEEKS
and FIRST.

e) We predict the weight of a newborn girl who is the second child of her
mother, and where the length of the pregnancy is 40 weeks, to be

ŷ = −2.857− 0.114 + 0.1597 · 40 + 0.173 = 3.590 kg

Problem 2

a) We consider a situation where the outcome for a worker is 0 or 1, with 0
corresponding to absence of byssinosis and 1 corresponding to presence of
the disease1. For such a situation it is appropriate to use a regression model
that relates the probability p that a worker suffers from byssinosis to the
covariates, and this is achieved by using a logistic regression model. When
DUST is the only covariate, the logistic regression model takes the form

p =
eβ0+β1 x1+β2x2

1 + eβ0+β1 x1+β2x2
.

Here x1 = 1 if there is medium dustiness of the workplace (x1 = 0 oth-
erwise), while x2 = 1 if there is low dustiness of the workplace (x2 = 0
otherwise).

b) According to Model 1, the (estimated) probability p̂ that a worker suf-
fers from byssinosis depends on the dustiness of the workplace in the follow-
ing way:

1The data in the problem are given on aggregated form. For each combination of the
levels for the factors, we know the total number of workers and the number of workers
who suffer from byssinosis.
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• If the workplace has high dustiness we have

p̂ =
eβ̂0

1 + eβ̂0

=
e−1.681

1 + e−1.681
= 0.157

• If the workplace has medium dustiness we have

p̂ =
eβ̂0+β̂1

1 + eβ̂0+β̂1

=
e−1.681−2.585

1 + e−1.681−2.585
= 0.014

• If the workplace has low dustiness we have

p̂ =
eβ̂0+β̂2

1 + eβ̂0+β̂2

=
e−1.681−2.715

1 + e−1.681−2.715
= 0.012

Thus while the probability of suffering from byssinosis is 15.7% for a worker
in a workplace with heavy dustiness, it is only 1.4% if the dustiness is mod-
erate and 1.2% if the dustiness is low.

c) We here consider a model with the factors DUST and EMPLOY. The logistic
regression model then takes the form

p =
eβ0+β1 x1+β2x2+β3x3+β4x4

1 + eβ0+β1 x1+β2x2+β3x3+β4x4
.

Here x1 and x2 are given as in question a, while x3 = 1 for a worker who
has been employed between 10 and 20 years (x3 = 0 otherwise), and x4 = 1
for a worker who has been employed more than 20 years (x4 = 0 otherwise).

Let p1 and p2 denote the probabilities of suffering from byssinosis for two
workers, labeled 1 and 2, who have a workplace with the same level of
dustiness (i.e. the same values of x1 and x2). Worker 2 has been employed
between 10 and 20 years, while worker 1 has been employed less than 10
years. Then the odds ratio for these workers becomes:

OR =

p2
1−p2
p1

1−p1

=
eβ0+β1 x1+β2x2+β3

eβ0+β1 x1+β2x2
= eβ3

This is the odds ratio between workers who have been employed between 10
and 20 years and those who have been employed less than 10 years (given
the same level of dustiness).

Using the output from Model 2, we get the estimated odds ratio

ÔR = eβ̂3 = e0.564 = 1.76.

Thus the odds for a worker who has been employed 10 to 20 year is 76%
higher than the odds for a worker who has been employed less than 10 years.
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A 95% confidence interval for the odds ratio is given by (with ŝe3 the stan-
dard error corresponding to β̂3):

eβ̂3 ± 1.96 · ŝe3 = e0.564± 1.96 · 0.248 = e0.564± 0.486

Thus we are 95% confident that the odds ratio is between e0.564−0.486 =
e0.078 = 1.08 and e0.564+0.486 = e1.050 = 2.86.

d) Let p2 and p3 denote the probabilities of suffering from byssinosis for
two workers, labeled 2 and 3, who have a workplace with the same level of
dustiness (i.e. the same values of x1 and x2). Worker 2 has been employed
between 10 and 20 years, while worker 3 has been employed more than 20
years. Then the odds ratio for these workers becomes:

OR =

p3
1−p3
p2

1−p2

=
eβ0+β1 x1+β2x2+β4

eβ0+β1 x1+β2x2+β3
= eβ4−β3 .

This is the odds ratio between workers who have been employed more than
20 years and those who have been employed between 10 and 20 years (given
the same level of dustiness).

Using the output from Model 2, the estimated odds ratio becomes

ÔR = eβ̂4−β̂3 = e0.673−0.564 = 1.12.

Thus the odds for a worker who has been employed more than 20 years is
12% higher than the odds for a worker who has been employed between 10
to 20 years.

e) To test the null hypothesis that smoking has no effect for the risk of
suffering from byssinosis, we look at the difference in deviance for Model 2
and Model 3. More precisely, we look at

G = D∗ − D̂,

whereD∗ is the (residual) deviance for the model without smoking (Model 2)
and D̂ is the (residual) deviance for the model with smoking (Model 3).

If there is no effect of smoking, G will be approximately chi-square dis-
tributed with 1 degree of freedom. Using the output from Models 2 and 3
we find that G = 23.53 − 12.09 = 11.44. Using the table for the chi square
distribution with 1 degree of freedom this gives a P-value of less than 0.5%,
so smoking has a significant effect on the risk of suffering from byssinosis.
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