UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in:	STK4900 — Statistical methods and applications.
Day of examination:	8 June 2010.
Examination hours:	09.00-12.00.
This problem set con	sists of 5 pages.
Appendices:	Tables for the standard normal distribution, the chi-square distributions, the t distributions, and the F distributions.
Permitted aids:	All printed and hand-written resources. Approved calculator.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

In this problem we will study the influence that some variables have on the birth weight of a child. Our analysis is based on a sample of 500 birth weights from pregnancies where the pregnancy lasted at least 38 weeks.

The response variable, WEIGHT, is the weight of a child (in kg), and the covariates we will consider are the following:

SEX	Sex of child (0: boy; 1: girl)
WEEKS	Length of pregnancy (in weeks)
AGE	Age of mother at start of pregnancy (in years)
FIRST	Firstborn child or not (0: firstborn child; 1: not firstborn child)

First we fit a linear regression model with the covariates SEX, WEEKS, and AGE (model 1). This gives the following result:

Model 1:

```
Call:
lm(formula=WEIGHT~SEX+WEEKS+AGE)
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-3.064382	0.909318	-3.370	0.00081
SEX	-0.118337	0.038491	-3.074	0.00223
WEEKS	0.161909	0.022345	7.246	1.65e-12
AGE	0.008538	0.003985		

```
(edited output)
```

(Continued on page 2.)

a) Use an appropriate hypothesis test to decide if there is a significant effect of the age of the mother.

We then fit a model where also the covariate **FIRST** is taken into account (model 2):

Model 2:

```
Call:
```

```
lm(formula=WEIGHT~SEX+WEEKS+AGE+FIRST)
```

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-2.941529	0.896679	-3.280	0.00111
SEX	-0.115891	0.037938	-3.055	0.00237
WEEKS	0.160624	0.022023	7.293	1.21e-12
AGE	0.002061	0.004254		
FIRST	0.164852	0.041616	3.961	8.55e-05

(edited output)

b) Is there a significant effect of the age of the mother in this model? Discuss why model 1 and model 2 give different estimates for the effect of mother's age.

Finally we fit a model with the three covariates SEX, WEEKS, and FIRST (model 3):

Model 3:

Call: lm(formula=WEIGHT~SEX+WEEKS+FIRST)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-2.85704	0.87888	-3.251	0.00123
SEX	-0.11428	0.03776	-3.026	0.00261
WEEKS	0.15971	0.02193	7.284	1.28e-12
FIRST	0.17260	0.03839	4.496	8.63e-06

(edited output)

- c) Give an interpretation of the effects of SEX, WEEKS, and FIRST.
- d) Compute a 95% confidence interval for the effect of SEX and give an interpretation of the confidence interval.
- e) Predict the weight of a newborn girl who is the second child of her mother, and where the length of the pregnancy is 40 weeks.

(Continued on page 3.)

Problem 2

Byssinosis, also called "brown lung disease", is a chronic asthma-like disease of the lungs caused by breathing in cotton dust or dusts from other vegetable fibers. In this problem we will look at data from a study of workers in the cotton industry. The variable of interest is presence of byssinosis, and we will relate this to the following categorical covariates (factors):

DUST	Dustiness of the workplace (1: high; 2: medium; 3: low)
EMPLOY	Length of employment in the cotton industry (1: less than 10 years: 2: between 10 and 20 years:
	3: more than 20 years)
SMOKE	Smoking status (1: smoker, 2: nonsmoker)

For all combinations of the levels of the three factors, we know the number of workers who suffer from byssinosis (NOBYS) as well as the total number of workers (NOTOT).

a) Explain why logistic regression is an appropriate model for analysing the data. Give an explicit formulation of the logistic regression model when we only consider the factor DUST.

When we fit the logistic regression model with DUST as the only covariate (model 1), we get the result:

Model 1:

```
Call:
glm(formula=cbind(NOBYS,NOTOT-NOBYS)~factor(DUST),family=binomial)
```

	Estimate	Std. Error	z value	Pr(z)
(Intercept)	-1.6811	0.1063	-15.817	<2e-16
<pre>factor(DUST)2</pre>	-2.5847	0.2601	-9.939	<2e-16
<pre>factor(DUST)3</pre>	-2.7151	0.1881	-14.431	<2e-16
Null devia	ance: 290.73	39 on 17	degrees of	freedom
Residual devia	ance: 38.6	30 on 15	degrees of	freedom

```
(edited output)
```

b) Describe how the dustiness of the workplace influences the probability that a worker will suffer from byssinosis.

(Continued on page 5.)

Next we fit a model with the covariates DUST and EMPLOY (model 2):

```
Model 2:
Call:
glm(formula=cbind(NOBYS,NOTOT-NOBYS)<sup>~</sup>factor(DUST)+factor(EMPLOY),
            family=binomial)
                            Std. Error
                                                    Pr(>|z|)
                Estimate
                                          z value
(Intercept)
                  -2.0146
                                0.1446
                                          -13.934
                                                     < 2e-16
factor(DUST)2
                                         -10.002
                                                     < 2e-16
                  -2.6083
                                0.2608
factor(DUST)3
                  -2.7613
                                0.1893
                                          -14.589
                                                     < 2e-16
factor(EMPLOY)2
                   0.5643
                                0.2479
                                            2.277
                                                    0.022810
factor(EMPLOY)3
                                            3.724
                   0.6732
                                0.1808
                                                    0.000196
    Null deviance: 290.739
                             on 17
                                    degrees of freedom
Residual deviance: 23.527
                                    degrees of freedom
                             on 13
```

(edited output)

- c) Define the odds ratio between workers who have been employed between 10 and 20 years and those who have been employed less than 10 years. Estimate the odds ratio and derive a 95% confidence interval for it. Describe what the estimated odds ratio and the confidence interval tell you.
- d) Estimate the odds ratio between workers who have been employed more than 20 years and those who have been employed between 10 and 20 years, and interpret the estimate. (No confidence interval is required.)

Finally we fit a model with the three covariates DUST, EMPLOY, and SMOKE (model 3):

Model 3:

Call:					
glm(formula=cbi	nd(NOBYS,NO	[OT-NOBYS)~f	actor(DUST)	+factor(EMPL	CYC
+fa	ctor(SMOKE)	family = bin	nomial)		
	.				
	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-1.8336	0.1525	-12.026	< 2e-16	
factor(DUST)2	-2.5493	0.2614	-9.753	< 2e-16	
factor(DUST)3	-2.7175	0.1898	-14.314	< 2e-16	
factor(EMPLOY)2	0.5060	0.2490	2.032	0.042119	
factor(EMPLOY)3	0.6728	0.1813	3.710	0.000207	
factor(SMOKE)2	-0.6210				
Null devian	ce: 290.739	on 17 deg:	rees of fre	edom	
Residual devian	ce: 12.094	on 12 deg	rees of fre	edom	
(edited output)					

e) Use an appropriate hypothesis test to decide if smoking has a significant effect on the risk of suffering from byssinosis.