
STK4900/9900  -   Lecture 6 
 
Program 
 

1.  Binary data and proportions 
2.  Comparing two proportions 
3.  Contingency tables 
4.  Excess risk, relative risk, and odds ratio 
5.  Logistic regression with one predictor 
6.  Some comments on classification 

•  Section 3.4 
•  Section 5.1 
•  Supplementary material on proportions and contingency 
       tables (cf. your introductory statistics textbook) 
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Binary data and proportions 
In the first part of the course, we considered the situation 
where the outcome was numerical 

We will now consider the situation where the outcome is a 
binary variable (coded as 0 or 1) 

Example: Opinion polls 

In February 2017 Norstat asked n = 
935 individuals  which party they 
would support if there had been 
election to the parliament tomorrow  
 

309 would have voted Ap 
 

Ap's support on the opinion poll is 
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ˆ ˆ(1 )ˆ( ) p pse p
n
−

=

In general we have a sample of  binary data                      
from a population   

1 2, ,..., ny y y

Here               if subject  i  has a certain property (e.g. vote Ap), while               
otherwise   

1iy =
0iy =

We let  ( 1)ip P y= =

Then  p  is the proportion in the population who has the property  

We may estimate   p  by the sample proportion:   

1 #( 1)ˆ
n

i ii
y yp

n n
= =

= =∑

Standard error: 

In the example, the standard error becomes 
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ˆ ˆ1.96 ( )p se p± ⋅

One may show that       is approximately normally distributed 
(cf. the central limit theorem)   

In the example a 95% confidence interval becomes: 

p̂

95% confidence interval for the population proportion p : 

i.e. 

Thus our estimate of Ap's support is 33.0% with a 
"margin of error" of  ± 3% 
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Comparing two proportions 
Assume that we have a random sample of binary data from each of 
two populations, and that the two samples are independent 

Example: "Divorce" among seagulls 

Kittiwake (krykkje) is a seagull whose 
mating behavior is basically monogamous, 
but some couples do not reunite the next 
breeding season ("divorce") 

Does the "divorce rate" depend on 
whether breeding was successful or not?   

769 kittiwake pair-bonds were studied over two breeding seasons 
 

Of the 160 couples that had not successful breeding the first season,  
100 divorced 
 

Of the 609 couples that were successful, 175 divorced 
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2 2 1 1 2 2
1 2 1 2

1 2

ˆ ˆ ˆ ˆ(1 ) (1 )ˆ ˆ ˆ ˆ( ) ( ) ( ) p p p pse p p se p se p
n n
− −

− = + = +

Population 1: 

Population proportion:  1p

where 

Sample size:  1n
Sample proportion:  1p̂

Population 2: 

Population proportion:  2p
Sample size:  2n
Sample proportion:  2p̂

1 2 1 2ˆ ˆ ˆ ˆ1.96 ( )p p se p p− ± ⋅ −

95% confidence interval for               : 1 2p p−

We are interested in estimating                 and testing    1 2p p− 0 1 2:H p p=
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In the example: 

Unsuccessful (population 1): 

Sample size:  1 160n =

Sample proportion:  1
100ˆ 0.625
160

p = =

Successful (population 2): 

Sample size:  2 609n =

Sample proportion:  2
175ˆ 0.287
609

p = =

1 2ˆ ˆ 0.625 0.287 0.338p p− = − =
We obtain: 

1 2ˆ ˆ( ) 0.0424se p p− =

95% confidence interval: 

0.338 1.96 0.0424± ⋅ i.e. 0.338 0.083±
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We then consider testing the null hypothesis                                      
versus the (two-sided) alternative 

0 1 2:H p p=
1 2:AH p p≠

Test statistic: 

1 2

0 1 2

ˆ ˆ
ˆ ˆ( )
p pz

se p p
−

=
−

Here                         is the estimated standard error under the 
null hypothesis, obtained by using the sample proportion       in 
the two samples combined: 

0 1 2ˆ ˆ( )se p p−
p̂

0 1 2
1 2

ˆ ˆ ˆ ˆ(1 ) (1 )ˆ ˆ( ) p p p pse p p
n n
− −

− = +

 

We reject H0 for large values of   
 

| |z

Under  H0  the test statistic is approximately standard normal 
 

P-value (two-sided):  P = 2 P(Z >|z|) where  Z  is standard normal 
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In the example: 

Unsuccessful (population 1): 

1 160n =

Successful (population 2): 

2 609n = 2
175ˆ 0.287
609

p = =

100 175ˆ 0.358
160 609

p +
= =

+

We obtain: 

0 1 2ˆ ˆ( ) 0.0426se p p− =

The test statistic takes the value 

0.625 0.287 7.9
0.0426

z −
= =

which is highly significant 

1
100ˆ 0.625
160

p = =

NB!	
  Important	
  to	
  also	
  	
  
consider	
  and	
  report	
  	
  
effect	
  size	
  NB!	
  



2x2 tables 
It is common to summarize the situation with two binary samples 
in a 2x2 table. For the example we have the 2x2 table:   

Unsuccessful	
  
Successful	
  

divorced	
  
100	
   60	
  
175	
   434	
  

160	
  
609	
  

not	
  divorced	
   Total	
  

An alternative way of formulating the test for the null hypothesis of 
no difference between the populations (cf. slide 8), is to compare the 
observed numbers in the table (denoted O's) with the corresponding 
expected numbers if the null hypothesis is true (denoted E's)  

769	
  494	
  275	
  Total	
  

10	
  

If there is no difference between the two groups we would  (e.g.) expect                                          
 
 
 
divorces among the unsuccessful couples  

275160 57.2
769
⋅ =



Expected numbers:   

Unsuccessful	
  
Successful	
  

divorced	
  
57.2	
   102.8	
  
217.8	
   391.2	
  

160	
  
609	
  

not	
  divorced	
   Total	
  

769	
  494	
  275	
  Total	
  

Test statistic:                                   
 
 

2
2

all cells

( )O E
E

χ
−

= ∑
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We reject H0 for large values of   
 

2χ

Under H0 the test statistic is approximately chi-square distributed 
with 1 degree of freedom (df) provided that all E's are at least 5 

 

P-value:                          where        is chi-square distributed with 1 df 2 2
obs( )P χ χ≥

2χ

One may show that                 so this is a reformulation of the test 
on slide 8     

2 2zχ =
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R commands:  
 

kiGwake=matrix(c(100,175,60,434),nrow=2)	
  
dimnames(kiGwake)=list(c("unsuccessfull","successful"),c("divorced","not_divorced"))	
  
kiGwake	
  
chisq.test(kiGwake,correct=F)$expected	
  
prop.test(kiGwake,correct=F)	
  
 
R output (edited): 
 

  divorced       not_divorced 
unsuccessfull              100                        60 
successful                   175                      434 
 

  divorced       not_divorced 
unsuccessfull          57.217             102.783 
successful             217.783             391.217 
 
X-squared = 62.8813, df = 1, p-value = 2.196e-15 
alternative hypothesis: two.sided  
95 percent confidence interval: 
 0.25446 0.42082  
sample estimates: 
   prop 1       prop 2  
0.62500     0.28736  
 
 



Contingency tables 
The chi-square test may be extended to contingency tables of higher 
order 

Lower	
  third	
  
Middle	
  third	
  

Lower	
  
third	
  

14	
   11	
  
11	
   11	
  

33	
  
31	
  

Total	
  

92	
  32	
  31	
  Total	
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Example: Blood pressure 

Upper	
  third	
  

Middle	
  
third	
  

Upper	
  
third	
  

8	
  
9	
  

29	
  

6	
  	
   10	
   12	
   28	
  

Blood pressure of 92 teenagers according to the blood pressure of 
their fathers: 

Does the blood pressure of the children depend on the blood 
pressure of their fathers? 

Fa
th
er
's
	
  b
lo
od

	
  
pr
es
su
re
	
  

Child's	
  blood	
  pressure	
  



We will test the null hypothesis that there is no difference between 
the groups (in the example, that the blood pressure of the children 
does not depend on the blood pressure of their fathers) 

Test statistic:                                   
 
 

2
2

all cells

( )O E
E

χ
−

= ∑

14	
  

 

We reject H0 for large values of   
 

2χ

Under H0 the test statistic is approximately chi-square distributed with 
                                                       provided that all E's are at least 5    

Expected numbers (E's) are computed as for 2x2 tables   

(#rows 1) (#columns 1)df = − ⋅ −

In the example we have (3 1) (3 1) 4df = − ⋅ − =
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R commands:  
bloodpr=matrix(c(14,11,6,11,11,10,8,9,12),nrow=3)	
  
dimnames(bloodpr)=list(c("F.low","F.middle","F.upper"),	
  
c("C.low","C.middle","C.upper"))	
  
bloodpr	
  
chisq.test(bloodpr,correct=F)$expected	
  
chisq.test(bloodpr,correct=F)	
  
 
R output (edited): 
 

                 C.low     C.middle    C.upper 
F.low            14             11             8 
F.middle       11             11             9 
F.upper          6             10           12 
 
                    C.low        C.middle      C.upper 
F.low            11.120      11.478        10.402 
F.middle       10.446     10.783          9.772 
F.upper          9.435        9.739         8.826 
 
  
Pearson's Chi-squared test 
X-squared = 3.814, df = 4, p-value = 0.432  
 
 



Risk measures 
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We assume that population 1 corresponds to an "exposed" 
population (specified by x = 1) and that population 2 
corresponds to an "unexposed" population (specified by x =0)    

Unsuccessful	
  (x=1)	
  
Successful	
  	
  (x=0)	
  

divorced	
  (y=1)	
  
100	
   60	
  
175	
   434	
  

160	
  
609	
  

not	
  divorced	
  (y=0)	
   Total	
  

769	
  494	
  275	
  Total	
  

Assume  that we have a random sample of binary data from each of 
two populations, and that the two samples are independent 

Example: "Divorce" among seagulls 

1Population 1:     (1) ( 1| 1)p p P y x= = = =

2Population 2:     (0) ( 1| 0)p p P y x= = = =
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On slide 6 we used the excess risk 

(1) (0)ER p p= −

An alternative would be to use the relative risk  given by: 

(1)
(0)
pRR
p

=

In the example, estimates of these two measures of risk are 
given by (cf. slide 7)  

ˆ(1) 0.625 2.18
ˆ(0) 0.287
pRR
p

= = =

to measure the effect of the "exposure" 

ˆ ˆ(1) (0) 0.625 0.287 0.338ER p p= − = − =
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A third risk measure is based on the concept of odds, so we 
will first discuss this concept 

Assume that an event has a probability  p  of occurring   

Then the odds for the event is   

odds
1
p
p

=
−

The odds is one if the probability that an event will 
happen is equal to the probability that it will not happen, 
cf. the expression "a fifty-fifty chance" 

When you throw a die, the odds that it will face six is 1 : 5                   
(i.e. it is five times more likely that it will not face six than it will face six)   
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We then return to the situation with two populations: 

Then a third risk measure is the odds ratio 

[ ]
[ ]

(1) 1 (1)
(0) 1 (0)
p p

OR
p p

−
=

−

Population 1:    (1) ( 1 | 1)p P y x= = =

Population 2:     (0) ( 1 | 0)p P y x= = =

The odds for the two populations are: 

(1)Population 1:     
1 (1)
p
p−

(0)Population 2:     
1 (0)
p
p−

In the example, an estimate for the odds ratio becomes (cf. slide 7)  

0.625 (1 0.625) 1.667 4.14
0.287 (1 0.287) 0.403

OR −
= = =

−
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Why Odds-ratio? 
 
•  Turns up in logistic regression! 
 

[ ]
[ ]

(1) 1 (1) (1)
(0) 1 (0) (0)
p p pOR RR
p p p

−
= ≈ =

−

 
•  Related to relative risk in the following way 

 
    + Examples: p(1)=0.2 and p(0)=0.1 gives RR=2 and OR=2.25 
                         p(1)=0.1 and p(0)=0.05 gives RR=2 and OR=2.11   
 

       + RR=1 when OR=1 (and vice versa) 

+ if RR>1 we have 1<RR<OR 

+ if RR<1 we have  OR < RR < 1 
 
 
+ if p(1) and p(0) are both small then 



Logistic regression with one predictor 

21	
  

When discussing logistic regression, we will to a large extent use the 
WCGS study for illustration 

WCGS is a large epidemiological study designed to study risk factors 
for coronary heart disease (CHD) among middle-aged men  
 

The men were followed for 10 years, and for each man it was recorded 
if he developed CHD (y=1) or not (y=0) over the course of the study 

How does the age (at entry to the study) affect the risk (probability) 
of developing CHD? 

#	
  Total	
  
#	
  CHD	
  

35-­‐40	
  
(39.5)	
  

543	
  
	
  31	
  
5.7	
  %	
  %	
  CHD	
  

41-­‐45	
  
(42.9)	
  

1091	
  
	
  55	
  
5.0	
  %	
  

46-­‐50	
  
(47.9)	
  

750	
  
	
  70	
  
9.3	
  %	
  

51-­‐55	
  
(52.8)	
  

528	
  
	
  65	
  
12.3	
  %	
  

56-­‐60	
  
(57.3)	
  

242	
  
	
  	
  36	
  
14.9	
  %	
  

Age	
  group	
  
(mean)	
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The figure shows a the 
observed proportion with 
CHD plotted versus the 
mean age in each age group   

A least square fit to the 
observed proportions give 
the fitted line 

This least squares line may give an all right description of the 
observed proportions, but there are in general problems with using 
linear regression for binary data and proportions 
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In general we have data  (x1,y1) , … , (xn,yn) 
 

( ) ( | ) ( 1 | )p x E y x P y x= = =

 

Here        is a binary outcome  (0 or 1)  for subject  i  and       is 
a predictor  for the subject  (which may be binary or numerical)    

In general we let 

iy ix

 

In the WCGS study,              if man number  i  developed CHD 
during the course of the study,             if not, and       may be 
his age (at entry to the study)   

1iy =
ix0iy =

We want a model that specifies a relation between             and   ( )p x x
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0 1( )p x xβ β= +

One option would be a linear model: 

This is an additive risk model, which may be useful in some situations 

However, it is a main problem with the additive risk model that it may 
give impossible values for the probabilities (negative or above 1)  

To avoid this problem it is common to consider 
the logistic regression model given by  

0 1

0 1

exp( )( )
1 exp( )

xp x
x

β β
β β
+

=
+ +

This gives a "S-shaped" 
relation between  p(x)  and  x 
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If we fit a logistic regression model for the WCGS data using the 
mean age in each age group as a numeric covariate, we get                         
                     and  

30 35 40 45 50 55 60 65

0.
00

0.
05

0.
10

0.
15

0.
20

Age

C
H

D
 ri

sk

exp( 5.947 0.0747 age)ˆ (age)
1 exp( 5.947 0.0747 age)

p − + ⋅
=

+ − + ⋅

0
ˆ 5.947β = − 1̂ 0.0747β =

This gives the fitted model 

The method for estimating the parameters of a logistic 
regression model will be described in Lecture 7 
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The logistic model may alternatively be given in terms of the odds: 

0 1
( ) exp( )

1 ( )
p x x
p x

β β= +
−

If we consider two subjects with covariate values              and  x , 
respectively,  their odds ratio becomes 

[ ]
[ ]

( ) 1 ( )
( ) 1 ( )

p x p x
p x p x
+ Δ − + Δ

−
( )0 1

0 1

exp ( )
exp( )

x
x

β β
β β
+ + Δ

=
+ 1exp( )β= Δ

In particular          is the odds ratio corresponding to one unit's 
increase in the value of the covariate 

1eβ

x + Δ

In the WCGS study the odds ratio for one year increase in age is 
                       while the odds ratio for a ten-year increase is  
(The numbers deviate slightly from those on pp 162-163 in the text book, 
since we have used mean age for each age group in this illustration; cf. the 
exercises for the results when actual age is used.)  

0.0747 1.078e = 0.074710 2.11e ⋅ =
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R commands:  
wcgs=read.table("h_p://www.uio.no/studier/emner/matnat/math/STK4900/v17/wcgs.txt",	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  sep="\t",header=T,na.strings=".")	
  
wcgs$agem=39.5*(wcgs$agec==0)+42.9*(wcgs$agec==1)+47.9*(wcgs$agec==2)+	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  52.8*(wcgs$agec==3)+57.3*(wcgs$agec==4)	
  
a_ach(wcgs)	
  
cbind(chd69,	
  agem)   

R commands for logistic regression 
Binary CHD data with mean age in each age group as covariate  

R output of binary CHD data (edited): 
     chd69   agem 
   [1,]     0   47.9 
   [2,]     0   52.8 
   [3,]     0   57.3 
   [4,]     0   52.8 
   [5,]     0   42.9 
   [6,]     0   47.9 
   [7,]     0   39.5 
   [8,]     0   42.9 
   [9,]     0   47.9 
 
   

         chd69    agem 
  [10,]     0      42.9 
  [11,]     0      57.3 
  [12,]     0      52.8 
  [13,]     0      47.9 
  [14,]     1      39.5 
  [15,]     0      47.9 
  [16,]     0      52.8 
  [17,]     0      42.9 
  [18,]     0      57.3 
  [19,]     0      42.9 
   

             chd69    agem 
[3145,]     0         42.9 
[3146,]     0         42.9 
[3147,]     0         52.8 
[3148,]     0         42.9 
[3149,]     0         42.9 
[3150,]     0         47.9 
[3151,]     0         42.9 
[3152,]     0         52.8 
[3153,]     0         52.8 
[3154,]     0         47.9 
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When we use the mean age in each age group as covariate, all 
information is summarized in the table 

#	
  Total	
  
#	
  CHD	
  

35-­‐40	
  
(39.5)	
  
543	
  
	
  31	
  

41-­‐45	
  
(42.9)	
  
1091	
  
	
  55	
  

46-­‐50	
  
(47.9)	
  
750	
  
	
  70	
  

51-­‐55	
  
(52.8)	
  
528	
  
	
  65	
  

56-­‐60	
  
(57.3)	
  
242	
  
	
  	
  36	
  

Age	
  group	
  
(mean)	
  

R commands:  
chd.grouped=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v17/chd_grouped.txt ",    
                                         header=T) 
chd.grouped 

As an alternative to using the individual binary data, we may therefore 
use the grouped data given in the table 

R output of grouped CHD data: 
 

  no     chd    agem 
  543     31    39.5 
1091     55    42.9 
 750      70    47.9 
 528      65    52.8 
 242      36    57.3   
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R commands for binary data:  
fit.binary=glm(chd69~agem,	
  data=wcgs,family=binomial)	
  
summary(fit.binary)	
  
predict(fit.binary,	
  type	
  =	
  "response”,	
  data.frame(agem=50))	
  #predicts	
  prob.	
  at	
  age	
  50 

We may fit the logistic regression model using the individual binary 
data or by using the grouped data  

R output  (edited): 
   Estimate        Std. Error  z value   Pr(>|z|)     
(Intercept)  -5.9466         0.5616             -10.588                    < 2e-16  
agem           0.0747         0.0116                 6.445                     1.15e-10 
 
   

R commands for grouped data:  
fit.grouped=glm(cbind(chd,no-­‐chd)~agem,	
  data=chd.grouped,	
  family=binomial)	
  
summary(fit.grouped) 

The two ways of fitting the logistic regression model give the same 
estimates and standard errors: 

(Other parts of the R output will differ, as we will discuss in Lecture 7) 
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•  We	
  introduced	
  logiskc	
  regression	
  as	
  a	
  regression	
  model	
  for	
  qualitakve	
  
(=categorical)	
  response	
  variables,	
  with	
  two	
  categories	
  (response	
  0	
  or	
  1)	
  

•  When	
  there	
  are	
  more	
  than	
  two	
  categories,	
  there	
  exist	
  natural	
  mulkple-­‐
class	
  extensions	
  (but	
  for	
  simplicity	
  we	
  skck	
  to	
  binary	
  problems	
  here)	
  	
  	
  

•  When	
  we	
  use	
  the	
  fi_ed	
  logiskc	
  model	
  to	
  predict	
  a	
  categorical	
  response,	
  
we	
  first	
  predict	
  the	
  probability	
  of	
  each	
  of	
  the	
  categories,	
  and	
  can	
  then	
  
use	
  this	
  predicted	
  probability	
  to	
  select	
  a	
  category.	
  In	
  this	
  sense	
  logiskc	
  
regression	
  can	
  be	
  viewed	
  as	
  a	
  CLASSIFIER	
  –	
  we	
  perform	
  CLASSIFICATION	
  

•  Logiskc	
  regression	
  is	
  one	
  of	
  the	
  most	
  widely	
  used	
  classifiers,	
  and	
  is	
  the	
  
basic	
  building	
  block	
  underlying	
  many	
  stakskcal/machine	
  learning	
  
methods	
  such	
  as	
  the	
  very	
  actual	
  deep	
  learning	
  algorithm	
  

Binary	
  classificakon	
  with	
  logiskc	
  regression 
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ç	
  Is	
  this	
  the	
  digit	
  	
  ´3´?	
  

Will	
  this	
  consumer	
  
click	
  on	
  my	
  ad?	
  è	
  

ç	
  Will	
  this	
  pakent	
  survive?	
  

Binary	
  classificakon	
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0 1

0 1

exp( )( )
1 exp( )

xp x
x

β β
β β
+

=
+ +

Remember	
  we	
  had	
  

If	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  or	
  equivalenty,	
  	
  

è classify	
  as	
  y=1	
  

If	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  or	
  equivalenty,	
  	
  

è classify	
  as	
  y=0	
  

NB!	
  Not	
  mandatory	
  to	
  
divide	
  at	
  0.5.	
  Depends	
  on	
  	
  
the	
  applicakon	
  in	
  queskon	
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Extend	
  to	
  two	
  predictors	
  x1	
  and	
  x2	
  

x1	
  

x2	
  

	
  	
  	
  	
  	
  	
  è classify	
  as	
  y=1	
  

Example:	
  

Linear	
  separator	
  (Figure	
  from	
  Andrew	
  Ng)	
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  (Figure	
  from	
  Andrew	
  Ng)	
  

With	
  higher	
  order	
  terms	
  

Example:	
  

	
  è classify	
  as	
  y=1	
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There	
  exist	
  several	
  different	
  classificakon	
  techniques	
  that	
  we	
  can	
  use	
  to	
  
predict	
  qualitakve	
  responses	
  (like	
  above).	
  
	
  
The	
  most	
  commonly	
  used	
  are	
  	
  
	
  

•  logiskc	
  regression	
  
•  linear	
  discriminant	
  analysis	
  (LDA)	
  
•  K-­‐nearest	
  neighbours	
  (KNN)	
  

	
  
Logiskc	
  regression	
  and	
  LDA	
  are	
  very	
  similar,	
  but	
  the	
  LDA	
  assumes	
  that	
  
predictors	
  are	
  normally	
  distributed.	
  KNN	
  is	
  completely	
  non-­‐parametric.	
  No	
  
method	
  will	
  systemakcally	
  dominate	
  the	
  other.	
  
	
  
More	
  computer	
  intensive	
  methods	
  are	
  for	
  example	
  
	
  

•  generalized	
  addikve	
  models	
  (tomorrow)	
  
•  tree-­‐based	
  methods	
  
•  random	
  forests	
  
•  booskng	
  
•  support	
  vector	
  machines	
  (SVM)	
  

	
  
	
  
	
  
	
  
	
  

Recom
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