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Preface

The starting point for this book was a new course developed at the University of
Oslo, called “Applications of Linear Algebra”. This was given for the first time
in 2012. At the university we had recognized that students who just had their
first course in linear algebra already have the right background to learn about
several important and interesting topics in signal processing and wavelet theory.
Unfortunately, most textbooks on these subjects are written in a language which
does not favor a basic background in linear algebra. This makes much literature
unavailable to a large class of students, and only available to engineering- and
signal processing students. Moreover, it is not a common textbook strategy to
introduce signal processing and wavelets together from scratch, even though the
two can very much motivate each other. Why not write such a self-contained
textbook, where linear algebra is the main fundament? This question is the
motivation behind this book.

Some examples on where many signal processing textbooks fail in refering to
linear algebra are:

• Matrix notation is often absent. Instead, linear operations are often
expressed by component formulas, and matrix multiplication is instead
refered to as convolution (when filters are used).

• Many operations, which really represent change of coordinates, such as
the DFT, the DCT, and the DWT, are not represented as such. These
operations are thus considered outside a linear algebra framework, so that
one does not use tools, notation, and results from linear algebra for them.

• Eigenvalues and eigenvectors are not mentioned, even if these often are at
play behind the scene: It is often not mentioned that the Fourier basis
vectors are eigenvectors for filters, with the frequency response being the
corresponding eigenvalues. Also, the property for filters that convolution
in time corresponds to multiplication in frequency can in linear algebra
terms be summarized by that the frequency representation is obtained
from diagonalization, so that multiplication in frequency corresponds to
multiplying diagonal matrices where the frequency responses are on the
diagonal.

• Function spaces are often not put into a vector space/inner product context,
even if Fourier series can be seen as a least squares approximation on the
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Fourier spaces, and the Fourier integrals for the Fourier coefficients can
be seen as the inner product coefficients of the orthogonal decomposition
formula.

Several other books have also seen the need for writing new textbooks which
exploit linear algebra. One example is [33], which goes further in using matrix
notation than many signal processing textbooks. Still, the author feels that this
book and others should do even more (such as addressing the issues above) to
integrate a linear algebra framework, so that students feel more at home when
they have a basic linear algebra background. As an example, it seems that many
textbooks refer to matrices with polynomial entries, something which stems from
signal processing and the Z-transform. We will see that this is unnecessary,
as one can identify the polynomial entries with Toeplitz matrices, and such
“non-standard matrices” confuse students.

This book is an introduction to Fourier analysis and signal processing (first
part of the book) and wavelets (second part of the book), assuming only a
beginning course in linear algebra. Without such a course, the value in this
book is limited. An appendix has been included so that students can repeat
the linear algebra background they need, but a full course on these topics is
preferred in order to follow the contents of the book. This book is fitting for
use in one or two university level undergraduate courses, and is perhaps best
directly after a beginning linear algebra course. Also, some of the theory from a
beginning course in linear algebra is further developed: Complex vector spaces
and inner products are considered (many introductory linear algebra textbooks
concentrate only on real vector spaces and inner product spaces). Also, while
many introductory linear algebra textbooks consider inner product spaces which
are function spaces, they often do not go very far in training the student on
these spaces. This book goes longer in this respect, in that both Fourier and
wavelet function spaces are heavily used, both in theory and exercises. The book
also builds more intuition on changes of coordinates, such as the DFT, the DCT,
and the DWT, and the basic properties of these operations. The book itself can
thus be seen as an extension to a linear algebra textbook. In the future, the
author hopes that this material can become additional chapters in a new linear
algebra textbook, or as part of a general learning package comprising of different
theory integrated together.

Since a linear algebra background is assumed, and this is the common denom-
inator between the presented topics, some with signal processing background
may feel excluded. In particular, signal processing nomenclature is not used.
To also make this book accessible for these students, we have included several
comments in the various chapters, which may help to unify the understanding
from a signal processing and a linear algebra perspective. We have also included
another appendix which can serve as a general translation guide between linear
algebra and signal processing.

This book has been written with a clear computational perspective. The
theory motivates algorithms and code, for which many programming issues need
to be addressed. A central idea is thus to elaborate on the interplay between
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theory, numerical methods, and applications: We not only want to explain
the theoretical foundations of the selected topics, but also to go from there to
numerical methods, and finally motivate these by their applications in diverse
fields. The book goes a long way in integrating important applications, such
as modern standards for compression of sound (MPEG) and images (JPEG,
JPEG2000). In some respects we go longer than other books with the name
“applications” in their title: many books on linear algebra sneak in words like
“applied” or “applications” in their title. The main contents in most of these
books may still be theory, and particular applications where the presented theory
is used are perhaps only mentioned superficially, without digging deep enough to
explain how these applications can be implemented using the presented theory.

Implementations and important algorithms related to the presented theory
are presented throughout the book, and not only as isolated exercises without
corresponding examples. There is a focus on implementation and good coding
practice, algorithms and the number of arithmetic operations they need, memory
usage, and opportunities for parallel computing. We unveil how we can turn
the theory into practical implementations of the applications, in order to make
the student operational. By “Practical implementation” we do not mean a “full
implementation”, which typically involves many other components, unrelated or
only weakly related to the theory we present. This focus on the computational
perspective has been inspired by the project “Computing in science education” at
the University of Oslo, which is an initiative to integrate computations into the
basic science curriculum from the very first semester at the university. Wavelet
theory in particular has a large amount of detail incorporated into it. Much
literature skip some of these details, in order to make a simpler presentation. In
this book we have attempted not to skip details for the sake of completeness,
but attempted to isolate tricky details from the ideas. We attempt to point
out which details can be skipped for the introductory reader, but the interested
reader still has the opportunity to go through all details by following all aspects
of the book. There are many more topics which could have been included in this
book, but much of these would require more detail. We have therefore chosen a
stopping point which seems to be a good compromise with the level of detail
one needs to go into.

Programming. It is assumed that the student already has been introduced
to some programming language or computational tool. It is to prefer that the
student has taken a full course in programming first, since the book does not
give an introduction to primitives such as for-loops, conditional statements,
lists, function definitions, file handling, and plotting. At the University of Oslo,
most students take such a Python-based course the first semester where such
primitives are gone through.

This book comes in two versions: One where Matlab programming is used
throughout, and one where Python programming is used throughout. The
version of the book you are reading uses Matlab. If you search the internet for
recommendations about what programming language to use in a basic course in
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a linear algebra, you may find comments such as “python is too advanced for
such a beginning course”, or “Matlab is much quicker to get started with”. The
author believes that such comments would not have been posted if all students
received the same training in Python programming the first semester as they
do at the university of Oslo: Once educational institutions agree on a common
framework for programming for the students, we believe that the programming
you see in this book will not feel too advanced, irrespective of which version of
this book you have.

A code repository accompanies the book, where all Matlab and Python code
in the book can be found. The code repository can be found on the webpage for
the book, and contains the following:

• IPython notebooks and Matlab publish files which list the examples in the
book in such a way that they can be run sequentially. The example code
within the book may not run on its own, as it may rely on importing certain
packages, or defining certain variables. These imports and definitions will
in any way be part of the notebook. Each chapter lists the notebooks the
examples can be found in, and there is typically one notebook per chapter.
The notebooks also contains a lot of solution code to the exercises. This
code is also found in the solution manual.

• Function libraries which are developed throughout the book. The most
notable of these are the FFT and DWT libraries. The book may list
simplified versions of these which the students are asked to extend to more
general implementations in the exercises, so that for instance the code is
valid for sound with any number of channels, or images with any number
of color components. The solution manual may then list the full versions
of these functions, as they appear in the code repository. In the book, we
always list what modules the referred functionality can be found in.

• Documentation for all functions. As the student often is asked to implement
much of the functionality himself, this documentation is a good source to
ensure that he interprets input and output parameters and return values
correctly.

• Test code for the functions we develop.

• IPython notebooks and Matlab publish files which generate all the figures
in the book. Some exercises in the book also aim at generating these
figures. The solution manual refers to these notebooks in this case. The
figures in the printed version of the book have been generated with Python
and Matplotlib.

If you compare the code in the Matlab and Python versions of the book, you will
see that the programming style is such that much of the code in the two languages
is very similar: Function signatures are almost the same. Code indentation
follows the Python standard, where indentation is an important part of the
syntax. Classes could have been used several places in the Python code, but
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this has been avoided, since they are not supported in Matlab. Much of the
programming syntax is also similar.

There are also some differences in the Matlab and Python versions, however.
The python code is structured into modules, a very important structuring concept
in Python. In Matlab the concept of a module does not exist. Instead functions
are placed in different files, rather than in modules, and this leads to a high
number of files in the Matlab part of the code repository. For the Python version,
each chapter states what modules the accompanying functionality are part of. In
Python, it is customary to place test code in the same module as the functions
being tested. This can’t be done with Matlab, so the compromise made is to
create a separate file with the test code, and where there is a main function
which calls different test functions in the same file, with these test functions
following the Python naming conventions for test functions.

Another difference has to do with that Matlab copies input and return
parameters whenever they are accessed. This is not the case in Python, where
input and return parameters are passed by reference. This means that we can
perform in-place computation in Python code, i.e. we can write the result directly
into the input buffer, rather than copying it. As this can lead to much more
efficent code, the Python code attempts to perform in-place operations wherever
possible, contrary to the Matlab code where this approach is not possible. This
affects the signatures of many functions: Several Python functions have no return
values since the result is written directly into an input buffer, contrary to the
Matlab counterparts which use return parameters for the result.

Matlab has built-in functionality for reading and writing sound and images,
as well as built-in functionality for playing sound and displaying images. To
make the Python code similar to the Matlab code, the code repository includes
the modules sound and images, with functions with similar signatures to the
Matlab counterparts. These functions simply call Python counterparts, in such
a way that the interface is the same.

Although the code repository contains everything developed in the book, it
is recommended that the student follows the code development procedure of the
book, and establishes as much code as possible on his own. In this way he is
guided through the development of a full library, which is general in purpose.
The student is encouraged to create his own files where the functions have the
same signatures as the fully developed functions in the code repository. To
ensure that the student’s functions are run, rather than the functions in the
code repository, it is important that the student’s files are listed first in the
path. With Python the student can also place his code in separate modules, and
override code in the modules in the code repository.

This book has been typeset in a sophisticated language called doconce. Due
to this tool we have been able to use a single source text to contain both Matlab
and Python versions, with a minimum of duplication. Another consequence of
the doconce tool is that we also can generate this book also comes in HTML and
sphinx versions. The doconce tool has also been used to generate the ipython
notebooks and matlab publish source.
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Structure of the book. Part 1 of the book (chapter 1-4) starts with a general
discussion on what sound is. Chapter 1 also introduces Fourier series as a finite-
dimensional model for sound, and establishes the mathematics for computing
and analyzing Fourier series. While the first chapter models sound as continuous
functions, the chapter 2 moves on to digital sound. Now sound is modeled
as finite-dimensional vectors, and this establishes a parallel theory, where the
computation of Fourier series is replaced with a linear transformation called
the Discrete Fourier Transform. Two important topics are gone through in
connection with this: Fast computation of the Discrete Fourier Transform, and
the sampling theorem, which establishes a connection between Fourier series
and the Discrete Fourier Transform. In chapter 3 we look at a general type of
operations on sound called filters. When applied to digital sound, it turns out
that filters are exactly those operations which are diagonalized by the Discrete
Fourier Transform. Finally, the chapter 4 ends the first part of the book by
looking at the Discrete Cosine Transform, which can be thought of as a useful
variant of the Discrete Fourier Transform.

Part 2 of the book of the book starts with a motivation for introducing what
is called wavelets. While the first part of the book works on representations
of sound in terms of frequency only, wavelets take into account that such a
representation may change with time. After motivating the first wavelets and
setting up a general framework in chapter 5, chapter 6 establishes the connection
between wavelets and filters, so that the theory from the first part of the book
can be applied. In chapter 7 we establish theory which is used to construct useful
wavelets which are used in practice, while chapter 8 goes through implementation
aspects of wavelets, and establishes their implementations. Chapter 9 takes a
small step to the side to look at how we can experiment with images, before
we end the book in chapter 10 with setting up the theory for wavelets in a
two-dimensional framework, so that we can can use them to experiment with
images.

Assumptions. This book makes some assumptions, which are not common
in the literature, in order to adapt the exposition to linear algebra. The most
important one is that most spaces are considered finite-dimensional, and filters
are considered as finite-dimensional operations. In signal processing literature,
filters are usually considered as infinite-dimensional operations. In generality
this is true, but in practice one rarely encounters an infinite set of numbers,
which justifies our assumptions. Since Fourier analysis implicitly assumes some
kind of periodicity, we are left with the challenge of extending a finite signal
to a periodic signal. This can be done in several ways, and we go through the
two most important ways, something which is often left out in signal processing
literature.

New contributions. It would be wrong to say that this book provides new
results. But it certainly provides some new proofs for existing results, in order



viii

to make the results more accessible for a linear algebra point of view. Let us
mention some examples.

• The sampling theorem, which is proved in more generality with more
advanced Fourier methods than is presented here (i.e. with Continuous-
time and Discrete-time Fourier transforms), has been restricted to periodic
functions, for which a much simpler proof can be found, fitting our context.

• The DCT and its orthogonality is found in a constructive way.

• The quadrature formula for perfect reconstruction is reproved in simple
linear algebra terms.

What has been omitted. In the book, analytical function-theoretical proofs
have been avoided. We do not define the Continuous-time and Discrete-time
Fourier transforms. We do give a short introduction into analog filters, however,
as they are useful in explaining properties for their digital counterparts. We
do not define the Z-transform, and we do not make filter design based on the
placement of poles and zeros, as is common in signal processing literature.

Notation. We will follow linear algebra notation as you know it from classical
linear algebra textbooks. In particular, vectors will be in boldface (x, y, etc.),
while matrices will be in uppercase (A, B, etc.). The zero vector, or the zero
matrix, is denoted by 0. All vectors stated will be assumed to be column vectors.
A row vector will always be written as xT , where x is a (column) vector. We
will also write column vectors as x = (x0, x1, . . . , xn), i.e. as a comma-separated
list of values.

How to use this book. Note that this is a curricular book, not an ency-
clopaedia for researchers. Besides the theory, the focus is on drilling the theory
with exercises. Each chapter also has a list of minimum requirements, which
may be helpful in preparation for exams.

There are many important topics in the exercises in this book, which are
not gone through in the text of the book. A detailed solution manual for many
of these exercises can be found on the web page of the book. These solutions
represents important material which is theoretical material in many other books.
It is recommended that these solutions be used with care. Much of the learning
outcome depends on that the students try and fail for some time in solving
exercises. They should therefore not take the shortcut directly to the solutions:
Although they may understand the solution to an exercise in this way, they may
not learn the thinking process on how to arrive at that solution, and how to
solve it logically and understandably.

The entire book is too much for a one-semester course. Two semesters should
suffice to go through everything. There are several different ways material can be
chosen so that the amount fits a one-semester course. Most material in chapters 2
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and 3 can be gone through independently of Chapter 1, in that one sacrifices
the motivation of this material in ternms of analog filters. Chapter 4 can be
skipped. Chapter 5 can be read independently from the first part of the book.
The same applies for Chapter 9. Chapters 9, and 10 can be omitted if time is
scarce, since they are the only chapters which concentrate on images and the
two-dimensional perspective.

Acknowledgment. Thanks to Professor Knut Mørken for input to early ver-
sions of this book, and suggesting for me to use my special background to write
literature which binds linear algebra together with these interesting topics. A
special thanks also to thank Andreas Våvang Solbrå for his valuable contributions
to the notes, both in reading early and later versions of them, and for teaching
and following the course. Thanks also to students who have taken the course,
who have provided valuable feedback on how to present the topics so that they
understand them. I would also like to thank all participants in the CSE project
at the University of Oslo, for their continuous inspiration.
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Chapter 1

Sound and Fourier series

A major part of the information we receive and perceive every day is in the
form of audio. Most sounds are transferred directly from the source to our ears,
like when we have a face to face conversation with someone or listen to the
sounds in a forest or a street. However, a considerable part of the sounds are
generated by loudspeakers in various kinds of audio machines like cell phones,
digital audio players, home cinemas, radios, television sets and so on. The
sounds produced by these machines are either generated from information stored
inside, or electromagnetic waves are picked up by an antenna, processed, and
then converted to sound. It is this kind of sound we are going to study in this
chapter. The sound that is stored inside the machines or picked up by the
antennas is usually represented as digital sound. This has certain limitations,
but at the same time makes it very easy to manipulate and process the sound
on a computer.

What we perceive as sound corresponds to the physical phenomenon of slight
variations in air pressure near our ears. Larger variations mean louder sounds,
while faster variations correspond to sounds with a higher pitch. The air pressure
varies continuously with time, but at a given point in time it has a precise value.
This means that sound can be considered to be a mathematical function.

Observation 1.1. Sound as mathematical objects.
A sound can be represented by a mathematical function, with time as the

free variable. When a function represents a sound, it is often referred to as a
continuous sound.

In the following we will briefly discuss the basic properties of sound: first the
significance of the size of the variations, and then how many variations there
are per second, the frequency of the sound. We also consider the important fact
that any reasonable sound may be considered to be built from very simple basis
sounds. Since a sound may be viewed as a function, the mathematical equivalent
of this is that any decent function may be constructed from very simple basis
functions. Fourier-analysis is the theoretical study of this, and in the last part

1
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of this chapter we establish the framework for this study, and analyze this on
some examples for sound.

1.1 Characteristics of sound: Loudness and fre-
quency

An example of a simple sound is shown in the left plot in Figure 1.1 where the
oscillations in air pressure are plotted against time. We observe that the initial
air pressure has the value 101 325 (we will shortly return to what unit is used
here), and then the pressure starts to vary more and more until it oscillates
regularly between the values 101 323 and 101 327. In the area where the air
pressure is constant, no sound will be heard, but as the variations increase in
size, the sound becomes louder and louder until about time t = 0.6 where the
size of the oscillations becomes constant. The following summarizes some basic
facts about air pressure.
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0
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6 +1.01322e5
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1.0

Figure 1.1: Two examples of audio signals. In terms of air pressure (left), and
in terms of the difference from the ambient air pressure (right).

Fact 1.2. Air pressure.
Air pressure is measured by the SI-unit Pa (Pascal) which is equivalent to

N/m2 (force / area). In other words, 1 Pa corresponds to the force exerted on
an area of 1 m2 by the air column above this area. The normal air pressure at
sea level is 101 325 Pa.

Fact 1.2 explains the values on the vertical axis in the left plot in Figure 1.1:
The sound was recorded at the normal air pressure of 101 325 Pa. Once the
sound started, the pressure started to vary both below and above this value, and
after a short transient phase the pressure varied steadily between 101 324 Pa
and 101 326 Pa, which corresponds to variations of size 1 Pa about the fixed
value. Everyday sounds typically correspond to variations in air pressure of
about 0.00002–2 Pa, while a jet engine may cause variations as large as 200 Pa.
Short exposure to variations of about 20 Pa may in fact lead to hearing damage.
The volcanic eruption at Krakatoa, Indonesia, in 1883, produced a sound wave
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with variations as large as almost 100 000 Pa, and the explosion could be heard
5000 km away.

When discussing sound, one is usually only interested in the variations in air
pressure, so the ambient air pressure is subtracted from the measurement. This
corresponds to subtracting 101 325 from the values on the vertical axis in the
left part of Figure 1.1. In the right plot in Figure 1.1 the subtraction has been
performed for another sound, and we see that the sound has a slow, cos-like,
variation in air pressure, with some smaller and faster variations imposed on
this. This combination of several kinds of systematic oscillations in air pressure
is typical for general sounds. The size of the oscillations is directly related to
the loudness of the sound. We have seen that for audible sounds the variations
may range from 0.00002 Pa all the way up to 100 000 Pa. This is such a wide
range that it is common to measure the loudness of a sound on a logarithmic
scale. Often air pressure is normalized so that it lies between −1 and 1: The
value 0 then represents the ambient air pressure, while −1 and 1 represent the
lowest and highest representable air pressure, respectively. The following fact
box summarizes the previous discussion of what a sound is, and introduces the
logarithmic decibel scale.

Fact 1.3. Sound pressure and decibels.
The physical origin of sound is variations in air pressure near the ear. The

sound pressure of a sound is obtained by subtracting the average air pressure
over a suitable time interval from the measured air pressure within the time
interval. A square of this difference is then averaged over time, and the sound
pressure is the square root of this average.

It is common to relate a given sound pressure to the smallest sound pressure
that can be perceived, as a level on a decibel scale,

Lp = 10 log10

(
p2

p2
ref

)
= 20 log10

(
p

pref

)
.

Here p is the measured sound pressure while pref is the sound pressure of a just
perceivable sound, usually considered to be 0.00002 Pa.

The square of the sound pressure appears in the definition of Lp since this
represents the power of the sound which is relevant for what we perceive as
loudness.

The sounds in Figure 1.1 are synthetic in that they were constructed from
mathematical formulas (see Exercises 2.1 and 2.2). The sounds in Figure 1.2 on
the other hand show the variation in air pressure when there is no mathematical
formula involved, such as is the case for a song. In the first half second there are
so many oscillations that it is impossible to see the details, but if we zoom in on
the first 0.002 seconds we can see that there is a continuous function behind all
the ink. In reality the air pressure varies more than this, even over this short
time period, but the measuring equipment may not be able to pick up those
variations, and it is also doubtful whether we would be able to perceive such
rapid variations.
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Figure 1.2: Variations in air pressure during parts of a song. The first 0.5
seconds, the first 0.02 seconds, and the first 0.002 seconds.

1.1.1 The frequency of a sound
Besides the size of the variations in air pressure, a sound has another important
characteristic, namely the frequency (speed) of the variations. For most sounds
the frequency of the variations varies with time, but if we are to perceive
variations in air pressure as sound, they must fall within a certain range.

Fact 1.4. Human hearing.
For a human with good hearing to perceive variations in air pressure as sound,

the number of variations per second must be in the range 20–20 000.

To make these concepts more precise, we first recall what it means for a
function to be periodic.

Definition 1.5. Periodic functions.
A real function f is said to be periodic with period T if

f(t+ T ) = f(t)

for all real numbers t.

Note that all the values of a periodic function f with period T are known if
f(t) is known for all t in the interval [0, T ). The prototypes of periodic functions
are the trigonometric ones, and particularly sin t and cos t are of interest to us.
Since sin(t + 2π) = sin t, we see that the period of sin t is 2π and the same is
true for cos t.
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There is a simple way to change the period of a periodic function, namely by
multiplying the argument by a constant.

Observation 1.6. Frequency.
If ν is an integer, the function f(t) = sin(2πνt) is periodic with period

T = 1/ν. When t varies in the interval [0, 1], this function covers a total of ν
periods. This is expressed by saying that f has frequency ν.
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Figure 1.3: Versions of sin with different frequencies.

Figure 1.3 illustrates Observation 1.6. The function in the upper left is
the plain sin t which covers one period when t varies in the interval [0, 2π].
By multiplying the argument by 2π, the period is squeezed into the interval
[0, 1] so the function sin(2πt) has frequency ν = 1. Then, by also multiplying
the argument by 2, we push two whole periods into the interval [0, 1], so the
function sin(2π2t) has frequency ν = 2. In the lower right the argument has
been multiplied by 5 — hence the frequency is 5 and there are five whole periods
in the interval [0, 1]. Note that any function on the form sin(2πνt + a) has
frequency ν, regardless of the value of a.

Since sound can be modeled by functions, it is reasonable to say that a sound
with frequency ν is a trigonometric function with frequency ν.

Definition 1.7. Pure tones.
The function sin(2πνt) represents what we will call a pure tone with frequency

ν. Frequency is measured in Hz (Herz) which is the same as s−1 (the time t is
measured in seconds).
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A pure tone with frequency 440 Hz sounds like this, and a pure tone with
frequency 1500 Hz sounds like this. In Section 2.1 we will explain how we
generated these sounds so that they could be played on a computer.

Any sound may be considered to be a function. In the next section we will
explain why any reasonable function may be written as a sum of simple sin- and
cos- functions with integer frequencies. When this is translated into properties
of sound, we obtain an important principle.

Observation 1.8. Decomposition of sound into pure tones.
Any sound f is a sum of pure tones at different frequencies. The amount of

each frequency required to form f is the frequency content of f . Any sound can
be reconstructed from its frequency content.

The most basic consequence of Observation 1.8 is that it gives us an under-
standing of how any sound can be built from the simple building blocks of pure
tones. This also means that we can store a sound f by storing its frequency
content, as an alternative to storing f itself. This also gives us a possibility
for lossy compression of digital sound: It turns out that, in a typical audio
signal, most information is found in the lower frequencies, and some frequencies
will be almost completely absent. This can be exploited for compression if we
change the frequencies with small contribution a little bit and set them to 0, and
then store the signal by only storing the nonzero part of the frequency content.
When the sound is to be played back, we first convert the adjusted values to the
adjusted frequency content back to a normal function representation with an
inverse mapping.

Idea 1.9. Audio compression.
Suppose an audio signal f is given. To compress f , perform the following

steps:

• Rewrite the signal f in a new format where frequency information becomes
accessible.

• Remove those frequencies that only contribute marginally to human per-
ception of the sound.

• Store the resulting sound by coding the adjusted frequency content with
some lossless coding method.

This lossy compression strategy is essentially what is used in practice by
commercial audio formats. The difference is that commercial software does
everything in a more sophisticated way and thereby gets better compression
rates. We will return to this in later chapters.

We will see that Observation 1.8 can be used as a basis for many operations
on sound. It also makes it possible to explain what it means that we only perceive
sounds with a frequency in the range 20–20000 Hz: This simply says that there
is a significant contribution from one of those frequencies in the decomposition.

http://folk.uio.no/oyvindry/matinf2360/sounds/puretone440.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/puretone1500.wav
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With appropriate software it is easy to generate a sound from a mathematical
function; we can ’play’ the function. If we play a function like sin(2π440t),
we hear a pleasant sound with a very distinct frequency, as expected. There
are, however, many other ways in which a function can oscillate regularly. The
function in The right plot in Figure 1.1 for example, definitely oscillates 2 times
every second, but it does not have frequency 2 Hz since it is not a pure tone.
This sound is also not that pleasant to listen to. We will consider two more
important examples of this, which are very different from smooth, trigonometric
functions.

Example 1.10. The square wave.
We define the square wave of period T as the function which repeats with

period T , and is 1 on the first half of each period, and −1 on the second half.
This means that we can define it as the function

fs(t) =
{

1, if 0 ≤ t < T/2;
−1, if T/2 ≤ t < T .

(1.1)

In the left plot in Figure 1.4 we have plotted the square wave when T = 1/440.
This period is chosen so that it corresponds to the pure tone we already have
listened to, and you can listen to this square wave here. In Exercise 2.4 you will
learn how to generate this sound. We hear a sound with the same frequency as
sin(2π440t), but note that the square wave is less pleasant to listen to: There
seems to be some sharp corners in the sound, translating into a rather shrieking,
piercing sound. We will later explain this by the fact that the square wave can
be viewed as a sum of many frequencies, and that all the different frequencies
pollute the sound so that it is not pleasant to listen to.
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0.000 0.002 0.004 0.006 0.008 0.010

1.0

0.5

0.0

0.5

1.0

Figure 1.4: The first five periods of the square wave and the triangle wave,
two functions with regular oscillations, but which are not simple, trigonometric
functions.

Example 1.11. The triangle wave.
We define the triangle wave of period T as the function which repeats with

period T , and increases linearly from −1 to 1 on the first half of each period,

http://folk.uio.no/oyvindry/matinf2360/sounds/square440.wav
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and decreases linearly from 1 to −1 on the second half of each period. This
means that we can define it as the function

ft(t) =
{

4t/T − 1, if 0 ≤ t < T/2;
3− 4t/T, if T/2 ≤ t < T .

(1.2)

In the right plot in Figure 1.4 we have plotted the triangle wave when T = 1/440.
Again, this same choice of period gives us an audible sound, and you can listen
to the triangle wave here. Again you will note that the triangle wave has the
same frequency as sin(2π440t), and is less pleasant to listen to than this pure
tone. However, one can argue that it is somewhat more pleasant to listen to
than a square wave. This will also be explained in terms of pollution with other
frequencies later.

In Section 1.2 we will begin to peek behind the curtains as to why these
waves sound so different, even though we recognize them as having the exact
same frequency.

Exercise 1.1: The Krakatoa explosion
Compute the loudness of the Krakatoa explosion on the decibel scale, assuming
that the variation in air pressure peaked at 100 000 Pa.

Exercise 1.2: Sum of two pure tones
Consider a sum of two pure tones, f(t) = A1 sin(2πν1t) + A2 sin(2πν2t). For
which values of A1, A2, ν1, ν2 is f periodic? What is the period of f when it is
periodic?

1.2 Fourier series: Basic concepts
In Section 1.1.1 we identified audio signals with functions and discussed informally
the idea of decomposing a sound into basis sounds (pure sounds) to make
its frequency content available. In this chapter we will make this kind of
decomposition more precise by discussing how a given function can be expressed
in terms of the basic trigonometric functions. This is similar to Taylor series
where functions are approximated by combinations of polynomials. But it is
also different from Taylor series because we use trigonometric series rather than
power series, and the approximations are computed in a very different way. The
theory of approximation of functions with trigonometric functions is generally
referred to as Fourier analysis. This is a central tool in practical fields like image-
and signal processing, but it is also an important field of research within pure
mathematics.

In the start of this chapter we had no constraints on the function f . Although
Fourier analysis can be performed for very general functions, it turns out that it
takes its simplest form when we assume that the function is periodic. Periodic

http://folk.uio.no/oyvindry/matinf2360/sounds/triangle440.wav
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functions are fully known when we know their values on a period [0, T ]. In this
case we will see that we can carry out the Fourier analysis in finite dimensional
vector spaces of functions. This makes linear algebra a very useful tool in Fourier
analysis: Many of the tools from your linear algebra course will be useful, in a
situation that at first may seem far from matrices and vectors.

The basic idea of Fourier series is to approximate a given function by a
combination of simple cos and sin functions. This means that we have to address
at least three questions:

• How general do we allow the given function to be?

• What exactly are the combinations of cos and sin that we use for the
approximations?

• How do we determine the approximation?

Each of these questions will be answered in this section. Since we restrict to
periodic functions, we will without much loss of generality assume that the
functions are defined on [0, T ], where T is some positive number. Mostly we
will also assume that f is continuous, but the theory can also be extended to
functions which are only Riemann-integrable, and more precisely, to square
integrable functions.

Definition 1.12. Continuous and square-integrable functions.
The set of continuous, real functions defined on an interval [0, T ] is denoted

C[0, T ].
A real function f defined on [0, T ] is said to be square integrable if f2 is

Riemann-integrable, i.e., if the Riemann integral of f2 on [0, T ] exists,∫ T

0
f(t)2 dt <∞.

The set of all square integrable functions on [0, T ] is denoted L2[0, T ].

The sets of continuous and square-integrable functions can be equipped with
an inner-product, a generalization of the so-called dot-product for vectors.

Theorem 1.13. Inner product spaces.
Both L2[0, T ] and C[0, T ] are vector spaces. Moreover, if the two functions f

and g lie in L2[0, T ] (or in C[0, T ]), then the product fg is Riemann-integrable
(or in C[0, T ]). Moreover, both spaces are inner product spaces 1 with inner
product 2 defined by

〈f, g〉 = 1
T

∫ T

0
f(t)g(t) dt, (1.3)

and associated norm
1See Section 6.1 in [20] for a review of inner products and orthogonality.
2See Section 6.7 in [20] for a review of function spaces as inner product spaces.
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‖f‖ =

√
1
T

∫ T

0
f(t)2dt. (1.4)

The mysterious factor 1/T is included so that the constant function f(t) = 1
has norm 1, i.e., its role is as a normalizing factor.

Definition 1.12 and Theorem 1.13 answer the first question above, namely
how general we allow our functions to be. Theorem 1.13 also gives an indication
of how we are going to determine approximations: we are going to use inner
products. We recall from linear algebra that the projection of a function f onto
a subspace W with respect to an inner product 〈·, ·〉 is the function g ∈W which
minimizes ‖f − g‖, also called the error in the approximation 3. This projection
is therefore also called a best approximation of f from W and is characterized
by the fact that the function f − g, also called the error function, should be
orthogonal to the subspace W , i.e. we should have

〈f − g, h〉 = 0, for all h ∈W .

More precisely, if φ = {φi}mi=1 is an orthogonal basis for W , then the best
approximation g is given by

g =
m∑
i=1

〈f, φi〉
〈φi, φi〉

φi. (1.5)

The error ‖f − g‖ is often referred to as the least square error.
We have now answered the second of our primary questions. What is left is a

description of the subspace W of trigonometric functions. This space is spanned
by the pure tones we discussed in Section 1.1.1.

Definition 1.14. Fourier series.
Let VN,T be the subspace of C[0, T ] spanned by the set of functions given by

DN,T = {1, cos(2πt/T ), cos(2π2t/T ), · · · , cos(2πNt/T ),
sin(2πt/T ), sin(2π2t/T ), · · · , sin(2πNt/T )}. (1.6)

The space VN,T is called the N ’th order Fourier space. The Nth-order Fourier
series approximation of f , denoted fN , is defined as the best approximation of f
from VN,T with respect to the inner product defined by (1.3).

The space VN,T can be thought of as the space spanned by the pure tones
of frequencies 1/T , 2/T , . . . , N/T , and the Fourier series can be thought of as
linear combination of all these pure tones. From our discussion in Section 1.1.1,
we should expect that if N is sufficiently large, VN,T can be used to approximate
most sounds in real life. The approximation fN of a sound f from a space VN,T

3See Section 6.3 in [20] for a review of projections and least squares approximations.
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can also serve as a compressed version if many of the coefficients can be set to 0
without the error becoming too big.

Note that all the functions in the set DN,T are periodic with period T , but
most have an even shorter period. More precisely, cos(2πnt/T ) has period T/n,
and frequency n/T . In general, the term fundamental frequency is used to denote
the lowest frequency of a given periodic function.

Definition 1.14 characterizes the Fourier series. The next lemma gives precise
expressions for the coefficients.

Theorem 1.15. Fourier coefficients.
The set DN,T is an orthogonal basis for VN,T . In particular, the dimension

of VN,T is 2N + 1, and if f is a function in L2[0, T ], we denote by a0, . . . , aN
and b1, . . . , bN the coordinates of fN in the basis DN,T , i.e.

fN (t) = a0 +
N∑
n=1

(an cos(2πnt/T ) + bn sin(2πnt/T )) . (1.7)

The a0, . . . , aN and b1, . . . , bN are called the (real) Fourier coefficients of f , and
they are given by

a0 = 〈f, 1〉 = 1
T

∫ T

0
f(t) dt, (1.8)

an = 2
〈
f, cos(2πnt/T )

〉
= 2
T

∫ T

0
f(t) cos(2πnt/T ) dt for n ≥ 1, (1.9)

bn = 2〈f, sin(2πnt/T )〉 = 2
T

∫ T

0
f(t) sin(2πnt/T ) dt for n ≥ 1. (1.10)

Proof. To prove orthogonality, assume first that m 6= n. We compute the inner
product

〈cos(2πmt/T ), cos(2πnt/T )〉

= 1
T

∫ T

0
cos(2πmt/T ) cos(2πnt/T )dt

= 1
2T

∫ T

0
(cos(2πmt/T + 2πnt/T ) + cos(2πmt/T − 2πnt/T ))

= 1
2T

[
T

2π(m+ n) sin(2π(m+ n)t/T ) + T

2π(m− n) sin(2π(m− n)t/T )
]T

0

= 0.

Here we have added the two identities cos(x±y) = cosx cos y∓sin x sin y together
to obtain an expression for cos(2πmt/T ) cos(2πnt/T )dt in terms of cos(2πmt/T+
2πnt/T ) and cos(2πmt/T − 2πnt/T ). By testing all other combinations of sin
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and cos also, we obtain the orthogonality of all functions in DN,T in the same
way.

We find the expressions for the Fourier coefficients from the general formula
(1.5). We first need to compute the following inner products of the basis functions,

〈cos(2πmt/T ), cos(2πmt/T )〉 = 1
2

〈sin(2πmt/T ), sin(2πmt/T )〉 = 1
2

〈1, 1〉 = 1,

which are easily derived in the same way as above. The orthogonal decomposition
theorem (1.5) now gives

fN (t) = 〈f, 1〉
〈1, 1〉1 +

N∑
n=1

〈f, cos(2πnt/T )〉
〈cos(2πnt/T ), cos(2πnt/T )〉 cos(2πnt/T )

+
N∑
n=1

〈f, sin(2πnt/T )〉
〈sin(2πnt/T ), sin(2πnt/T )〉 sin(2πnt/T )

=
1
T

∫ T
0 f(t)dt

1 +
N∑
n=1

1
T

∫ T
0 f(t) cos(2πnt/T )dt

1
2

cos(2πnt/T )

+
N∑
n=1

1
T

∫ T
0 f(t) sin(2πnt/T )dt

1
2

sin(2πnt/T )

= 1
T

∫ T

0
f(t)dt+

N∑
n=1

(
2
T

∫ T

0
f(t) cos(2πnt/T )dt

)
cos(2πnt/T )

+
N∑
n=1

(
2
T

∫ T

0
f(t) sin(2πnt/T )dt

)
sin(2πnt/T ).

Equations (1.8)-(1.10) now follow by comparison with Equation (1.7).

Since f is a function in time, and the an, bn represent contributions from
different frequencies, the Fourier series can be thought of as a change of coordi-
nates, from what we vaguely can call the time domain, to what we can call the
frequency domain (or Fourier domain). We will call the basis DN,T the N ’th
order Fourier basis for VN,T . We note that DN,T is not an orthonormal basis; it
is only orthogonal.

In the signal processing literature, Equation (1.7) is known as the synthesis
equation, since the original function f is synthesized as a sum of trigonometric
functions. Similarly, equations (1.8)-(1.10) are called analysis equations.

A major topic in harmonic analysis is to state conditions on f which guaran-
tees the convergence of its Fourier series. We will not discuss this in detail here,
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since it turns out that, by choosing N large enough, any reasonable periodic
function can be approximated arbitrarily well by its Nth-order Fourier series
approximation. More precisely, we have the following result for the convergence
of the Fourier series, stated without proof.

Theorem 1.16. Convergence of Fourier series.
Suppose that f is periodic with period T , and that

• f has a finite set of discontinuities in each period.

• f contains a finite set of maxima and minima in each period.

•
∫ T

0 |f(t)|dt <∞.

Then we have that limN→∞ fN (t) = f(t) for all t, except at those points t where
f is not continuous.

The conditions in Theorem 1.16 are called the Dirichlet conditions for the
convergence of the Fourier series. They are just one example of conditions that
ensure the convergence of the Fourier series. There also exist much more general
conditions that secure convergence. These can require deep mathematical theory
in order to prove, depending on the generality.
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Figure 1.5: The cubic polynomial f(x) = − 1
3x

3 + 1
2x

2 − 3
16x+ 1 on the interval

[0, 1], together with its Fourier series approximation from V9,1. The function and
its Fourier series is shown left. The Fourier series on a larger interval is shown
right.

An illustration of Theorem 1.16 is shown in Figure 1.5 where the cubic
polynomial f(x) = − 1

3x
3 + 1

2x
2 − 3

16x + 1 is approximated by a 9th order
Fourier series. The trigonometric approximation is periodic with period 1 so
the approximation becomes poor at the ends of the interval since the cubic
polynomial is not periodic. The approximation is plotted on a larger interval in
the right plot in Figure 1.5, where its periodicity is clearly visible.

Let us compute the Fourier series of some interesting functions.

Example 1.17. Fourier coefficients of the square wave.
Let us compute the Fourier coefficients of the square wave, as defined by

Equation (1.1) in Example 1.10. If we first use Equation (1.8) we obtain
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a0 = 1
T

∫ T

0
fs(t)dt = 1

T

∫ T/2

0
dt− 1

T

∫ T

T/2
dt = 0.

Using Equation (1.9) we get

an = 2
T

∫ T

0
fs(t) cos(2πnt/T )dt

= 2
T

∫ T/2

0
cos(2πnt/T )dt− 2

T

∫ T

T/2
cos(2πnt/T )dt

= 2
T

[
T

2πn sin(2πnt/T )
]T/2

0
− 2
T

[
T

2πn sin(2πnt/T )
]T
T/2

= 2
T

T

2πn ((sin(nπ)− sin 0)− (sin(2nπ)− sin(nπ)) = 0.

Finally, using Equation (1.10) we obtain

bn = 2
T

∫ T

0
fs(t) sin(2πnt/T )dt

= 2
T

∫ T/2

0
sin(2πnt/T )dt− 2

T

∫ T

T/2
sin(2πnt/T )dt

= 2
T

[
− T

2πn cos(2πnt/T )
]T/2

0
+ 2
T

[
T

2πn cos(2πnt/T )
]T
T/2

= 2
T

T

2πn ((− cos(nπ) + cos 0) + (cos(2nπ)− cos(nπ)))

= 2(1− cos(nπ)
nπ

=
{

0, if n is even;
4/(nπ), if n is odd.

In other words, only the bn-coefficients with n odd in the Fourier series are
nonzero. This means that the Fourier series of the square wave is

4
π

sin(2πt/T )+ 4
3π sin(2π3t/T )+ 4

5π sin(2π5t/T )+ 4
7π sin(2π7t/T )+· · · . (1.11)

With N = 20, there are 10 trigonometric terms in this sum. The corresponding
Fourier series can be plotted on the same interval with the following code.

t = linspace(0, T, 100);
y = zeros(size(t));
for n = 1:2:19

y = y + (4/(n*pi))*sin(2*pi*n*t/T);
end
plot(t,y)
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The left plot in Figure 1.6 shows the Fourier series of the square wave when
T = 1/440, and when N = 20. In the right plot the values of the first 100 Fourier
coefficients bn are shown, to see that they actually converge to zero. This is
clearly necessary in order for the Fourier series to converge.
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Figure 1.6: The Fourier series with N = 20 for the square wave of Example 1.17,
and the values for the first 100 Fourier coefficients bn.

Even though f oscillates regularly between −1 and 1 with period T , the
discontinuities mean that it is far from the simple sin(2πt/T ) which corresponds
to a pure tone of frequency 1/T . From Figure 1.6(b) we see that the dominant
coefficient in the Fourier series is b1, which tells us how much there is of the pure
tone sin(2πt/T ) in the square wave. This is not surprising since the square wave
oscillates T times every second as well, but the additional nonzero coefficients
pollute the pure sound. As we include more and more of these coefficients, we
gradually approach the square wave, as shown for N = 20.

There is a connection between how fast the Fourier coefficients go to zero, and
how we perceive the sound. A pure sine sound has only one nonzero coefficient,
while the square wave Fourier coefficients decrease as 1/n, making the sound
less pleasant. This explains what we heard when we listened to the sound in
Example 1.10. Also, it explains why we heard the same pitch as the pure tone,
since the first frequency in the Fourier series has the same frequency as the pure
tone we listened to, and since this had the highest value.

Let us listen to the Fourier series approximations of the square wave. For
N = 1 and with T = 1/440 as above, it sounds like this. This sounds exactly like
the pure sound with frequency 440Hz, as noted above. For N = 5 the Fourier
series approximation sounds like this, and for N = 9 it sounds like this. Indeed,
these sounds are more like the square wave itself, and as we increase N we can
hear how the introduction of more frequencies gradually pollutes the sound more
and more. In Exercise 2.5 you will be asked to write a program which verifies
this.

Example 1.18. Fourier coefficients of the triangle wave.
Let us also compute the Fourier coefficients of the triangle wave, as defined

by Equation (1.2) in Example 1.11. We now have

http://folk.uio.no/oyvindry/matinf2360/sounds/square440s1.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/square440s5.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/square440s9.wav
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a0 = 1
T

∫ T/2

0

4
T

(
t− T

4

)
dt+ 1

T

∫ T

T/2

4
T

(
3T
4 − t

)
dt.

Instead of computing this directly, it is quicker to see geometrically that the
graph of ft has as much area above as below the x-axis, so that this integral
must be zero. Similarly, since ft is symmetric about the midpoint T/2, and
sin(2πnt/T ) is antisymmetric about T/2, we have that ft(t) sin(2πnt/T ) also is
antisymmetric about T/2, so that∫ T/2

0
ft(t) sin(2πnt/T )dt = −

∫ T

T/2
ft(t) sin(2πnt/T )dt.

This means that, for n ≥ 1,

bn = 2
T

∫ T/2

0
ft(t) sin(2πnt/T )dt+ 2

T

∫ T

T/2
ft(t) sin(2πnt/T )dt = 0.

For the final coefficients, since both f and cos(2πnt/T ) are symmetric about
T/2, we get for n ≥ 1,

an = 2
T

∫ T/2

0
ft(t) cos(2πnt/T )dt+ 2

T

∫ T

T/2
ft(t) cos(2πnt/T )dt

= 4
T

∫ T/2

0
ft(t) cos(2πnt/T )dt = 4

T

∫ T/2

0

4
T

(
t− T

4

)
cos(2πnt/T )dt

= 16
T 2

∫ T/2

0
t cos(2πnt/T )dt− 4

T

∫ T/2

0
cos(2πnt/T )dt

= 4
n2π2 (cos(nπ)− 1)

=
{

0, if n is even;
−8/(n2π2), if n is odd.

where we have dropped the final tedious calculations (use integration by parts).
From this it is clear that the Fourier series of the triangle wave is

− 8
π2 cos(2πt/T )− 8

32π2 cos(2π3t/T )− 8
52π2 cos(2π5t/T )− 8

72π2 cos(2π7t/T )+· · · .
(1.12)

In Figure 1.7 we have repeated the plots used for the square wave, for the triangle
wave. As before, we have used T = 1/440. The figure clearly shows that the
Fourier series coefficients decay much faster.

Let us also listen to different Fourier series approximations of the triangle
wave. For N = 1 and with T = 1/440 as above, it sounds like this. Again, this
sounds exactly like the pure sound with frequency 440Hz. For N = 5 the Fourier

http://folk.uio.no/oyvindry/matinf2360/sounds/triangle440s1.wav
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Figure 1.7: The Fourier series with N = 20 for the triangle wave of Example 1.18
and the values for the first 100 Fourier coefficients an.

series approximation sounds like this, and for N = 9 it sounds like this. Again
these sounds are more like the triangle wave itself, and as we increase N we
can hear that the introduction of more frequencies pollutes the sound. However,
since the triangle wave Fourier coefficients decrease as 1/n2 instead of 1/n as for
the square wave, the sound is, although unpleasant due to pollution by many
frequencies, not as unpleasant as the square wave. Also, it converges faster to
the triangle wave itself, as also can be heard. In Exercise 2.5 you will be asked
to write a program which verifies this.

There is an important lesson to be learnt from the previous examples: Even
if the signal is nice and periodic, it may not have a nice representation in terms
of trigonometric functions. Thus, trigonometric functions may not be the best
bases to use for expressing other functions. Unfortunately, many more such cases
can be found, as the next example shows.

Example 1.19. Fourier coefficients of a simple function.
Let us consider a periodic function which is 1 on [0, T0], but 0 is on [T0, T ].

This is a signal with short duration when T0 is small compared to T . We compute
that y0 = T0/T , and

an = 2
T

∫ T0

0
cos(2πnt/T )dt = 1

πn
[sin(2πnt/T )]T0

0 = sin(2πnT0/T )
πn

for n ≥ 1. Similar computations hold for bn. We see that |an| is of the order
1/(πn), and that infinitely many n contribute, This function may be thought
of as a simple building block, corresponding to a small time segment. However,
we see that it is not a simple building block in terms of trigonometric functions.
This time segment building block may be useful for restricting a function to
smaller time segments, and later on we will see that it still can be useful.

http://folk.uio.no/oyvindry/matinf2360/sounds/triangle440s5.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/triangle440s9.wav
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1.2.1 Fourier series for symmetric and antisymmetric func-
tions

In Example 1.17 we saw that the Fourier coefficients bn vanished, resulting in a
sine-series for the Fourier series of the square wave. Similarly, in Example 1.18
we saw that an vanished, resulting in a cosine-series for the triangle wave. This
is not a coincident, and is captured by the following result, since the square wave
was defined so that it was antisymmetric about 0, and the triangle wave so that
it was symmetric about 0.

Theorem 1.20. Symmetry and antisymmetry.
If f is antisymmetric about 0 (that is, if f(−t) = −f(t) for all t), then an = 0,

so the Fourier series is actually a sine-series. If f is symmetric about 0 (which
means that f(−t) = f(t) for all t), then bn = 0, so the Fourier series is actually
a cosine-series.

Proof. Note first that we can write

an = 2
T

∫ T/2

−T/2
f(t) cos(2πnt/T )dt bn = 2

T

∫ T/2

−T/2
f(t) sin(2πnt/T )dt,

i.e. we can change the integration bounds from [0, T ] to [−T/2, T/2]. This
follows from the fact that all f(t), cos(2πnt/T ) and sin(2πnt/T ) are periodic
with period T .

Suppose first that f is symmetric. We obtain

bn = 2
T

∫ T/2

−T/2
f(t) sin(2πnt/T )dt

= 2
T

∫ 0

−T/2
f(t) sin(2πnt/T )dt+ 2

T

∫ T/2

0
f(t) sin(2πnt/T )dt

= 2
T

∫ 0

−T/2
f(t) sin(2πnt/T )dt− 2

T

∫ −T/2

0
f(−t) sin(−2πnt/T )dt

= 2
T

∫ 0

−T/2
f(t) sin(2πnt/T )dt− 2

T

∫ 0

−T/2
f(t) sin(2πnt/T )dt = 0.

where we have made the substitution u = −t, and used that sin is antisymmetric.
The case when f is antisymmetric can be proved in the same way, and is left as
an exercise.

In fact, the connection between symmetric and antisymmetric functions, and
sine- and cosine series can be made even stronger by observing the following:

• Any cosine series a0 +
∑N
n=1 an cos(2πnt/T ) is a symmetric function.

• Any sine series
∑N
n=1 bn sin(2πnt/T ) is an antisymmetric function.
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• Any periodic function can be written as a sum of a symmetric - and an
antisymmetric function by writing f(t) = f(t)+f(−t)

2 + f(t)−f(−t)
2 .

• If fN (t) = a0 +
∑N
n=1(an cos(2πnt/T ) + bn sin(2πnt/T )), then

fN (t) + fN (−t)
2 = a0 +

N∑
n=1

an cos(2πnt/T )

fN (t)− fN (−t)
2 =

N∑
n=1

bn sin(2πnt/T ).

What you should have learned in this section.

• The inner product which we use for function spaces.

• Definition of the Fourier spaces, and the orthogonality of the Fourier basis.

• Fourier series approximations as best approximations.

• Formulas for the Fourier coefficients.

• Using the computer to plot Fourier series.

• For symmetric/antisymmetric functions, Fourier series are actually co-
sine/sine series.

Exercise 1.3: Riemann-integrable functions which are not
square-integrable
Find a function f which is Riemann-integrable on [0, T ], and so that

∫ T
0 f(t)2dt

is infinite.

Exercise 1.4: When are Fourier spaces included in each
other?
Given the two Fourier spaces VN1,T1 , VN2,T2 . Find necessary and sufficient
conditions in order for VN1,T1 ⊂ VN2,T2 .

Exercise 1.5: antisymmetric functions are sine-series
Prove the second part of Theorem 1.20, i.e. show that if f is antisymmetric about
0 (i.e. f(−t) = −f(t) for all t), then an = 0, i.e. the Fourier series is actually a
sine-series.
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Exercise 1.6: Fourier series for low-degree polynomials
Find the Fourier series coefficients of the periodic functions with period T defined
by being f(t) = t, f(t) = t2, and f(t) = t3, on [0, T ].

Exercise 1.7: Fourier series for polynomials
Write down difference equations for finding the Fourier coefficients of f(t) = tk+1

from those of f(t) = tk, and write a program which uses this recursion. Use the
program to verify what you computed in Exercise 1.6.

Exercise 1.8: Fourier series of a given polynomial
Use the previous exercise to find the Fourier series for f(x) = − 1

3x
3+ 1

2x
2− 3

16x+1
on the interval [0, 1]. Plot the 9th order Fourier series for this function. You
should obtain the plots from Figure 1.5.

1.3 Complex Fourier series
In Section 1.2 we saw how a function can be expanded in a series of sines and
cosines. These functions are related to the complex exponential function via
Eulers formula

eix = cosx+ i sin x

where i is the imaginary unit with the property that i2 = −1. Because the
algebraic properties of the exponential function are much simpler than those
of cos and sin, it is often an advantage to work with complex numbers, even
though the given setting is real numbers. This is definitely the case in Fourier
analysis. More precisely, we will make the substitutions

cos(2πnt/T ) = 1
2

(
e2πint/T + e−2πint/T

)
(1.13)

sin(2πnt/T ) = 1
2i

(
e2πint/T − e−2πint/T

)
(1.14)

in Definition 1.14. From these identities it is clear that the set of complex
exponential functions e2πint/T also is a basis of periodic functions (with the same
period) for VN,T . We may therefore reformulate Definition 1.14 as follows:

Definition 1.21. Complex Fourier basis.
We define the set of functions

FN,T = {e−2πiNt/T , e−2πi(N−1)t/T , · · · , e−2πit/T , (1.15)
1, e2πit/T , · · · , e2πi(N−1)t/T , e2πiNt/T }, (1.16)

and call this the order N complex Fourier basis for VN,T .
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The function e2πint/T is also called a pure tone with frequency n/T , just
as sines and cosines are. We would like to show that these functions also are
orthogonal. To show this, we need to say more on the inner product we have
defined by Equation (1.3). A weakness with this definition is that we have
assumed real functions f and g, so that this can not be used for the complex
exponential functions e2πint/T . For general complex functions we will extend
the definition of the inner product as follows:

〈f, g〉 = 1
T

∫ T

0
fḡ dt. (1.17)

The associated norm now becomes

‖f‖ =

√
1
T

∫ T

0
|f(t)|2dt. (1.18)

The motivation behind Equation (1.17), where we have conjugated the second
function, lies in the definition of an inner product for vector spaces over complex
numbers. From before we are used to vector spaces over real numbers, but vector
spaces over complex numbers are defined through the same set of axioms as
for real vector spaces, only replacing real numbers with complex numbers. For
complex vector spaces, the axioms defining an inner product are the same as for
real vector spaces, except for that the axiom

〈f, g〉 = 〈g, f〉 (1.19)

is replaced with the axiom

〈f, g〉 = 〈g, f〉, (1.20)

i.e. a conjugation occurs when we switch the order of the functions. This new
axiom can be used to prove the property 〈f, cg〉 = c̄〈f, g〉, which is a somewhat
different property from what we know for real inner product spaces. This follows
by writing

〈f, cg〉 = 〈cg, f〉 = c〈g, f〉 = c̄〈g, f〉 = c̄〈f, g〉.

Clearly the inner product given by (1.17) satisfies Axiom (1.20). With this
definition it is quite easy to see that the functions e2πint/T are orthonormal.
Using the orthogonal decomposition theorem we can therefore write

fN (t) =
N∑

n=−N

〈f, e2πint/T 〉
〈e2πint/T , e2πint/T 〉

e2πint/T =
N∑

n=−N
〈f, e2πint/T 〉e2πint/T

=
N∑

n=−N

(
1
T

∫ T

0
f(t)e−2πint/T dt

)
e2πint/T .
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We summarize this in the following theorem, which is a version of Theorem 1.15
which uses the complex Fourier basis:

Theorem 1.22. Complex Fourier coefficients.
We denote by y−N , . . . , y0, . . . , yN the coordinates of fN in the basis FN,T ,

i.e.

fN (t) =
N∑

n=−N
yne

2πint/T . (1.21)

The yn are called the complex Fourier coefficients of f , and they are given by.

yn = 〈f, e2πint/T 〉 = 1
T

∫ T

0
f(t)e−2πint/T dt. (1.22)

Let us consider some examples where we compute complex Fourier series.

Example 1.23. Complex Fourier coefficients of a simple function.
Let us consider the pure sound f(t) = e2πit/T2 with period T2, but let us

consider it only on the interval [0, T ] instead, where T < T2. Note that this f
is not periodic, since we only consider the part [0, T ] of the period [0, T2]. The
Fourier coefficients are

yn = 1
T

∫ T

0
e2πit/T2e−2πint/T dt = 1

2πiT (1/T2 − n/T )

[
e2πit(1/T2−n/T )

]T
0

= 1
2πi(T/T2 − n)

(
e2πiT/T2 − 1

)
.

Here it is only the term 1/(T/T2−n) which depends on n, so that yn can only be
large when n is close T/T2. In Figure 1.8 we have plotted |yn| for two different
combinations of T, T2.
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Figure 1.8: Plot of |yn| when f(t) = e2πit/T2 , and T2 > T . Left: T/T2 = 0.5.
Right: T/T2 = 0.9.

In both examples it is seen that many Fourier coefficients contribute, but
this is more visible when T/T2 = 0.5. When T/T2 = 0.9, most conribution is
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seen to be in the y1-coefficient. This sounds reasonable, since f then is closest
to the pure tone f(t) = e2πit/T of frequency 1/T (which in turn has y1 = 1 and
all other yn = 0).

Apart from computing complex Fourier series, there is an important lesson
to be learnt from the previous example: In order for a periodic function to be
approximated by other periodic functions, their period must somehow match.
Let us consider another example as well.

Example 1.24. Complex Fourier coefficients of composite function.
What often is the case is that a sound changes in content over time. Assume

that it is equal to a pure tone of frequency n1/T on [0, T/2), and equal to a pure
tone of frequency n2/T on [T/2, T ), i.e.

f(t) =
{
e2πin1t/T on [0, T2]
e2πin2t/T on[T2, T )

.

When n 6= n1, n2 we have that

yn = 1
T

(∫ T/2

0
e2πin1t/T e−2πint/T dt+

∫ T

T/2
e2πin2t/T e−2πint/T dt

)

= 1
T

([
T

2πi(n1 − n)e
2πi(n1−n)t/T

]T/2

0
+
[

T

2πi(n2 − n)e
2πi(n2−n)t/T

]T
T/2

)

= eπi(n1−n) − 1
2πi(n1 − n) + 1− eπi(n2−n)

2πi(n2 − n) .

Let us restrict to the case when n1 and n2 are both even. We see that

yn =


1
2 + 1

πi(n2−n1) n = n1, n2

0 n even , n 6= n1, n2
n1−n2

πi(n1−n)(n2−n) n odd

Here we have computed the cases n = n1 and n = n2 as above. In Figure 1.9 we
have plotted |yn| for two different combinations of n1, n2.

We see from the figure that, when n1, n2 are close, the Fourier coefficients
are close to those of a pure tone with n ≈ n1, n2, but that also other frequencies
contribute. When n1, n2 are further apart, we see that the Fourier coefficients
are like the sum of the two base frequencies, but that other frequencies contribute
also here.

There is an important lesson to be learnt from this as well: We should
be aware of changes in a sound over time, and it may not be smart to use
a frequency representation over a large interval when we know that there are
simpler frequency representations on the smaller intervals. The following example
shows that, in some cases it is not necessary to compute the Fourier integrals at
all, in order to compute the Fourier series.



CHAPTER 1. SOUND AND FOURIER SERIES 24

0 5 10 15 20 25 30 35
n

0.0

0.2

0.4

0.6

0.8

1.0
|y
n
|

0 5 10 15 20 25 30 35
n

0.0

0.2

0.4

0.6

0.8

1.0

|y
n
|

Figure 1.9: Plot of |yn| when we have two different pure tones at the different
parts of a period. Left: n1 = 10, n2 = 12. Right: n1 = 2, n2 = 20.

Example 1.25. Complex Fourier coefficients of f(t) = cos3(2πt/T ).
Let us compute the complex Fourier series of the function f(t) = cos3(2πt/T ),

where T is the period of f . We can write

cos3(2πt/T ) =
(

1
2(e2πit/T + e−2πit/T )

)3

= 1
8(e2πi3t/T + 3e2πit/T + 3e−2πit/T + e−2πi3t/T )

= 1
8e

2πi3t/T + 3
8e

2πit/T + 3
8e
−2πit/T + 1

8e
−2πi3t/T .

From this we see that the complex Fourier series is given by y1 = y−1 = 3
8 , and

that y3 = y−3 = 1
8 . In other words, it was not necessary to compute the Fourier

integrals in this case, and we see that the function lies in V3,T , i.e. there are
finitely many terms in the Fourier series. In general, if the function is some
trigonometric function, we can often use trigonometric identities to find an
expression for the Fourier series.

If we reorder the real and complex Fourier bases so that the two functions
{cos(2πnt/T ), sin(2πnt/T )} and {e2πint/T , e−2πint/T } have the same index in
the bases, equations (1.13)-(1.14) give us that the change of coordinates matrix
4 from DN,T to FN,T , denoted PFN,T←DN,T , is represented by repeating the
matrix

1
2

(
1 1/i
1 −1/i

)
along the diagonal (with an additional 1 for the constant function 1). In other
words, since an, bn are coefficients relative to the real basis and yn, y−n the
corresponding coefficients relative to the complex basis, we have for n > 0,

4See Section 4.7 in [20], to review the mathematics behind change of coordinates.
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(
yn
y−n

)
= 1

2

(
1 1/i
1 −1/i

)(
an
bn

)
.

This can be summarized by the following theorem:

Theorem 1.26. Change of coefficients between real and complex Fourier bases.
The complex Fourier coefficients yn and the real Fourier coefficients an, bn of

a function f are related by

y0 = a0,

yn = 1
2(an − ibn),

y−n = 1
2(an + ibn),

for n = 1, . . . , N .

Combining with Theorem 1.20, Theorem 1.26 can help us state properties of
complex Fourier coefficients for symmetric- and antisymmetric functions. We
look into this in Exercise 1.16.

Due to the somewhat nicer formulas for the complex Fourier coefficients when
compared to the real Fourier coefficients, we will write most Fourier series in
complex form in the following.

What you should have learned in this section.

• The complex Fourier basis and its orthonormality.

Exercise 1.9: Orthonormality of Complex Fourier basis
Show that the complex functions e2πint/T are orthonormal.

Exercise 1.10: Complex Fourier series of f(t) = sin2(2πt/T )
Compute the complex Fourier series of the function f(t) = sin2(2πt/T ).

Exercise 1.11: Complex Fourier series of polynomials
Repeat Exercise 1.6, computing the complex Fourier series instead of the real
Fourier series.

Exercise 1.12: Complex Fourier series and Pascals triangle
In this exercise we will find a connection with certain Fourier series and the rows
in Pascal’s triangle.
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a) Show that both cosn(t) and sinn(t) are in VN,2π for 1 ≤ n ≤ N .

b) Write down the N ’th order complex Fourier series for f1(t) = cos t, f2(t) =
cos2 t, og f3(t) = cos3 t.

c) In (b) you should be able to see a connection between the Fourier coefficients
and the three first rows in Pascal’s triangle. Formulate and prove a general
relationship between row n in Pascal’s triangle and the Fourier coefficients of
fn(t) = cosn t.

Exercise 1.13: Complex Fourier coefficients of the square
wave
Compute the complex Fourier coefficients of the square wave using Equation
(1.22) in the compendium, i.e. repeat the calculations from Example 1.17 for the
complex case. Use Theorem 1.26 to verify your result.

Exercise 1.14: Complex Fourier coefficients of the triangle
wave
Repeat Exercise 1.13 for the triangle wave.

Exercise 1.15: Complex Fourier coefficients of low-degree
polynomials
Use Equation (1.22) in the compendium to compute the complex Fourier coeffi-
cients of the periodic functions with period T defined by, respectively, f(t) = t,
f(t) = t2, and f(t) = t3, on [0, T ]. Use Theorem 1.26 to verify your calculations
from Exercise 1.6.

Exercise 1.16: Complex Fourier coefficients for symmetric
and antisymmetric functions
In this exercise we will prove a version of Theorem 1.20 for complex Fourier
coefficients.

a) If f is symmetric about 0, show that yn is real, and that y−n = yn.

b) If f is antisymmetric about 0, show that the yn are purely imaginary, y0 = 0,
and that y−n = −yn.

c) Show that
∑N
n=−N yne

2πint/T is symmetric when y−n = yn for all n, and
rewrite it as a cosine-series.

d) Show that
∑N
n=−N yne

2πint/T is antisymmetric when y0 = 0 and y−n = −yn
for all n, and rewrite it as a sine-series.
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1.4 Some properties of Fourier series
We continue by establishing some important properties of Fourier series, in
particular the Fourier coefficients for some important functions. In these lists,
we will use the notation f → yn to indicate that yn is the n’th (complex) Fourier
coefficient of f(t).

Theorem 1.27. Fourier series pairs.
The functions 1, e2πint/T , and χ−a,a have the Fourier coefficients

1→ e0 = (1, 0, 0, 0 . . . , )
e2πint/T → en = (0, 0, . . . , 1, 0, 0, . . .)

χ−a,a →
sin(2πna/T )

πn
.

The 1 in en is at position n and the function χ−a,a is the characteristic function
of the interval [−a, a], defined by

χ−a,a(t) =
{

1, if t ∈ [−a, a];
0, otherwise.

The first two pairs are easily verified, so the proofs are omitted. The case for
χ−a,a is very similar to the square wave, but easier to prove, and therefore also
omitted.

Theorem 1.28. Fourier series properties.
The mapping f → yn is linear: if f → xn, g → yn, then

af + bg → axn + byn

For all n. Moreover, if f is real and periodic with period T , the following
properties hold:

1. yn = y−n for all n.

2. If f(t) = f(−t) (i.e. f is symmetric), then all yn are real, so that bn are
zero and the Fourier series is a cosine series.

3. If f(t) = −f(−t) (i.e. f is antisymmetric), then all yn are purely imaginary,
so that the an are zero and the Fourier series is a sine series.

4. If g(t) = f(t− d) (i.e. g is the function f delayed by d) and f → yn, then
g → e−2πind/T yn.

5. If g(t) = e2πidt/T f(t) with d an integer, and f → yn, then g → yn−d.

6. Let d be a number. If f → yn, then f(d+ t) = f(d− t) for all t if and only
if the argument of yn is −2πnd/T for all n.
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Proof. The proof of linearity is left to the reader. Property 1 follows immediately
by writing

yn = 1
T

∫ T

0
f(t)e−2πint/T dt = 1

T

∫ T

0
f(t)e2πint/T dt

= 1
T

∫ T

0
f(t)e−2πi(−n)t/T dt = y−n.

Also, if g(t) = f(−t), we have that

1
T

∫ T

0
g(t)e−2πint/T dt = 1

T

∫ T

0
f(−t)e−2πint/T dt = − 1

T

∫ −T
0

f(t)e2πint/T dt

= 1
T

∫ T

0
f(t)e2πint/T dt = yn.

The first part of property 2 follows from this. The second part follows directly
by noting that

yne
2πint/T + y−ne

−2πint/T = yn(e2πint/T + e−2πint/T ) = 2yn cos(2πnt/T ),

or by invoking Theorem 1.20. Property 3 is proved in a similar way. To prove
property 4, we observe that the Fourier coefficients of g(t) = f(t− d) are

1
T

∫ T

0
g(t)e−2πint/T dt = 1

T

∫ T

0
f(t− d)e−2πint/T dt

= 1
T

∫ T

0
f(t)e−2πin(t+d)/T dt

= e−2πind/T 1
T

∫ T

0
f(t)e−2πint/T dt = e−2πind/T yn.

For property 5 we observe that the Fourier coefficients of g(t) = e2πidt/T f(t) are

1
T

∫ T

0
g(t)e−2πint/T dt = 1

T

∫ T

0
e2πidt/T f(t)e−2πint/T dt

= 1
T

∫ T

0
f(t)e−2πi(n−d)t/T dt = yn−d.

If f(d+ t) = f(d− t) for all t, we define the function g(t) = f(t+ d) which is
symmetric about 0, so that it has real Fourier coefficients. But then the Fourier
coefficients of f(t) = g(t− d) are e−2πind/T times the (real) Fourier coefficients
of g by property 4. It follows that yn, the Fourier coefficients of f , has argument
−2πnd/T . The proof in the other direction follows by noting that any function
where the Fourier coefficients are real must be symmetric about 0, once the
Fourier series is known to converge. This proves property 6.
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Let us analyze these properties, to see that they match the notion we already
have for frequencies and sound. We will say that two sounds “essentially are
the same” if the absolute values of each Fourier coefficient are equal. Note that
this does not mean that the sounds sound the same, it merely says that the
contributions at different frequencies are comparable.

The first property says that the positive and negative frequencies in a (real)
sound essentially are the same. The second says that, when we play a sound
backwards, the frequency content is essentially the same. This is certainly the
case for all pure sounds. The third property says that, if we delay a sound, the
frequency content also is essentially the same. This also matches our intuition
on sound, since we think of the frequency representation as something which
is time-independent. The fourth property says that, if we multiply a sound
with a pure tone, the frequency representation is shifted (delayed), according
to the value of the frequency. This is something we see in early models for the
transmission of audio, where an audio signal is transmitted after having been
multiplied with what is called a ‘carrier wave‘. You can think of the carrier signal
as a pure tone. The result is a signal where the frequencies have been shifted
with the frequency of the carrier wave. The point of shifting the frequency of
the transmitted signal is to make it use a frequency range in which one knows
that other signals do not interfere. The last property looks a bit mysterious. We
will not have use for this property before the next chapter.

From Theorem 1.28 we also see that there exist several cases of duality
between a function and its Fourier series:

• Delaying a function corresponds to multiplying the Fourier coefficients
with a complex exponential. Vice versa, multiplying a function with a
complex exponential corresponds to delaying the Fourier coefficients.

• Symmetry/antisymmetry for a function corresponds to the Fourier coef-
ficients being real/purely imaginary. Vice versa, a function which is real
has Fourier coefficients which are conjugate symmetric.

Actually, one can show that these dualities are even stronger if we had considered
Fourier series of complex functions instead of real functions. We will not go into
this.

1.4.1 Rate of convergence for Fourier series
We have earlier mentioned criteria which guarantee that the Fourier series
converges. Another important topic is the rate of convergence, given that it
actually converges. If the series converges quickly, we may only need a few terms
in the Fourier series to obtain a reasonable approximation. We have already seen
examples which illustrate different convergence rates: The square wave seemed
to have very slow convergence rate near the discontinuities, while the triangle
wave did not seem to have the same problem.

Before discussing results concerning convergence rates we consider a simple
lemma which will turn out to be useful.
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Lemma 1.29. The order of computing Fourier series and differentiation does
not matter.

Assume that f is differentiable. Then (fN )′(t) = (f ′)N (t). In other words,
the derivative of the Fourier series equals the Fourier series of the derivative.

Proof. We first compute

〈f, e2πint/T 〉 = 1
T

∫ T

0
f(t)e−2πint/T dt

= 1
T

([
− T

2πinf(t)e−2πint/T
]T

0
+ T

2πin

∫ T

0
f ′(t)e−2πint/T dt

)

= T

2πin
1
T

∫ T

0
f ′(t)e−2πint/T dt = T

2πin 〈f
′, e2πint/T 〉.

where we used integration by parts, and that − T
2πinf(t)e−2πint/T are periodic

with period T . It follows that 〈f, e2πint/T 〉 = T
2πin 〈f

′, e2πint/T 〉. From this we
get that

(fN )′(t) =
(

N∑
n=−N

〈f, e2πint/T 〉e2πint/T

)′
= 2πin

T

N∑
n=−N

〈f, e2πint/T 〉e2πint/T

=
N∑

n=−N
〈f ′, e2πint/T 〉e2πint/T = (f ′)N (t).

where we substituted the connection between the inner products we just found.

Example 1.30. Computing the Fourier series of the triangle wave through
differentiation of the square wave.

The connection between the Fourier series of the function and its derivative
can be used to simplify the computation of Fourier series for new functions.
Let us see how we can use this to compute the Fourier series of the triangle
wave, which was quite a tedious job in Example 1.18. However, the relationship
f ′t(t) = 4

T fs(t) is straightforward to see from the plots of the square wave fs and
the triangle wave ft. From this relationship and from Equation (1.11) for the
Fourier series of the square wave it follows that

((ft)′)N (t) = 4
T

(
4
π

sin(2πt/T ) + 4
3π sin(2π3t/T ) + 4

5π sin(2π5t/T ) + · · ·
)
.

If we integrate this we obtain

(ft)N (t) = − 8
π2

(
cos(2πt/T ) + 1

32 cos(2π3t/T ) + 1
52 cos(2π5t/T ) + · · ·

)
+ C.
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What remains is to find the integration constant C. This is simplest found if
we set t = T/4, since then all cosine terms are 0. Clearly then C = 0, and we
arrive at the same expression as in Equation (1.12) for the Fourier series of the
triangle wave. This approach clearly had less computations involved. There
is a minor point here which we have not addressed: the triangle wave is not
differentiable at two points, as required by Lemma 1.29. It is, however, not too
difficult to see that this result still holds in cases where we have a finite number
of nondifferentiable points only.

We get the following corollary to Lemma 1.29:

Corollary 1.31. Connection between the Fourier coefficients of f(t) and f ′(t).
If the complex Fourier coefficients of f are yn and f is differentiable, then

the Fourier coefficients of f ′(t) are 2πin
T yn.

If we turn this around, we note that the Fourier coefficients of f(t) are
T/(2πin) times those of f ′(t). If f is s times differentiable, we can repeat this
argument to show that the Fourier coefficients of f(t) are

(
T/(2πin)

)s times
those of f (s)(t). In other words, the Fourier coefficients of a function which is
many times differentiable decay to zero very fast.

Observation 1.32. Convergence speed of differentiable functions.
The Fourier series converges quickly when the function is many times differ-

entiable.

An illustration is found in examples 1.17 and 1.18, where we saw that the
Fourier series coefficients for the triangle wave converged more quickly to zero
than those of the square wave. This is explained by the fact that the square
wave is discontinuous, while the triangle wave is continuous with a discontinuous
first derivative. Also, the functions considered in examples 1.23 and 1.24 are not
continuous, which partially explain why we there saw contributions from many
frequencies.

The requirement of continuity in order to obtain quickly converging Fourier
series may seem like a small problem. However, often the function is not defined
on the whole real line: it is often only defined on the interval [0, T ). If we
extend this to a periodic function on the whole real line, by repeating one
period as shown in the left plot in Figure 1.10, there is no reason why the
new function should be continuous at the boundaries 0, T, 2T etc., even though
the function we started with may be continuous on [0, T ). This would require
that f(0) = limt→T f(t). If this does not hold, the function may not be well
approximated with trigonometric functions, due to a slowly convergence Fourier
series.

We can therefore ask ourselves the following question:

Idea 1.33. Continuous Extension.
Assume that f is continuous on [0, T ). Can we construct another periodic

function which agrees with f on [0, T ], and which is both continuous and periodic
(maybe with period different from T )?
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Figure 1.10: Two different extensions of f to a periodic function on the whole
real line. Periodic extension (left) and symmetric extension (right).

If this is possible the Fourier series of the new function could produce better
approximations for f . It turns out that the following extension strategy does
the job:

Definition 1.34. Symmetric extension of a function.
Let f be a function defined on [0, T ]. By the symmetric extension of f ,

denoted f̆ , we mean the function defined on [0, 2T ] by

f̆(t) =
{
f(t), if 0 ≤ t ≤ T ;
f(2T − t), if T < t ≤ 2T .

Clearly the following holds:

Theorem 1.35. Continuous Extension.
If f is continuous on [0, T ], then f̆ is continuous on [0, 2T ], and f̆(0) = f̆(2T ).

If we extend f̆ to a periodic function on the whole real line (which we also
will denote by f̆), this function is continuous, agrees with f on [0, T ), and is a
symmetric function.

This also means that the Fourier series of f̆ is a cosine series, so that it is
determined by the cosine-coefficients an. The symmetric extension of f is shown
in the right plot in Figure 1.10. f̆ is symmetric since, for 0 ≤ t ≤ T ,

f̆(−t) = f̆(2T − t) = f(2T − (2T − t)) = f(t) = f̆(t).

In summary, we now have two possibilities for approximating a function f defined
only on [0, T ), where the latter addresses a shortcoming of the first:

• By the Fourier series of f

• By the Fourier series of f̆ restricted to [0, T ) (which actually is a cosine-
series)
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Example 1.36. Periodic extension.
Let f be the function with period T defined by f(t) = 2t/T −1 for 0 ≤ t < T .

In each period the function increases linearly from −1 to 1. Because f is
discontinuous at the boundaries, we would expect the Fourier series to converge
slowly. The Fourier series is a sine-series since f is antisymmetric, and we can
compute bn as

bn = 2
T

∫ T

0

2
T

(
t− T

2

)
sin(2πnt/T )dt = 4

T 2

∫ T

0

(
t− T

2

)
sin(2πnt/T )dt

= 4
T 2

∫ T

0
t sin(2πnt/T )dt− 2

T

∫ T

0
sin(2πnt/T )dt = − 2

πn
,

so that

fN (t) = −
N∑
n=1

2
nπ

sin(2πnt/T ),

which indeed converges slowly to 0. Let us now instead consider the symmetric
extension of f . Clearly this is the triangle wave with period 2T , and the Fourier
series of this was

(f̆)N (t) = −
∑

n≤N , n odd

8
n2π2 cos(2πnt/(2T )).

The second series clearly converges faster than the first, since its Fourier coef-
ficients are an = −8/(n2π2) (with n odd), while the Fourier coefficients in the
first series are bn = −2/(nπ).

If we use T = 1/440, the symmetric extension has period 1/220, which gives
a triangle wave where the first term in the Fourier series has frequency 220Hz.
Listening to this we should hear something resembling a 220Hz pure tone, since
the first term in the Fourier series is the most dominating in the triangle wave.
Listening to the periodic extension we should hear a different sound. The first
term in the Fourier series has frequency 440Hz, but this drounds a bit in the
contribution of the other terms in the Fourier series, due to the slow convergence
of the Fourier series, just as for the square wave.

The Fourier series with N = 7 terms of both f itself and the symmetric
extensions of f are shown in Figure 1.11. It is clear from the plot that the
Fourier series for f itself is not a very good approximation, while we cannot
differentiate between the Fourier series and the function itself for the symmetric
extension.

What you should have learned in this section.

• Simple Fourier series pairs.

• Certain properties of Fourier series, for instance how delay of a function or
multiplication with a complex exponential affect the Fourier coefficients.
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Figure 1.11: The Fourier series with N = 7 terms of the periodic (left) and
symmetric (right) extensions of the function in Example 1.36.

• The convergence rate of a Fourier series depends on the regularity of the
function. How this motivates the symmetric extension of a function.

Exercise 1.17: Fourier series of a delayed square wave
Define the function f with period T on [−T/2, T/2) by

f(t) =
{

1, if −T/4 ≤ t < T/4;
−1, if T/4 ≤ |t| < T/2.

f is just the square wave, delayed with d = −T/4. Compute the Fourier
coefficients of f directly, and use Property 4 in Theorem 1.28 to verify your
result.

Exercise 1.18: Find function from its Fourier series
Find a function f which has the complex Fourier series∑

n odd

4
π(n+ 4)e

2πint/T .

Hint. Attempt to use one of the properties in Theorem 1.28 on the Fourier
series of the square wave.

Exercise 1.19: Relation between complex Fourier coeffi-
cients of f and cosine-coefficients of f̆
Show that the complex Fourier coefficients yn of f , and the cosine-coefficients
an of f̆ are related by a2n = yn + y−n. This result is not enough to obtain the
entire Fourier series of f̆ , but at least it gives us half of it.
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1.5 Operations on sound: filters
It is easy to see how we can use Fourier coefficients to analyse or improve sound:
Noise in a sound often corresponds to the presence of some high frequencies with
large coefficients, and by removing these, we remove the noise. For example,
we could set all the coefficients except the first one to zero. This would change
the unpleasant square wave to the pure tone sin(2π440t), which we started our
experiments with. Doing so is an example of an important operation on sound
called filtering:

Definition 1.37. Analog filters.
An operation on sound is called an analog filter if it preserves the different

frequencies in the sound. In other words, s is an analog filter if, for any sound
f =

∑
ν c(ν)e2πiνt, the output s(f) is a sound which can be written on the form

s(f) = s

(∑
ν

c(ν)e2πiνt

)
=
∑
ν

c(ν)λs(ν)e2πiνt,

where λs(ν) is a function describing how s treats the different frequencies. λs(ν)
uniquely determines s, and is also called the frequency response of s.

The following is clear:

Theorem 1.38. Properties of analog filters.
The following hold for an analog filter s:

• When f is periodic with period T , s(f) is also periodic with period T .

• When s(f) we have that (s(f))N = s(fN ), i.e. s maps the N ’th order
Fourier series of f to the N ’th order Fourier series of s(f).

• Any pure tone is an eigenvector of s.

The analog filters we will look at have the following form:

Theorem 1.39. Convolution kernels.
Assume that g ∈ L1(R). The operation

f(t)→ h(t) =
∫ ∞
−∞

g(s)f(t− s)ds. (1.23)

is an analog filter. Analog filters which can be expressed like this are also called
convolutions. Also

• When f ∈ L2(R), then h ∈ L2(R).

• The frequency response of the filter is λs(ν) =
∫∞
∞ g(s)e−2πiνsds

The function g is also called a convolution kernel. We also write sg for the analog
filter with convolution kernel g.
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The name convolution kernel comes from the fact that filtering operations
are also called convolution operations in the literature. In the analog filters we
will look at later, the convolution kernel will always have compact support. The
support of a function f defined on a subset I of R is given by the closure of the
set of points where the function is nonzero,

supp(f) = {t ∈ I | f(t) 6= 0}.

Compact support simply means that the support is contained in some interval
on the form [a, b] for some constants a, b. In this case the filter takes the form
f(t)→ h(t) =

∫ b
a
g(s)f(t− s)ds. Also note that the integral above may not exist,

so that one needs to put some restrictions on the functions, such that f ∈ L2(R).
Note also that all analog filters may not be expressed as convolutions.

Proof. We compute

s(e2πiνt) =
∫ ∞
−∞

g(s)e2πiν(t−s)ds =
∫ ∞
−∞

g(s)e−2πiνsdse2πiνt = λs(f)e2πiνt,

which shows that s is a filter with the stated frequency response. That h ∈ L2(R),
when f ∈ L2(R) follows from Minkowski’s inequality for integrals [12].

The function g is arbitrary, so that this strategy leads to a wide class of
analog filters. We may ask the question of whether the general analog filter
always has this form. We will not go further into this, although one can find
partially affirmative answers to this question.

We also need to say something about the connection between filters and
symmetric functions. We saw that the symmetric extension of a function took the
form of a cosine-series, and that this converged faster to the symmetric extension
than the Fourier series did to the function. If a filter preserves cosine-series it
will also preserve symmetric extensions, and therefore also map fast-converging
Fourier series to fast-converging Fourier series. The following result will be useful
in this respect:

Theorem 1.40. Properties of filters.
If the frequency response of a filter satisfies λs(ν) = λs(−ν) for all frequencies

ν, then the filter preserves cosine series and sine series.

Proof. We have that

s(cos(2πnt/T )) = s

(
1
2(e2πint/T + e−2πint/T )

)
= 1

2λs(n/T )e2πint/T + 1
2λs(−n/T )e−2πint/T

= λs(n/T )
(

1
2(e2πint/T + e−2πint/T )

)
= λs(n/T ) cos(2πnt/T ).
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This means that s preserves cosine-series. A similar computation holds for
sine-series holds as well.

An analog filter where λs(ν) = λs(−ν) is also called a symmetric filter. As
an example, consider the analog filter s(f1) =

∫ a
−a g(s)f1(t − s)ds where g is

symmetric around 0 and supported on [−a, a]. s is a symmetric filter since

λs(ν) =
∫ a

−a
g(s)e−2πiνsds =

∫ a

−a
g(s)e2πiνsds = λs(−ν).

Filters are much used in practice, but the way we have defined them here makes
them not very useful for computation. We will handle the problem of making
filters suitable for computation in Chapter 3.

1.6 The MP3 standard
Digital audio first became commonly available when the CD was introduced in
the early 1980s. As the storage capacity and processing speeds of computers
increased, it became possible to transfer audio files to computers and both play
and manipulate the data, in ways such as in the previous section. However,
audio was represented by a large amount of data and an obvious challenge was
how to reduce the storage requirements. Lossless coding techniques like Huffman
and Lempel-Ziv coding were known and with these kinds of techniques the file
size could be reduced to about half of that required by the CD format. However,
by allowing the data to be altered a little bit it turned out that it was possible
to reduce the file size down to about ten percent of the CD format, without
much loss in quality. The MP3 audio format takes advantage of this.

MP3, or more precisely MPEG-1 Audio Layer 3, is part of an audio-visual
standard called MPEG. MPEG has evolved over the years, from MPEG-1 to
MPEG-2, and then to MPEG-4. The data on a DVD disc can be stored with
either MPEG-1 or MPEG-2, while the data on a bluray-disc can be stored
with either MPEG-2 or MPEG-4. MP3 was developed by Philips, CCETT
(Centre commun d’etudes de television et telecommunications), IRT (Institut fur
Rundfunktechnik) and Fraunhofer Society, and became an international standard
in 1991. Virtually all audio software and music players support this format.
MP3 is just a sound format. It leaves a substantial amount of freedom in the
encoder, so that different encoders can exploit properties of sound in various
ways, in order to alter the sound in removing inaudible components therein.
As a consequence there are many different MP3 encoders available, of varying
quality. In particular, an encoder which works well for higher bit rates (high
quality sound) may not work so well for lower bit rates.

With MP3, the sound is split into frequency bands, each band corresponding
to a particular frequency range. In the simplest model, 32 frequency bands are
used. A frequency analysis of the sound, based on what is called a psycho-acoustic
model, is the basis for further transformation of these bands. The psycho-acoustic
model computes the significance of each band for the human perception of the
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sound. When we hear a sound, there is a mechanical stimulation of the ear
drum, and the amount of stimulus is directly related to the size of the sample
values of the digital sound. The movement of the ear drum is then converted to
electric impulses that travel to the brain where they are perceived as sound. The
perception process uses a transformation of the sound so that a steady oscillation
in air pressure is perceived as a sound with a fixed frequency. In this process
certain kinds of perturbations of the sound are hardly noticed by the brain, and
this is exploited in lossy audio compression.

More precisely, when the psycho-acoustic model is applied to the frequency
content resulting from our frequency analysis, scale factors andmasking thresholds
are assigned for each band. The computed masking thresholds have to do with a
phenomenon called masking. A simple example of this is that a loud sound will
make a simultaneous low sound inaudible. For compression this means that if
certain frequencies of a signal are very prominent, most of the other frequencies
can be removed, even when they are quite large. If the sounds are below the
masking threshold, it is simply omitted by the encoder, since the model says
that the sound should be inaudible.

Masking effects are just one example of what is called psycho-acoustic effects,
and all such effects can be taken into account in a psycho-acoustic model. Another
obvious such effect regards computing the scale factors: the human auditory
system can only perceive frequencies in the range 20 Hz - 20 000 Hz. An obvious
way to do compression is therefore to remove frequencies outside this range,
although there are indications that these frequencies may influence the listening
experience inaudibly. The computed scaling factors tell the encoder about the
precision to be used for each frequency band: If the model decides that one band
is very important for our perception of the sound, it assigns a big scale factor to
it, so that more effort is put into encoding it by the encoder (i.e. it uses more
bits to encode this band).

Using appropriate scale factors and masking thresholds provide compression,
since bits used to encode the sound are spent on parts important for our percep-
tion. Developing a useful psycho-acoustic model requires detailed knowledge of
human perception of sound. Different MP3 encoders use different such models,
so they may produce very different results, worse or better.

The information remaining after frequency analysis and using a psycho-
acoustic model is coded efficiently with (a variant of) Huffman coding. MP3
supports bit rates from 32 to 320 kb/s and the sampling rates 32, 44.1, and 48
kHz. The format also supports variable bit rates (the bit rate varies in different
parts of the file). An MP3 encoder also stores metadata about the sound, such
as the title of the audio piece, album and artist name and other relevant data.

MP3 too has evolved in the same way as MPEG, from MP1 to MP2, and to
MP3, each one more sophisticated than the other, providing better compression.
MP3 is not the latest development of audio coding in the MPEG family: AAC
(Advanced Audio Coding) is presented as the successor of MP3 by its principal
developer, Fraunhofer Society, and can achieve better quality than MP3 at the
same bit rate, particularly for bit rates below 192 kb/s. AAC became well
known in April 2003 when Apple introduced this format (at 128 kb/s) as the
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standard format for their iTunes Music Store and iPod music players. AAC is
also supported by many other music players, including the most popular mobile
phones.

The technologies behind AAC and MP3 are very similar. AAC supports
more sample rates (from 8 kHz to 96 kHz) and up to 48 channels. AAC uses the
same transformation as MP3, but AAC processes 1 024 samples at a time. AAC
also uses much more sophisticated processing of frequencies above 16 kHz and
has a number of other enhancements over MP3. AAC, as MP3, uses Huffman
coding for efficient coding of the transformed values. Tests seem quite conclusive
that AAC is better than MP3 for low bit rates (typically below 192 kb/s), but
for higher rates it is not so easy to differentiate between the two formats. As
for MP3 (and the other formats mentioned here), the quality of an AAC file
depends crucially on the quality of the encoding program.

There are a number of variants of AAC, in particular AAC Low Delay
(AAC-LD). This format was designed for use in two-way communication over a
network,

for example the internet. For this kind of application, the encoding (and
decoding) must be fast to avoid delays (a delay of at most 20 ms can be tolerated).

1.7 Summary
We discussed the basic question of what is sound is, and concluded that sound
could be modeled as a sum of frequency components. If the function was periodic
we could define its Fourier series, which can be thought of as an approximation
scheme for periodic functions using finite-dimensional spaces of trigonometric
functions. We established the basic properties of Fourier series, and some duality
relationships between the function and its Fourier series. We have also computed
the Fourier series of the square wave and the triangle wave, and we saw that we
could speed up the convergence of the Fourier series by instead considering the
symmetric extension of the function.

We also discussed the MP3 standard for compression of sound, and its relation
to a psychoacoutic model which describes how the human auditory system
perceives sound. There exist a wide variety of documents on this standard. In
[24], an overview is given, which, although written in a signal processing friendly
language and representing most relevant theory such as for the psychoacoutic
model, does not dig into all the details.

we also defined analog filters, which were operations which operate on con-
tinuous sound, without any assumption on periodicity. In signal processing
literature one defines the Continuous-time Fourier transform, or CTFT. We will
not use this concept in this book. We have instead disguised this concept as the
frequency response of an analog filter. To be more precise: in the literature, the
CTFT of g

is nothing but the frequency response of an analog filter with g as convolution
kernel.



Chapter 2

Digital sound and Discrete
Fourier analysis

In Chapter 1 we saw how a periodic function can be decomposed into a linear
combination of sines and cosines, or equivalently, a linear combination of com-
plex exponential functions. This kind of decomposition is, however, not very
convenient from a computational point of view. First of all, the coefficients are
given by integrals that in most cases cannot be evaluated exactly, so some kind
of numerical integration technique needs to be applied. Secondly, functions are
defined for all time instances. On computers and various kinds of media players,
however, the sound is digital, meaning that it is represented by a large number
of function values, and not by a function defined for all time instances.

In this chapter our starting point is simply a vector which represents the
sound values, rather than a function f(t). We start by seeing how we can make
use of this on a computer, either by playing it as a sound, or performing simple
operations on it. After this we continue by decomposing vectors in terms of
linear combinations of vectors built from complex exponentials. As before it
turns out that this is simplest when we assume that the values in the vector
repeat periodically. Then a vector of finite dimension can be used to represent all
sound values, and a transformation to the frequency domain, where operations
which change the sound can easily be made, simply amounts to multiplying the
vector by a matrix. This transformation is called the Discrete Fourier transform,
and we will see how we can implement this efficiently. It turns out that these
algorithms can also be used for computing approximations to the Fourier series,
and for sampling a sound in order to create a vector of sound data.

The examples in this chapter and the next chapter can be run from the
notebook applinalgnbchap2.m.

40
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2.1 Digital sound and simple operations on dig-
ital sound

We start by defining what a digital sound is and by establishing some notation
and terminology.

Definition 2.1. Digital sound.
A digital sound is a sequence x = {xi}N−1

i=0 that corresponds to measurements
of the air pressure of a sound f , recorded at a fixed rate of fs (the sampling
frequency or sampling rate) measurements per second, i.e.,

xk = f(k/fs), for k = 0, 1; . . . , N.
The measurements are often referred to as samples. The time between successive
measurements is called the sampling period and is usually denoted Ts. The
length of the vector is usually assumed to be N , and it is indexed from 0 to
N − 1. If the sound is in stereo there will be two arrays x1 and x2, one for
each channel. Measuring the sound is also referred to as sampling the sound, or
analog to digital (AD) conversion.

Note that this indexing convention for vectors is not standard in mathematics,
where vector indices start at 1, as they do in Matlab. In most cases, a digital
sound is sampled from an analog (continuous) audio signal. This is usually done
with a technique called Pulse Code Modulation (PCM). The audio signal is
sampled at regular intervals and the sampled values stored in a suitable number
format. Both the sampling frequency, and the accuracy and number format used
for storing the samples, may vary for different kinds of audio, and both influence
the quality of the resulting sound. For simplicity the quality is often measured
by the number of bits per second, i.e., the product of the sampling rate and the
number of bits (binary digits) used to store each sample. This is also referred to
as the bit rate. For the computer to be able to play a digital sound, samples must
be stored in a file or in memory on a computer. To do this efficiently, digital
sound formats are used. A couple of them are described in the examples below.

Example 2.2. The CD-format.
In the classical CD-format the audio signal is sampled 44 100 times per

second and the samples stored as 16-bit integers. This works well for music with
a reasonably uniform dynamic range, but is problematic when the range varies.
Suppose for example that a piece of music has a very loud passage. In this
passage the samples will typically make use of almost the full range of integer
values, from −215 − 1 to 215. When the music enters a more quiet passage the
sample values will necessarily become much smaller and perhaps only vary in the
range −1000 to 1000, say. Since 210 = 1024 this means that in the quiet passage
the music would only be represented with 10-bit samples. This problem can be
avoided by using a floating-point format instead, but very few audio formats
appear to do this.

The bit rate for CD-quality stereo sound is 44100× 2× 16 bits/s = 1411.2
kb/s. This quality measure is particularly popular for lossy audio formats where
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the uncompressed audio usually is the same (CD-quality). However, it should
be remembered that even two audio files in the same file format and with the
same bit rate may be of very different quality because the encoding programs
may be of different quality.

This value 44 100 for the sampling rate is not coincidental, and we will return
to this later.

Example 2.3. Telephony.
For telephony it is common to sample the sound 8000 times per second and

represent each sample value as a 13-bit integer. These integers are then converted
to a kind of 8-bit floating-point format with a 4-bit significand. Telephony
therefore generates a bit rate of 64 000 bits per second, i.e. 64 kb/s.

Newer formats with higher quality are available. Music is distributed in
various formats on DVDs (DVD-video, DVD-audio, Super Audio CD) with
sampling rates up to 192 000 and up to 24 bits per sample. These formats also
support surround sound (up to seven channels in contrast to the two stereo
channels on a CD). In the following we will assume all sound to be digital. Later
we will return to how we reconstruct audible sound from digital sound.

Simple operations and computations with digital sound can be done in any
programming environment. Let us take a look at how these. From Definition 2.1,
digital sound is just an array of sample values x = (xi)N−1

i=0 , together with the
sample rate fs. Performing operations on the sound therefore amounts to doing
the appropriate computations with the sample values and the sample rate. The
most basic operation we can perform on a sound is simply playing it.

2.1.1 Playing a sound
You may already have listened to pure tones, square waves and triangle waves
in the last section. The corresponding sound files were generated in a way we
will describe shortly, placed in a directory available on the internet, and linked
to from these notes. A program on your computer was able to play these files
when you clicked on them. Let us take a closer look at the different steps here.
You will need these steps in Exercise 2.3, where you will be asked to implement
a function which plays a pure sound with a given frequency on your computer.

First we need to know how we can obtain the samples of a pure tone. The
following code does this when we have defined the variables f for its frequency,
antsec for its length in seconds, and fs for the sampling rate.

t = linspace(0, antsec, fs*antsec);
x = sin(2*pi*f*t);

Code will be displayed in this way throughout these notes. We will mostly use
the value 44100 for fs, to abide to the sampling rate used on CD’s. We also need
a function to help us listen to the sound samples. We have the two functions

http://folk.uio.no/oyvindry/matinf2360/sounds/
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playblocking(playerobj)
playblocking(playerobj, [start stop])

These simply play the audio segment encapsulated by the object playerobj.
playblocking means that the method playing the sound will block until it has
finished playing. We will have use for this functionality later on, since we may
play sounds in successive order. With the first function the entire audio segment
is played. With the second function the playback starts at sample start, and
ends at sample stop. The mysterious playerobj object above can be obtained
from the sound samples (represented by a vector x) and the sampling rate (fs)
by the function

:

playerobj = audioplayer(x, fs)

This function basically sends the array of sound samples and sample rate to the
sound card, which uses some method for reconstructing the sound to an analog
sound signal. This analog signal is then sent to the loudspeakers and we hear
the sound.

Fact 2.4. Basic command to handle sound.
The basic command in a programming environment that handles sound

takes as input an array of sound samples x and a sample rate s, and plays the
corresponding sound through the computer’s loudspeakers.

The sound samples can have different data types. We will always assume that
they are of type double. The computer requires that they have values between
−1 and 1 (i.e. these represent the range of numbers which can be played through
the sound card of the computer). Also, x can actually be a matrix: Each column
in the matrix represents a sound channel. Sounds we generate on our own from
a mathematical function (as for the pure tone above) will typically have only
one channel, so that x has only one column. If x originates from a stereo sound
file, it will have two columns.

You can create x on your own, either by filling it with values from a mathe-
matical function as we did for the pure tone above, or filling in with samples
from a sound file. To do this from a file in the wav-format named filename,
simply write

[x, fs] = audioread(filename)

The wav-format was developed by Microsoft and IBM, and is one of the most
common file formats for CD-quality audio. It uses a 32-bit integer to specify
the file size at the beginning of the file, which means that a WAV-file cannot
be larger than 4 GB. In addition to filling in the sound samples in the vector x,
this function also returns the sampling rate fs used in the file. The function
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audiowrite(filename, x, fs)

can similarly be used to write the data stored in the vector x to the wav-file by
the name filename. As an example, we can listen to and write the pure tone
above with the help of the following code:

playerobj = audioplayer(x, fs);
playblocking(playerobj);
audiowrite(’puretone440.wav’, x, fs);

The sound file for the pure tone embedded into this document was created in
this way. In the same way we can listen to the square wave. In order to do this
we can first create the samples of one period of the square wave as follows:

samplesperperiod=round(fs/f);
oneperiod = [ones(1,round(samplesperperiod/2)) ...

-ones(1,round(samplesperperiod/2))];

Here we have first computed the number of samples in one period. With the
following code we can then repeat this period so that the produced sound has
the desired length (fs copies of one period per second), and then play it:

x=repmat(oneperiod,1,antsec*f);
playerobj=audioplayer(x, fs);
playblocking(playerobj);

In the same fashion we can listen to the triangle wave simply by replacing the
code for generating the samples for one period with the following:

oneperiod=[linspace(-1,1,round(samplesperperiod/2)) ...
linspace(1,-1,round(samplesperperiod/2))];

Instead of using the formula for the triangle wave, directly, we have used the
function linspace.

As an example of how to fill in the sound samples from a file, the code

[x, fs] = audioread(’sounds/castanets.wav’);

reads the file castanets.wav, and stores the sound samples in the matrix x. In
this case there are two sound channels, so there are two columns in x. To listen
to the sound from only one channel, we can write

playerobj=audioplayer(x(:, 2), fs);
playblocking(playerobj);

In the following we will usually not to do this, as it is possible to apply operations
to all channels simultaneously using the same simple syntax. audioread returns
sound samples with floating point precision.

http://folk.uio.no/oyvindry/matinf2360/sounds/castanets.wav
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It may be that some other environment gives you the play functionality on
your computer. Even if no environment on your computer supports such play-
functionality at all, you may still be able to play the result of your computations
if there is support for saving the sound in some standard format like mp3. The
resulting file can then be played by the standard audio player on your computer.

Example 2.5. Changing the sample rate.
We can easily play back a sound with a different sample rate than the

standard one. If we in the code above instead wrote fs=80000, the sound card
will assume that the time distance between neighboring samples is half the time
distance in the original. The result is that the sound takes half as long, and the
frequency of all tones is doubled. For voices the result is a characteristic Donald
Duck-like sound.

Conversely, the sound can be played with half the sample rate by setting
fs=20000. Then the length of the sound is doubled and all frequencies are
halved. This results in low pitch, roaring voices.

A digital sound can be played at normal, double and half sampling rate by
writing

playerobj = audioplayer(x, fs);
playblocking(playerobj);

playerobj = audioplayer(x, 2*fs);
playblocking(playerobj);

playerobj = audioplayer(x, fs/2);
playblocking(playerobj);

respectively. The sample file castanets.wav played at double sampling rate
sounds like this, while it sounds like this when it is played with half the sampling
rate.

Example 2.6. Playing the sound backwards.
At times a popular game has been to play music backwards to try and find

secret messages. In the old days of analog music on vinyl this was not so easy,
but with digital sound it is quite simple; we just need to reverse the samples.
To do this we just loop through the array and put the last samples first.

Let x = (xi)N−1
i=0 be the samples of a digital sound. Then the samples

y = (yi)N−1
i=0 of the reverse sound are given by

yi = xN−i−1, for i = 0, 1, . . . N − 1.

When we reverse the sound samples, we have to reverse the elements in both
sound channels. This can be performed as follows

z = x(N:(-1):1, :);

Performing this on our sample file you generate a sound which sounds like this.

http://folk.uio.no/oyvindry/matinf2360/sounds/castanetsdouble.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castanetshalf.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castanetsreverse.wav
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Example 2.7. Adding noise.
To remove noise from recorded sound can be very challenging, but adding

noise is simple. There are many kinds of noise, but one kind is easily obtained
by adding random numbers to the samples of a sound.

Let x be the samples of a digital sound of length N . A new sound z with
noise added can be obtained by adding a random number to each sample,

z = x + c*(2*rand(size(x))-1);
z = z/max(abs(z));

Here rand is a function that returns random numbers in the interval [0, 1], and
c is a constant (usually smaller than 1) that dampens the noise. The effect of
writing (2*rand(1,N)-1) above is that random numbers between −1 and 1 are
returned instead of random numbers between 0 and 1. Note that we also have
scaled the sound samples so that they lie between -1 and 1 (as required by our
representation of sound), since the addition may lead to numbers which are
outside this range. Without this we may obtain an unrecognizable sound, as
values outside the legal range are changed.

Adding noise in this way will produce a general hissing noise similar to the
noise you hear on the radio when the reception is bad. As before you should
add noise to both channels. Note alse that the sound samples may be outside
[−1, 1] after adding noise, so that you should scale the samples before writing
them to file. The factor c is important, if it is too large, the noise will simply
drown the signal z: castanets.wav with noise added with c = 0.4 sounds like
this, while with c = 0.1 it sounds like this.

In addition to the operations listed above, the most important operations
on digital sound are digital filters. These are given a separate treatment in
Chapter 3.

What you should have learned in this section.

• Computer operations for reading, writing, and listening to sound.

• Construct sounds such as pure tones, and the square and triangle waves,
from mathematical formulas.

• Comparing a sound with its Fourier series.

• Changing the sample rate, adding noise, or playing a sound backwards.

Exercise 2.1: Sound with increasing loudness
Define the following sound signal

f(t) =

 0 0 ≤ t ≤ 4/440
2 440t−4

8 sin(2π440t) 4/440 ≤ t ≤ 12/440
2 sin(2π440t) 12/440 ≤ t ≤ 20/440

http://folk.uio.no/oyvindry/matinf2360/sounds/castanetsnoisehigh.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castanetsnoiselow.wav
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This corresponds to the sound in the left plot of Figure 1.1, where the sound is
unaudible in the beginning, and increases linearly in loudness over time with a
given frequency until maximum loudness is avchieved. Write a function which
generates this sound, and listen to it.

Exercise 2.2: Sum of two pure tones
Find two constant a and b so that the function f(t) = a sin(2π440t)+b sin(2π4400t)
resembles the right plot of Figure 1.1 as closely as possible. Generate the samples
of this sound, and listen to it.

Exercise 2.3: Playing general pure tones.
Let us write some code so that we can experiment with different pure sounds

a) Write a function play_pure_sound(f) which generates the samples over a
period of 3 seconds for a pure tone with frequency f , with sampling frequency
fs = 2.5f (we will explain this value later).

b) Use the function play_pure_sound to listen to pure sounds of frequency
440Hz and 1500Hz, and verify that they are the same as the sounds you already
have listened to in this section.

c) How high frequencies are you able to hear with the function play_pure_sound?
How low frequencies are you able to hear?

Exercise 2.4: Playing the square- and triangle waves
Write functions play_square and play_triangle which take T as input, and
which play the square wave of Example 1.10 and the triangle wave of Example 1.11,
respectively. In your code, let the samples of the waves be taken at a frequency
of 44100 samples per second. Verify that you generate the same sounds as you
played in these examples when you set T = 1

440 .

Exercise 2.5: Playing Fourier series of the square- and tri-
angle waves
Let us write programs so that we can listen to the Fourier approximations of
the square wave and the triangle wave.

a) Write functions play_square_fourier and play_triangle_fourier which
take T and N as input, and which play the order N Fourier approximation of
the square wave and the triangle wave, respectively, for three seconds. Verify
that you can generate the sounds you played in examples 1.17 and 1.18.

b) For these Fourier approximations, how high must you choose N for them to
be indistuingishable from the square/triangle waves themselves? Also describe
how the characteristics of the sound changes when n increases.
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Exercise 2.6: Playing with different sample rates
Write a function play_with_different_fs which takes the sound samples x
and a sampling rate fs as input, and plays the sound samples with the same
sample rate as the original file, then with twice the sample rate, and then half the
sample rate. You should start with reading the file into a matrix (as explained
in this section). When applied to the sample audio file, are the sounds the same
as those you heard in Example 2.5?

Exercise 2.7: Playing the reverse sound
Let us also experiment with reversing the samples in a sound file.

a) Write a function play_reverse which takes sound data and a sample rate as
input, and plays the sound samples backwards. When you run the code on our
sample audio file, is the sound the same as the one you heard in Example 2.6?

b) Write the new sound samples from a) to a new wav-file, as described in this
section, and listen to it with your favourite mediaplayer.

Exercise 2.8: Play sound with added noise
In this exercise, we will experiment with adding noise to a signal.

a) Write a function play_with_noise which takes sound data, sampling rate,
and the damping constant c as input, and plays the sound samples with noise
added as described above. Your code should add noise to both channels of the
sound, and scale the sound samples so that they are between −1 and 1.

b) With your program, generate the two sounds played in Example 2.7, and
verify that they are the same as those you heard.

c) Listen to the sound samples with noise added for different values of c. For
which range of c is the noise audible?

2.2 Discrete Fourier analysis and the discrete
Fourier transform

In this section we will parallel the developments we did for Fourier series,
assuming instead that vectors (rather than functions) are involved. As with
Fourier series we will assume that the vector is periodic. This means that we
can represent it with the values from only the first period. In the following we
will only work with these values, but we will remind ourselves from time to time
that the values actually come from a periodic vector. As for functions, we will
call denote the periodic vector as the periodic extension of the finite vector. To
illustrate this, we have in Figure 2.1 shown a vector x and its periodic extension
x.
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Figure 2.1: A vector and its periodic extension.

At the outset our vectors will have real components, but since we use complex
exponentials we must be able to work with complex vectors also. We therefore
first need to define the standard inner product and norm for complex vectors.

Definition 2.8. Euclidean inner product.
For complex vectors of length N the Euclidean inner product is given by

〈x,y〉 =
N−1∑
k=0

xkyk. (2.1)

The associated norm is

‖x‖ =

√√√√N−1∑
k=0
|xk|2. (2.2)

In the previous chapter we saw that, using a Fourier series, a function with
period T could be approximated by linear combinations of the functions (the
pure tones) {e2πint/T }Nn=0. This can be generalized to vectors (digital sounds),
but then the pure tones must of course also be vectors.

Definition 2.9. Discrete Fourier analysis.
In Discrete Fourier analysis, a vector x = (x0, . . . , xN−1) is represented as a

linear combination of the N vectors

φn = 1√
N

(
1, e2πin/N , e2πi2n/N , . . . , e2πikn/N , . . . , e2πin(N−1)/N

)
.

These vectors are called the normalised complex exponentials, or the pure
digital tones of order N . n is also called frequency index. The whole collection
FN = {φn}N−1

n=0 is called the N -point Fourier basis.

Note that pure digital tones can be considered as samples of a pure tone,
taken uniformly over one period: If f(t) = e2πint/T /

√
N is the pure tone with

frequency n/T , then f(kT/N) = e2πin(kT/N)/T /
√
N = e2πink/N/

√
N = φn.

When mapping a pure tone to a digital pure tone, the index n corresponds to
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frequency ν = n/T , and N the number of samples takes over one period. Since
Tfs = N , where fs is the sampling frequency, we have the following connection
between frequency and frequency index:

ν = nfs
N

and n = νN

fs
(2.3)

The following lemma shows that the vectors in the Fourier basis are orthonor-
mal, so they do indeed form a basis.

Lemma 2.10. Complex exponentials are an orthonormal basis.
The normalized complex exponentials {φn}N−1

n=0 of order N form an orthonor-
mal basis in RN .

Proof. Let n1 and n2 be two distinct integers in the range [0, N − 1]. The inner
product of φn1 and φn2 is then given by

〈φn1 ,φn2〉 = 1
N
〈e2πin1k/N , e2πin2k/N 〉

= 1
N

N−1∑
k=0

e2πin1k/Ne−2πin2k/N

= 1
N

N−1∑
k=0

e2πi(n1−n2)k/N

= 1
N

1− e2πi(n1−n2)

1− e2πi(n1−n2)/N

= 0.

In particular, this orthogonality means that the the complex exponentials form
a basis. Clearly also 〈φn,φn〉 = 1, so that the N -point Fourier basis is in fact
an orthonormal basis.

Note that the normalizing factor 1√
N

was not present for pure tones in the
previous chapter. Also, the normalizing factor 1

T from the last chapter is not part
of the definition of the inner product in this chapter. These are small differences
which have to do with slightly different notation for functions and vectors, and
which will not cause confusion in what follows.

The focus in Discrete Fourier analysis is to change coordinates from the
standard basis to the Fourier basis, performing some operations on this “Fourier
representation”, and then change coordinates back to the standard basis. Such
operations are of crucial importance, and in this section we study some of their
basic properties. We start with the following definition.

Definition 2.11. Discrete Fourier Transform.
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We will denote the change of coordinates matrix from the standard basis of
RN to the Fourier basis FN by FN . We will also call this the (N -point) Fourier
matrix.

The matrix
√
NFN is also called the (N -point) discrete Fourier transform,

or DFT. If x is a vector in RN , then y = DFTx are called the DFT coefficients
of x. (the DFT coefficients are thus the coordinates in FN , scaled with

√
N).

DFTx is sometimes written as x̂.

Note that we define the Fourier matrix and the DFT as two different matrices,
the one being a scaled version of the other. The reason for this is that there are
different traditions in different fields. In pure mathematics, the Fourier matrix
is mostly used since it is, as we wil see, a unitary matrix. In signal processing,
the scaled version provided by the DFT is mostly used. We will normally write
x for the given vector in RN , and y for its DFT. In applied fields, the Fourier
basis vectors are also called synthesis vectors, since they can be used used to
“synthesize” the vector x, with weights provided by the coordinates in the Fourier
basis. To be more precise, we have that the change of coordinates performed by
the Fourier matrix can be written as

x = y0φ0 + y1φ1 + · · ·+ yN−1φN−1 =
(
φ0 φ1 · · · φN−1

)
y = F−1

N y, (2.4)

where we have used the inverse of the defining relation y = FNx, and that the
φn are the columns in F−1

N (this follows from the fact that F−1
N is the change of

coordinates matrix from the Fourier basis to the standard basis, and the Fourier
basis vectors are clearly the columns in this matrix). Equation (2.4) is also called
the synthesis equation.

Example 2.12. DFT of a cosine.
Let x be the vector of length N defined by xk = cos(2π5k/N), and y the

vector of length N defined by yk = sin(2π7k/N). Let us see how we can compute
FN (2x+ 3y). By the definition of the Fourier matrix as a change of coordinates,
FN (φn) = en. We therefore get

FN (2x+ 3y) = FN (2 cos(2π5 · /N) + 3 sin(2π7 · /N))

= FN (21
2(e2πi5·/N + e−2πi5·/N ) + 3 1

2i (e
2πi7·/N − e−2πi7·/N ))

= FN (
√
Nφ5 +

√
NφN−5 −

3i
2
√
N(φ7 − φN−7))

=
√
N(FN (φ5) + FN (φN−5)− 3i

2 FNφ7 + 3i
2 FNφN−7)

=
√
Ne5 +

√
NeN−5 −

3i
2
√
Ne7 + 3i

2
√
NeN−7.

Let us find an expression for the matrix FN . From Lemma 2.10 we know that
the columns of F−1

N are orthonormal. If the matrix was real, it would have been
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called orthogonal, and the inverse matrix could have been obtained by transposing.
F−1
N is complex, however, and it is easy to see that the conjugation present in

the definition of the inner product (2.1), implies that the inverse of FN can be
obtained if we also conjugate, in addition to transpose, i.e. (FN )−1 = (FN )T .
We call (A)T the conjugate transpose of A, and denote this by AH . We thus
have that (FN )−1 = (FN )H . Matrices which satisfy A = AH are called unitary.
For complex matrices, this is the parallel to orthogonal matrices.

Theorem 2.13. Fourier matrix is unitary.
The Fourier matrix FN is the unitary N ×N -matrix with entries given by

(FN )nk = 1√
N
e−2πink/N ,

for 0 ≤ n, k ≤ N − 1.

Since the Fourier matrix is easily inverted, the DFT is also easily inverted.
Note that, since (FN )T = FN , we have that (FN )−1 = FN . Let us make the
following definition.

Definition 2.14. IDFT.
The matrix FN/

√
N is the inverse of the matrix DFT =

√
NFN . We call

this inverse matrix the inverse discrete Fourier transform, or IDFT.

We can thus also view the IDFT as a change of coordinates (this time from
the Fourier basis to the standard basis), with a scaling of the coordinates by
1/
√
N at the end. The IDFT is often called the reverse DFT. Similarly, the

DFT is often called the forward DFT.
That y = DFTx and x = IDFTy can also be expressed in component form

as

yn =
N−1∑
k=0

xke
−2πink/N xk = 1

N

N−1∑
n=0

yne
2πink/N (2.5)

In applied fields such as signal processing, it is more common to state the DFT
and IDFT in these component forms, rather than in the matrix forms y = DFTy
and x = IDFTy.

Let us now see how these formulas work out in practice by considering some
examples.

Example 2.15. DFT on a square wave.
Let us attempt to apply the DFT to a signal x which is 1 on indices close to

0, and 0 elsewhere. Assume that

x−L = . . . = x−1 = x0 = x1 = . . . = xL = 1,

while all other values are 0. This is similar to a square wave, with some
modifications: First of all we assume symmetry around 0, while the square wave
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of Example 1.10 assumes antisymmetry around 0. Secondly the values of the
square wave are now 0 and 1, contrary to −1 and 1 before. Finally, we have a
different proportion of where the two values are assumed. Nevertheless, we will
also refer to the current digital sound as a square wave.

Since indices with the DFT are between 0 an N−1, and since x is assumed to
have period N , the indices [−L,L] where our signal is 1 translates to the indices
[0, L] and [N − L,N − 1] (i.e., it is 1 on the first and last parts of the vector).
Elsewhere our signal is zero. Since

∑N−1
k=N−L e

−2πink/N =
∑−1
k=−L e

−2πink/N

(since e−2πink/N is periodic with period N), the DFT of x is

yn =
L∑
k=0

e−2πink/N +
N−1∑

k=N−L
e−2πink/N =

L∑
k=0

e−2πink/N +
−1∑

k=−L
e−2πink/N

=
L∑

k=−L
e−2πink/N = e2πinL/N 1− e−2πin(2L+1)/N

1− e−2πin/N

= e2πinL/Ne−πin(2L+1)/Neπin/N
eπin(2L+1)/N − e−πin(2L+1)/N

eπin/N − e−πin/N

= sin(πn(2L+ 1)/N)
sin(πn/N) .

This computation does in fact also give us the IDFT of the same vector, since
the IDFT just requires a change of sign in all the exponents, in addition to the
1/N normalizing factor. From this example we see that, in order to represent
x in terms of frequency components, all components are actually needed. The
situation would have been easier if only a few frequencies were needed.

Example 2.16. Computing the DFT by hand.
In most cases it is difficult to compute a DFT by hand, due to the entries

e−2πink/N in the matrices, which typically can not be represented exactly. The
DFT is therefore usually calculated on a computer only. However, in the case
N = 4 the calculations are quite simple. In this case the Fourier matrix takes
the form

DFT4 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 .

We now can compute the DFT of a vector like (1, 2, 3, 4)T simply as

DFT4


1
2
3
4

 =


1 + 2 + 3 + 4

1− 2i− 3 + 4i
1− 2 + 3− 4

1 + 2i− 3− 4i

 =


10

−2 + 2i
−2

−2− 2i

 .
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In general, computing the DFT implies using floating point multiplication. For
N = 4, however, we see that there is no need for floating point multiplication at
all, since DFT4 has unit entries which are either real or purely imaginary.

Example 2.17. Direct implementation of the DFT.
The DFT can be implemented very simply and directly by the code

function y = DFTImpl(x)
N = size(x, 1);
y = zeros(size(x));
for n = 1:N

D = exp(*2*pi*1i*(n-1)*(0:(N-1))/N);
y(n) = dot(D, x);

end

n has been replaced by n− 1 in this code since n runs from 1 to N (array indices
must start at 1 in Matlab). In Exercise 2.16 we will extend this to a general
implementation we will use later. Note that we do not allocate the entire matrix
FN in this code, as this quickly leads to out of memory situations, even for N of
moderate size. Instead we construct one row of FN at a time, and use use this to
compute one entry in the output. The method dot can be used here, since each
entry in matrix multiplication can be viewed as an inner product. It is likely
that the dot function is more efficient than using a for-loop, since Matlab may
have an optimized way for computing this. Note that dot in Matlab conjugates
the first components, contrary to what we do in our definition of a complex
inner product. This is why we have dropped a sign in the exponent here. This
can be rewritten to a direct implementation of the IDFT also. We will look at
this in the exercises, where we also make the method more general, so that the
DFT can be applied to a series of vectors at a time (it can then be applied to
all the channels in a sound in one call). Multiplying a full N ×N matrix by a
vector requires roughly N2 arithmetic operations. The DFT algorithm above
will therefore take a long time when N becomes moderately large. It turns out
that a much more efficient algorithm exists for computing the DFT, which we
will study at the end of this chapter. Matlab also has a built-in implementation
of the DFT which uses such an efficient algorithm.

The DFT has properties which are very similar to those of Fourier series, as
they were listed in Theorem 1.28. The following theorem sums this up:

Theorem 2.18. Properties of the DFT.
Let x be a real vector of length N . The DFT has the following properties:

1. (x̂)N−n = (x̂)n for 0 ≤ n ≤ N − 1.

2. If xk = xN−k for all n (so x is symmetric), then x̂ is a real vector.

3. If xk = −xN−k for all k (so x is antisymmetric), then x̂ is a purely
imaginary vector.
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4. If d is an integer and z is the vector with components zk = xk−d (the
vector x with its elements delayed by d), then (ẑ)n = e−2πidn/N (x̂)n.

5. If d is an integer and z is the vector with components zk = e2πidk/Nxk,
then (ẑ)n = (x̂)n−d.

Proof. The methods used in the proof are very similar to those used in the proof
of Theorem 1.28. From the definition of the DFT we have

(x̂)N−n =
N−1∑
k=0

e−2πik(N−n)/Nxk =
N−1∑
k=0

e2πikn/Nxk =
N−1∑
k=0

e−2πikn/Nxk = (x̂)n

which proves property 1.
To prove property 2, we write

(ẑ)n =
N−1∑
k=0

zke
−2πikn/N =

N−1∑
k=0

xN−ke
−2πikn/N =

N∑
u=1

xue
−2πi(N−u)n/N

=
N−1∑
u=0

xue
2πiun/N =

N−1∑
u=0

xue−2πiun/N = (x̂)n.

If x is symmetric it follows that z = x, so that (x̂)n = (x̂)n. Therefore x must
be real. The case of antisymmetry in property 3 follows similarly.

To prove property 4 we observe that

(ẑ)n =
N−1∑
k=0

xk−de
−2πikn/N =

N−1∑
k=0

xke
−2πi(k+d)n/N

= e−2πidn/N
N−1∑
k=0

xke
−2πikn/N = e−2πidn/N (x̂)n .

For the proof of property 5 we note that the DFT of z is

(ẑ)n =
N−1∑
k=0

e2πidk/Nxne
−2πikn/N =

N−1∑
k=0

xne
−2πi(n−d)k/N = (x̂)n−d .

This completes the proof.

These properties have similar interpretations as the ones listed in Theo-
rem 1.28 for Fourier series. Property 1 says that we need to store only about one
half of the DFT coefficients, since the remaining coefficients can be obtained by
conjugation. In particular, when N is even, we only need to store y0, y1, . . . , yN/2.
This also means that, if we plot the (absolute value) of the DFT of a real vector,
we will see a symmetry around the index n = N/2. The theorem generalizes the
properties from Theorem 1.28, except for the last property where the signal had
a point of symmetry. We will delay the generalization of this property to later.
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Example 2.19. Computing the DFT when multiplying with a complex exponen-
tial.

To see how we can use the fourth property of Theorem 2.18, consider a
vector x = (x0, x1, x2, x3, x4, x5, x6, x7) with length N = 8, and assume that x
is so that F8(x) = (1, 2, 3, 4, 5, 6, 7, 8). Consider the vector z with components
zk = e2πi2k/8xk. Let us compute F8(z). Since multiplication of x with e2πikd/N

delays the output y = FN (x) with d elements, setting d = 2, the F8(z) can be
obtained by delaying F8(x) by two elements, so that F8(z) = (7, 8, 1, 2, 3, 4, 5, 6).
It is straightforward to compute this directly also:

(FNz)n =
N−1∑
k=0

zke
−2πikn/N =

N−1∑
k=0

e2πi2k/Nxke
−2πikn/N

=
N−1∑
k=0

xke
−2πik(n−2)/N = (FN (x))n−2.

What you should have learned in this section.

• The definition of the Fourier basis and its orthonormality.

• The definition of the Discrete Fourier Transfrom as a change of coordinates
to the Fourier basis, its inverse, and its unitarity.

• How to apply the DFT to a sum of sinusoids.

• Properties of the DFT, such as conjugate symmetry when the vector is
real, how it treats delayed vectors, or vectors multiplied with a complex
exponential.

Exercise 2.9: Computing the DFT by hand
Compute F4x when x = (2, 3, 4, 5).

Exercise 2.10: Exact form of low-order DFT matrix
As in Example 2.16, state the exact cartesian form of the Fourier matrix for the
cases N = 6, N = 8, and N = 12.

Exercise 2.11: DFT of a delayed vector
We have a real vector x with length N , and define the vector z by delaying
all elements in x with 5 cyclically, i.e. z5 = x0, z6 = x1,. . . ,zN−1 = xN−6,
and z0 = xN−5,. . . ,z4 = xN−1. For a given n, if |(FNx)n| = 2, what is then
|(FNz)n|? Justify the answer.
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Exercise 2.12: Using symmetry property
Given a real vector x of length 8 where (F8(x))2 = 2− i, what is (F8(x))6?

Exercise 2.13: DFT of cos2(2πk/N)
Let x be the vector of length N where xk = cos2(2πk/N). What is then FNx?

Exercise 2.14: DFT of ckx

Let x be the vector with entries xk = ck. Show that the DFT of x is given by
the vector with components

yn = 1− cN

1− ce−2πin/N

for n = 0, . . . , N − 1.

Exercise 2.15: Rewrite a complex DFT as real DFT’s
If x is complex, Write the DFT in terms of the DFT on real sequences.

Hint. Split into real and imaginary parts, and use linearity of the DFT.

Exercise 2.16: DFT implementation
Extend the code for the function DFTImpl in Example 2.17 so that

• The function also takes a second parameter called forward. If this is true
the DFT is applied. If it is false, the IDFT is applied. If this parameter is
not present, then the forward transform should be assumed.

• If the input x is two-dimensional (i.e. a matrix), the DFT/IDFT should be
applied to each column of x. This ensures that, in the case of sound, the
FFT is applied to each channel in the sound when the enrire sound is used
as input, as we are used to when applying different operations to sound.

Also, write documentation for the code.

Exercise 2.17: Symmetry
Assume that N is even.

a) Show that, if xk+N/2 = xk for all 0 ≤ k < N/2, then yn = 0 when n is odd.

b) Show that, if xk+N/2 = −xk for all 0 ≤ k < N/2, then yn = 0 when n is
even.

c) Show also the converse statements in a) and b).
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d) Also show the following:

• xn = 0 for all odd n if and only if yk+N/2 = yk for all 0 ≤ k < N/2.

• xn = 0 for all even n if and only if yk+N/2 = −yk for all 0 ≤ k < N/2.

Exercise 2.18: DFT on complex and real data
Let x1,x2 be real vectors, and set x = x1 + ix2. Use Theorem 2.18 to show that

(FN (x1))k = 1
2

(
(FN (x))k + (FN (x))N−k

)
(FN (x2))k = 1

2i

(
(FN (x))k − (FN (x))N−k

)
This shows that we can compute two DFT’s on real data from one DFT on
complex data, and 2N extra additions.

2.3 Connection between the DFT and Fourier
series. Sampling and the sampling theorem

So far we have focused on the DFT as a tool to rewrite a vector in terms of the
Fourier basis vectors. In practice, the given vector x will often be sampled from
some real data given by a function f(t). We may then compare the frequency
content of x and f , and ask how they are related: What is the relationship
between the Fourier coefficients of f and the DFT-coefficients of x?

In order to study this, assume for simplicity that f ∈ VM,T for some M . This
means that f equals its Fourier approximation fM ,

f(t) = fM (t) =
M∑

n=−M
zne

2πint/T , where zn = 1
T

∫ T

0
f(t)e−2πint/T dt. (2.6)

We here have changed our notation for the Fourier coefficients from yn to zn, in
order not to confuse them with the DFT coefficients. We recall that in order to
represent the frequency n/T fully, we need the corresponding exponentials with
both positive and negative arguments, i.e., both e2πint/T and e−2πint/T .

Fact 2.20. frequency vs. Fourier coefficients.
Suppose f is given by its Fourier series (2.6). Then the total frequency

content for the frequency n/T is given by the two coefficients zn and z−n.

We have the following connection between the Fourier coefficients of f and
the DFT of the samples of f .
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Proposition 2.21. Relation between Fourier coefficients and DFT coefficients.
Let N > 2M , f ∈ VM,T , and let x = {f(kT/N)}N−1

k=0 be N uniform samples
from f over [0, T ]. The Fourier coefficients zn of f can be computed from

(z0, z1, . . . , zM , 0, . . . , 0︸ ︷︷ ︸
N−(2M+1)

, z−M , z−M+1, . . . , z−1) = 1
N

DFTNx. (2.7)

In particular, the total contribution in f from frequency n/T , for 0 ≤ n ≤M , is
given by yn and yN−n, where y is the DFT of x.

Proof. Let x and y be as defined, so that

xk = 1
N

N−1∑
n=0

yne
2πink/N . (2.8)

Inserting the sample points t = kT/N into the Fourier series, we must have that

xk = f(kT/N) =
M∑

n=−M
zne

2πink/N =
−1∑

n=−M
zne

2πink/N +
M∑
n=0

zne
2πink/N

=
N−1∑

n=N−M
zn−Ne

2πi(n−N)k/N +
M∑
n=0

zne
2πink/N

=
M∑
n=0

zne
2πink/N +

N−1∑
n=N−M

zn−Ne
2πink/N .

This states that x = N IDFTN (z0, z1, . . . , zM , 0, . . . , 0︸ ︷︷ ︸
N−(2M+1)

, z−M , z−M+1, . . . , z−1).

Equation (2.7) follows by applying the DFT to both sides. We also see that
zn = yn/N and z−n = y2M+1−n/N = yN−n/N , when y is the DFT of x. It now
also follows immediately that the frequency content in f for the frequency n/T
is given by yn and yN−n. This completes the proof.

In Proposition 2.21 we take N samples over [0, T ], i.e. we sample at rate
fs = N/T samples per second. When |n| ≤ M , a pure sound with frequency
ν = n/T is then seen to correspond to the DFT indices n and N − n. Since
T = N/fs, ν = n/T can also be written as ν = nfs/N . Moreover, the highest
frequencies in Proposition 2.21 are those close to ν = M/T , which correspond to
DFT indices close to N −M and M , which are the nonzero frequencies closest
to N/2. DFT index N/2 corresponds to the frequency N/(2T ) = fs/2, which
corresponds to the highest frequency we can reconstruct from samples for any
M . Similarly, the lowest frequencies are those close to ν = 0, which correspond
to DFT indices close to 0 and N . Let us summarize this as follows.
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Observation 2.22. Connection between DFT index and frequency.
Assume that x are N samples of a sound taken at sampling rate fs samples

per second, and let y be the DFT of x. Then the DFT indices n and N − n
give the frequency contribution at frequency ν = nfs/N . Moreover, the low
frequencies in x correspond to the yn with n near 0 and N , while the high
frequencies in x correspond to the yn with n near N/2.

The theorem says that any f ∈ VM,T can be reconstructed from its samples
(since we can write down its Fourier series), as long as N > 2M . That f ∈ VM,T

is important. From Figure 2.2 it is clear that information is lost in the right plot
when we discard everything but the sample values from the left plot.

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.5

0.0

0.5

1.0

Figure 2.2: An example on how the samples are picked from an underlying
continuous time function (left), and the samples on their own (right).

Here the function is f(t) = sin(2π8t) ∈ V8,1, so that we need to choose N
so that N > 2M = 16 samples. Here N = 23 samples were taken, so that
reconstruction from the samples is possible. That the condition N < 2M is also
necessary can easily be observed in Figure 2.3.
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Figure 2.3: Sampling sin(2πt) with two points (left), and sampling sin(2π4t)
with eight points (right).

Right we have plotted sin(2π4t) ∈ V4,1, with N = 8 sample points taken
uniformly from [0, 1]. Here M = 4, so that we require 2M + 1 = 9 sample points,
according to Proposition 2.21. Clearly there is an infinite number of possible
functions in VM,T passing through the sample points (which are all zero): Any
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f(t) = c sin(2π4t) will do. Left we consider one period of sin(2πt). Since this is
in VM,T = V1,1, reconstruction should be possible if we have N ≥ 2M + 1 = 3
samples. Four sample points, as seen left, is thus be enough to secure reconstruct.

The special case N = 2M + 1 is interesting. No zeros are then inserted in
the vector in Equation (2.7). Since the DFT is one-to-one, this means that there
is a one-to-one correspondence between sample values and functions in VM,T

(i.e. Fourier series), i.e. we can always find a unique interpolant in VM,T from
N = 2M + 1 samples. In Exercise 2.21 you will asked to write code where you
start with a given function f , Take N = 2M+1 samples, and plot the interpolant
from VM,T against f . Increasing M should give an interpolant which is a better
approximation to f , and if f itself resides in some VM,T for some M , we should
obtain equality when we choose M big enough. We have in elementary calculus
courses seen how to determine a polynomial of degree N − 1 that interpolates a
set of N data points, and such polynomials are called interpolating polynomials.
In mathematics many other classes than polynomials exist which are also useful
for interpolation, and the Fourier basis is just one example.

Besides reconstructing a function from its samples, Proposition 2.21 also
enables us to approximate functions in a simple way. To elaborate on this, recall
that the Fourier series approximation fM is a best approximation to f from
VM,T . We usually can’t compute fM exactly, however, since this requires us to
compute the Fourier integrals. We could instead form the samples x of f , and
apply Proposition 2.21. If M is high, fM is a good approximation to f , so that
the samples of fM are a good approximation to x. By continuity of the DFT, it
follows that y = DFTNx is a good approximation to the DFT of the samples of
fM , so that

f̃(t) =
N−1∑
n=0

yne
2πint/T (2.9)

is a good approximation to fM , and therefore also to f . We have illustrated this
in Figure 2.4.

f //

��

f̃

x
DFTN // y

OO

Figure 2.4: How we can interpolate f from VM,T with help of the DFT. The
left vertical arrow represents sampling. The right vertical arrow represents
interpolation, i.e. computing Equation (2.9).

The new function f̃ has the same values as f in the sample points. This is
usually not the case for fM , so that f̃ and fM are different approximations to f .
Let us summarize as follows.
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Idea 2.23. f̃ as approximation to f .
The function f̃ resulting from sampling, taking the DFT, and interpolation, as

shown in Figure 2.4, also gives an approximation to f . f̃ is a worse approximation
in the mean square sense (since fM is the best such), but it is much more useful
since it avoids evaluation of the Fourier integrals, depends only on the samples,
and is easily computed.

The condition N > 2M in Proposition 2.21 can also be written as N/T >
2M/T . The left side is now the sampling rate fs, while the right side is the
double of the highest frequency in f . The result can therefore also be restated
as follows

Proposition 2.24. Reconstruction from samples.
Any f ∈ VM,T can be reconstructed uniquely from a uniform set of samples

{f(kT/N)}N−1
k=0 , as long as fs > 2|ν|, where ν denotes the highest frequency in

f .

We also refer to fs = 2|ν| as the critical sampling rate, since it is the
minimum sampling rate we need in order to reconstruct f from its samples. If
fs is substantially larger than 2|ν| we say that f is oversampled, since we have
takes more samples than we really need. Similarly we say that f is undersampled
if fs is smaller than 2|ν|, since we have not taken enough samples in order to
reconstruct f . Clearly Proposition 2.21 gives one formula for the reconstruction.
In the literature another formula can be found, which we now will deduce. This
alternative version of Theorem 2.21 is also called the sampling theorem. We start
by substituting N = T/Ts (i.e. T = NTs, with Ts being the sampling period) in
the Fourier series for f :

f(kTs) =
M∑

n=−M
zne

2πink/N −M ≤ k ≤M.

Equation (2.7) said that the Fourier coefficients could be found from the samples
from

(z0, z1, . . . , zM , 0, . . . , 0︸ ︷︷ ︸
N−(2M+1)

, z−M , z−M+1, . . . , z−1) = 1
N

DFTNx.

By delaying the n index with −M , this can also be written as

zn = 1
N

N−1∑
k=0

f(kTs)e−2πink/N = 1
N

M∑
k=−M

f(kTs)e−2πink/N , −M ≤ n ≤M.

Inserting this in the reconstruction formula we get
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f(t) = 1
N

M∑
n=−M

M∑
k=−M

f(kTs)e−2πink/Ne2πint/T

=
M∑

k=−M

1
N

(
M∑

n=−M
f(kTs)e2πin(t/T−k/N)

)

=
M∑

k=−M

1
N
e−2πiM(t/T−k/N) 1− e2πi(2M+1)(t/T−k/N)

1− e2πi(t/T−k/N) f(kTs)

=
M∑

k=−M

1
N

sin(π(t− kTs)/Ts)
sin(π(t− kTs)/T ) f(kTs)

Let us summarize our findings as follows:

Theorem 2.25. Sampling theorem and the ideal interpolation formula for peri-
odic functions.

Let f be a periodic function with period T , and assume that f has no
frequencies higher than νHz. Then f can be reconstructed exactly from its
samples f(−MTs), . . . , f(MTs) (where Ts is the sampling period, N = T

Ts
is the

number of samples per period, andM = 2N+1) when the sampling rate fs = 1
Ts

is bigger than 2ν. Moreover, the reconstruction can be performed through the
formula

f(t) =
M∑

k=−M
f(kTs)

1
N

sin(π(t− kTs)/Ts)
sin(π(t− kTs)/T ) . (2.10)

Formula (2.10) is also called the ideal interpolation formula for periodic
functions. Such formulas, where one reconstructs a function based on a weighted
sum of the sample values, are more generally called interpolation formulas. The
function 1

N
sin(π(t−kTs)/Ts)
sin(π(t−kTs)/T ) is also called an interpolation kernel. Note that f

itself may not be equal to a finite Fourier series, and reconstruction is in general
not possible then. The ideal interpolation formula can in such cases still be used,
but the result we obtain may be different from f(t).

In fact, the following more general result holds, which we will not prove. The
result is also valid for functions which are not periodic, and is frequently stated
in the literature:

Theorem 2.26. Sampling theorem and the ideal interpolation formula, general
version..

Assume that f has no frequencies higher than νHz. Then f can be recon-
structed exactly from its samples . . . , f(−2Ts), f(−Ts), f(0), f(Ts), f(2Ts), . . .
when the sampling rate is bigger than 2ν. Moreover, the reconstruction can be
performed through the formula
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f(t) =
∞∑

k=−∞
f(kTs)

sin(π(t− kTs)/Ts)
π(t− kTs)/Ts

. (2.11)

When f is periodic, it is possible to deduce this partly from the interpolation
formula for periodic functions. An ingredient in this is that x ≈ sin x for small
x, so that there certainly is a connection between the terms in the two sums.
The non-periodicity requires more tools in Fourier analysis, however.

The DFT coefficients represent the contribution in a sound at given frequen-
cies. Due to this the DFT is extremely useful for performing operations on sound,
and also for compression as we will see. For instance we can listen to either the
lower or higher frequencies after performing a simple adjustment of the DFT
coefficients. Observation 2.22 says that the 2L+ 1 lowest frequencies correspond
to the DFT-indices [0, L] ∪ [N − L,N − 1], while the 2L+ 1 highest frequencies
correspond to DFT-indices [N/2− L,N/2 + L] (if we assume that N is even).
In Matlab we need to add 1 to these indices to obtain the Matlab indices into
the vectors. If we perform a DFT, eliminate these low or high frequencies, and
perform an inverse DFT, we recover the sound signal where these frequencies
have been eliminated. With the help of the DFT implementation from Exam-
ple 2.17, all this can be achieved for zeroing out the highest frequencies with the
following code:

L = 10000;
N = size(x, 1);

y = fft(x);
y((L+2):(N-L), :) = 0;
newx = ifft(y);
playerobj=audioplayer(newx, fs);
playblocking(playerobj);

Example 2.27. Using the DFT to adjust frequencies in sound.
Let us test the above code on the sound samples in castanets.wav. As a

first attempt, let us split the sound samples into small blocks of size N = 32,
and zero out frequencies as described for each block. This should certainly be
more efficient than applying the DFT to the entire sound, since it corresponds
to applying a sparse block matrix to the entire sound, rather than the full DFT
matrix1. You will be spared the details for actually splitting the sound file
into blocks: you can find the function playDFT(L, lower) which performs this
splitting, sets frequency components to 0 except the described 2L+ 1 frequency
components, and plays the resulting sound. The second parameter lower states
if the highest or the lowest frequency components should be kept. If you try this
for L = 7 (i.e. we keep only 15 of the DFT coefficients) for the lower frequencies,
the result sounds like this. You can hear the disturbance in the sound, but we
have not lost that much even if more than half the DFT coefficients are dropped.

1We will shortly see, however, that efficient algorithms for the DFT exist, so that this
problem is not so big after all.

http://folk.uio.no/oyvindry/matinf2360/sounds/castanetslowerfreq7.wav
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If we instead try L = 3 the result will sound like this. The quality is much
poorer now. However we can still recognize the song, and this suggests that
most of the frequency information is contained in the lower frequencies. If we
instead use playDFT to listen to the higher frequencies, for L = 7 the result now
sounds like this, and for L = 3 the result sounds like this. Both sounds are
quite unrecognizable, confirming that most information is contained in the lower
frequencies.

Note that there may be a problem in the previous example: when we restrict
to the values in a given block, we actually look at a different signal. The new
signal repeats the values in the block in periods, while the old signal consists of
one much bigger block. What are the differences in the frequency representations
of the two signals?

Assume that the entire sound has length M . The frequency representation
of this is computed as an M -point DFT (the signal is actually repeated with
period M), and we write the sound samples as a sum of frequencies: xk =
1
M

∑M−1
n=0 yne

2πikn/M . Let us consider the effect of restricting to a block for each
of the contributing pure tones e2πikn0/M , 0 ≤ n0 ≤ M − 1. When we restrict
this to a block of size N , we get the signal

{
e2πikn0/M

}N−1
k=0 . Depending on n0,

this may not be a Fourier basis vector! Its N -point DFT gives us its frequency
representation, and the absolute value of this is

|yn| =

∣∣∣∣∣
N−1∑
k=0

e2πikn0/Me−2πikn/N

∣∣∣∣∣ =

∣∣∣∣∣
N−1∑
k=0

e2πik(n0/M−n/N)

∣∣∣∣∣
=
∣∣∣∣1− e2πiN(n0/M−n/N)

1− e2πi(n0/M−n/N)

∣∣∣∣ =
∣∣∣∣ sin(πN(n0/M − n/N))

sin(π(n0/M − n/N))

∣∣∣∣ . (2.12)

If n0 = kM/N , this gives yk = N , and yn = 0 when n 6= k. Thus, splitting
the signal into blocks gives another pure tone when n0 is a multiplum of M/N .
When n0 is different from this the situation is different. Let us set M = 1000,
n0 = 1, and experiment with different values of N . Figure 2.5 shows the yn
values for different values of N . We see that the frequency representation is now
very different, and that many frequencies contribute.

The explanation is that the pure tone is not a pure tone when N = 64 and
N = 256, since at this scale such frequencies are too high to be represented
exactly. The closest pure tone in frequency is n = 0, and we see that this
has the biggest contribution, but other frequencies also contribute. The other
frequencies contribute much more when N = 256, as can be seen from the peak
in the closest frequency n = 0. In conclusion, when we split into blocks, the
frequency representation may change in an undesirable way. This is a common
problem in signal processing theory, that one in practice needs to restrict to
smaller segments of samples, but that this restriction may have undesired effects.

Another problem when we restrict to a shorter periodic signal is that we
may obtain discontinuities at the boundaries between the new periods, even if
there were no discontinuities in the original signal. And, as we know from the

http://folk.uio.no/oyvindry/matinf2360/sounds/castanetslowerfreq3.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castanetshigherfreq7.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castanetshigherfreq3.wav
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Figure 2.5: The frequency representation obtained when restricting to a block
of size N of the signal, for N = 64 (left), and N = 256 (right)

square wave, discontinuities introduce undesired frequencies. We have already
mentioned that symmetric extensions may be used to remedy this.

The MP3 standard also applies a DFT to the sound data. In its simplest form
it applies a 512 point DFT. There are some differences to how this is done when
compared to Example 2.27, however. In our example we split the sound into
disjoint blocks, and applied a DFT to each of them. The MP3 standard actually
splits the sound into blocks which overlap, as this creates a more continuous
frequency representation. Another difference is that the MP3 standard applies a
window to the sound samples, and the effect of this is that the new signal has a
frequency representation which is closer to the original one, when compared to
the signal obtained by using the block values unchanged as above. We will go
into details on this in Section 3.3.1.

Example 2.28. Compression by zeroing out DFT coefficients.
We can achieve compression of a sound by setting small DFT coefficients

which to zero. The idea is that frequencies with small values at the corresponding
frequency indices contribute little to our perception of the sound, so that they
can be discarded. As a result we obtain a sound with less frequency components,
which is thus more suitable for compression. To test this in practice, we first
need to set a threshold, which decides which frequencies to keep. The following
code then sets frequencies below the threshold to zero:

threshold = 50;
y = fft(x);
y = (abs(y) >= threshold).*y;
newx = ifft(y);

In this code 1 represents a value of true in the logical expression which is
evaluated, 0 represents false. The value is 1 if and only if the absolute value
of the corresponding element is greater than or equal to threshold. As in the
previous example, we can apply this code to small blocks of the signal at a
time, and listen to the result by playing it. We have implemented a function
playDFTthreshold(threshold) which splits our sample audio file into blocks
of the same size as above, applies the code above with the given threshold, and
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plays the result. The code also writes to the display how large percentage of the
DFT indices were set to 0. If you run this function with threshold equal to 0.02,
the result sounds like this, and the function says that about 74.1% of the DFT
indices were set to zero. You can clearly hear the disturbance in the sound, but
we have not lost that much. If we instead try threshold equal to 0.1, the result
will sound like this, and the function says that about 93.5% of the DFT indices
were set to zero. The quality is much poorer now, even if we still can recognize
the song. This suggests that most of the frequency information is contained
in frequencies with the highest values. In Figure 2.6 we have illustrated this
principle for compression for 512 sound samples from a song.
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Figure 2.6: Experimenting with the DFT on a small part of a song.

The samples of the sound and (the absolute value of) its DFT are shown at
the top. At the bottom all values of the DFT with absolute value smaller than
0.02 are set to zero (52) values then remain), and the sound is reconstructed
with the IDFT, and then shown in. The start and end signals look similar, even
though the last signal can be represented with less than 10 % of the values from
the first.

Note that using a neglection threshold in this way is too simple in practice:
The neglection threshold in general should depend on the frequency, since the
human auditory system is more sensitive to certain frequencies.

Example 2.29. Compression by quantizing DFT coefficients.
The previous example is a rather simple procedure to obtain compression.

The disadvantage is that it only affects frequencies with low contribution. A
more neutral way to obtain compression is to let each DFT index occupy a

http://folk.uio.no/oyvindry/matinf2360/sounds/castanetsthreshold002.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castanetsthreshold01.wav
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certain number of bits. This is also called quantization, and provides us with
compression if the number of bits is less than what actually is used to represent
the sound. This is closer to what modern audio standards do. Consider the
following code:

n = 5;
y = fft(x);
y = y/2^n;
y = round(y);
y = y*2^n;
newx = ifft(y);
playerobj=audioplayer(newx, fs);
playblocking(playerobj);

The effect of the middle lines is that a number with bit representation

...d2d1d0.d−1d−2d−3...

is truncated so that the bits dn−1, dn−2, dn−2 are discarded. In other words,
high values of n mean more rounding. We have implemented a function
playDFTquantized(n) which executes this code and plays the result, in the
same way as in the examples above. If you run this function with n equal to −3,
the result sounds like this, with n = −1 the result sounds like this, and with
n = 1 the result sounds like this. You can hear that the sound degrades further
when n is increased.

In practice this quantization procedure is also too simple, since the human
auditory system is more sensitive to certain frequency information, and should
thus allocate a higher number of bits for such frequencies. Modern audio
standards take this into account, but we will not go into details on this.

What you should have learned in this section.

• Translation between DFT index and frequency. In particular DFT indices
for high and low frequencies.

• How one can use the DFT to adjust frequencies in sound.

Exercise 2.19: Comment code
Explain what the code below does, line by line:

[x, fs] = audioread(’sounds/castanets.wav’);
N = size(x, 1);
y = fft(x);
y((round(N/4)+1):(round(N/4)+N/2), :) = 0;
newx = abs(ifft(y));
newx = newx/max(max(newx));
playerobj = audioplayer(newx,fs);
playblocking(playerobj)

http://folk.uio.no/oyvindry/matinf2360/sounds/castantesquantizedm3.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castantesquantizedm1.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castantesquantizedp1.wav
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Comment in particular why we adjust the sound samples by dividing with the
maximum value of the sound samples. What changes in the sound do you expect
to hear?

Exercise 2.20: Which frequency is changed?
In the code from the previous exercise it turns out that fs = 44100Hz, and that
the number of sound samples is N = 292570. Which frequencies in the sound
file will be changed on the line where we zero out some of the DFT coefficients?

Exercise 2.21: Implement interpolant
Implement code where you do the following:

• at the top you define the function f(x) = cos6(x), and M = 3,

• compute the unique interpolant from VM,T (i.e. by taking N = 2M + 1
samples over one period), as guaranteed by Proposition 2.21,

• plot the interpolant against f over one period.

Finally run the code also for M = 4, M = 5, and M = 6. Explain why the plots
coincide for M = 6, but not for M < 6. Does increasing M above M = 6 have
any effect on the plots?

2.4 The Fast Fourier Transform (FFT)
The main application of the DFT is as a tool to compute frequency information
in large datasets. Since this is so useful in many areas, it is of vital importance
that the DFT can be computed with efficient algorithms. The straightforward
implementation of the DFT with matrix multiplication we looked at is not
efficient for large data sets. However, it turns out that the DFT matrix may be
factored in a way that leads to much more efficient algorithms, and this is the
topic of the present section. We will discuss the most widely used implementation
of the DFT, usually referred to as the Fast Fourier Transform (FFT). The FFT
has been stated as one of the ten most important inventions of the 20’th century,
and its invention made the DFT computationally feasible in many fields. The
FFT is for instance used much in real time processing, such as processing and
compression of sound, images, and video. The MP3 standard uses the FFT
to find frequency components in sound, and matches this information with a
psychoachoustic model, in order to find the best way to compress the data.

Let us start with the most basic FFT algorithm, which applies for a general
complex input vector x, with length N being an even number.

Theorem 2.30. FFT algorithm when N is even.
Let y = DFTNx be the N -point DFT of x, with N an even number, and let

DN/2 be the (N/2)× (N/2)-diagonal matrix with entries (DN/2)n,n = e−2πin/N

for 0 ≤ n < N/2. Then we have that
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(y0, y1, . . . , yN/2−1) = DFTN/2x
(e) +DN/2DFTN/2x

(o) (2.13)
(yN/2, yN/2+1, . . . , yN−1) = DFTN/2x

(e) −DN/2DFTN/2x
(o) (2.14)

where x(e),x(o) ∈ RN/2 consist of the even- and odd-indexed entries of x,
respectively, i.e.

x(e) = (x0, x2, . . . , xN−2) x(o) = (x1, x3, . . . , xN−1).

Put differently, the formulas (2.13)-(2.14) reduce the computation of an
N -point DFT to two N/2-point DFT’s. It turns out that this is the basic fact
which speeds up computations considerably. It is important to note that we first
should compute that the same term DN/2DFTN/2x

(o) appears in both formulas
above. It is thus important that this is computed only once, and then inserted
in both equations. Let us first check that these formulas are correct.

Proof. Suppose first that 0 ≤ n ≤ N/2− 1. We start by splitting the sum in the
expression for the DFT into even and odd indices,

yn =
N−1∑
k=0

xke
−2πink/N =

N/2−1∑
k=0

x2ke
−2πin2k/N +

N/2−1∑
k=0

x2k+1e
−2πin(2k+1)/N

=
N/2−1∑
k=0

x2ke
−2πink/(N/2) + e−2πin/N

N/2−1∑
k=0

x2k+1e
−2πink/(N/2)

=
(
DFTN/2x

(e)
)
n

+ e−2πin/N
(
DFTN/2x

(o)
)
n
,

where we have substituted x(e) and x(o) as in the text of the theorem, and
recognized the N/2-point DFT in two places. Assembling this for 0 ≤ n <
N/2 we obtain Equation (2.13). For the second half of the DFT coefficients,
i.e. {yN/2+n}0≤n≤N/2−1, we similarly have

yN/2+n =
N−1∑
k=0

xke
−2πi(N/2+n)k/N =

N−1∑
k=0

xke
−πike−2πink/N

=
N/2−1∑
k=0

x2ke
−2πin2k/N −

N/2−1∑
k=0

x2k+1e
−2πin(2k+1)/N

=
N/2−1∑
k=0

x2ke
−2πink/(N/2) − e−2πin/N

N/2−1∑
k=0

x2k+1e
−2πink/(N/2)

=
(
DFTN/2x

(e)
)
n
− e−2πin/N

(
DFTN/2x

(o)
)
n
.

Equation (2.14) now follows similarly.
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Note that an algorithm for the IDFT can be deduced in exactly the same
way. All we need to change is the sign in the exponents of the Fourier matrix. In
addition we need to divide by 1/N at the end. If we do this we get the following
result, which we call the IFFT algorithm. Recall that we use the notation A for
the matrix where all the elements of A have been conjugated.

Theorem 2.31. IFFT algorithm when N is even.
Let N be an even number and let x̃ = DFTNy. Then we have that

(x̃0, x̃1, . . . , x̃N/2−1) = DFTN/2y
(e) +DN/2DFTN/2)y(o) (2.15)

(x̃N/2, x̃N/2+1, . . . , x̃N−1) = DFTN/2y
(e) −DN/2DFTN/2)y(o) (2.16)

where y(e),y(o) ∈ RN/2 are the vectors

y(e) = (y0, y2, . . . , yN−2) y(o) = (y1, y3, . . . , yN−1).

Moreover, x = IDFTNy can be computed from x = x̃/N = DFTNy/N

It turns out that these theorems can be interpreted as matrix factorizations.
For this we need to define the concept of a block matrix.

Definition 2.32. Block matrix.
Let m0, . . . , mr−1 and n0, . . . , ns−1 be integers, and let A(i,j) be an mi×nj-

matrix for i = 0, . . . , r − 1 and j = 0, . . . , s− 1. The notation

A =


A(0,0) A(0,1) · · · A(0,s−1)

A(1,0) A(1,1) · · · A(1,s−1)

...
...

. . .
...

A(r−1,0) A(r−1,1) · · · A(r−1,s−1)


denotes the (m0 +m1 + . . .+mr−1)× (n0 + n1 + . . .+ ns−1)-matrix where the
matrix entries occur as in the A(i,j) matrices, in the way they are ordered. When
A is written in this way it is referred to as a block matrix.

Clearly, using equations (2.13)-(2.14), the DFT matrix can be factorized
using block matrix notation as

(y0, y1, . . . , yN/2−1) =
(
DFTN/2 DN/2DFTN/2

)(x(e)

x(o)

)
(yN/2, yN/2+1, . . . , yN−1) =

(
DFTN/2 −DN/2DFTN/2

)(x(e)

x(o)

)
.

Combining these, noting that
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(
DFTN/2 DN/2DFTN/2
DFTN/2 −DN/2DFTN/2

)
=
(
I DN/2
I −DN/2

)(
DFTN/2 0

0 DFTN/2

)
,

we obtain the following factorisations:

Theorem 2.33. DFT and IDFT matrix factorizations.
We have that

DFTNx =
(
I DN/2
I −DN/2

)(
DFTN/2 0

0 DFTN/2

)(
x(e)

x(o)

)
IDFTNy = 1

N

(
I DN/2
I −DN/2

)(
DFTN/2 0

0 DFTN/2

)(
y(e)

y(o)

)
(2.17)

We will shortly see why these factorizations reduce the number of arithmetic
operations we need to do, but first let us consider how to implement them. First
of all, note that we can apply the FFT factorizations again to FN/2 to obtain

DFTNx =
(
I DN/2
I −DN/2

)
I DN/4 0 0
I −DN/4 0 0
0 0 I DN/4
0 0 I −DN/4

×

DFTN/4 0 0 0

0 DFTN/4 0 0
0 0 DFTN/4 0
0 0 0 DFTN/4



x(ee)

x(eo)

x(oe)

x(oo)


where the vectors x(e) and x(o) have been further split into even- and odd-indexed
entries. Clearly, if this factorization is repeated, we obtain a factorization

DFTN =
log2 N∏
k=1



I DN/2k 0 0 · · · 0 0
I −DN/2k 0 0 · · · 0 0
0 0 I DN/2k · · · 0 0
0 0 I −DN/2k · · · 0 0
...

...
...

...
... 0 0

0 0 0 0 · · · I DN/2k

0 0 0 0 · · · I −DN/2k


P. (2.18)

The factorization has been repated until we have a final diagonal matrix with
DFT1 on the diagonal, but clearly DFT1 = 1, so we do not need any DFT-
matrices in the final factor. Note that all matrices in this factorization are
sparse. A factorization into a product of sparse matrices is the key to many
efficient algorithms in linear algebra, such as the computation of eigenvalues and
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eigenvectors. When we later compute the number of arithmetic operations in
this factorization, we will see that this is the case also here.

In Equation (2.18), P is a permutation matrix which secures that the even-
indexed entries come first. Since the even-indexed entries have 0 as the last
bit, this is the same as letting the last bit become the first bit. Since we here
recursively place even-indexed entries first, it is not too difficult to see that P
permutes the elements of x by performing a bit-reversal of the indices, i.e.

P (ei) = ej i = d1d2 . . . dn j = dndn−1 . . . d1,

where we have used the bit representations of i and j. Since P 2 = I, a bit-reversal
can be computed very efficiently, and performed in-place, i.e. so that the result
ends up in same vector x, so that we do not need to allocate any memory in
this operation. We will use an existing function called bitreverse to perfom
in-place bit-reversal. In Exercise 2.30 we will go through this implementation.

Matrix multiplication is usually not done in-place, i.e. when we compute
y = Ax, different memory is allocated for x and y. For certain simple matrices,
however, matrix multiplication can also be done in-place, so that the output can
be written into the same memory (x) used by the input. It turns out that the
matrices in factorization (2.18) are of this kind, so that the entire FFT can be
computed in-place. We will have more to say on this in the exercises.

In a practical algorithm, it is smart to perform the bit-reversal first, since
the matrices in the factorization (2.18) are block diagonal, so that the different
blocks in each matrix can be applied in parallel to Px (the bit-reversed version
of x). We can thus exploit the parallel processing capabilities of the computer.
It turns out that this bit-reversal is useful for other similar factorizations of the
DFT as well. We will also look at other such factorizations, and we will therefore
split the computation of the DFT as follows: First a general function is applied,
which is responsible for the bit-reversal of the input vector x. Then the matrices
in the factorization (2.18) is applied in a “kernel FFT function” (and we will
have many such kernels), which assumes that the input has been bit-reversed. A
simple implementation of the general function can be as follows.

function y = FFTImpl(x, FFTKernel)
x = bitreverse(x);
y = FFTKernel(x);

A simple implementation of the kernel FFT function, based on the first FFT
algorithm we stated, can be as follows.

function y = FFTKernelStandard(x)
N = size(x, 1);
if N == 1

y = x;
else

xe = FFTKernelStandard(x(1:(N/2)));
xo = FFTKernelStandard(x((N/2+1):N));
D = exp(-2*pi*1j*(0:(N/2-1))’/N);
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xo = xo.*D;
y = [ xe + xo; xe - xo];

end

Note that, although computations can be performed in-place, this Matlab imple-
mentation does not, since return values and parameters to functions are copied
in Matlab. In Exercise 2.22 we will extend these to the general implementations
we will use later. We can now run the FFT by combining the general function
and the kernel as follows:

y = FFTImpl(x, @FFTKernelStandard);

Note that FFTKernelStandard is recursive; it calls itself. If this is your first
encounter with a recursive program, it is worth running through the code
manually for a given value of N , such as N = 4.

Immediately we see from factorization (2.18) two possible implementations
for a kernel. First, as we did, we can apply the FFT recursively. A second way
is to, instead of using recursive function calls, use a for-loop where we at each
stage in the loop compute the product with one matrix in factorization (2.18),
from right to left. Inside this loop there must be another for-loop, where the
different blocks in this matrix are applied. We will establish this non-recursive
implementation in Exercise 2.28, and see that this leads to a more efficient
algorithm.

Matlab has built-in functions for computing the DFT and the IDFT using
the FFT algorithm. The functions are called fft and ifft. These functions
make no assumption about the length of the vector, i.e. it may not be of even
length. The implementation may however check if the length of the vector is
2r, and in those cases variants of the algorithm discussed here can be used. In
general, fast algorithms exist when the vector length N can be factored as a
product of small integers.

2.4.1 Reduction in the number of multiplications with the
FFT

Now we will explain why the FFT and IFFT factorizations reduce the number of
arithmetic operations when compared to direct DFT and IDFT implementations.
We will assume that x ∈ RN with N a power of 2, so that the FFT algorithm
can be used recursively, all the way down to vectors of length 1. In many settings
this power of 2 assumption can be done. As an example, in compression of
sound, one restricts processing to a certain block of the sound data, since the
entire sound is too big to be processed in one piece. One then has a freedom to
how big these blocks are made, and for optimal speed one often uses blocks of
length 2r with r some integer in the range 5–10. At the end of this section we
will explain how the more general FFT can be computed when N is not a power
of 2.

We first need some terminology for how we count the number of operations
of a given type in an algorithm. In particular we are interested in the limiting
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behaviour when N becomes large, which is the motivation for the following
definition.

Definition 2.34. Order of an algorithm.
Let RN be the number of operations of a given type (such as multiplication

or addition) in an algorithm, where N describes the dimension of the data (such
as the size of the matrix or length of the vector), and let f be a positive function.
The algorithm is said to be of order f(N), also written O(f(N)), if the number
of operations grows as f(N) for large N , or more precisely, if

lim
N→∞

RN
f(N) = 1.

In some situations we may count the number of operations exactly, but we
will also see that it may be easier to obtain the order of the algorithm, since the
number of operations may have a simpler expression in the limit. Let us see how
we can use this terminology to describe the complexity of the FFT algorithm.
Let MN and AN denote the number of real multiplications and real additions,
respectively, required by the FFT algorithm. Once the FFT’s of order N/2 have
been computed (MN/2 real multiplications and AN/2 real additions are needed
for each), it is clear from equations (2.13)-(2.14) that an additional N complex
additions, and an additional N/2 complex multiplications, are required. Since
one complex multiplication requires 4 real multiplications and 2 real additions,
and one complex addition requires two real additions, we see that we require
an additional 2N real multiplications, and 2N +N = 3N real additions. This
means that we have the difference equations

MN = 2MN/2 + 2N AN = 2AN/2 + 3N. (2.19)

Note that e−2πi/N may be computed once and for all and outside the algorithm,
and this is the reason why we have not counted these operations.

The following example shows how the difference equations (2.19) can be solved.
It is not too difficult to argue that MN = O(2N log2 N) and AN = O(3N log2),
by noting that there are log2 N levels in the FFT, with 2N real multiplications
and real 3N additions at each level. But for N = 2 and N = 4 we may actually
avoid some multiplications, so we should solve these equations by stating initial
conditions carefully, in order to obtain exact operation counts. In practice, and
as we will see later, one often has more involved equations than (2.19), for which
the solution can not be seen directly, so that one needs to apply systematic
mathematical methods instead, such as in the example below.

Example 2.35. Solving for the number of operations.
To use standard solution methods for difference equations to equations (2.19),

we first need to write them in a standard form. Assuming that AN and MN

are powers of 2, we set N = 2r and xr = M2r , or xr = A2r . The difference
equations can then be rewritten as xr = 2xr−1 + 2 · 2r for multiplications, and
xr = 2xr−1 + 3 · 2r for additions, and again be rewritten in the standard forms
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xr+1 − 2xr = 4 · 2r xr+1 − 2xr = 6 · 2r.

The homogeneous equation xr+1 − 2xr = 0 has the general solution xhr = C2r.
Since the base in the power on the right hand side equals the root in the
homogeneous equation, we should in each case guess for a particular solution on
the form (xp)r = Ar2r. If we do this we find that the first equation has particular
solution (xp)r = 2r2r, while the second has particular solution (xp)r = 3r2r.
The general solutions are thus on the form xr = 2r2r + C2r, for multiplications,
and xr = 3r2r + C2r for additions.

Now let us state initial conditions for the number of additions and multipli-
cations. Example 2.16 showed that floating point multiplication can be avoided
completely for N = 4. We can therefore use M4 = x2 = 0 as an initial value.
This gives, xr = 2r2r − 4 · 2r, so that MN = 2N log2 N − 4N .

For additions we can use A2 = x1 = 4 as initial value (since DFT2(x1, x2) =
(x1 + x2, x1 − x2)), which gives xr = 3r2r, so that AN = 3N log2 N −N . Our
FFT algorithm thus requires slightly more additions than multiplications. FFT
algorithms are often characterized by their operation count, i.e. the total number
of real additions and real multiplications, i.e. RN = MN + AN . We see that
RN = 5N log2 N − 5N . The order of the operation count of our algorithm can
thus be written as O(5N log2 N), since limN→∞

5N log2 N−4N
5N log2 N

= 1.
In practice one can reduce the number of multiplications further, since

e−2πin/N take the simple values 1,−1,−i, i for some n. One can also use that
e−2πin/N can take the simple values ±1/

√
2±1/

√
2i = 1/

√
2(±1± i), which also

saves some floating point multiplication, due to that we can factor out 1/
√

2.
These observations do not give big reductions in the arithmetic complexity,
however, and one can show that the operation count is still O(5N log2 N) after
using these observations.

It is straightforward to show that the IFFT implementation requires the
same operation count as the FFT algorithm.

In contrast, the direct implementation of the DFT requires N2 complex
multiplications and N(N − 1) complex additions. This results in 4N2 real
multiplications and 2N2 + 2N(N − 1) = 4N2 − 2N real additions. The total
operation count is thus 8N2 − 2N . In other words, the FFT and IFFT signifi-
cantly reduce the number of arithmetic operations. In Exercise 2.29 we present
another algorithm, called the Split-radix algorithm, which reduces the number of
operations even further. We will see, however, the reduction obtained with the
split-radix algorithm is about 20%. Let us summarize our findings as follows.

Theorem 2.36. Number of operations in the FFT and IFFT algorithms.
The N -point FFT and IFFT algorithms we have gone through both require

O(2N log2 N) real multiplications and O(3N log2 N) real additions. In compar-
ison, the number of real multiplications and real additions required by direct
implementations of the N -point DFT and IDFT are O(8N2).
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Often we apply the DFT for real data, so we would like to have FFT-
algorithms tailored to this, with reduced complexity (since real data has half
the dimension of general complex data). By some it has been argued that one
can find improved FFT algorithms when one assumes that the data is real. In
Exercise 2.27 we address this issue, and conclude that there is little to gain from
assuming real input: The general algorithm for complex input can be tailored
for real input so that it uses half the number of operations, which harmonizes
with the fact that real data has half the dimension of complex data.

Another reason why the FFT is efficient is that, since the FFT splits the
calculation of the DFT into computing two DFT’s of half the size, the FFT
is well suited for parallel computing: the two smaller FFT’s can be performed
independently of one another, for instance in two different computing cores
on the same computer. Besides reducing the number of arithmetic operations,
FFT implementation can also apply several programming tricks to speed up
computation, see for instance http://cnx.org/content/m12021/latest/ for an
overview.

2.4.2 The FFT when N = N1N2

Applying an FFT to a vector of length 2n is by far the most common thing to
do. It turns out, however, that the idea behind the algorithm easily carries over
to the case when N is any composite number, i.e. when N = N1N2. This make
the FFT useful also in settings where we have a dictated number of elements in
x, which is not an even number. The approach we will present in this section
will help us as long as N is not a prime number. The case when N is a prime
number needs other techniques.

So, assume that N = N1N2. Any time-index k can be written uniquely on
the form N1k+p, with 0 ≤ k < N2, and 0 ≤ p < N1. We will make the following
definition.

Definition 2.37. Polyphase components of a vector.
Let x ∈ RN1N2 . We denote by x(p) the vector in RN2 with entries (x(p))k =

xN1k+p. x(p) is also called the p’th polyphase component of x.

The previous vectors x(e) and x(o) can be seen as special cases of polyphase
components. Polyphase components will also be useful later (see Chapter 8).
Using the polyphase notation, we can write

DFTNx =
N−1∑
k=0

xke
−2πink/N =

N1−1∑
p=0

N2−1∑
k=0

(x(p))ke−2πin(N1k+p)/N

=
N1−1∑
p=0

e−2πinp/N
N2−1∑
k=0

(x(p))ke−2πink/N2

Similarly, any frequency index n can be written uniquely on the form N2q + n,
with 0 ≤ q < N1, and 0 ≤ n < N2, so that the DFT can also be written as

http://cnx.org/content/m12021/latest/
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N1−1∑
p=0

e−2πi(N2q+n)p/N
N2−1∑
k=0

(x(p))ke−2πi(N2q+n)k/N2

=
N1−1∑
p=0

e−2πiqp/N1e−2πinp/N
N2−1∑
k=0

(x(p))ke−2πink/N2 .

Now, ifX is the N2×N1-matrixX where the p’th column is x(p), we recognize
the inner sum

∑N2−1
k=0 (x(p))ke−2πink/N2 as matrix multiplication with DFTN2

and X, so that this can be written as (DFTN2X)n,p. The entire sum can thus
be written as

N1−1∑
p=0

e−2πiqp/N1e−2πinp/N (DFTN2X)n,p.

Now, define Y as the matrix where X is multiplied component-wise with the
matrix with (n, p)-component e−2πinp/N . The entire sum can then be written as

N1−1∑
p=0

e−2πiqp/N1Yn,p = (Y FN1)n,q

This means that the sum can be written as component (n, q) in the matrix
Y FN1 . Clearly Y FN1 is the matrix where the DFT is applied to all rows of Y .
We have thus shown that component N2q + n of FNx equals (Y FN1)n,q. This
means that FNx can be obtained by stacking the columns of Y FN1 on top of
one-another. We can thus summarize our procedure as follows, which gives a
recipe for splitting an FFT into smaller FFT’s when N is not a prime number.

Theorem 2.38. FFT algorithm when N is composite.
When N = N1N2, the FFT of a vector x can be computed as follows

• Form the N2 ×N1-matrix X, where the p’th column is x(p).

• Perform the DFT on all the columns in X, i.e. compute FN2X.

• Multiply element (n, p) in the resulting matrix with e−2πinp/N (these are
called twiddle factors), to obtain matrix Y .

• Perform the DFT on all the rows in the resulting matrix, i.e. compute
Y FN1 .

• Form the vector where the columns of the resulting matrix are stacked on
top of one-another.
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From the algorithm one easily deduces how the IDFT can be computed also:
All steps are invertible, and can be performed by IFFT or multiplication. We
thus only need to perform the inverse steps in reverse order.

But what about the case when N is a prime number? Rader’s algorithm
[29] handles this case by expressing a DFT with N a prime number in terms of
DFT’s of length N −1 (which is not a prime number). Our previous scenario can
then be followed, but stops quickly again if N −1 has prime factors of high order.
Since there are some computational penalties in applying Rader’s algorithm, it
may be inefficient some cases. Winograd’s FFT algorithm [39] extends Rader’s
algorithm to work for the case when N = pr. This algorithm tends to reduce
the number of multiplications, at the price of an increased number of additions.
It is difficult to program, and is rarely used in practice.

What you should have learned in this section.
• How the FFT algorithm works by splitting into two FFT’s of half the
length.

• Simple FFT implementation.

• Reduction in the number of operations with the FFT.

Exercise 2.22: Extend implementation
Recall that, in Exercise 2.16, we extended the direct DFT implementation so
that it accepted a second parameter telling us if the forward or reverse transform
should be applied. Extend the general function and the standard kernel in the
same way. Again, the forward transform should be used if the forward parameter
is not present. Assume also that the kernel accepts only one-dimensional data,
and that the general function applies the kernel to each column in the input if
the input is two-dimensional (so that the FFT can be applied to all channels
in a sound with only one call). The signatures for our methods should thus be
changed as follows:

function y = FFTImpl(x, FFTKernel, forward)
function y = FFTKernelStandard(x, forward)

It should be straightforward to make the modifications for the reverse transform
by consulting the second part of Theorem 2.33. For simplicity, let FFTImpl take
care of the additional division with N we need to do in case of the IDFT. In the
following we will assume these signatures for the FFT implementation and the
corresponding kernels.

Exercise 2.23: Compare execution time
In this exercise we will compare execution times for the different methods for
computing the DFT.
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a) Write code which compares the execution times for an N -point DFT for the
following three cases: Direct implementation of the DFT (as in Example 2.17),
the FFT implementation used in this chapter, and the built-in fft-function.
Your code should use the sample audio file castanets.wav, apply the different
DFT implementations to the first N = 2r samples of the file for r = 3 to r = 15,
store the execution times in a vector, and plot these. You can use the functions
tic and toc to measure the execution time.

b) A problem for large N is that there is such a big difference in the execution
times between the two implementations. We can address this by using a loglog-
plot instead. Plot N against execution times using the function loglog. How
should the fact that the number of arithmetic operations are 8N2 and 5N log2 N
be reflected in the plot?

c) It seems that the built-in FFT is much faster than our own FFT implemen-
tation, even though they may use similar algorithms. Try to explain what can
be the cause of this.

Exercise 2.24: Combine two FFT’s
Let x1 = (1, 3, 5, 7) and x2 = (2, 4, 6, 8). Compute DFT4x1 and DFT4x2. Ex-
plain how you can compute DFT8(1, 2, 3, 4, 5, 6, 7, 8) based on these computations
(you don’t need to perform the actual computation). What are the benefits of
this approach?

Exercise 2.25: Composite FFT
When N is composite, there are a couple of results we can state regarding
polyphase components.

a) Assume that N = N1N2, and that x ∈ RN satisfies xk+rN1 = xk for all k, r,
i.e. x has period N1. Show that yn = 0 for all n which are not a multiplum of
N2.

b) Assume that N = N1N2, and that x(p) = 0 for p 6= 0. Show that the
polyphase components y(p) of y = DFTNx are constant vectors for all p.

Exercise 2.26: FFT operation count
When we wrote down the difference equation for the number of multiplications in
the FFT algorithm, you could argue that some multiplications were not counted.
Which multiplications in the FFT algorithm were not counted when writing down
this difference equation? Do you have a suggestion to why these multiplications
were not counted?
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Exercise 2.27: Adapting the FFT algorithm to real data
In this exercise we will look at an approach to how we can adapt an FFT
algorithm to real input x. We will now instead rewrite Equation (2.13) in the
compendium for indices n and N/2− n as

yn = (DFTN/2x
(e))n + e−2πin/N (DFTN/2x

(o))n
yN/2−n = (DFTN/2x

(e))N/2−n + e−2πi(N/2−n)/N (DFTN/2x
(o))N/2−n

= (DFTN/2x
(e))N/2−n − e2πin/N (DFTN/2x(o))n

= (DFTN/2x(e))n − e−2πin/N (DFTN/2x(o))n.

We see here that, if we have computed the terms in yn (which needs an additional 4
real multiplications, since e−2πin/N and (DFTN/2x

(o))n are complex), no further
multiplications are needed in order to compute yN/2−n, since its compression
simply conjugates these terms before adding them. Again yN/2 must be handled
explicitly with this approach. For this we can use the formula

yN/2 = (DFTN/2x
(e))0 − (DN/2DFTN/2x

(o))0

instead.

a) Conclude from this that an FFT algorithm adapted to real data at each
step requires N/4 complex additions and N/2 additions. Conclude from this
as before that an algorithm based on real data requires MN = O(N log2 N)
multiplications and AN = O

( 3
2N log2 N

)
additions (i.e. again we obtain half

the operation count of complex input).

b) Find an IFFT algorithm adapted to vectors y which have conjugate symmetry,
which has the same operation count we found above.

Hint. Consider the vectors yn + yN/2−n and e2πin/N (yn − yN/2−n). From the
equations above, how can these be used in an IFFT?

Exercise 2.28: Non-recursive FFT algorithm
Use the factorization in (2.18) in the compendium to write a kernel function
FFTKernelNonrec for a non-recursive FFT implementation. In your code, per-
form the matrix multiplications in Equation (2.18) in the compendium from
right to left in an (outer) for-loop. For each matrix loop through the different
blocks on the diagonal in an (inner) for-loop. Make sure you have the right
number of blocks on the diagonal, each block being on the form(

I DN/2k

I −DN/2k

)
.

It may be a good idea to start by implementing multiplication with such a simple
matrix first as these are the building blocks in the algorithm (also attempt to do
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this so that everything is computed in-place). Also compare the execution times
with our original FFT algorithm, as we did in Exercise 2.23, and try to explain
what you see in this comparison.

Exercise 2.29: The Split-radix FFT algorithm
In this exercise we will develop a variant of the FFT algorithm called the split-
radix FFT algorithm, which until recently held the record for the lowest operation
count for any FFT algorithm.

We start by splitting the rightmost DFTN/2 in Equation (2.17) in the com-
pendium by using this equation again, to obtain

DFTNx =

DFTN/2 DN/2

(
DFTN/4 DN/4DFTN/4
DFTN/4 −DN/4DFTN/4

)
DFTN/2 −DN/2

(
DFTN/4 DN/4DFTN/4
DFTN/4 −DN/4DFTN/4

)

 x(e)

x(oe)

x(oo)

 .

(2.20)
The term radix describes how an FFT is split into FFT’s of smaller sizes, i.e. how
the sum in an FFT is split into smaller sums. The FFT algorithm we started
this section with is called a radix 2 algorithm, since it splits an FFT of length
N into FFT’s of length N/2. If an algorithm instead splits into FFT’s of length
N/4, it is called a radix 4 FFT algorithm. The algorithm we go through here is
called the split radix algorithm, since it uses FFT’s of both length N/2 and N/4.

a) Let GN/4 be the (N/4)×(N/4) diagonal matrix with e−2πin/N on the diagonal.

Show that DN/2 =
(
GN/4 0
0 −iGN/4

)
.

b) Let HN/4 be the (N/4) × (N/4) diagonal matrix GD/4DN/4. Verify the
following rewriting of Equation (2.20):
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DFTNx =

DFTN/2

(
GN/4DFTN/4 HN/4DFTN/4
−iGN/4DFTN/4 iHN/4DFTN/4

)
DFTN/2

(
−GN/4DFTN/4 −HN/4DFTN/4
iGN/4DFTN/4 −iHN/4DFTN/4

)

 x(e)

x(oe)

x(oo)



=


I 0 GN/4 HN/4
0 I −iGN/4 iHN/4
I 0 −GN/4 −HN/4
0 I iGN/4 −iHN/4


DFTN/2 0 0

0 DFTN/4 0
0 0 DFTN/4

 x(e)

x(oe)

x(oo)



=

I
(
GN/4 HN/4
−iGN/4 iHN/4

)
I −

(
GN/4 HN/4
−iGN/4 iHN/4

)

DFTN/2x

(e)

DFTN/4x
(oe)

DFTN/4x
(oo)



=

DFTN/2x
(e) +

(
GN/4DFTN/4x

(oe) +HN/4DFTN/4x
(oo)

−i
(
GN/4DFTN/4x

(oe) −HN/4DFTN/4x
(oo)))

DFTN/2x
(e) −

(
GN/4DFTN/4x

(oe) +HN/4DFTN/4x
(oo)

−i
(
GN/4DFTN/4x

(oe) −HN/4DFTN/4x
(oo)))


c) Explain from the above expression why, once the three FFT’s above have
been computed, the rest can be computed with N/2 complex multiplications,
and 2 × N/4 + N = 3N/2 complex additions. This is equivalent to 2N real
multiplications and N + 3N = 4N real additions.

Hint. It is important that GN/4DFTN/4x
(oe) and HN/4DFTN/4x

(oo) are com-
puted first, and the sum and difference of these two afterwards.

d) Due to what we just showed, our new algorithm leads to real multiplication
and addition counts which satisfy

MN = MN/2 + 2MN/4 + 2N AN = AN/2 + 2AN/4 + 4N

Find the general solutions to these difference equations and conclude from these
that MN = O

( 4
3N log2 N

)
, and AN = O

( 8
3N log2 N

)
. The operation count is

thus O (4N log2 N), which is a reduction of N log2 N from the FFT algorithm.

e) Write an FFT kernel function FFTKernelSplitradix for the split-radix
algorithm (again this should handle both the forward and reverse transforms).
Are there more or less recursive function calls in this function than in the
original FFT algorithm? Also compare the execution times with our original
FFT algorithm, as we did in Exercise 2.23. Try to explain what you see in this
comparison.

By carefully examining the algorithm we have developed, one can reduce
the operation count to 4N log2 N − 6N + 8. This does not reduce the order of
the algorithm, but for small N (which often is the case in applications) this
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reduces the number of operations considerably, since 6N is large compared to
4N log2 N for small N . In addition to having a lower number of operations
than the FFT algorithm of Theorem 2.31, a bigger percentage of the operations
are additions for our new algorithm: there are now twice as many additions
than multiplications. Since multiplications may be more time-consuming than
additions (depending on how the CPU computes floating-point arithmetic), this
can be a big advantage.

Exercise 2.30: Bit-reversal
In this exercise we will make some considerations which will help us explain the
code for bit-reversal. This is perhaps not a mathematically challenging exercise,
but nevertheless a good exercise in how to think when developing an efficient
algorithm. We will use the notation i for an index, and j for its bit-reverse. If
we bit-reverse k bits, we will write N = 2k for the number of possible indices.

a) Consider the following code

j = 0;
for i = 0:(N-1)

j
m = N/2;
while (m >= 1 && j >= m)

j = j - m;
m = m/2;

end
j = j + m;

end

Explain that the code prints all numbers in [0, N−1] in bit-reversed order (i.e. j).
Verify this by running the program, and writing down the bits for all numbers
for, say N = 16. In particular explain the decrements and increments made to
the variable j. The code above thus produces pairs of numbers (i, j), where j is
the bit-reverse of i. As can be seen, bitreverse applies similar code, and then
swaps the values xi and xj in x, as it should.

Since bit-reverse is its own inverse (i.e. P 2 = I), it can be performed by
swapping elements i and j. One way to secure that bit-reverse is done only once,
is to perform it only when j > i. You see that bitreverse includes this check.

b) Explain that N − j − 1 is the bit-reverse of N − i − 1. Due to this, when
i, j < N/2, we have that N − i− 1, N − j − l ≥ N/2, and that bitreversal can
swap them. Moreover, all swaps where i, j ≥ N/2 can be performed immediately
when pairs where i, j < N/2 are encountered. Explain also that j < N/2
if and only if i is even. In the code you can see that the swaps (i, j) and
(N − i− 1, N − j − 1) are performed together when i is even, due to this.

c) Assume that i < N/2 is odd. Explain that j ≥ N/2, so that j > i. This says
that when i < N/2 is odd, we can always swap i and j (this is the last swap
performed in the code). All swaps where 0 ≤ j < N/2 and N/2 ≤ j < N can be
performed in this way.
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In bitreversal, you can see that the bit-reversal of 2r and 2r+1 are handled
together (i.e. i is increased with 2 in the for-loop). The effect of this is that the
number of if-tests can be reduced, due to the observations from b) and c).

2.5 Summary
We defined digital sound, and demonstrated how we could perform simple
operations on digital sound such as adding noise, playing at different rates e.t.c..
Digital sound could be obtained by sampling the sounds from the previous
chapter. We considered the analog of Fourier series for digital sound, which
is called the Discrete Fourier Transform, and looked at its properties and its
relation to Fourier series. We also saw that the sampling theorem guaranteed
that there is no loss in considering the samples of a function, as long as the
sampling rate is high enough compared to the highest frequency in the sound.

We obtained an implementation of the DFT, called the FFT, which is
more efficient in terms of the number of arithmetic operations than a direct
implementation of the DFT. The FFT has been cited as one of the ten most
important algorithms of the 20’th century [3]. The original paper [6] by Cooley
and Tukey dates back to 1965, and handles the case when N is composite. In the
literature, one has been interested in the FFT algorithms where the number of
(real) additions and multiplications (combined) is as low as possible. This number
is also called the flop count. The presentation in this book thus differs from
the literature in that we mostly count only the number of multiplications. The
split-radix algorithm [40, 10], which we reviewed in Exercise 2.4. 2.29, held the
record for the lowest flop count until quite recently. In [18], Frigo and Johnson
showed that the operation count can be reduced to O(34N log2(N)/9), which
clearly is less than the O(4N log2 N) we obatined for the split-radix algorithm.
It may seem strange that the total number of additions and multiplications
are considered: Aren’t multiplications more time-consuming than additions?
When you consider how this is done mechanically, this is certainly the case:
In fact, floating point multiplication can be considered as a combination of
many floating point additions. Due to this, one can find many places in the
literature where expressions are rewritten so that the multiplication count is
reduced, at the cost of a higher addition count. Winograd’s algorithm [39] is
an example of this, where the number of additions is much higher than the
number of multiplications. However, most modern CPU’s have more complex
hardware dedicated to computing multiplications, which can result in that one
floating point multiplication can be performed in one cycle, just as one addition
can. Another thing is that modern CPU’s typically can perform many additions
and multiplications in parallel, and the higher complexity in the multiplication
hardware may result in that the CPU can run less multiplications in parallel,
compared to additions. In other words, if we run test program on a computer, it
may be difficult to detect any differences in performance between addition and
multiplication, even though complex big-scale computing should in theory show
some differences. There are also other important aspects of the FFT, besides
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the flop count. Another is memory use. It is possible to implement the FFT so
that the output is computed into the same memory as the input, so that the
FFT algorithm does not require extra memory besides the input buffer. Clearly,
one should bit-reverse the input buffer in order to achieve this.

We have now defined two types of transforms to the frequency domain: Fourier
series for continuous, periodic functions, and the DFT, for periodic vectors. In
the literature there are in two other transforms also: The Continuous time
Fourier transform (CTFT) we have already mentioned at the end of Chapter 1.
We also have the Discrete time Fourier transform (DTFT)) for vectors which
are not periodic [28]. In this book we will deliberately avoid the DTFT as well,
since it assumes that the signal to transform is of infinite duration, while we in
practice analyze signals with a limited time scope.

The sampling theorem is also one of the most important results of the last
century. It was discovered by Harry Nyquist and Claude Shannon [31], but also
by others independently. One can show that the sampling theorem holds also
for functions which are not periodic, as long as we have the same bound on the
highest frequency. This is more common in the literature. In fact, the proof seen
here where we restrict to periodic functions is not common. The advantage of
the proof seen here is that we remain in a finite dimensional setting, and that
we only need the DFT. More generally, proofs of the sampling theorem in the
literature use the DTFT and the CTFT.



Chapter 3

Operations on digital sound:
digital filters

In Section 1.5 we defined analog filters as operations on sound which preserved
different frequencies. Such operations are important since they can change the
frequency content in many ways. Analog filters can not be used computationally,
however, since they are defined for all instances in time. As when we defined the
DFT to make Fourier series computable, we would like to define digital filters, in
order to make analog filters computable. It turns out that what we will define
as digital filters can be computed by the following procedure:

zn = 1
4(xn−1 + 2xn + xn+1), for n = 0, 1, . . . , N − 1. (3.1)

Here x denotes the input vector, and z the output vector. In other words, the
output of a digital filter is constructed by combining several input elements
linearly. The concrete filter defined by Equation (3.1) is called a smoothing filter.
We will demonstrate that it smooths the variations in the sound, and this is
where it gets its name from. We will start this chapter by by looking at matrix
representations for operations as given by Equation (3.1). Then we will formally
define digital filters in terms of preservation of frequencies as we did for analog
filters, and show that the formal definition is equivalent to such operations.

3.1 Matrix representations of filters
Let us consider Equation (3.1) in some more detail to get more intuition about
filters. As before we assume that the input vector is periodic with period N ,
so that xn+N = xn. Our first observation is that the output vector z is also
periodic with period N since

zn+N = 1
4(xn+N−1 + 2xn+N + xn+N+1) = 1

4(xn−1 + 2xn + xn+1) = zn.

87
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The filter is also clearly a linear transformation and may therefore be represented
by an N×N matrix S that maps the vector x = (x0, x1, . . . , xN−1) to the vector
z = (z0, z1, . . . , zN−1), i.e., we have z = Sx. To find S, for 1 ≤ n ≤ N − 2 it is
clear from Equation (3.1) that row n has the value 1/4 in column n − 1, the
value 1/2 in column n, and the value 1/4 in column n+ 1. For row 0 we must be
a bit more careful, since the index −1 is outside the legal range of the indices.
This is where the periodicity helps us out so that

z0 = 1
4(x−1 + 2x0 + x1) = 1

4(xN−1 + 2x0 + x1) = 1
4(2x0 + x1 + xN−1).

From this we see that row 0 has the value 1/4 in columns 1 and N − 1, and the
value 1/2 in column 0. In exactly the same way we can show that row N − 1
has the entry 1/4 in columns 0 and N − 2, and the entry 1/2 in column N − 1.
In summary, the matrix of the smoothing filter is given by

S = 1
4



2 1 0 0 · · · 0 0 0 1
1 2 1 0 · · · 0 0 0 0
0 1 2 1 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · 0 1 2 1
1 0 0 0 · · · 0 0 1 2


. (3.2)

A matrix on this form is called a Toeplitz matrix. The general definition is as
follows and may seem complicated, but is in fact quite straightforward:

Definition 3.1. Toeplitz matrices.
An N ×N -matrix S is called a Toeplitz matrix if its elements are constant

along each diagonal. More formally, Sk,l = Sk+s,l+s for all nonnegative integers
k, l, and s such that both k+ s and l+ s lie in the interval [0, N − 1]. A Toeplitz
matrix is said to be circulant if in addition

S(k+s) mod N,(l+s) mod N = Sk,l

for all integers k, l in the interval [0, N − 1], and all s (Here mod denotes the
remainder modulo N).

Toeplitz matrices are very popular in the literature and have many applica-
tions. A Toeplitz matrix is constant along each diagonal, while the additional
property of being circulant means that each row and column of the matrix
’wraps over’ at the edges. Clearly the matrix given by Equation (3.2) satisfies
Definition 3.1 and is a circulant Toeplitz matrix. A Toeplitz matrix is uniquely
identified by the values on its nonzero diagonals, and a circulant Toeplitz matrix
is uniquely identified by the values on the main diagonal, and on the diagonals
above (or under) it. Toeplitz matrices show up here in the context of filters, but
they will also show up later in the context of wavelets.

Equation (3.1) leads us to the more general expression
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zn =
∑
k

tkxn−k. (3.3)

If t has infinitely many nonzero entries, the sum is an infinite one, and may
diverge. We will, however, mostly assume that t has a finite number of nonzero
entries. This general expression opens up for defining many types of operations.
The values tk will be called filter coefficients. The range of k is not specified,
but is typically an interval around 0, since zn usually is calculated by combining
xk’s with indices close to n. Both positive and negative indices are allowed.
As an example, for formula (3.1) k ranges over −1, 0, and 1, and we have that
t−1 = t1 = 1/4, and t0 = 1/2. Since Equation (3.3) needs to be computed for
each n, if only t0, . . . , tkmax are nonzero, we need to go through the following
for-loop to compute zkmax,. . . ,zN−1:

z = zeros(1, N);
for n = kmax:(N-1)

for k = 0:kmax
z(n + 1) = z(n + 1) + t(k + 1)*x(n - k + 1);

end
end

It is clearly possible to vectorize the inner loop here, since it takes the form of a
dot product. Another possible way to vectorize is to first change the order of
summation, and then vectorize as follows

z = zeros(1, N);
for k = 0:kmax

z((kmax+1):N) = z((kmax+1):N) + t(k + 1)*x((kmax-k+1):(N-k));
end

Depending on how vectorization is supported, this code will in general execute
faster, and is to prefer. The drawback, however, is that a filter often is applied in
real time, with the output computed only when enough input is available, with
the input becoming available continuously. This second approach then clearly
fails, since it computes nothing before all input is available. In the exercise we
will compare the computation times for the two approaches above, and compare
them with a built-in function which computes the same.

Note that above we did not consider the first entries in z, since this is where
the circulation occurs. Taken this into account, the first filter we considered in
this chapter can be implemented in vectorized form simply as

z(1) = x(2)/4 + x(1)/2 + x(N)/4;
z(2:(N-1)) = x(3:N)/4 + x(2:(N-1))/2 + x(1:(N-2))/4;
z(N) = x(1))/4 + x(N)/2 + x(N-1)/4;

In the following we will avoid such implementations, since for-loops can be
very slow in Matlab. We will see that an efficient built-in function exists for
computing this, and use this instead.

By following the same argument as above, the following is clear:
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Proposition 3.2. Filters as matrices.
Any operation defined by Equation (3.3) is a linear transformation which

transforms a vector of period N to another of period N . It may therefore be
represented by an N ×N matrix S that maps the vector x = (x0, x1, . . . , xN−1)
to the vector z = (z0, z1, . . . , zN−1), i.e., we have z = Sx. Moreover, the matrix
S is a circulant Toeplitz matrix, and the first column s of this matrix is given by

sk =
{
tk, if 0 ≤ k < N/2;
tk−N if N/2 ≤ k ≤ N − 1.

(3.4)

In other words, the first column of S can be obtained by placing the coefficients
in (3.3) with positive indices at the beginning of s, and the coefficients with
negative indices at the end of s.

This proposition will be useful for us, since it explains how to pass from the
form (3.3), which is most common in practice, to the matrix form S.

Example 3.3. Finding the matrix elements from the filter coefficients.
Let us apply Proposition 3.2 to the operation defined by formula (3.1):

• for k = 0 Equation (3.4) gives s0 = t0 = 1/2.

• For k = 1 Equation (3.4) gives s1 = t1 = 1/4.

• For k = N − 1 Equation (3.4) gives sN−1 = t−1 = 1/4.

For all k different from 0, 1, and N − 1, we have that sk = 0. Clearly this gives
the matrix in Equation (3.2).

Proposition 3.2 is also useful when we have a circulant Toeplitz matrix S,
and we want to find filter coefficients tk so that z = Sx can be written on the
form (3.3):

Example 3.4. Finding the filter coefficients from the matrix.
Consider the matrix

S =


2 1 0 3
3 2 1 0
0 3 2 1
1 0 3 2

 .

This is a circulant Toeplitz matrix with N = 4, and we see that s0 = 2, s1 = 3,
s2 = 0, and s3 = 1. The first equation in (3.4) gives that t0 = s0 = 2, and
t1 = s1 = 3. The second equation in (3.4) gives that t−2 = s2 = 0, and
t−1 = s3 = 1. By including only the tk which are nonzero, the operation can be
written as

zn = t−1xn−(−1) + t0xn + t1xn−1 + t2xn−2 = xn+1 + 2x0 + 3xn−1.
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Since the filter coefficients tk uniquely define any N ×N -circulant Toeplitz
matrix, we will establish the following shorthand notation for the filter matrix
for a given set of filter coefficients. We will use this notation only when we have
a finite set of nonzero filter coefficients (note however that many interesting
filters in signal processing have infinitely many nonzero filter coefficients, see
Section 3.5) Note also that we always choose N so large that the placement of
the filter coefficients in the first column, as dictated by Proposition 3.2, never
collide (as happens when N is smaller than the number of filter coefficients).

Definition 3.5. Compact notation for filters.
Let kmin, kmax be the smallest and biggest index of a filter coefficient in

Equation (3.3) so that tk 6= 0 (if no such values exist, let kmin = kmax = 0), i.e.

zn =
kmax∑
k=kmin

tkxn−k. (3.5)

We will use the following compact notation for S:

S = {tkmin , . . . , t−1, t0, t1, . . . , tkmax}.

In other words, the entry with index 0 has been underlined, and only the nonzero
tk’s are listed. kmax and kmin are also called the start and end indices of S. By
the length of S, denoted l(S), we mean the number kmax − kmin.

One seldom writes out the matrix of a filter, but rather uses this compact
notation.

Example 3.6. Writing down compact filter notation.
Using the compact notation for a filter, we would write S = {1/4, 1/2, 1/4}

for the filter given by formula (3.1)). For the filter

zn = xn+1 + 2x0 + 3xn−1

from Example 3.4, we would write S = {1, 2, 3}.

3.1.1 Convolution
Applying a filter to a vector x is also called taking the convolution of the two
vectors t and x. Convolution is usually defined without the assumption that
the input vector is periodic, and without any assumption on the vector lengths
(i.e. they may be sequences of inifinite length). The case where both vectors t
and x have a finite number of nonzero elements dererves extra attention. Assume
that t0, . . . , tM−1 and x0, . . . , xN−1 are the only nonzero elements in t and x
(i.e. we can view them as vectors in RM and RN , respectively). It is clear from
the expression zn =

∑
tkxn−k that only z0, . . . , zM+N−2 can be nonzero. This

motivates the following definition.
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Definition 3.7. Convolution of vectors.
By the convolution of two vectors t ∈ RM and x ∈ RN we mean the vector

t ∗ x ∈ RM+N−1 defined by

(t ∗ x)n =
∑
k

tkxn−k, (3.6)

where we only sum over k so that 0 ≤ k < M , 0 ≤ n− k < N .

Note that convolution in the literature usually assumes infinite vectors.
Matlab has the built-in function conv for computing t ∗ x. As we shall see in
the exercises this function is highly optimized, and is therefore much used in
practice. Since convolution is not exactly the same as our definition of a filter
(since we assume that a vector is repeated periodically), it would be a good
idea to express our definition of filters in terms of convolution. This can be
achieved with the next proposition, which is formulated for the case with equally
many filter coefficients with negative and positive indices. The result is thus
directly applicable for symmetric filters, which is the type of filters we will mostly
concentrate on. It is a simple exercise to generalize the result to other filters,
however.

Proposition 3.8. Using convolution to compute filters.
Assume that S is a filter on the form

S = {t−L, . . . , t0, . . . , tL}.

If x ∈ RN , then Sx can be computed as follows:

• Form the vector x̃ = (xN−L, · · · , xN−1, x0, · · · , xN−1, x0, · · · , xL−1) ∈
RN+2L.

• Use the conv function to compute z̃ = t ∗ x̃ ∈ RM+N+2L−1.

• We have that Sx = (z̃2L, . . . , z̃M+N−2).

We will consider an implementation of this result using the conv function in
the exercises.

Proof. When x ∈ RN , the operation x → t ∗ x can be represented by an
(M +N − 1)×N matrix. It is easy to see that this matrix has element (i+ s, i)
equal to ts, for 0 ≤ i < M , 0 ≤ s < N . In Figure 3.1 such a matrix is shown for
M = 5. The nonzero diagonals are shown as diagonal lines.

Now, form the vector x̃ ∈ RN+2L as in the text of the theorem. Convolving
(t−L, . . . , tL) with vectors in RN+2L can similarly be represented by an (M +N +
2L− 1)× (N + 2L)-matrix. The rows from 2L up to and including M +N − 2
in this matrix (we have marked these with horizontal lines above) make up a
new matrix S̃, and this is shown in Figure 3.2 (S̃ is an N × (N + 2L) matrix).

We need to show that Sx = S̃x̃. We have that S̃x̃ equals the matrix shown
in Figure 3.3 multiplied with (xN−L, . . . , xN−1, x0, . . . , xN−1, x0, . . . , xL−1) (we
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Figure 3.1: A (M +N − 1)×N matrix representing the operation x→ t ∗ x.
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Figure 3.2: The N × (N + 2L)-matrix S̃.

inserted extra vertical lines in the matrix where circulation occurs), which equals
the matrix shown in Figure 3.4 multiplied with (x0, . . . , xN−1). We see that this
is Sx, and the proof is complete.
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Figure 3.3: The matrix we multiply with
(xN−L, . . . , xN−1, x0, . . . , xN−1, x0, . . . , xL−1).

There is also a very nice connection between convolution and polynomials:

Proposition 3.9. Convolution and polynomials.
Assume that p(x) = aNx

N + aN−1xN−1 + . . . , a1x+ a0 and q(x) = bMx
M +

bM−1xM−1 + . . . , b1x+b0 are polynomials of degree N andM respectively. Then
the coefficients of the polynomial pq can be obtained by computing conv(a,b).



CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS94

@
@

@
@

@
@
@

@
@

@

@
@

@
@

@
@
@

@
@
@

@

@
@

@
@

@
@
@

@
@
@

@
@

@
@
@

@
@
@

@
@
@

@
@

@
@

@
@
@

@
@
@

@
@

@
@
@

@
@@

Figure 3.4: The matrix we multiply with (x0, . . . , xN−1).

We can thus interpret a filter as a polynomial. In this setting, clearly the
length l(S) of the filter can be interpreted as the degree of the polynomial. If
t ∈ RM and x ∈ RN , then they can be associated with polynomials of degree
M −1 and N −1, respectively. Also, their convolution, which is in RM+N−1, can
be associated with a polynomial of degree M +N − 2, which is the sum of the
degrees of the individual polynomials. Of course we can make the same addition
of degrees when we multiply polynomials. Clearly the polynomial associated
with t is the frequency response, when we insert x = e−iω. Also, applying two
filters in succession is equivalent to applying the convolution of the filters, so
that two filtering operations can be combined to one.

Since the number of nonzero filter coefficients is typically much less than N
(the period of the input vector), the matrix S have many entries which are zero.
Multiplication with such matrices requires less additions and multiplications
than for other matrices: If S has k nonzero filter coefficients, S has Nk nonzero
entries, so that kN multiplications and (k−1)N additions are needed to compute
Sx. This is much less than the N2 multiplications and (N − 1)N additions
needed in the general case. Perhaps more important is that we need not form
the entire matrix, we can perform the matrix multiplication directly in a loop.
For large N we risk running into out of memory situations if we had to form the
entire matrix.

What you should have learned in this section.

• How to write down the circulant Toeplitz matrix from a digital filter
expression, and vice versa.

• How to find the first column of this matrix (s) from the filter coefficients
(t), and vice versa.

• The compact filter notation for filters with a finite number of filter coeffi-
cients.

• The definition of convolution, its connection with filters, and the conv-
function for computing convolution.
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• Connection between applying a filter and multiplying polynomials.

Exercise 3.1: Finding the filter coefficients and the matrix
Assume that the filter S is defined by the formula

zn = 1
4xn+1 + 1

4xn + 1
4xn−1 + 1

4xn−2.

Write down the filter coefficients tk, and the matrix for S when N = 8.

Exercise 3.2: Finding the filter coefficients from the matrix
Given the circulant Toeplitz matrix

S =


1 2 0 0
0 1 2 0
0 0 1 2
2 0 0 1

 ,

write down the filter coefficients tk.

Exercise 3.3: Convolution and polynomials
Compute the convolution of {1, 2, 1} with itself. interpret the result in terms of
two polynomials.

Exercise 3.4: Implementation of convolution
Implement code which computes t ∗ x in the two ways described after Equation
(3.3) in the compendium, i.e. as a double for loop, and as a simple for loop in
k, with n vectorized. As your t, take k randomly generated numbers. Compare
execution times for these two methods and the conv function, for different values
of k. Present the result as a plot where k runs along the x-axis, and execution
times run along the y-axis. Your result will depend on how Matlab performs
vectorization.

Exercise 3.5: Filters with a different number of coefficients
with positive and negative indices
Assume that S = {t−E , . . . , t0, . . . , tF }. Formulate a generalization of Proposi-
tion 3.8 for such filters, i.e. to filters where there may be a different number of
filter coefficients with positive and negative indices. You should only need to
make some small changes to the proof of Proposition 3.8 to achieve this.
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Exercise 3.6: Implementing filtering with convolution
Implement a function filterS which uses Proposition 3.8 and the conv func-
tion Sx when S = {t−L, . . . , t0, . . . , tL} The function should take the vectors
(t−L, . . . , t0, . . . , tL) and x as input.

3.2 Formal definition of filters and the vector
frequency response

Let us now define digital filters formally, and establish their relationship to
Toeplitz matrices. We have seen that a sound can be decomposed into different
frequency components, and we would like to define filters as operations which
adjust these frequency components in a predictable way. One such example is
provided in Example 2.27, where we simply set some of the frequency components
to 0. The natural starting point is to require for a filter that the output of a
pure tone is a pure tone with the same frequency.

Definition 3.10. Digital filters and vector frequency response.
A linear transformation S : RN 7→ RN is a said to be a digital filter, or simply

a filter, if, for any integer n in the range 0 ≤ n ≤ N − 1 there exists a value λS,n
so that

S (φn) = λS,nφn, (3.7)
i.e., the N Fourier vectors are the eigenvectors of S. The vector of (eigen)values
λS = (λS,n)N−1

n=0 is often referred to as the (vector) frequency response of S.

Since the Fourier basis vectors are orthogonal vectors, S is clearly orthogonally
diagonalizable. Since also the Fourier basis vectors are the columns in (FN )H ,
we have that

S = FHN DFN (3.8)
whenever S is a digital filter, where D has the frequency response (i.e. the
eigenvalues) on the diagonal 1. We could also use DFTN to diagonalize filters,
but it is customary to use an orthogonal matrix (i.e. FN ) when the matrix is
orthogonally diagonalizable. In particular, if S1 and S2 are digital filters, we can
write S1 = FHN D1FN and S2 = FHN D2FN , so that

S1S2 = FHN D1FNF
H
N D2FN = FHN D1D2FN .

Since D1D2 = D2D1 for any diagonal matrices, we get the following corollary:

Corollary 3.11. The product of two filters is a filter.
The product of two digital filters is again a digital filter. Moreover, all digital

filters commute, i.e. if S1 and S2 are digital filters, S1S2 = S2S1.
1Recall that the orthogonal diagonalization of S takes the form S = P DP T , where P

contains as columns an orthonormal set of eigenvectors, and D is diagonal with the eigenvectors
listed on the diagonal (see Section 7.1 in [20]).
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Clearly also S1 +S2 is a filter when S1 and S2 are. The set of all filters is thus
a vector space, which also is closed under multiplication. Such a space is called
an algebra. Since all filters commute, this algebra is also called a commutative
algebra.

The next result states three equivalent characterizations of a digital filter.
The first one is simply the definition in terms of having the Fourier basis as
eigenvectors. The second is that the matrix is circulant Toeplitz, i.e. that
the operations we started this chapter with actually are filters. The third
characterization is in terms of a new concept which we now define.

Definition 3.12. Time-invariance.
Assume that S is a linear transformation from RN to RN . Let x be input

to S, and y = Sx the corresponding output. Let also z, w be delays of x, y
with d elements (i.e. zn = xn−d, wn = yn−d). S is said to be time-invariant if,
for any d and x, Sz = w (i.e. S sends the delayed input vector to the delayed
output vector).

With this notation, it is clear that time-delay with d elements, i.e. the
operation x → z, is a filter, since the time-delay of x = φn = 1√

N
e2πikn/N is

1√
N
e2πi(k−d)n/N = e−2πidn/Nx, and the Fourier basis are thus eigenvectors. If we

denote the time-delay filter with Ed, the definition of time-invariance demands
that SEdx = EdSx for any x and d, i.e. SEd = EdS for any d. We can now
prove the following.

Theorem 3.13. Characterizations of digital filters.
The following are equivalent characterizations of a digital filter:

• S = (FN )HDFN for a diagonal matrix D, i.e. the Fourier basis is a basis
of eigenvectors for S.

• S is a circulant Toeplitz matrix.

• S is linear and time-invariant.

Proof. If S is a filter, then SEd = EdS for all d since all filters commute, so that
S is time-invariant. This proves 1.→ 3..

Assume that S is time-invariant. Note that Ede0 = ed, and since SEde0 =
EdSe0 we have that Sed = Eds, where s is the first column of S. This also says
that column d of S can be obtained by delaying the first column of S with d
elements. But then d is a circulant Toeplitz matrix. This proves 3.→ 2..

Finally, any circulant Toeplitz matrix can be written on the form
∑N−1
d=0 sdEd

(by splitting the matrix into a sum of its diagonals). Since all Ed are filters, it is
clear that any circulant Toeplitz matrix is a filter. This proves 2.→ 1..

Due to this result, filters are also called LTI filters, LTI standing for Linear,
Time-Invariant. Also, operations defined by (3.3) are digital filters, when re-
stricted to vectors with period N . The following results enables us to compute
the eigenvalues/frequency response easily, so that we do not need to form the
characteristic polynomial and find its roots:
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Theorem 3.14. Connection between frequency response and the matrix.
Any digital filter is uniquely characterized by the values in the first column

of its matrix. Moreover, if s is the first column in S, the frequency response of
S is given by

λS = DFTNs. (3.9)

Conversely, if we know the frequency response λS , the first column s of S is
given by

s = IDFTNλS . (3.10)

Proof. If we replace S by (FN )HDFN we find that

DFTNs =
√
NFNs =

√
NFNS


1
0
...
0

 =
√
NFNF

H
N DFN


1
0
...
0



=
√
NDFN


1
0
...
0

 = D

1
...
1

 = λS ,

where we have used that the first column in FN has all entries equal to 1/
√
N ,

and that the diagonal matrix D has all the eigenvalues of S on its diagonal,
so that the last expression is the vector of eigenvalues λS . This proves (3.9).
Equation (3.10) follows directly by applying the inverse DFT to (3.9).

The first column s, which thus characterizes the filter, is also called the
impulse response. This name stems from the fact that we can write s = Se0,
i.e. the vector s is the output (often called response) to the vector e0 (often
called an impulse). Equation (3.9) states that the frequency response can be
written as

λS,n =
N−1∑
k=0

ske
−2πink/N , for n = 0, 1, . . . , N − 1, (3.11)

where sk are the components of s.

Example 3.15. The identity is a filter.
The identity matrix is a digital filter since I = (FN )HIFN . Since e0 is the

first column, it has impulse response s = e0. Its frequency response has 1 in all
components and therefore preserves all frequencies, as expected.
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Example 3.16. Frequency response of a simple filter.
When only few of the coefficients sk are nonzero, it is possible to obtain nice

expressions for the frequency response. To see this, let us compute the frequency
response of the filter defined from formula (3.1). We saw that the first column
of the corresponding Toeplitz matrix satisfied s0 = 1/2, and sN−1 = s1 = 1/4.
The frequency response is thus

λS,n = 1
2e

0 + 1
4e
−2πin/N + 1

4e
−2πin(N−1)/N

= 1
2e

0 + 1
4e
−2πin/N + 1

4e
2πin/N = 1

2 + 1
2 cos(2πn/N).

Equations (3.8), (3.9), and (3.10) are important relations between the matrix-
and frequency representations of a filter. We see that the DFT is a crucial
ingredient in these relations. A consequence is that, once you recognize a
matrix as circulant Toeplitz, you do not need to make the tedious calculation of
eigenvectors and eigenvalues which you are used to. Let us illustrate this with
an example.

Example 3.17. Matrix form.
Let us compute the eigenvalues and eigenvectors of the simple matrix

S =
(

4 1
1 4

)
.

It is straightforward to compute the eigenvalues and eigenvectors of this matrix
the way you learnt in your first course in linear algebra. However, this matrix is
also a circulant Toeplitz matrix, so that we can use the results in this section
to compute the eigenvalues and eigenvectors. Since here N = 2, we have that
e2πink/N = eπink = (−1)nk. This means that the Fourier basis vectors are
(1, 1)/

√
2 and (1,−1)/

√
2, which also are the eigenvectors of S. The eigenvalues

are the frequency response of S, which can be obtained as

√
NFNs =

√
2 1√

2

(
1 1
1 −1

)(
4
1

)
=
(

5
3

)
The eigenvalues are thus 3 and 5. You could have obtained the same result with
your computer. Note that the computer may not return the eigenvectors exactly
as the Fourier basis vectors, since the eigenvectors are not unique (the multiple of
an eigenvector is also an eigenvector). The computer may for instance switch the
signs of the eigenvectors. We have no control over what the computer actually
chooses to do, since it uses some underlying numerical algorithm for computing
eigenvectors which we can’t influence.

In signal processing, the frequency content of a vector (i.e., its DFT) is also
referred to as its spectrum. This may be somewhat confusing from a linear
algebra perspective, because in this context the term spectrum is used to denote
the eigenvalues of a matrix. But because of Theorem 3.14 this is not so confusing
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after all if we interpret the spectrum of a vector (in signal processing terms) as
the spectrum of the corresponding digital filter (in linear algebra terms).

Certain vectors are easy to express in terms of the Fourier basis. This enables
us to compute the output of such vectors from a digital filter easily, as the
following example shows.

Example 3.18. Computing the output of a filter.
Let us consider the filter S defined by zn = 1

6 (xn+2 + 4xn+1 + 6xn + 4xn−1 +
xn−2), and see how we can compute Sx when

x = (cos(2π5 · 0/N), cos(2π5 · 1/N), . . . , cos(2π5 · (N − 1)/N)) ,

where N is the length of the vector. We note first that

√
Nφ5 =

(
e2πi5·0/N , e2πi5·1/N , . . . , e2πi5·(N−1)/N

)
√
NφN−5 =

(
e−2πi5·0/N , e−2πi5·1/N , . . . , e−2πi5·(N−1)/N

)
,

Since e2πi5k/N + e−2πi5k/N = 2 cos(2π5k/N), we get by adding the two vectors
that x = 1

2
√
N(φ5 + φN−5). Since the φn are eigenvectors, we have expressed x

as a sum of eigenvectors. The corresponding eigenvalues are given by the vector
frequency response, so let us compute this. If N = 8, computing Sx means to
multiply with the 8× 8 circulant Toeplitz matrix

1
6



6 4 1 0 0 0 1 4
4 6 4 1 0 0 0 1
1 4 6 4 1 0 0 0
0 1 4 6 4 1 0 0
0 0 1 4 6 4 1 0
0 0 0 1 4 6 4 1
1 0 0 0 1 4 6 4
4 1 0 0 0 1 4 6


We now see that

λS,n = 1
6(6 + 4e−2πin/N + e−2πi2n/N + e−2πi(N−2)n/N + 4e−2πi(N−1)n/N )

= 1
6(6 + 4e2πin/N + 4e−2πin/N + e2πi2n/N + e−2πi2n/N )

= 1 + 4
3 cos(2πn/N) + 1

3 cos(4πn/N).

The two values of this we need are
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λS,5 = 1 + 4
3 cos(2π5/N) + 1

3 cos(4π5/N)

λS,N−5 = 1 + 4
3 cos(2π(N − 5)/N) + 1

3 cos(4π(N − 5)/N)

= 1 + 4
3 cos(2π5/N) + 1

3 cos(4π5/N).

Since these are equal, x is a sum of eigenvectors with equal eigenvalues. This
means that x itself also is an eigenvector, with the same eigenvalue, so that

Sx =
(

1 + 4
3 cos(2π5/N) + 1

3 cos(4π5/N)
)
x.

3.2.1 Using digital filters to approximate analog filters
The formal definition of digital filters resembles that of analog filters, the
difference being that the Fourier basis is now discrete. From this one may
think that one can construct digital filters from analog filters. The following
result clarifies this:

Theorem 3.19. Connection with analog frequency response.
Let s be an analog filter with frequency response λs(f), and assume that

f ∈ VM,T (so that also s(f) ∈ VM,T ). Let

x = (f(0 · T/N), f(1 · T/N), . . . , f((N − 1)T/N))
z = (s(f)(0 · T/N), s(f)(1 · T/N), . . . , s(f)((N − 1)T/N))

be vectors of N = 2M + 1 uniform samples from f and s(f). Then the operation
S : x→ z (i.e. the operation which sends the samples of the input to the samples
of the output) is well-defined on RN , and is an N×N -digital filter with frequency
response λS,n = λs(n/T ).

Proof. With N = 2M + 1 we know that f ∈ VM,T is uniquely determined from
x. This means that s(f) also is uniquely determined from x, so that z also is
uniquely determined from x. The operation S : x→ z is therefore well-defined
on RN .

Clearly also s(e2πint/T ) = λs(n/T )e2πint/T . Since the samples of e2πint/T

is the vector e2πikn/N , and the samples of λs(n/T )e2πint/T is λs(n/T )e2πikn/N ,
the vector e2πikn/N is an eigenvector of S with eigenvalue λs(n/T ). Clearly then
S is a digital filter with frequency response λS,n = λs(n/T ).

It is interesting that the digital frequency response above is obtained by
sampling the analog frequency response. In this way we also see that it is easy
to realize any digital filter as the restriction of an analog filter: any analog filter
s will do where the frequency response has the values λS,n at the points n/T .
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In the theorem it is essential that f ∈ VM,T . There are many functions with the
same samples, but where the samples of the output from the analog filter are
different. When we restrict to VM,T , however, the output samples are always
determined from the input samples.

Theorem 3.19 explains how digital filters can occur in practice. In the real
world, a signal is modeled as a continuous function f(t), and an operation on
signals as an analog filter s. We can’t compute the entire output s(f) of the
analog filter, but it is possible to apply the digital filter from Theorem 3.19 to
the samples x of f . In general f(t) may not lie in VM,T , but we can denote by f̃
the unique function in VM,T with the same samples as f (as in Section 2.3). By
definition, Sx are the samples of s(f̃) ∈ VM,T . s(f̃) can finally be found from
these samples by using the procedure from Figure 2.4 for finding s(f̃). This
procedure for finding s(f̃) is illustrated in Figure 3.5.

f //

��

s(f̃)

x
S // z

FN // y

OO

Figure 3.5: The connections between analog and digital filters, sampling and
interpolation, provided by Theorem 3.19. The left vertical arrow represents
sampling, the right vertical arrow represents interpolation.

Clearly, s(f̃) is an approximation to s(f), since f̃ is an approximation to f ,
and since s is continuous. Let us summarize this as follows:

Idea 3.20. Approximating an analog filter.
An analog filter s can be approximated through sampling, a digital filter, the

DFT, and interpolation, as illustrated in Figure 3.5. S is the digital filter with
frequency response λS,n = λs(n/T ). When f ∈ VM,T , this approximation equals
s(f). When we increase the number of sample points/the size of the filter, the
approximation becomes better. If there is a bound on the highest frequency in f ,
there exists an N so that when sampling of that size, the approximation equals
s(f).

Let us comment on why the last statements here are true. That the approx-
imation equals s(f) when f ∈ VM,T is obvious, since both f and s(f) ∈ VM,T

are determined from their samples then. If there is a bound on the highest
frequency in f , then f lies in VM,T for large enough M , so that we recover s(f)
as our approximation using N = 2M + 1. Finally, what happens when there is
no bound on the highest frequency? We know that s(fN ) = (s(f))N . Since fN
is a good approximation to f , the samples x of f are close to the samples of fN .
By continuity of the digital filter, z = Sx will also be close to the samples of
(s(f))N = s(fN ), so that (also by continuity) interpolating with z gives a good
approximation to (s(f))N , which is again a good approximation to s(f)). From
this it follows that the digital filter is a better approximation when N is high.
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What you should have learned in this section.

• The formal definition of a digital filter in terms of having the Fourier
vectors as eigenvectors.

• The definition of the vector frequency response in terms of the correspond-
ing eigenvalues.

• The definition of time-invariance and the three equivalent characterizations
of a filter.

• For filters, eigenvalues can be computed by taking the DFT of the first
column s, and there is no need to compute eigenvectors explicitly.

• How to apply a digital filter to a sum of sines or cosines, by splitting these
into a sum of eigenvectors.

Exercise 3.7: Time reversal is not a filter
In Example 2.6 we looked at time reversal as an operation on digital sound.
In RN this can be defined as the linear mapping which sends the vector ek to
eN−1−k for all 0 ≤ k ≤ N − 1.

a) Write down the matrix for the time reversal linear mapping, and explain
from this why time reversal is not a digital filter.

b) Prove directly that time reversal is not a time-invariant operation.

Exercise 3.8: When is a filter symmetric?
Let S be a digital filter. Show that S is symmetric if and only if the frequency
response satisfies λS,n = λS,N−n for all n.

Exercise 3.9: Eigenvectors and eigenvalues
Consider the matrix

S =


4 1 3 1
1 4 1 3
3 1 4 1
1 3 1 4

 .

a) Compute the eigenvalues and eigenvectors of S using the results of this
section. You should only need to perform one DFT in order to achieve this.

b) Verify the result from a) by computing the eigenvectors and eigenvalues the
way you taught in your first course in linear algebra. This should be a much
more tedious task.
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c) Use a computer to compute the eigenvectors and eigenvalues of S also. For
some reason some of the eigenvectors seem to be different from the Fourier basis
vectors, which you would expect from the theory in this section. Try to find an
explanation for this.

Exercise 3.10: Composing filters
Assume that S1 and S2 are two circulant Toeplitz matrices.

a) How can you express the eigenvalues of S1 + S2 in terms of the eigenvalues
of S1 and S2?

b) How can you express the eigenvalues of S1S2 in terms of the eigenvalues of
S1 and S2?

c) If A and B are general matrices, can you find a formula which expresses the
eigenvalues of A+B and AB in terms of those of A and B? If not, can you find
a counterexample to what you found in a) and b)?

Exercise 3.11: Keeping every second component
Consider the linear mapping S which keeps every second component in RN ,
i.e. S(e2k) = e2k, and S(e2k−1) = 0. Is S a digital filter?

3.3 The continuous frequency response and prop-
erties

If we make the substitution ω = 2πn/N in the formula for λS,n, we may interpret
the frequency response as the values on a continuous function on [0, 2π).

Theorem 3.21. Connection between vector- and continuous frequency response.
The function λS(ω) defined on [0, 2π) by

λS(ω) =
∑
k

tke
−ikω, (3.12)

where tk are the filter coefficients of S, satisfies

λS,n = λS(2πn/N) for n = 0, 1, . . . , N − 1

for any N . In other words, regardless of N , the vector frequency response lies
on the curve λS .

Proof. For any N we have that
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λS,n =
N−1∑
k=0

ske
−2πink/N =

∑
0≤k<N/2

ske
−2πink/N +

∑
N/2≤k≤N−1

ske
−2πink/N

=
∑

0≤k<N/2

tke
−2πink/N +

∑
N/2≤k≤N−1

tk−Ne
−2πink/N

=
∑

0≤k<N/2

tke
−2πink/N +

∑
−N/2≤k≤−1

tke
−2πin(k+N)/N

=
∑

0≤k<N/2

tke
−2πink/N +

∑
−N/2≤k≤−1

tke
−2πink/N

=
∑

−N/2≤k<N/2

tke
−2πink/N = λS(2πn/N).

where we have used Equation (3.4).

Both λS(ω) and λS,n will be referred to as frequency responses in the following.
To distinguish the two, while λS,n is called the vector frequency response of
S, λS(ω)) is called the continuous frequency response of S. ω is called angular
frequency.

The difference in the definition of the continuous- and the vector frequency
response lies in that one uses the filter coefficients tk, while the other uses the
impulse response sk. While these contain the same values, they are ordered
differently. Had we used the impulse response to define the continuous frequency
response, we would have needed to compute

∑N−1
k=0 ske

−πiω, which does not
converge whenN →∞ (although it gives the right values at all points ω = 2πn/N
for all N)! The filter coefficients avoid this convergence problem, however, since
we assume that only tk with |k| small are nonzero. In other words, filter
coefficients are used in the definition of the continuous frequency response so
that we can find a continuous curve where we can find the vector frequency
response values for all N .

The frequency response contains the important characteristics of a filter,
since it says how it behaves for the different frequencies. When analyzing a
filter, we therefore often plot the frequency response. Often we plot only the
absolute value (or the magnitude) of the frequency response, since this is what
explains how each frequency is amplified or attenuated. Since λS is clearly
periodic with period 2π, we may restrict angular frequency to the interval [0, 2π).
The conclusion in Observation 2.22 was that the low frequencies in a vector
correspond to DFT indices close to 0 and N −1, and high frequencies correspond
to DFT indices close to N/2. This observation is easily translated to a statement
about angular frequencies:

Observation 3.22. Plotting the frequency response.
When plotting the frequency response on [0, 2π), angular frequencies near 0

and 2π correspond to low frequencies, angular frequencies near π correspond to
high frequencies
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λS may also be viewed as a function defined on the interval [−π, π). Plotting
on [−π, π] is often done in practice, since it makes clearer what corresponds to
lower frequencies, and what corresponds to higher frequencies:

Observation 3.23. Higher and lower frequencies.
When plotting the frequency response on [−π, π), angular frequencies near 0

correspond to low frequencies, angular frequencies near ±π correspond to high
frequencies.

The following holds:

Theorem 3.24. Connection between analog and digital filters.
Assume that s is an analog filter, and that we sample a periodic function at

rate fs over one period, and denote the corresponding digital filter by S. The
analog and digital frequency responses are related by λs(f) = λS(2πffs).

To see this, note first that S has frequency response λS,n = λs(n/T ) =
λs(f), where f = n/T . We then rewrite λS,n = λS(2πn/N) = λS(2πfT/N) =
λS(2πffs).

Example 3.25. Plotting a simple frequency response.
In Example 3.16 we computed the vector frequency response of the filter

defined in formula (3.1). The filter coefficients are here t−1 = 1/4, t0 = 1/2, and
t1 = 1/4. The continuous frequency response is thus

λS(ω) = 1
4e

iω + 1
2 + 1

4e
−iω = 1

2 + 1
2 cosω.

Clearly this matches the computation from Example 3.16. Figure 3.6 shows
plots of this frequency response, plotted on the intervals [0, 2π) and [−π, π).

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.6: The (absolute value of the) frequency response of the moving
average filter of Formula (3.1) from the beginning of this chapter, plotted over
[0, 2π] and [−π, π].

Both the continuous frequency response and the vector frequency response
for N = 51 are shown. Figure (b) shows clearly how the high frequencies are
softened by the filter.
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Since the frequency response is essentially a DFT, it inherits several properties
from Theorem 2.18. We will mostly use the continuous frequency response to
express these properties.

Theorem 3.26. Properties of the frequency response.
We have that

• The continuous frequency response satisfies λS(−ω) = λS(ω).

• If S is a digital filter, ST is also a digital filter. Moreover, if the frequency
response of S is λS(ω), then the frequency response of ST is λS(ω).

• If S is symmetric, λS is real. Also, if S is antisymmetric (the element on
the opposite side of the diagonal is the same, but with opposite sign), λS
is purely imaginary.

• A digital filter S is an invertible if and only if λS,n 6= 0 for all n. In that
case S−1 is also a digital filter, and λS−1,n = 1/λS,n.

• If S1 and S2 are digital filters, then S1S2 also is a digital filter, and
λS1S2(ω) = λS1(ω)λS2(ω).

Proof. Property 1. and 3. follow directly from Theorem 2.18. Transposing a
matrix corresponds to reversing the first column of the matrix and thus also the
filter coefficients. Due to this Property 2. also follows from Theorem 2.18. If
S = (FN )HDFN , and all λS,n 6= 0, we have that S−1 = (FN )HD−1FN , where
D−1 is a diagonal matrix with the values 1/λS,n on the diagonal. Clearly then
S−1 is also a digital filter, and its frequency response is λS−1,n = 1/λS,n, which
proves 4. The last property follows in the same was as we showed that filters
commute:

S1S2 = (FN )HD1FN (FN )HD2FN = (FN )HD1D2FN .

The frequency response of S1S2 is thus obtained by multiplying the frequency
responses of S1 and S2.

In particular the frequency response may not be real, although this was the
case in the first example of this section. Theorem 3.26 applies also for the vector
frequency response. Since the vector frequency response are the eigenvalues of
the filter, the last property above says that, for filters, multiplication of matrices
corresponds to multiplication of eigenvalues. Clearly this is an important property
which is shared with all other matrices which have the same eigenvectors.

Example 3.27. Computing a composite filter.
Assume that the filters S1 and S2 have the frequency responses λS1(ω) =

cos(2ω), λS2(ω) = 1 + 3 cosω. Let us see how we can use Theorem 3.26 to
compute the filter coefficients and the matrix of the filter S = S1S2. We first
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notice that, since both frequency responses are real, all S1, S2, and S = S1S2
are symmetric. We rewrite the frequency responses as

λS1(ω) = 1
2(e2iω + e−2iω) = 1

2e
2iω + 1

2e
−2iω

λS2(ω) = 1 + 3
2(eiω + e−iω) = 3

2e
iω + 1 + 3

2e
−iω.

We now get that

λS1S2(ω) = λS1(ω)λS2(ω) =
(

1
2e

2iω + 1
2e
−2iω

)(
3
2e

iω + 1 + 3
2e
−iω
)

= 3
4e

3iω + 1
2e

2iω + 3
4e

iω + 3
4e
−iω + 1

2e
−2iω + 3

4e
−3iω

From this expression we see that the filter coefficients of S are t±1 = 3/4,
t±2 = 1/2, t±3 = 3/4. All other filter coefficients are 0. Using Theorem 3.2, we
get that s1 = 3/4, s2 = 1/2, and s3 = 3/4, while sN−1 = 3/4, sN−2 = 1/2, and
sN−3 = 3/4 (all other sk are 0). This gives us the matrix representation of S.

3.3.1 Windowing operations
In this section we will take a look at a very important, and perhaps surprising,
application of the continuous frequency response. Let us return to the computa-
tions from Example 2.27. There we saw that, when we restricted to a block of
the signal, this affected the frequency representation. If we substitute with the
angular frequencies ω = 2πn/N and ω0 = 2πn0/M in Equation (2.12), we get

yn = 1
N

N−1∑
k=0

eikω0e−ikω = 1
N

N−1∑
k=0

e−ik(ω−ω0)

(here yn were the DFT components of the sound after we had restricted to a
block). This expression states that, when we restrict to a block of length N in
the signal by discarding the other samples, a pure tone of angular frequency
ω0 suddenly gets a frequency contribution at angular frequency ω also, and the
contribution is given by this formula. The expression is seen to be the same as
the frequency response of the filter 1

N {1, 1, . . . , 1} (where 1 is repeated N times),
evaluated at ω − ω0. This filter is nothing but a (delayed) moving average filter.
The frequency response of a moving average filter thus governs how the different
frequencies pollute when we limit ourselves to a block of the signal. Since this
frequency response has its peak at 0, angular frequencies ω close to ω0 have
biggest values, so that the pollution is mostly from frequencies close to ω0. But
unfortunately, other frequencies also pollute.

One can also ask the question if there are better ways to restrict to a block
of size N of the signal. We formulate the following idea.
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Idea 3.28. Windows.
Let x = (x0, . . . , xM ) be a sound of length M . We would like to find values

w = {w0, . . . , wN−1} so that the new sound (w0x0, . . . , wN−1xN−1) of length
N < M has a frequency representation similar to that of x. w is called a window
of length N , and the new sound is called the windowed signal.

Above we encountered the window w = {1, 1, . . . , 1}. This is called the
rectangular window. To see how we can find a good window, note first that the
DFT values in the windowed signal of length N is

yn = 1
N

N−1∑
k=0

wke
ikω0e−ikω = 1

N

N−1∑
k=0

wke
−ik(ω−ω0).

This is the frequency response of 1
Nw. In order to limit the pollution from

other frequencies, we thus need to construct a window with a frequency response
with smaller values than that of the rectangular window away from 0. Let us
summarize our findings as follows:

Observation 3.29. Constructing a window.
Assume that we would like to construct a window of length N . It is desirable

that the frequency response of the window has small values away from zero.

We will not go into techniques for how such frequency responses can be
constructed, but only consider one example different from the rectangular window.
We define the Hamming window by

wn = 2(0.54− 0.46 cos(2πn/(N − 1))). (3.13)

The frequency responses of the rectangular window and the Hamming window
are compared in Figure 3.7 for N = 32.
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Figure 3.7: The frequency responses of the rectangular and Hamming windows,
which we considered for restricting to a block of the signal.

We see that the Hamming window has much smaller values away from 0,
so that it is better suited as a window. However, the width of the “main lobe”
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(i.e. the main structure at the center), seems to be bigger. The window coefficients
themselves are shown in Figure 3.8. It is seen that the frequency response of the
Hamming window attenuates more and more as we get close to the boundaries.

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

Figure 3.8: The coefficients of the rectangular and Hamming windows, which
we considered for restricting to a block of the signal.

Many other windows are used in the literature. The concrete window from
Exercise 3.21 is for instance used in the MP3 standard. It is applied to the
sound, and after this an FFT is applied to the windowed sound in order to make
a frequency analysis of that part of the sound. The effect of the window is that
there is smaller loss in the frequency representation of the sound when we restrict
to a block of sound samples. This is a very important part of the psychoacoustic
model used in the MP3 encoder, since it has to make compression decisions
based on the frequency information in the sound.

What you should have learned in this section.

• The definition of the continuous frequency response in terms of the filter
coefficients t.

• Connection with the vector frequency response.

• Properties of the continuous frequency response, in particular that the
product of two frequency responses equals the frequency response of the
product.

• How to compute the frequency response of the product of two filters,.

• How to find the filter coefficients when the continuous frequency response
is known.

Exercise 3.12: Plotting a simple frequency response
Let again S be the filter defined by the equation
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zn = 1
4xn+1 + 1

4xn + 1
4xn−1 + 1

4xn−2,

as in Exercise 3.1. Compute and plot (the magnitude of) λS(ω).

Exercise 3.13: Low-pass and high-pass filters
A filter S is defined by the equation

zn = 1
3(xn + 3xn−1 + 3xn−2 + xn−3).

a) Compute and plot the (magnitude of the continuous) frequency response of
the filter, i.e. |λS(ω)|. Is the filter a low-pass filter or a high-pass filter?

b) Find an expression for the vector frequency response λS,2. What is Sx when
x is the vector of length N with components e2πi2k/N?

Exercise 3.14: Circulant matrices
A filter S1 is defined by the equation

zn = 1
16(xn+2 + 4xn+1 + 6xn + 4xn−1 + xn−2).

a) Write down an 8× 8 circulant Toeplitz matrix which corresponds to applying
S1 on a periodic signal with period N = 8.

b) Compute and plot (the continuous) frequency response of the filter. Is the
filter a low-pass filter or a high-pass filter?

c) Another filter S2 has (continuous) frequency response λS2(ω) = (eiω + 2 +
e−iω)/4. Write down the filter coefficients for the filter S1S2.

Exercise 3.15: Composite filters
Assume that the filters S1 and S2 have the frequency responses λS1(ω) =
2 + 4 cos(ω), λS2(ω) = 3 sin(2ω).

a) Compute and plot the frequency response of the filter S1S2.

b) Write down the filter coefficients tk and the impulse response s for the filter
S1S2.

Exercise 3.16: Maximum and minimum
Compute and plot the continuous frequency response of the filter S = {1/4, 1/2, 1/4}.
Where does the frequency response achieve its maximum and minimum value,
and what are these values?
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Exercise 3.17: Plotting a simple frequency response
Plot the continuous frequency response of the filter T = {1/4,−1/2, 1/4}. Where
does the frequency response achieve its maximum and minimum value, and what
are these values? Can you write down a connection between this frequency
response and that from Exercise 3.16?

Exercise 3.18: Continuous- and vector frequency responses
Define the filter S by S = {1, 2, 3, 4, 5, 6}. Write down the matrix for S when
N = 8. Plot (the magnitude of) λS(ω), and indicate the values λS,n for N = 8
in this plot.

Exercise 3.19: Starting with circulant matrices
Given the circulant Toeplitz matrix

S = 1
5



1 1 1 · · · 1
1 1 1 · · · 0
0 1 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
1 0 0 · · · 1
1 1 0 · · · 1
1 1 1 · · · 1


Write down the compact notation for this filter. Compute and plot (the magni-
tude) of λS(ω).

Exercise 3.20: When the filter coefficients are powers
Assume that S = {1, c, c2, . . . , ck}. Compute and plot λS(ω) when k = 4 and
k = 8. How does the choice of k influence the frequency response? How does
the choice of c influence the frequency response?

Exercise 3.21: The Hanning window
The Hanning window is defined by wn = 1−cos(2πn/(N−1)). Compute and plot
the window coefficients and the continuous frequency response of this window for
N = 32, and compare with the window coefficients and the frequency responses
for the rectangular- and the Hamming window.

3.4 Some examples of filters
We have now established the basic theory of filters, and it is time to study some
specific examples.
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Example 3.30. Time delay filters.
We have already encountered the time-delay filter S = Ed. With only one

nonzero diagonal, this is the simplest possible type of filters. Since s = Ede0 = ed,
we can write Ed = {0, . . . , 1}, where the 1 occurs at position d. Intuitively, we
would expect that time-delay does not change the frequencies in sounds we hear.
This is confirmed by the fact that the frequency response of the time delay filter
is λS(ω) = e−idω, which has magnitude 1, so that the filter does not change the
magnitude of the different frequencies.

Fact 3.31. Adding echo.
Let x be a digital sound. Then the sound z with samples given by

[N,nchannels] = size(x);
z = zeros(N,nchannels);
z(1:d,:) = x(1:d,:);
z((d+1):N,:) = x((d+1):N,:)+c*x(1:(N-d),:);

will include an echo of the original sound. d is the delay in samples, and is an
integer. c is a constant called the damping factor, and is usually smaller than 1.

Example 3.32. Adding echo.
An echo is a copy of the sound that is delayed and softer than the original

sound. The sample that comes t seconds before sample i has index i− tfs where
fs is the sampling rate. This also makes sense even if t is not an integer so we can
use this to produce delays that are less than one second. The one complication
with this is that the number tfs may not be an integer. We can get round this
by rounding it to the nearest integer. This corresponds to adjusting the echo
slightly. The following holds:

This is an example of a filtering operation where each output element is
constructed from two input elements. As in the case of noise it is important to
dampen the part that is added to the original sound, otherwise the echo will be
too loud. Note also that the formula that creates the echo is not used at the
beginning of the signal, since it is not audible until after d samples. Also, the
echo is not audible if d is too small. You can listen to the sample file with echo
added with d = 10000 and c = 0.5 here.

Using our compact filter notation, the filter which adds echo can be written
as

S = {1, 0, . . . , 0, c},

where the damping factor c appears after the delay d. The frequency response
of this is λS(ω) = 1 + ce−idω. This frequency response is not real, which means
that the filter is not symmetric. In Figure 3.9 we have plotted the magnitude of
this frequency response with c = 0.1 and d = 10.

We see that the response varies between 0.9 and 1.1, so that the deviation
from 1 is controlled by the damping factor c. Also, we see that the oscillation in
the frequency response, as visible in the plot, is controlled by the delay d.

http://folk.uio.no/oyvindry/matinf2360/sounds/castanetsecho.wav
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Figure 3.9: The frequency response of a filter which adds an echo with damping
factor c = 0.1 and delay d = 10.

Let us now take a look at some filters which adjust the bass and treble in
sound. The fact that the filters are useful for these purposes will be clear when
we plot the frequency response.

Example 3.33. Reducing the treble with moving average filters.
The treble in a sound is generated by the fast oscillations (high frequencies)

in the signal. If we want to reduce the treble we have to adjust the sample values
in a way that reduces those fast oscillations. A general way of reducing variations
in a sequence of numbers is to replace one number by the average of itself and
its neighbors, and this is easily done with a digital sound signal. If z = (zi)N−1

i=0
is the sound signal produced by taking the average of three successive samples,
we have that

zn = 1
3(xn+1 + xn + xn−1),

i.e. S = {1/3, 1/3, 1/3}. This filter is also called a moving average filter (with
three elements), and it can be written in compact form as. If we set N = 4, the
corresponding circulant Toeplitz matrix for the filter is

S = 1
3


1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1


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The frequency response is

λS(ω) = (eiω + 1 + e−iω)/3 = (1 + 2 cos(ω))/3.

More generally we can construct the moving average filter of 2L+ 1 elements,
which is S = {1, · · · , 1, · · · , 1}/(2L + 1), where there is symmetry around 0.
Clearly then the first column of S is s = ( 1, . . . , 1︸ ︷︷ ︸

L+1 times

, 0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
L times

)/(2L+1). In

Example 2.15 we computed that the DFT of the vector x = ( 1, . . . , 1︸ ︷︷ ︸
L+1 times

, 0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
L times

)

had components

yn = sin(πn(2L+ 1)/N)
sin(πn/N) .

Since s = x/(2L+ 1) and λS = DFTNs, the frequency response of S is

λS,n = 1
2L+ 1

sin(πn(2L+ 1)/N)
sin(πn/N) ,

so that
λS(ω) = 1

2L+ 1
sin((2L+ 1)ω/2)

sin(ω/2) .

We clearly have
0 ≤ 1

2L+ 1
sin((2L+ 1)ω/2)

sin(ω/2) ≤ 1,

and this frequency response approaches 1 as ω → 0. The frequency response
thus peaks at 0, and this peak gets narrower and narrower as L increases, i.e. as
we use more and more samples in the averaging process. This filter thus “keeps”
only the lowest frequencies. When it comes to the highest frequencies it is seen
that the frequency response is small for ω ≈ π. In fact it is straightforward to
see that |λS(π)| = 1/(2L + 1). In Figure 3.10 we have plotted the frequency
response for moving average filters with L = 1, L = 5, and L = 20.

Unfortunately, the frequency response is far from a filter which keeps some
frequencies unaltered, while annihilating others: Although the filter distinguishes
between high and low frequencies, it slightly changes the small frequencies.
Moreover, the higher frequencies are not annihilated, even when we increase L
to high values.

In the previous example we mentioned filters which favor certain frequencies
of interest, while annihilating the others. This is a desirable property for filters,
so let us give names to such filters:

Definition 3.34. Lowpass and highpass filters.
A filter S is called

• a lowpass filter if λS(ω) is large when ω is close to 0, and λS(ω) ≈ 0 when ω
is close to π (i.e. S keeps low frequencies and annhilates high frequencies),
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Figure 3.10: The frequency response of moving average filters with L = 1,
L = 5, and L = 20.

• a highpass filter if λS(ω) is large when ω is close to π, and λS(ω) ≈ 0 when
ω is close to 0 (i.e. S keeps high frequencies and annhilates low frequencies),

• a bandpass filter if λS(ω) is large within some interval [a, b] ⊂ [0, 2π], and
λS(ω) ≈ 0 outside this interval.

This definition should be considered rather vague when it comes to what we
mean by “ω close to 0, π”, and “λS(ω) is large”: in practice, when we talk about
lowpass and highpass filters, it may be that the frequency responses are still
quite far from what is commonly refered to as ideal lowpass or highpass filters,
where the frequency response only assumes the values 0 and 1 near 0 and π. The
next example considers an ideal lowpass filter.

Example 3.35. Ideal lowpass filters.
By definition, the ideal lowpass filter keeps frequencies near 0 unchanged, and

completely removes frequencies near π. We now have the theory in place in order
to find the filter coefficients for such a filter: In Example 2.27 we implemented
the ideal lowpass filter with the help of the DFT. Mathematically you can see
that this code is equivalent to computing (FN )HDFN where D is the diagonal
matrix with the entries 0, . . . , L and N − L, . . . , N − 1 being 1, the rest being
0. Clearly this is a digital filter, with frequency response as stated. If the filter
should keep the angular frequencies |ω| ≤ ωc only, where ωc describes the highest
frequency we should keep, we should choose L so that ωc = 2πL/N . Again,
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in Example 2.15 we computed the DFT of this vector, and it followed from
Theorem 2.18 that the IDFT of this vector equals its DFT. This means that we
can find the filter coefficients by using Equation (3.10), i.e. we take an IDFT.
We then get the filter coefficients

1
N

sin(πk(2L+ 1)/N)
sin(πk/N) .

This means that the filter coefficients lie as N points uniformly spaced on the
curve 1

N
sin(πt(2L+1)/2)

sin(πt/2) between 0 and 1. This curve has been encountered many
other places in these notes. The filter which keeps only the frequency ωc = 0 has
all filter coefficients being 1

N (set L = 1), and when we include all frequencies (set
L = N) we get the filter where x0 = 1 and all other filter coefficients are 0. When
we are between these two cases, we get a filter where s0 is the biggest coefficient,
while the others decrease towards 0 along the curve we have computed. The
bigger L and N are, the quicker they decrease to zero. All filter coefficients are
usually nonzero for this filter, since this curve is zero only at certain points. This
is unfortunate, since it means that the filter is time-consuming to compute.

The two previous examples show an important duality between vectors which
are 1 on some elements and 0 on others (also called window vectors), and the
vector 1

N
sin(πk(2L+1)/N)

sin(πk/N) (also called a sinc): filters of the one type correspond to
frequency responses of the other type, and vice versa. The examples also show
that, in some cases only the filter coefficients are known, while in other cases
only the frequency response is known. In any case we can deduce the one from
the other, and both cases are important.

Filters are much more efficient when there are few nonzero filter coefficients.
In this respect the second example displays a problem: in order to create filters
with particularly nice properties (such as being an ideal lowpass filter), one may
need to sacrifice computational complexity by increasing the number of nonzero
filter coefficients. The trade-off between computational complexity and desirable
filter properties is a very important issue in filter design theory.

Example 3.36. Dropping filter coefficients.
In order to decrease the computational complexity for the ideal lowpass filter

in Example 3.35, one can for instance include only the first filter coefficients, i.e.{
1
N

sin(πk(2L+ 1)/N)
sin(πk/N)

}N0

k=−N0

,

ignoring the last ones. Hopefully this gives us a filter where the frequency reponse
is not that different from the ideal lowpass filter. In Figure 3.11 we show the
corresponding frequency responses. In the figure we have set N = 128, L = 32,
so that the filter removes all frequencies ω > π/2. N0 has been chosen so that
the given percentage of all coefficients are included.

Clearly the figure shows that we should be careful when we omit filter
coefficients: if we drop too many, the frequency response is far away from that of
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Figure 3.11: The frequency response which results by including the first 1/32,
the first 1/16, the first 1/4, and and all of the filter coefficients for the ideal
lowpass filter.

an ideal bandpass filter. In particular, we see that the new frequency response
oscillates wildly near the discontinuity of the ideal lowpass filter. Such oscillations
are called Gibbs oscillations.

Example 3.37. Filters and the MP3 standard.
We mentioned previously that the MP3 standard splits the sound into

frequency bands. This splitting is actually performed by particular filters, which
we will consider now.

In the example above, we saw that when we dropped the last filter coefficients
in the ideal lowpass filter, there were some undesired effects in the frequency
response of the resulting filter. Are there other and better approximations
to the ideal lowpass filter which uses the same number of filter coefficients?
This question is important, since the ear is sensitive to certain frequencies, and
we would like to extract these frequencies for special processing, using as low
computational complexity as possible. In the MP3-standard, such filters have
been constructed. These filters are more advanced than the ones we have seen
upto now. They have as many as 512 filter coefficients! We will not go into the
details on how these filters are constructed, but only show how their frequency
responses look. In the left plot in Figure 3.12, the “prototype filter” which is
used in the MP3 standard is shown. We see that this is very close to an ideal
lowpass filter. Moverover, many of the undesirable effect from the previous
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example have been eliminated: The oscillations near the discontinuities are much
smaller, and the values are lower away from 0. Using Property 4 in Theorem 2.18,
it is straightforward to construct filters with similar frequency responses, but
centered around different frequencies: We simply need to multiply the filter
coefficients with a complex exponential, in order to obtain a filter where the
frequency response has been shifted to the left or right. In the MP3 standard,
this observation is used to construct 32 filters, each having a frequency response
which is a shifted copy of that of the prototype filter, so that all filters together
cover the entire frequency range. 5 of these frequency responses are shown in
the right plot in Figure 3.12.
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Figure 3.12: Frequency responses of some filters used in the MP3 standard.
The prototype filter is shown left. The other frequency responses at right are
simply shifted copies of this.

To understand the effects of the different filters, let us apply them to our
sample sound. If you apply all filters in the MP3 standard in successive order
with the most lowpass filters first, the result will sound like this. You should
interpret the result as low frequencies first, followed by the high frequencies. π
corresponds to the frequency 22.05KHz (i.e. the highest representable frequency
equals half the sampling rate on 44.1KHz. The different filters are concentrated
on 1/32 of these frequencies each, so that the angular frequencies you here are
[π/64, 3π/64], [3π/64, 5π/64], [5π/64, 7π/64], and so on, in that order.

In Section 3.3.1 we mentioned that the psycoacoustic model of the MP3
standard applied a window the the sound data, followed by an FFT to that
data. This is actually performed in parallel on the same sound data. Applying
two different operations in parallel to the sound data may seem strange. In the
MP3 standard [16] (p. 109) this is explained by “the lack of spectral selectivity
obtained at low frequencies“ by the filters above. In other words, the FFT can
give more precise frequency information than the filters can. This more precise
information is then used to compute psychoacoustic information such as masking
thresholds, and this information is applied to the output of the filters.

Example 3.38. Reducing the treble II.

http://folk.uio.no/oyvindry/matinf2360/sounds/mp3bands.wav
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When reducing the treble it is reasonable to let the middle sample xi count
more than the neighbors in the average, so an alternative is to compute the
average by instead writing

zn = (xn−1 + 2xn + xn+1)/4

The coefficients 1, 2, 1 here have been taken from row 2 in Pascal’s triangle. It
turns out that this is a good choice of coefficients. Also if we take averages of
more numbers it will turn out that higher rows of Pascals triangle are good
choices. Let us take a look at why this is the case. Let S be the moving average
filter of two elements, i.e.

(Sx)n = 1
2(xn−1 + xn).

In Example 3.33 we had an odd number of filter coefficients. Here we have only
two. We see that the frequency response in this case is

λS(ω) = 1
2(1 + e−iω) = e−iω/2 cos(ω/2).

The frequency response is complex now, since the filter is not symmetric in this
case. Let us now apply this filter k times, and denote by Sk the resulting filter.
Theorem 3.26 gives us that the frequency response of Sk is

λSk(ω) = 1
2k (1 + e−iω)k = e−ikω/2 cosk(ω/2),

which is a polynomial in e−iω with the coefficients taken from Pascal’s triangle
(remember that the values in Pascals triangle are the coefficients of x in the
expression (1 + x)k, i.e. the binomial coefficients

(
k
r

)
for 0 ≤ r ≤ k). At least,

this partially explains how filters with coefficients taken from Pascal’s triangle
appear. The reason why these are more desirable than moving average filters,
and are used much for smoothing abrupt changes in images and in sound, is the
following: Since (1+e−iω)k is a factor in λSk(ω), it has a zero of multiplicity of k
at ω = π. In other words, when k is large, λSk has a zero of high multiplicity at
ω = π, and this implies that the frequency response is very flat for ω ≈ π when
k increases, i.e. the filter is good at removing the highest frequencies. This can
be seen in Figure 3.13, where we have plotted the magnitude of the frequency
response when k = 5, and when k = 30. Clearly the latter frequency response is
much flatter for ω ≈ π. On the other side, it is easy to show that the moving
average filters of Example 3.33 had a zero of multiplicity one at ω = π, regardless
of L. Clearly, the corresponding frequency responses, shown in Figure 3.10, were
not as flat for ω ≈ π, when compared to the ones in Figure 3.13.

While using Sk gives a desirable behaviour for ω ≈ π, we see that the
behaviour is not so desirable for small frequencies ω ≈ 0: Only frequencies very
close to 0 are kept unaltered. It should be possible to produce better lowpass
filters than this also, and the frequency responses we plotted for the filters used
in the MP3 standard gives an indication to this.
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Figure 3.13: The frequency response of filters corresponding to iterating the
moving average filter {1/2, 1/2} k = 5 and k = 30 times (i.e. using row k in
Pascal’s triangle).

Let us now see how to implement the filters Sk. Since convolution corresponds
to multiplication of polynomials, we can obtain their filter coefficients with the
following code

t = [1];
for kval=1:k

t = conv(t,[1/2 1/2]);
end

Note that Sk has k + 1 filter coefficients, and that Sk corresponds to the filter
coefficients of a symmetric filter when k is even. Having computed t, we can
simply compute the convolution of the input x and t. In using conv we disregard
the circularity of S, and we introduce a time delay. These issues will, however,
not be audible when we listen to the output. An example of the result of
smoothing is shown in Figure 3.14.
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Figure 3.14: Reducing the treble. The original sound signal is shown left, the
result after filtering using row 4 in Pascal’s triangle is shown right.

The left plot shows the samples of the pure sound with frequency 440Hz (with
sampling frequency fs = 4400Hz). The right plot shows the result of applying the
averaging process by using row 4 of Pascals triangle. We see that the oscillations
have been reduced. In Exercise 3.25 you will be asked to implement reducing
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the treble in our sample audio file. If you do this you should hear that the
sound gets softer when you increase k: For k = 32 the sound will be like this,
for k = 256 it will be like this.

Picking coefficients from a row in Pascals triangle works better the longer
the filter is:

Observation 3.39. Reducing the treble.
Let x be the samples of a digital sound, and let S be a filter with coefficients

taken from row k of Pascals triangle. Then Sx has reduced treble when compared
to x.

Another common option in an audio system is reducing the bass. This
corresponds to reducing the low frequencies in the sound, or equivalently, the
slow variations in the sample values. It turns out that this can be accomplished
by simply changing the sign of the coefficients used for reducing the treble. Let
us explain why this is the case. Let S1 be a filter with filter coefficients tk,
and let us consider the filter S2 with filter coefficient (−1)ktk. The frequency
response of S2 is

λS2(ω) =
∑
k

(−1)ktke−iωk =
∑
k

(e−iπ)ktke−iωk

=
∑
k

e−iπktke
−iωk =

∑
k

tke
−i(ω+π)k = λS1(ω + π).

where we have set e−iπ = −1 (note that this is nothing but Property 4. in
Theorem 2.18, with d = N/2). Now, for a lowpass filter S1, λS1(ω) has large
values when ω is close to 0 (the low frequencies), and values near 0 when ω is
close to π (the high frequencies). For a highpass filter S2, λS2(ω) has values near
0 when ω is close to 0 (the low frequencies), and large values when ω is close to
π (the high frequencies). When S2 is obtained by adding an alternating sign to
the filter coefficicents of S1, The relation λS2(ω) = λS1(ω + π) thus says that S2
is a highpass filter when S1 is a lowpass filter, and vice versa:

Observation 3.40. Passing between lowpass- and highpass filters.
Assume that S2 is obtained by adding an alternating sign to the filter

coefficicents of S1. If S1 is a lowpass filter, then S2 is a highpass filter. If S1 is a
highpass filter, then S2 is a lowpass filter.

The following example elaborates further on this.

Example 3.41. Reducing the bass.
Consider the bass-reducing filter deduced from the fourth row in Pascals

triangle:

zn = 1
16(xn−2 − 4xn−1 + 6xn − 4xn+1 + xn+2)

http://folk.uio.no/oyvindry/matinf2360/sounds/castanetstreble32.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castanetstreble256.wav
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Figure 3.15: The result of applying the bass-reducing filter deduced from row 4
in Pascals triangle to the pure sound in the left plot of Figure 3.14.

The result of applying this filter to the sound in Figure 3.14 is shown in Fig-
ure 3.15.

We observe that the samples oscillate much more than the samples of the
original sound. In Exercise 3.25 you will be asked to implement reducing the
bass in our sample audio file. The new sound will be difficult to hear for large k,
and we will explain why later. For k = 1 the sound will be like this, for k = 2 it
will be like this. Even if the sound is quite low, you can hear that more of the
bass has disappeared for k = 2.

The frequency response we obtain from using row 5 of Pascal’s triangle is
shown in Figure 3.16. It is just the frequency response of the corresponding
treble-reducing filter shifted with π. The alternating sign can also be achieved if
we write the frequency response 1

2k (1+e−iω)k from Example 3.38 as 1
2k (1−e−iω)k,

which corresponds to applying the filter S(x) = 1
2 (−xn−1 + xn) k times.

If we play a sound after such a bass-reducing filter has been applied to it,
the bass will be reduced:

Observation 3.42. Pascals triangle and reducing the bass.
Let x be the samples of a digital sound, and let S be a filter with filter

coefficients taken from row k of Pascal’s triangle, and add an alternating sign to
the filter coefficients. Then Sx has reduced bass when compared to x.

What you should have learned in this section.

http://folk.uio.no/oyvindry/matinf2360/sounds/castanetsbass1.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castanetsbass2.wav
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Figure 3.16: The frequency response of the bass reducing filter, which corre-
sponds to row 5 of Pascal’s triangle.

• Simple examples of filters, such as time delay filters and filters which add
echo.

• Lowpass and highpass filters and their frequency responses, and their
interpretation as treble- and bass-reducing filters. Moving average filters,
and filters arising from rows in Pascal’s triangle, as examples of such filters.

• How to pass between lowpass and highpass filters by adding an alternating
sign to the filter cofficients.

Exercise 3.22: Composing time delay filters
Let Ed1 and Ed2 be two time delay filters. Show that Ed1Ed2 = Ed1+d2 (i.e. that
the composition of two time delays again is a time delay) in two different ways:

a) Give a direct argument which uses no computations.

b) By using Property 3 in Theorem 2.18, i.e. by using a property for the Discrete
Fourier Transform.

Exercise 3.23: Adding echo
In this exercise, we will experiment with adding echo to a signal.
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a) Write a function play_with_echo which takes the sound samples, the sample
rate, a damping constant c, and a delay d as input, and plays the sound samples
with an echo added, as described in Example 3.32. Recall that you have to
ensure that the sound samples lie in [−1, 1].

b) Generate the sound from Example 3.32, and verify that it is the same as the
one you heard there.

c) Listen to the sound samples for different values of d and c. For which range
of d is the echo distinguisible from the sound itself? How low can you choose c
in order to still hear the echo?

Exercise 3.24: Adding echo filters
Consider the two filters S1 = {1, 0, . . . , 0, c} and S2 = {1, 0, . . . , 0,−c}. Both of
these can be interpreted as filters which add an echo. Show that 1

2 (S1 + S2) = I.
What is the interpretation of this relation in terms of echos?

Exercise 3.25: Reducing bass and treble
In this exercise, we will experiment with increasing and reducing the treble and
bass in a signal as in examples 3.38 and 3.41.

a) Write functions play_with_reduced_treble and play_with_reduced_bass
which take a data vector, sampling rate, and k as input, and which reduce bass
and treble, respectively, in the ways described above, and plays the result, when
row number 2k in Pascal’ triangle is used to construct the filters. Use the
function conv to help you to find the values in Pascal’s triangle. You can use
the conv function also to compute the output of the filter, but note that this
disregards the circularity of the filter. If you solved Exercise 3.6, you can also use
the function filterS you implemented there, since row 2k in Pascal’s triangle
has an odd number of values, and thus corresponds to a symmetric filter.

b) Generate the sounds you heard in examples 3.38 and 3.41, and verify that
they are the same.

c) In your code, it will not be necessary to scale the values after reducing the
treble, i.e. the values are already between −1 and 1. Explain why this is the
case.

d) How high must k be in order for you to hear difference from the actual sound?
How high can you choose k and still recognize the sound at all?

Exercise 3.26: Constructing a highpass filter
Consider again Example 3.35. Find an expression for a filter so that only
frequencies so that |ω − π| < ωc are kept, i.e. the filter should only keep angular
frequencies close to π (i.e. here we construct a highpass filter).
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Exercise 3.27: Combining lowpass and highpass filters
In this exercise we will investigate how we can combine lowpass and highpass
filters to produce other filters

a) Assume that S1 and S2 are lowpass filters. What kind of filter is S1S2?
What if both S1 and S2 are highpass filters?

b) Assume that one of S1, S2 is a highpass filter, and that the other is a lowpass
filter. What kind of filter S1S2 in this case?

Exercise 3.28: Composing filters
A filter S1 has the frequency response 1

2 (1 + cosω), and another filter has the
frequency response 1

2 (1 + cos(2ω)).

a) Is S1S2 a lowpass filter, or a highpass filter?

b) What does the filter S1S2 do with angular frequencies close to ω = π/2.

c) Find the filter coefficients of S1S2.

Hint. Use Theorem 3.26 to compute the frequency response of S1S2 first.

d) Write down the matrix of the filter S1S2 for N = 8.

Exercise 3.29: Composing filters
An operation describing some transfer of data in a system is defined as the
composition of the following three filters:

• First a time delay filter with delay d1 = 2, due to internal transfer of data
in the system,

• then the treble-reducing filter T = {1/4, 1/2, 1/4},

• finally a time delay filter with delay d2 = 4 due to internal transfer of the
filtered data.

We denote by T2 = Ed2TEd1 = E4TE2 the operation which applies these filters
in succession.

a) Explain why T2 also is a digital filter. What is (the magnitude of) the
frequency response of Ed1? What is the connection between (the magnitude of)
the frequency response of T and T2?

b) Show that T2 = {0, 0, 0, 0, 0, 1/4, 1/2, 1/4}.

Hint. Use the expressions (Ed1x)n = xn−d1 , (Tx)n = 1
4xn+1 + 1

2xn + 1
4xn−1,

(Ed2x)n = xn−d2 , and compute first (Ed1x)n, then (TEd1x)n, and finally
(T2x)n = (Ed2TEd1x)n. From the last expression you should be able to read
out the filter coefficients.
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c) Assume that N = 8. Write down the 8× 8-circulant Toeplitz matrix for the
filter T2.

Exercise 3.30: Filters in the MP3 standard
In Example 3.37, we mentioned that the filters used in the MP3-standard were
constructed from a lowpass prototype filter by multiplying the filter coefficients
with a complex exponential. Clearly this means that the new frequency response
is a shift of the old one. The disadvantage is, however, that the new filter
coefficients are complex. It is possible to address this problem as follows. Assume
that tk are the filter coefficients of a filter S1, and that S2 is the filter with filter
coefficients cos(2πkn/N)tk, where n ∈ N. Show that

λS2(ω) = 1
2(λS1(ω − 2πn/N) + λS1(ω + 2πn/N)).

In other words, when we multiply (modulate) the filter coefficients with a cosine,
the new frequency response can be obtained by shifting the old frequency response
with 2πn/N in both directions, and taking the average of the two.

Exercise 3.31: Explain code
a) Explain what the code below does, line by line.

[x, fs] = audioread(’sounds/castanets.wav’);
[N, nchannels] = size(x);
z = zeros(N, nchannels);
for n=2:(N-1)

z(n,:) = 2*x(n+1,:) + 4*x(n,:) + 2*x(n-1,:);
end
z(1,:) = 2*x(2,:) + 4*x(1,:) + 2*x(N,:);
z(N,:) = 2*x(1,:) + 4*x(N,:) + 2*x(N-1,:);
z = z/max(abs(z));
playerobj=audioplayer(z, fs);
playblocking(playerobj)

Comment in particular on what happens in the three lines directly after the
for-loop, and why we do this. What kind of changes in the sound do you expect
to hear?

b) Write down the compact filter notation for the filter which is used in the
code, and write down a 5 × 5 circulant Toeplitz matrix which corresponds to
this filter. Plot the (continuous) frequency response. Is the filter a lowpass- or a
highpass filter?

c) Another filter is given by the circulant Toeplitz matrix
4 −2 0 0 −2
−2 4 −2 0 0

0 −2 4 −2 0
0 0 −2 4 −2
−2 0 0 −2 4

 .
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Express a connection between the frequency responses of this filter and the filter
from b. Is the new filter a lowpass- or a highpass filter?

3.5 More general filters
The starting point for defining filters at the beginning of this chapter was
equations on the form

zn =
∑
k

tkxn−k.

For most filters we have looked at, we had a limited number of nonzero tk, and this
enabled us to compute them on a computer using a finite number of additions and
multiplications. Filters which have a finite number of nonzero filter coefficients
are also called FIR-filters (FIR is short for Finite Impulse Response. Recall
that the impulse response of a filter can be found from the filter coefficients).
However, there exist many useful filters which are not FIR filters, i.e. where
the sum above is infinite. The ideal lowpass filter from Example 3.35 was one
example. It turns out that many such cases can be made computable if we
change our procedure slightly. The old procedure for computing a filter is to
compute z = Sx. Consider the following alternative:

Idea 3.43. More general filters (1).
Let x be the input to a filter, and let T be a filter. By solving the system

Tz = x for z we get another filter, which we denote by S.

Of course T must then be the inverse of S (which also is a filter), but the point
is that the inverse of a filter may have a finite number of filter coefficicents, even
if the filter itself does not. In such cases this new procedure is more attractive
that the old one, since the equation system can be solved with few arithmetic
operations when T has few filter coefficients.

It turns out that there also are highly computable filters where neither the
filter nor its inverse have a finite number of filter coefficients. Consider the
following idea:

Idea 3.44. More general filters (2).
Let x be the input to a filter, and let U and V be filters. By solving the

system Uz = V x for z we get another filter, which we denote by S. The filter S
can be implemented in two steps: first we compute the right hand side y = V x,
and then we solve the equation Uz = y.

If both U and V are invertible we have that the filter is S = U−1V , and this
is invertible with inverse S−1 = V −1U . The point is that, when U and V have
a finite number of filter coefficicents, both S and its inverse will typically have
an infinite number of filter coefficients. The filters from this idea are thus more
general than the ones from the previous idea, and the new idea makes a wider
class of filters implementable using row reduction of sparse matrices. Computing
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a filter by solving Uz = V x may also give meaning when the matrices U and
V are singular: The matrix system can have a solution even if U is singular.
Therefore we should be careful in using the form T = U−1V .

We have the following result concerning the frequency responses:

Theorem 3.45. Frequency response of IIR filters.
Assume that S is the filter defined from the equation Uz = V x. Then we

have that λS(ω) = λV (ω)
λU (ω) whenever λU (ω) 6= 0.

Proof. Set x = φn. We have that Uz = λU,nλS,nφn, and V x = λV,nφn. If the
expressions are equal we must have that λU,nλS,n = λV,n, so that λS,n = λV,n

λU,n

for all n. By the definition of the continuous frequency response this means that
λS(ω) = λV (ω)

λU (ω) whenever λU (ω) 6= 0.

The following example clarifies the points made above, and how one may
construct U and V from S. The example also shows that, in addition to making
some filters with infinitely many filter coefficients computable, the procedure
Uz = V x for computing a filter can also reduce the complexity in some filters
where we already have a finite number of filter coefficients.

Example 3.46. Moving average filter.
Consider again the moving average filter S from Example 3.33:

zn = 1
2L+ 1(xn+L + · · ·+ xn + · · ·+ xn−L).

If we implemented this directly, 2L additions would be needed for each n, so
that we would need a total of 2NL additions. However, we can also write

zn+1 = 1
2L+ 1(xn+1+L + · · ·+ xn+1 + · · ·+ xn+1−L)

= 1
2L+ 1(xn+L + · · ·+ xn + · · ·+ xn−L) + 1

2L+ 1(xn+1+L − xn−L)

= zn + 1
2L+ 1(xn+1+L − xn−L).

This means that we can also compute the output from the formula

zn+1 − zn = 1
2L+ 1(xn+1+L − xn−L),

which can be written on the form Uz = V x with U = {1,−1} and V =
1

2L+1{1, 0, . . . , 0,−1} where the 1 is placed at index −L− 1 and the −1 is placed
at index L. We now perform only 2N additions in computing the right hand
side, and solving the equation system requires only 2(N − 1) additions. The
total number of additions is thus 2N + 2(N − 1) = 4N − 2, which is much less
than the previous 2LN when L is large.

A perhaps easier way to find U and V is to consider the frequency response
of the moving average filter, which is
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1
2L+ 1(e−Liω + . . .+ eLiω) = 1

2L+ 1e
−Liω 1− e(2L+1)iω

1− eiω

=
1

2L+1
(
−e(L+1)iω + e−Liω

)
1− eiω ,

where we have used the formula for the sum of a geometric series. From here
we easily see the frequency responses of U and V from the numerator and the
denominator.

Filters with an infinite number of filter coefficients are also called IIR filters
(IIR stands for Infinite Impulse Response). Thus, we have seen that some IIR
filters may still have efficient implementations.

Exercise 3.32: A concrete IIR filter
A filter is defined by demanding that zn+2 − zn+1 + zn = xn+1 − xn.

a) Compute and plot the frequency response of the filter.

b) Use a computer to compute the output when the input vector is x =
(1, 2, . . . , 10). In order to do this you should write down two 10× 10-circulant
Toeplitz matrices.

3.6 Implementation of filters
As we saw in Example 3.46, a filter with many filter coefficients could be
factored into the application of two simpler filters, and this could be used as
a basis for an efficient implementation. There are also several other possible
efficient implementations of filters. In this section we will consider two such
techniques. The first technique considers how we can use the DFT to speed up
the computation of filters. The second technique considers how we can factorize
a filter into a product of simpler filters.

3.6.1 Implementation of filters using the DFT
If there are k filter coefficients, a direct implementation of a filter would require
kN multiplications. Since filters are diagonalized by the DFT, one can also
compute the filter as the product S = FHN DFN . This would instead require
O (N log2 N) complex multiplications when we use the FFT algorithm, which
may be a higher number of multiplications. We will however see that, by slightly
changing our algorithm, we may end up with a DFT-based implementation of
the filter which requires fewer multiplications.

The idea is to split the computation of the filter into smaller parts. Assume
that we compute M elements of the filter at a time. If the nonzero filter
coefficients of S are t−k0 ,. . . ,tk−k0−1, we have that
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(Sx)t =
∑
r

trxs−r = t−k0xt+k0 + ..+ tk−k0−1xt−(k−k0−1).

From this it is clear that (Sx)t only depends on xt−(k−k0−1), . . . , xt+k0 . This
means that, if we restrict the computation of S to xt−(k−k0−1), . . . , xt+M−1+k0 ,
the outputs xt, . . . , xt+M−1 will be the same as without this restriction. This
means that we can compute the output M elements at a time, at each step
multiplying with a circulant Toeplitz matrix of size (M +k−1)× (M +k−1). If
we choose M so that M + k− 1 = 2r, we can use the FFT and IFFT algorithms
to compute S = FHN DFN , and we require O(r2r) multiplications for every block
of length M . The total number of multiplications is Nr2r

M = Nr2r
2r−k+1 . If k = 128,

you can check on your calculator that the smallest value is for r = 10 with
value 11.4158×N . Since the direct implementation gives kN multiplications,
this clearly gives a benefit for the new approach, it gives a 90% decrease in the
number of multiplications.

3.6.2 Factoring a filter into several filters
In practice, filters are often applied in hardware, and applied in real-time scenarios
where performance is a major issue. The most CPU-intensive tasks in such
applications often have few memory locations available. These tasks are thus not
compatible with filters with many filter coefficients, since for each output sample
we then need access to many input samples and filter coefficients. A strategy
which addresses this is to factorize the filter into the product of several smaller
filters, and then applying each filter in turn. Since the frequency response of
the product of filters equals the product of the frequency responses, we get the
following idea:

Idea 3.47. Factorizing a filter.
Let S be a filter with real coefficients. Assume that

λS(ω) = Keikω(eiω − a1) . . . (eiω − am)(e2iω + b1e
iω + c1) . . . (e2iω + bne

iω + cn).
(3.14)

Then we can write S = KEkA1 . . . AmB1 . . . Bn, where Ai = {1,−ai} and
Bi = {1, bi, ci}.

Note that in Equation (3.14) ai correspond to the real roots of the frequency
response, while bi, ci are obtained by pairing the complex conjugate roots. Clearly
the frequency responses of Ai, Bi equal the factors in the frequency response of
S, which in any case can be factored into the product of filters with 2 and 3
filter coefficients, followed by a time-delay.

Note that, even though this procedure factorizes a filter into smaller parts
(which is attractive for hardware implementations since smaller filters require
fewer locations in memory), the number of of arithmetic operations is usually
not reduced. However, consider Example 3.38, where we factorized the treble-
reducing filters into a product of moving average filters of length 2 (all roots in
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the previous idea are real, and equal). Each application of a moving average
filter of length 2 does not really require any multiplications, since multiplication
with 1

2 corresponds to a bitshift. Therefore, the factorization of Example 3.38
removes the need for doing any multiplications at all, while keeping the number
of additions the same. There are computational savings in this case, due to the
special filter structure here.

Exercise 3.33: Implementing the factorization
Write a function filterdftimpl, which takes the filter coefficients t and the
value k0 from this section, computes the optimal M , and implements the filter
as here.

Exercise 3.34: Factoring concrete filter
Factor the filter S = {1, 5, 10, 6} into a product of two filters, one with two filter
coefficients, and one with three filter coefficients.

3.7 Summary
We defined digital filters, which do the same job for digital sound as analog filters
do for (continuous) sound. Digital filters turned out to be linear transformations
diagonalized by the DFT. We proved several other equivalent characterizations
of digital filters as well, such as being time-invariant, and having a matrix
which is circulant and Toeplitz. Just as for continuous sound, digital filters are
characterized by their frequency response, which explains how the filter treats
the different frequencies. We also went through several important examples of
filters, some of which corresponded to meaningful operations on sound, such as
adjustmest of bass and treble, and adding echo. We also explained that there
exist filters with useful implementations which have an infinite number of filter
coefficients, and we considered techniques for implementing filters efficiently.
Most of the topics covered on that can also be found in [28]. We also took a look
at the role of filters in the MP3 standard for compression of sound.

In signal processing literature, the assumption that vectors are periodic is
often not present, and filters are thus not defined as finite-dimensional operations.
With matrix notation they would then be viewed as infinite matrices which
have the Toeplitz structure (i.e. constant values on the diagonals), but with no
circulation. The circulation in the matrices, as well as the restriction to finite
vectors, come from the assumption of a periodic vector. There are, however, also
some books which view filters as circulant Toeplits matrices as we have done,
such as [13].



Chapter 4

Symmetric filters and the
DCT

In Chapter 1 we approximated a signal of finite duration with trigonometric
functions. Since these are all periodic, there are some undesirable effects near
the boundaries of the signal (at least when the values at the boundaries are
different), and this resulted in a slowly converging Fourier series. This was
addressed by instead considering the symmetric extension of the function, for
which we obtained a more precise Fourier representation, as fewer Fourier basis
vectors were needed in order to get a precise approximation.

This chapter is dedicated to addressing these thoughts for vectors. We will
start by defining symmetric extensions of vectors, similarly to how we defined
these for functions. Just as the Fourier series of a symmetric function was a
cosine series, we will see that the symmetric extension can be viewed as a cosine
vector. This gives rise to a different change of coordinates than the DFT, which
we will call the DCT, which enables us to express a symmetric vector as a sum
of cosine-vectors (instead of the non-symmetric complex exponentials). Since
a cosine also can be associated with a given frequency, the DCT is otherwise
similar to the DFT, in that it extracts the frequency information in the vector.
The advantage is that the DCT can give more precise frequency information
than the DFT, since it avoids the discontinuity problem of the Fourier series.
This makes the DCT very practical for applications, and we will explain some
of these applications. We will also show that the DCT has a a very efficient
implementation, comparable with the FFT.

In this chapter we will also see that the DCT has a very similar role as the
DFT when it comes to filters: just as the DFT diagonalized filters, we will see
that symmetric filters can be diagonalized by the DCT, when we apply the filter
to the symmetric extension of the input. We will actually show that the filters
which preserve our symmetric extensions are exactly the symmetric filters.

133
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4.1 Symmetric vectors and the DCT
As in Chapter 1, vectors can also be extended in a symmetric manner, besides
the simple periodic extension procedure from Figure 2.1. In Figure 4.1 we have
shown such an extension of a vector x. It has x as its first half, and a copy of x
in reverse order as its second half.
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Figure 4.1: A vector and its symmetric extension.

We will call this the symmetric extension of x:

Definition 4.1. Symmetric extension of a vector.
By the symmetric extension of x ∈ RN , we mean the symmetric vector

x̆ ∈ R2N defined by

x̆k =
{

xk 0 ≤ k < N
x2N−1−k N ≤ k < 2N − 1 (4.1)

Clearly, the symmetric extension is symmetric around N − 1/2. This is not
the only way to construct a symmetric extension, as we will return to later. As
shown in Figure 4.1, but not included in Definition 4.1, we also repeat x̆ ∈ R2N

in order to obtain a periodic vector. Creating a symmetric extension is thus a
two-step process:

• First, “mirror” the vector to obtain a vector in R2N ,

• repeat this periodically to obtain a periodic vector.

The result from the first step lies in an N -dimensional subspace of all vectors in
R2N , which we will call the space of symmetric vectors. To account for the fact
that a periodic vector can have a different symmetry point than N − 1/2, let us
make the following general definition:

Definition 4.2. Symmetric vector.
We say that a periodic vector x is symmetric if there exists a number d so

that xd+k = xd−k for all k so that d+ k and d− k are integers. d is called the
symmetry point of x
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Due to the inherent periodicity of x, it is clear that N must be an even
number for symmetric vectors to exist at all. d can take any value, and it may
not be an integer: It can also be an odd multiple of 1/2, because then both d+ k
and d − k are integers when k also is an odd multiple of 1/2. The symmetry
point in symmetric extensions as defined in Definition 4.1 was d = N − 1/2.
This is very common in the literature, and this is why we concentrate on this in
this chapter. Later we will also consider symmetry around N − 1, as this also is
much used.

We would like to find a basis for the N -dimensional space of symmetric
vectors, and we would like this basis to be similar to the Fourier basis. Since the
Fourier basis corresponds to the standard basis in the frequency domain, we are
lead to studying the DFT of a symmetric vector. If the symmetry point is an
integer, it is straightforward to prove the following:

Theorem 4.3. Symmetric vectors with integer symmetry points.
Let d be an integer. The following are equivalent

• x is real and symmetric with d as symmetry point.

• (x̂)n = zne
−2πidn/N where zn are real numbers so that zn = zN−n.

Proof. Assume first that d = 0. It follows in this case from property 2(a) of
Theorem 2.18 that (x̂)n is a real vector. Combining this with property 1 of
Theorem 2.18 we see that x̂, just as x, also must be a real vector symmetric about
0. Since the DFT is one-to-one, it follows that x is real and symmetric about 0
if and only if x̂ is. From property 3 of Theorem 2.18it follows that, when d is
an integer, x is real and symmetric about d if and only if (x̂)n = zne

−2πidn/N ,
where zn is real and symmetric about 0. This completes the proof.

Symmetric extensions were here defined by having the non-integer symmetry
point N − 1/2, however. For these we prove the following, which is slightly more
difficult.

Theorem 4.4. Symmetric vectors with non-integer symmetry points.
Let d be an odd multiple of 1/2. The following are equivalent

• x is real and symmetric with d as symmetry point.

• (x̂)n = zne
−2πidn/N where zn are real numbers so that zN−n = −zn.

Proof. When x is as stated we can write
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(x̂)n = 1√
N

N−1∑
k=0

xke
−2πikn/N

= 1√
N

∑
s≥0

xd+se
−2πi(d+s)n/N +

∑
s≥0

xd−se
−2πi(d−s)n/N


= 1√

N

∑
s≥0

xd+s

(
e−2πi(d+s)n/N + e−2πi(d−s)n/N

)
= 1√

N
e−2πidn/N

∑
s≥0

xd+s

(
e−2πisn/N + e2πisn/N

)
= 1√

N
e−2πidn/N

∑
s≥0

2xd+s cos(2πsn/N).

Here s runs through odd multiples of 1/2. Since zn = 1√
N

∑
s≥0 2xd+s cos(2πsn/N)

is a real number, we can write the result as zne−2πidn/N . Substituting N − n
for n, we get

(x̂)N−n = 1√
N
e−2πid(N−n)/N

∑
s≥0

2xd+s cos(2πs(N − n)/N)

= 1√
N
e−2πid(N−n)/N

∑
s≥0

2xd+s cos(−2πsn/N + 2πs)

= − 1√
N
e−2πid(N−n)/N

∑
s≥0

2xd+s cos(2πsn/N) = −zne−2πid(N−n)/N .

This shows that zN−n = −zn, and this completes one way of the proof. The
other way, we can write

xk = 1√
N

N−1∑
n=0

(x̂)n e
2πikn/N

if (x̂)n = zne
−2πidn/N and (x̂)N−n = −zne−2πid(N−n)/N , the sum of the n’th

term and the N − n’th term in the sum is

zne
−2πidn/Ne2πikn/N − zne2−πid(N−n)/Ne2πik(N−n)/N

= zn(e2πi(k−d)n/N − e−2πid+2πidn/N−2πikn/N )
= zn(e2πi(k−d)n/N + e2πi(d−k)n/N ) = 2zn cos(2π(k − d)n/N).

This is real, so that all xk are real. If we set k = d+ s, k = d− s here we get
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2zn cos(2π((d+ s)− d)n/N) = 2zn cos(2πsn/N)
2zn cos(2π((d− s)− d)n/N) = 2zn cos(−2πsn/N) = 2zn cos(2πsn/N).

By adding terms together and comparing we must have that xd+s = xd−s, and
the proof is done.

Now, let us specialize to symmetric extensions as defined in Definition 4.1,
i.e. where d = N − 1/2. The following result gives us an orthonormal basis for
the symmetric extensions, which are very simple in the frequency domain:

Theorem 4.5. Orthonormal basis for symmetric vectors.
The set of all x symmetric around N − 1/2 is a vector space of dimension N ,

and we have that{
e0,

{
1√
2

(
eπin/(2N)en + e−πin/(2N)e2N−n

)}N−1

n=1

}
is an orthonormal basis for x̂ where x is symmetric around N − 1/2.

Proof. For a vector x symmetric about d = N − 1/2 we know that

(x̂)n = zne
−2πi(N−1/2)n/(2N),

and the only requirement on the vector z is the antisymmetry condition z2N−n =
−zn. The vectors zi = 1√

2 (ei − e2N−i), 1 ≤ i ≤ N − 1, together with the vector
z0 = e0, are clearly orthonormal and satisifes the antisymmetry condition. From
these we obtain that

{
e0,

{
1√
2

(
e−2πi(N−1/2)n/(2N)en − e−2πi(N−1/2)(2N−n)/(2N)e2N−n

)}N−1

n=1

}
is an orthonormal basis for the x̂ with x symmetric. We can write

1√
2

(
e−2πi(N−1/2)n/(2N)en − e−2πi(N−1/2)(2N−n)/(2N)e2N−n

)
= 1√

2

(
e−πineπin/(2N)en + eπine−πin/(2N)e2N−n

)
= 1√

2
eπin

(
eπin/(2N)en + e−πin/(2N)e2N−n

)
.

This also means that{
e0,

{
1√
2

(
eπin/(2N)en + e−πin/(2N)e2N−n

)}N−1

n=1

}
is an orthonormal basis.
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We immediately get the following result:

Theorem 4.6. Orthonormal basis for symmetric vectors.
We have that

{
1√
2N

cos
(

2π 0
2N

(
k + 1

2

))
,

{
1√
N

cos
(

2π n

2N

(
k + 1

2

))}N−1

n=1

}
(4.2)

is an orthonormal basis for the set of vectors symmetric around N − 1/2 in R2N .
Moreover, the n’th vector in this basis has frequency contribution only from the
indices n and 2N − n.

Proof. Since the IDFT is unitary, the IDFT applied to the vectors above gives
an orthonormal basis for the set of symmetric extensions. We get that

(F2N )H(e0) =
(

1√
2N

,
1√
2N

, . . . ,
1√
2N

)
= 1√

2N
cos
(

2π 0
2N

(
k + 1

2

))
.

We also get that

(F2N )H
(

1√
2

(
eπin/(2N)en + e−πin/(2N)e2N−n

))
= 1√

2

(
eπin/(2N) 1√

2N
e2πink/(2N) + e−πin/(2N) 1√

2N
e2πi(2N−n)k/(2N)

)
= 1√

2

(
eπin/(2N) 1√

2N
e2πink/(2N) + e−πin/(2N) 1√

2N
e−2πink/(2N)

)
= 1

2
√
N

(
e2πi(n/(2N))(k+1/2) + e−2πi(n/(2N))(k+1/2)

)
= 1√

N
cos
(

2π n

2N

(
k + 1

2

))
.

Since F2N is unitary, and thus preserves the scalar product, the given vectors
are orthonormal.

We need to address one final thing before we can define the DCT: The vector
x we start with is in RN , but the vectors above are in R2N . We would like
to have orthonormal vectors in RN , so that we can use them to decompose
x. It is possible to show with a direct argument that, when we restrict the
vectors above to the first N elements, they are still orthogonal. We will, however,
apply a more instructive argument to show this, which gives us some intuition
into the connection with symmetric filters. We start with the following result,
which shows that a filter preserves symmetric vectors if and only if the filter is
symmetric.

Theorem 4.7. Criteria for preserving symmetric vectors.
Let S be a filter. The following are equivalent
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• S preserves symmetric vectors (i.e. Sx is a symmetric vector whenever x
is).

• The set of filter coefficients of S is a symmetric vector.

Also, when S preserves symmetric vectors, the following hold:

• The vector of filter coefficients has an integer symmetry point if and only
if the input and output have the same type (integer or non-integer) of
symmetry point.

• The input and output have the same symmetry point if and only if the
filter is symmetric.

Proof. Assume that the filter S maps a symmetric vector with symmetry at d1
to another symmetric vector. Let x be the symmetric vector so that (x̂)n =
e−2πid1n/N for n < N/2. Since the output is a symmetric vector, we must have
that

λS,ne
−2πid1n/N = zne

−2πid2n/N

for some d2, zn and for n < N/2. But this means that λS,n = yne
−2πi(d2−d1)n/N .

Similar reasoning applies for n > N/2, so that λS,n clearly equals ŝ for some
symmetric vector s from Theorems 4.3 and 4.4. This vector equals (up to
multiplication with

√
N) the filter coefficients of S, which therefore is a symmetric.

Moreover, it is clear that the filter coefficients have an integer symmetry point if
and only if the input and output vector either both have an integer symmetry
point, or both a non-integer symmetry point.

Since the filter coefficients of a filter which preserves symmetric vectors
also is a symmetric vector, this means that its frequency response takes the
form λS,n = zne

−2πidn/N , where z is a real vector. This means that the phase
(argument) of the freqency response is −2πdn/N or π − 2πdn/N , depending on
the sign of zn. In other words, the phase is linear in n. Filters which preserve
symmetric vectors are therefore also called linear phase filters

.
Note also that the case d = 0 or d = N − 1/2 corresponds to symmetric

filters. An example of linear phase filters which are not symmetric are smoothing
filters where the coefficients are taken from odd rows in Pascal’s triangle.

When S is symmetric, it preserves symmetric extensions, so that it makes
sense to restrict S to symmetric vectors. We therefore make the following
definition.

Definition 4.8. Symmetric restriction.
Assume that S : R2N → R2N is a symmetric filter. We define Sr : RN → RN

as the mapping which sends x ∈ RN to the first N components of the vector
Sx̆. Sr is also called the symmetric restriction of S.
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Sr is clearly linear, and the restriction of S to vectors symmetric about
N − 1/2 is characterized by Sr. We continue with the following result:

Theorem 4.9. Expression for Sr.
Assume that S : R2N → R2N is a symmetric filter, and that

S =
(
S1 S2
S3 S4

)
.

Then Sr is symmetric, and Sr = S1 + (S2)f , where (S2)f is the matrix S2 with
the columns reversed.

Proof. With S as in the text of the theorem, we compute

Srx =
(
S1 S2

)


x0
...

xN−1
xN−1

...
x0


= S1

 x0
...

xN−1

+ S2

xN−1
...
x0



= S1

 x0
...

xN−1

+ (S2)f

 x0
...

xN−1

 = (S1 + (S2)f )x,

so that Sr = S1 + (S2)f . Since S is symmetric, S1 is also symmetric. (S2)f is
also symmetric, since it is constant on anti-diagonals. It follows then that S is
also symmetric. This completes the proof.

Note that Sr is not a digital filter, since its matrix is not circulant. In
particular, its eigenvectors are not pure tones. In the block matrix factorization
of S, S2 contains the circulant part of the matrix, and forming (S2)f means that
the circulant parts switch corners. With the help of Theorem 4.9 we can finally
establish the orthogonality of the cosine-vectors in RN .

Corollary 4.10. Basis of eigenvectors for Sr.
Let S be a symmetric filter, and let Sr be the mapping defined in Theorem 4.9.

Define

dn,N =


√

1
N , n = 0√
2
N , 1 ≤ n < N

and dn = dn,N cos
(
2π n

2N
(
k + 1

2
))

for 0 ≤ n ≤ N − 1, then {d0,d1, . . . ,dN−1}
is an orthonormal basis of eigenvectors for Sr.
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Proof. Let S be a symmetric filter of length 2N . We know then that λS,n =
λS,2N−n, so that

S

(
cos
(

2π n

2N

(
k + 1

2

)))
= S

(
1
2

(
e2πi(n/(2N))(k+1/2) + e−2πi(n/(2N))(k+1/2)

))
= 1

2

(
eπin/(2N)S

(
e2πink/(2N)

)
+ e−πin/(2N)S

(
e−2πink/(2N)

))
= 1

2

(
eπin/(2N)λS,ne

2πink/(2N) + e−πin/(2N)λS,2N−ne
−2πink/(2N)

)
= 1

2

(
λS,ne

2πi(n/(2N))(k+1/2) + λS,2N−ne
−2πi(n/(2N))(k+1/2)

)
= λS,n

1
2

(
e2πi(n/(2N))(k+1/2) + e−2πi(n/(2N))(k+1/2)

)
= λS,n cos

(
2π n

2N

(
k + 1

2

))
,

where we have used that e2πink/(2N) is an eigenvector of S with eigenvalue
λS,n, and e−2πink/(2N) = e2πi(2N−n)k/(2N) is an eigenvector of S with eigenvalue
λS,2N−n. This shows that the vectors are eigenvectors for symmetric filters of
length 2N . It is also clear that the first half of the vectors must be eigenvectors
for Sr with the same eigenvalue, since when y = Sx = λS,nx, we also have that

(y0, y1, . . . , yN−1) = Sr(x0, x1, . . . , xN−1) = λS,n(x0, x1, . . . , xN−1).

To see why these vectors are orthogonal, choose at the outset a symmetric filter
where {λS,n}N−1

n=0 are distinct. Then the cosine-vectors of length N are also
eigenvectors with distinct eigenvalues, and they must be orthogonal since Sr is
symmetric. Moreover, since
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2N−1∑
k=0

cos2
(

2π n

2N

(
k + 1

2

))

=
N−1∑
k=0

cos2
(

2π n

2N

(
k + 1

2

))
+

2N−1∑
k=N

cos2
(

2π n

2N

(
k + 1

2

))

=
N−1∑
k=0

cos2
(

2π n

2N

(
k + 1

2

))
+
N−1∑
k=0

cos2
(

2π n

2N

(
k +N + 1

2

))

=
N−1∑
k=0

cos2
(

2π n

2N

(
k + 1

2

))
+ (−1)2n

N−1∑
k=0

cos2
(

2π n

2N

(
k + 1

2

))

= 2
N−1∑
k=0

cos2
(

2π n

2N

(
k + 1

2

))
,

where we used that cos(x+ nπ) = (−1)n cosx. This means that

∥∥∥∥∥
{

cos
(

2π n

2N

(
k + 1

2

))}2N−1

k=0

∥∥∥∥∥ =
√

2

∥∥∥∥∥
{

cos
(

2π n

2N

(
k + 1

2

))}N−1

k=0

∥∥∥∥∥ .
Thus, in order to make the vectors orthonormal when we consider the first N
elements instead of all 2N elements, we need to multiply with

√
2. This gives

us the vectors dn as defined in the text of the theorem. This completes the
proof.

We now clearly see the analogy between symmetric functions and vectors:
while the first can be written as a sum of cosine-functions, the second can be
written as a sum of cosine-vectors. The orthogonal basis we have found is given
its own name:

Definition 4.11. DCT basis.
We denote by DN the orthogonal basis {d0,d1, . . . ,dN−1}. We also call DN

the N -point DCT basis.

Using the DCT basis instead of the Fourier basis we can make the following
definitions, which parallel those for the DFT:

Definition 4.12. Discrete Cosine Transform.
The change of coordinates from the standard basis of RN to the DCT basis

DN is called the discrete cosine transform (or DCT). The N ×N matrix DCTN
that represents this change of basis is called the (N -point) DCT matrix. If x is
a vector in RN , its coordinates y = (y0, y1, . . . , yN−1) relative to the DCT basis
are called the DCT coefficients of x (in other words, y = DCTNx).
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Note that we can also write

DCTN =
√

2
N


1/
√

2 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1

(cos
(
2π n

2N (k + 1/2)
))
. (4.3)

Since this matrix is orthogonal, it is immediate that

(
cos
(
2π n

2N (k + 1/2)
))−1 = 2

N

(
cos
(

2π n+1/2
2N k

))
1/2 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1

 (4.4)

(
cos
(

2π n+1/2
2N k

))−1
= 2
N


1/2 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1

(cos
(
2π n

2N (k + 1/2)
))
.

(4.5)

In other words, not only can DCTN be directly expressed in terms of a cosine-
matrix, but our developments helped us to express the inverse of a cosine
matrix in terms of other cosine-matrices. In the literature different types of
cosine-matrices have been useful:

I Cosine-matrices with entries cos(2πnk/(2(N − 1))).

II Cosine-matrices with entries cos(2πn(k + 1/2)/(2N)).

III Cosine-matrices with entries cos(2π(n+ 1/2)k/(2N)).

IV Cosine-matrices with entries cos(2π(n+ 1/2)(k + 1/2)/(2N)).

We will call these type-I, type-II, type-III, and type-IV cosine-matrices, respec-
tively. What we did above handles the case of type-II cosine-matrices. It will
turn out that not all of these cosine-matrices are orthogonal, but that we in all
cases, as we did above for type-II cosine matrices, can express the inverse of a
cosine-matrix of one type in terms of a cosine-matrix of another type, and that
any cosine-matrix is easily expressed in terms of an orthogonal matrix. These
orthogonal matrices will be called DCT(I)

N , DCT(II)
N , DCT(III)

N , and DCT(IV )
N ,

respectively, and they are all called DCT-matrices. The DCTN we constructed
abobe is thus DCT(II)

N . The type-II DCT matrix is the most commonly used,
and the type is therefore often dropped when refering to these. We will consider
the other cases of cosine-matrices at different places in this book: In Section 5.6
we will run into type-I cosine matrices, in connection with a different extension
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strategy used for wavelets. Type-IV cosine-matrices will be encountered in
exercises 4.4 and 4.5 at the end of this section.

As with the Fourier basis vectors, the DCT basis vectors are called synthesis
vectors, since we can write

x = y0d0 + y1d1 + · · ·+ yN−1dN−1 (4.6)
in the same way as for the DFT. Following the same reasoning as for the DFT,
DCT−1

N is the matrix where the dn are columns. But since these vectors are real
and orthonormal, DCTN must be the matrix where the dn are rows. Moreover,
since Theorem 4.9 also states that the same vectors are eigenvectors for filters
which preserve symmetric extensions, we can state the following:

Theorem 4.13. The DCT is orthogonal.
DCTN is the orthogonal matrix where the rows are dn. Moreover, for any

digital filter S which preserves symmetric extensions, (DCTN )T diagonalizes Sr,
i.e. Sr = DCTTNDDCTN where D is a diagonal matrix.

Let us also make the following definition:

Definition 4.14. IDCT.
We will call x = (DCTN )Ty the inverse DCT or (IDCT) of x.

Example 4.15. Computing lower order DCTs.
As with Example 2.16, exact expressions for the DCT can be written down

just for a few specific cases. It turns out that the case N = 4 as considered in
Example 2.16 does not give the same type of nice, exact values, so let us instead
consider the case N = 2. We have that

DCT4 =
( 1√

2 cos(0) 1√
2 cos(0)

cos
(
π
2
(
0 + 1

2
))

cos
(
π
2
(
1 + 1

2
)) ) =

(
1√
2

1√
2

1√
2 − 1√

2

)
The DCT of the same vector as in Example 2.16 can now be computed as:

DCT2

(
1
2

)
=
(

3√
2

− 1√
2

)
.

Matlab’s functions for computing the DCT and IDCT are called dct, and
idct, respectively. These are defined exactly as they are here, contrary to the
case for the FFT (where a different normalizing factor was used).

With these functions we can repeat examples 2.27- 2.29, by simply replacing
the calls to DFTImpl with calls to the DCT counterparts. You may not here
much improvements in these simple experiments, but in theory the DCT should
be able to approximate sound better.

Similarly to the DFT, one can think of the DCT as a least squares approx-
imation and the unique representation of a function having the same sample
values, but this time in terms of sinusoids instead of complex exponentials:
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Theorem 4.16. Interpolation with the DCT basis.
Let f be a function defined on the interval [0, T ], and let x be the sampled

vector given by

xk = f((2k + 1)T/(2N)) for k = 0, 1, . . . , N − 1.

There is exactly one linear combination g(t) on the form

N−1∑
n=0

yndn,N cos(2π(n/2)t/T )

which satisfies the conditions

g((2k + 1)T/(2N)) = f((2k + 1)T/(2N)), k = 0, 1, . . . , N − 1,

and its coefficients are determined by y = DCTNx.

Proof. This follows by inserting t = (2k + 1)T/(2N) in the equation

g(t) =
N−1∑
n=0

yndn,N cos(2π(n/2)t/T )

to arrive at the equations

f(kT/N) =
N−1∑
n=0

yndn,N cos
(

2π n

2N

(
k + 1

2

))
0 ≤ k ≤ N − 1.

This gives us an equation system for finding the yn with the invertible DCT
matrix as coefficient matrix, and the result follows.

Due to this there is a slight difference to how we applied the DFT, due to the
subtle change in the sample points, from kT/N for the DFT, to (2k + 1)T/(2N)
for the DCT. The sample points for the DCT are thus the midpoints on the
intervals in a uniform partition of [0, T ] into N intervals, while they for the DFT
are the start points on the intervals. Also, the frequencies are divided by 2. In
Figure 4.2 we have plotted the sinusoids of Theorem 4.16 for T = 1, as well as
the sample points used in that theorem.

The sample points in the upper left plot correspond to the first column in the
DCT matrix, the sample points in the upper right plot to the second column of
the DCT matrix, and so on (up to normalization with dn,N ). As n increases, the
functions oscillate more and more. As an example, y5 says how much content of
maximum oscillation there is. In other words, the DCT of an audio signal shows
the proportion of the different frequencies in the signal, and the two formulas
y = DCTNx and x = (DCTN )Ty allow us to switch back and forth between
the time domain representation and the frequency domain representation of the
sound. In other words, once we have computed y = DCTNx, we can analyse
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Figure 4.2: The 6 different sinusoids used in DCT for N = 6, i.e. cos(2π(n/2)t),
0 ≤ n < 6. The plots also show piecewise linear functions (in red) between the
sample points 2k+1

2N 0 ≤ k < 6, since only the values at these points are used in
Theorem 4.16.

the frequency content of x. If we want to reduce the bass we can decrease the
y-values with small indices and if we want to increase the treble we can increase
the y-values with large indices.

Exercise 4.1: Computing eigenvalues
Consider the matrix
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S = 1
3


2 1 0 0 0 0
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 2


a) Compute the eigenvalues and eigenvectors of S using the results of this
section. You should only need to perform one DFT or one DCT in order to
achieve this.

b) Use a computer to compute the eigenvectors and eigenvalues of S also. What
are the differences from what you found in a)?

c) Find a filter T so that S = Tr. What kind of filter is T?

Exercise 4.2: Writing down lower order Sr

Consider the averaging filter S = { 1
4 ,

1
2 ,

1
4}. Write down the matrix Sr for the

case when N = 4.

Exercise 4.3: Writing down lower order DCTs
As in Example 4.15, state the exact cartesian form of the DCT matrix for the
case N = 3.

Exercise 4.4: DCT-IV

Show that the vectors
{

cos
(

2π n+ 1
2

2N
(
k + 1

2
))}N−1

n=0
in RN are orthogonal, with

lengths
√
N/2. This means that the matrix with entries

√
2
N cos

(
2π n+ 1

2
2N

(
k + 1

2
))

is orthogonal. Since this matrix also is symmetric, it is its own inverse. This is
the DCT-IV, which we denote by DCT(IV)

N . Although we will not consider this,
the DCT-IV also has an efficient implementation.

Hint. Compare with the orthogonal vectors dn, used in the DCT.

Exercise 4.5: MDCT
The MDCT is defined as theN×(2N)-matrixM with elementsMn,k = cos(2π(n+
1/2)(k + 1/2 +N/2)/(2N)). This exercise will take you through the details of
the transformation which corresponds to multiplication with this matrix. The
MDCT is very useful, and is also used in the MP3 standard and in more recent
standards.
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a) Show that

M =
√
N

2 DCT(IV)
N

(
0 A
B 0

)
where A and B are the (N/2)×N -matrices

A =


· · · · · · 0 −1 −1 0 · · · · · ·
...

...
...

...
...

...
...

...
0 −1 · · · · · · · · · · · · −1 0
−1 0 · · · · · · · · · · · · 0 −1

 =
(
−IfN/2 −IN/2

)

B =


1 0 · · · · · · · · · · · · 0 −1
0 1 · · · · · · · · · · · · −1 0
...

...
...

...
...

...
...

...
· · · · · · 0 1 −1 0 · · · · · ·

 =
(
IN/2 −IfN/2

)
.

Due to this expression, any algorihtm for the DCT-IV can be used to compute
the MDCT.

b) The MDCT is not invertible, since it is not a square matrix. We will show
here that it still can be used in connection with invertible transformations. We
first define the IMDCT as the matrix MT /N . Transposing the matrix expression
we obtained in a) gives

1√
2N

(
0 BT

AT 0

)
DCT(IV)

N

for the IMDCT, which thus also has an efficient implementation. Show that if

x0 = (x0, . . . , xN−1) x1 = (xN , . . . , x2N−1) x2 = (x2N , . . . , x3N−1)

and

y0,1 = M

(
x0
x1

)
y1,2 = M

(
x1
x2

)
(i.e. we compute two MDCT’s where half of the data overlap), then

x1 = {IMDCT(y0,1)}2N−1
k=N + {IMDCT(y1,2)}N−1

k=0 .

Even though the MDCT itself is not invertible, the input can still be recovered
from overlapping MDCT’s.
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4.2 Improvements from using the DCT to inter-
polate functions and approximate analog fil-
ters

Recall that, in Section 3.2.1, we explained how to approximate an analog filter
from the samples. It turns out that, when an analog filter is symmetric, we can
use symmetric extensions to create a better approximation from the samples.

Assume that s is an analog filter, and that we apply it to a general function
f . Denote as before the symmetric extension of f by f̆ . We start with the
following observation, which follows from the continuity of s.

Observation 4.17. Using symmetric extensions for approximations.
Since (f̆)N is a better approximation to f̆ , compared to what fN is to f ,

s((f̆)N ) is a better approximation to s(f̆), compared to what s(fN ) is to s(f).

Since s(f̆) agrees with s(f) except near the boundaries, we can thus conclude
that s((f̆)N ) is a better approximation to s(f) than what s(fN ) is.

We have seen that the restriction of s to VM,T is equivalent to an N × N
digital filter S, where N = 2M + 1. Let x be the samples of f , x̆ the samples of
f̆ . Turning around the fact that (f̆)N is a better approximation to f̆ , compared
to what fN is to f , the following is clear.

Observation 4.18. Using symmetric extensions for approximations.
The samples x̆ are a better approximation to the samples of (f̆)N , than the

samples x are to the samples of fN .

Now, let z = Sx, and z̆ = Sx̆. The following is also clear from the preceding
observation, due to continuity of the digital filter S.

Observation 4.19. Using symmetric extensions for approximations.
z̆ is a better approximation to S(samples of (f̆)N ) = samples of s((f̆)N ),

than z is to S(samples of fN ) = samples of s(fN ).

Since by Observation 4.17 s((f̆)N ) is a better approximation to the output
s(f), we conclude that z̆ is a better approximation than z to the samples of the
output of the filter.

Observation 4.20. Using symmetric extensions for approximations.
Sx̆ is a better approximation to the samples of s(f) than Sx is (x are the

samples of f).

Now, let us also bring in the assumption that s is symmetric. Then the
corresponding digital filter S is also symmetric, and we know then that we can
view its restriction to symmetric extensions in R2N in terms of the mapping
Sr : RN → RN . We can thus specialize Figure 3.5 to symmetric filters by adding
the step of creating the symmetric extension, and replacing S with Sr. We have
summarized these remarks in Figure 4.3. The DCT here appears, since we have
used Theorem 4.16 to interpolate with the DCT basis, instead of the Fourier
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basis. Note that this also requires that the sampling is performed as required
in that theorem, i.e. the samples are the midpoints on all intervals. This new
sampling procedure is not indicated in Figure 4.3.

f //

��

s(
˜̆
f)

f̆

��
x̆

��
(x̆0, x̆1, . . . , x̆N−1)

Sr // (z̆0, z̆1, . . . , z̆N−1)
DCTN // y

OO

Figure 4.3: The connections between the new mapping Sr, sampling, and
interpolation. The right vertical arrow represents interpolation with the DCT,
i.e. that we compute

∑N−1
n=0 yndn,N cos(2π(n/2)t/T ) for values of t.

Figure 4.3 can be further simplified to that shown in Figure 4.4.

f //

��

s(
˜̆
f)

x
Sr // z

DCTN // y

OO

Figure 4.4: Simplification of Figure 4.3. The left vertical arrow represents
sampling as dictated by the DCT.

Note that the assumption that s is symmetric only helped us to implement
the approximation s( ˜̆

f) in a nore efficient way, since Sr has N points and S has
2N points. s( ˜̆

f) can in any way be used as an approximation, even if s is not
symmetric. But this approximation is actually even better when s is symmetric:
Since s is symmetric, s(f̆) is a symmetric function (since f̆ is a symmetric
function). The N ’th order Fourier series of s(f̆) is s((f̆)N ) = (s(f̆))N , and this
is a better approximation to s(f̆) since s(f̆) is a symmetric function. Since
the procedure above obtained an approximation to (the samples of) (s(f̆))N , it
follows that the approximations are better when s is symmetric.

As mentioned in Section 3.2, interpolation of a function from its samples can
be seen as a special case. This can thus be illustrated as in Figure 4.5.
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f //

��

s(
˜̆
f)

x
DCTN // y

OO

Figure 4.5: How we can approximate a function from its samples with the DCT.

Note that the approximation lies in V2M,2T (i.e. it is in a higher order Fourier
space), but the point is that the same number of samples is used.

4.2.1 Implementations of symmetric filters
Symmetric filters are also important for applications since they can be imple-
mented efficiently. To see this, we can write

(Sx)n =
N−1∑
k=0

skx(n−k) mod N

= s0xn +
(N−1)/2∑
k=1

skx(n−k) mod N +
N−1∑

k=(N+1)/2

skx(n−k) mod N

= s0xn +
(N−1)/2∑
k=1

skx(n−k) mod N +
(N−1)/2∑
k=1

skx(n−(N−k)) mod N

= s0xn +
(N−1)/2∑
k=1

sk(x(n−k) mod N + x(n+k) mod N ). (4.7)

If we compare the first and last expressions here, we need the same number of
summations, but the number of multiplications needed in the latter expression
has been halved.

Observation 4.21. Reducing arithmetic operations for symmetric filters.
Assume that a symmetric filter has 2s+1 filter coefficients. The filter applied

to a vector of length N can then be implemented using (s+ 1)N multiplications
and 2sN additions. This gives a reduced number of arithmetic operations when
compared to a filter with the same number of coefficients which is not symmetric,
where a direct implementations requires (2s + 1)N multiplications and 2sN
additions.

Similarly to as in Section 3.6.2, a symmetric filter can be factored into a
product of symmetric filters. To see how, note first that a real polynomial is
symmetric if and only if 1/a is a root whenever a is. If we pair together the
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factors for the roots a, 1/a when a is real we get a component in the frequency
response of degree 2. If we pair the factors for the roots a, 1/a, a, 1/a when a is
complex, we get a component in the frequency response of degree 4. We thus
get the following idea:

Idea 4.22. Factorizing symmetric filters.
Let S be a symmetric filter with real coefficients. There exist constants K,

a1, . . . , am, b1, c1, . . . , bn, cn so that

λS(ω) =K(a1e
iω + 1 + a1e

−iω) . . . (ameiω + 1 + ame
−iω)

× (b1e
2iω + c1e

iω + 1 + c1e
−iω + b1e

−2iω) . . .
× (bne2iω + cne

iω + 1 + cne
−iω + bne

−2iω).

We can write S = KA1 . . . AmB1 . . . Bn, where Ai = {ai, 1, ai} and Bi =
{bi, ci, 1, ci, bi}.

In any case we see that the component filters have 3 and 5 filter coefficients.

Exercise 4.6: Component expressions for a symmetric filter
Assume that S = t−L, . . . , t0, . . . , tL is a symmetric filter. Use Equation (4.7)
in the compendium to show that zn = (Sx)n in this case can be split into the
following different formulas, depending on n:

a) 0 ≤ n < L:

zn = t0xn +
n∑
k=1

tk(xn+k + xn−k) +
L∑

k=n+1
tk(xn+k + xn−k+N ). (4.8)

b) L ≤ n < N − L:

zn = t0xn +
L∑
k=1

tk(xn+k + xn−k). (4.9)

c) N − L ≤ n < N :

zn = t0xn +
N−1−n∑
k=1

tk(xn+k + xn−k) +
L∑

k=N−1−n+1
tk(xn+k−N + xn−k). (4.10)

The conv function may not pick up this reduction in the number of multipli-
cations, since it does not assume that the filter is symmetric. We will still use
the conv function in implementations, however, due to its heavy optimization.
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4.3 Efficient implementations of the DCT
When we defined the DCT in the preceding section, we considered symmetric
vectors of twice the length, and viewed these in the frequency domain. In order to
have a fast algorithm for the DCT, which are comparable to the FFT algorithms
we developed in Section 2.4, we need to address the fact that vectors of twice
the length seem to be involved. The following theorem addresses this. This
result is much used in practical implementations of DCT, and can also be used
for practical implementation of the DFT as we will see in Exercise 4.8. Note
that the result, and the following results in this section, are stated in terms
of the cosine matrix CN (where the entries are (CN )n,k = cos

(
2π n

2N
(
k + 1

2
))
,

rather than the DCTN matrix (which uses the additional scaling factor dn,N
for the rows). The reason is that CN appears to me most practical for stating
algorithms. When computing the DCT, we simply need to scale with the dn,N
at the end, after using the statements below.

Theorem 4.23. DCT algorithm.
Let y = CNx. Then we have that

yn =
(

cos
(
π
n

2N

)
<((DFTNx(1))n) + sin

(
π
n

2N

)
=((DFTNx(1))n)

)
, (4.11)

where x(1) ∈ RN is defined by

(x(1))k = x2k for 0 ≤ k ≤ N/2− 1
(x(1))N−k−1 = x2k+1 for 0 ≤ k ≤ N/2− 1,

Proof. Using the definition of CN , ans splitting the computation of y = CNx
into two sums, corresponding to the even and odd indices as follows:

yn =
N−1∑
k=0

xk cos
(

2π n

2N

(
k + 1

2

))

=
N/2−1∑
k=0

x2k cos
(

2π n

2N

(
2k + 1

2

))
+
N/2−1∑
k=0

x2k+1 cos
(

2π n

2N

(
2k + 1 + 1

2

))
.

If we reverse the indices in the second sum, this sum becomes

N/2−1∑
k=0

xN−2k−1 cos
(

2π n

2N

(
N − 2k − 1 + 1

2

))
.

If we then also shift the indices with N/2 in this sum, we get
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N−1∑
k=N/2

x2N−2k−1 cos
(

2π n

2N

(
2N − 2k − 1 + 1

2

))

=
N−1∑
k=N/2

x2N−2k−1 cos
(

2π n

2N

(
2k + 1

2

))
,

where we used that cos is symmetric and periodic with period 2π. We see that
we now have the same cos-terms in the two sums. If we thus define the vector
x(1) as in the text of the theorem, we see that we can write

yn =
N−1∑
k=0

(x(1))k cos
(

2π n

2N

(
2k + 1

2

))

= <
(
N−1∑
k=0

(x(1))ke−2πin(2k+ 1
2 )/(2N)

)

= <
(
e−πin/(2N)

N−1∑
k=0

(x(1))ke−2πink/N

)
= <

(
e−πin/(2N)(DFTNx(1))n

)
=
(

cos
(
π
n

2N

)
<((DFTNx(1))n) + sin

(
π
n

2N

)
=((DFTNx(1))n)

)
,

where we have recognized the N -point DFT. This completes the proof.

With the result above we have avoided computing a DFT of double size. If we
in the proof above define the N ×N -diagonal matrix QN by Qn,n = e−πin/(2N),
the result can also be written on the more compact form

y = CNx = <
(
QNDFTNx(1)

)
.

We will, however, not use this form, since there is complex arithmetic involved,
contrary to Equation(4.11). Code which uses Equation (4.11) to compute the
DCT, using the function FFTImpl from Section 2.4, can look as follows:

function y = DCTImpl(x)
N = length(x);
if N == 1

y = x;
else

x1 = [x(1:2:N, :); x(N:(-2):1, :)];
y = FFTImpl(x1, @FFTKernelStandard);
cosvec = cos(pi*((0:(N-1))’)/(2*N));
sinvec = sin(pi*((0:(N-1))’)/(2*N));
for s2 = 1:size(x, 2)

y(:, s2) = cosvec.*real(y(:, s2)) + sinvec.*imag(y(:, s2));
end
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y(1, :) = sqrt(1/N)*y(1, :);
y(2:N, :) = sqrt(2/N)*y(2:N, :);

end

In the code, the vector x(1) is created first by rearranging the components, and
it is sent as input to FFTImpl. After this we take real parts and imaginary parts,
and multiply with the cos- and sin-terms in Equation (4.11).

4.3.1 Efficient implementations of the IDCT
As with the FFT, it is straightforward to modify the DCT implementation so
that it returns the IDCT. To see how we can do this, write from Theorem 4.23,
for n ≥ 1

yn =
(

cos
(
π
n

2N

)
<((DFTNx(1))n) + sin

(
π
n

2N

)
=((DFTNx(1))n)

)
yN−n =

(
cos
(
π
N − n

2N

)
<((DFTNx(1))N−n) + sin

(
π
N − n

2N

)
=((DFTNx(1))N−n)

)
=
(

sin
(
π
n

2N

)
<((DFTNx(1))n)− cos

(
π
n

2N

)
=((DFTNx(1))n)

)
,

(4.12)

where we have used the symmetry of DFTN for real signals. These two equations
enable us to determine <((DFTNx(1))n) and =((DFTNx(1))n) from yn and
yN−n. We get

cos
(
π
n

2N

)
yn + sin

(
π
n

2N

)
yN−n = <((DFTNx(1))n)

sin
(
π
n

2N

)
yn − cos

(
π
n

2N

)
yN−n = =((DFTNx(1))n).

Adding we get

(DFTNx(1))n = cos
(
π
n

2N

)
yn + sin

(
π
n

2N

)
yN−n + i(sin

(
π
n

2N

)
yn − cos

(
π
n

2N

)
yN−n)

=(cos
(
π
n

2N

)
+ i sin

(
π
n

2N

)
)(yn − iyN−n) = eπin/(2N)(yn − iyN−n).

This means that (DFTNx(1))n = eπin/(2N)(yn + iyN−n) = (yn + iyN−n)/Qn,n
for n ≥ 1. Since =((DFTNx(1))0) = 0 we have that (DFTNx(1))0 = 1

d0,N
y0 =

y0/Q0,0. This means that x(1) can be recovered by taking the IDFT of the
vector with component 0 being y0/Q0,0, and the remaining components being
(yn − iyN−n)/Qn,n:

Theorem 4.24. IDCT algorithm.
Let x = (CN )−1y. and let z be the vector with component 0 being y0/Q0,0,

and the remaining components being (yn − iyN−n)/Qn,n. Then we have that
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x(1) = IDFTNz,
where x(1) is defined as in Theorem 4.23.

The implementation of IDCT can thus go as follows:

function x = IDCTImpl(y)
N = size(y, 1);
if N == 1

x = y;
else

y(1, :) = y(1, :)/sqrt(1/N);
y(2:N, :) = y(2:N, :)/sqrt(2/N);
Q = exp(-pi*1i*((0:(N-1))’)/(2*N));
y1 = zeros(size(y)); y1(1, :) = y(1, :)/Q(1);
for s2 = 1:size(y, 2)

y1(2:N, s2) = (y(2:N, s2)-1i*y(N:(-1):2, s2))./Q(2:N);
end
y1 = FFTImpl(y1, @FFTKernelStandard, 0);
x = zeros(size(y));
x(1:2:N, :) = real(y1(1:(N/2), :));
x(2:2:N, :) = real(y1(N:(-1):(N/2+1), :));

end

4.3.2 Reduction in the number of multiplications with the
DCT

Let us also state a result which confirms that the DCT and IDCT implementations
we have described give the same type of reductions in the number multiplications
as the FFT and IFFT:

Theorem 4.25. Number of multiplications required by the DCT and IDCT
algorithms.

The DCT and the IDCT can be implemented so that they use any FFT and
IFFT algorithms. Their operation counts then have the same order as these. In
particular, when the standard FFT algorithms of Section 2.4 are used, i.e. their
operation counts are O(5N log2 /2). In comparison, the operation count for a
direct implementation of the N -point DCT/IDCT is 2N2.

Note that we divide the previous operation counts by 2 since the DCT applies
an FFT to real input only, and the operation count for the FFT can be halved
when we adapt to real data, see Exercise 2.27.

Proof. By Theorem 2.36, the number of multiplications required by the standard
FFT algorithm from Section 2.4 adapted to real data is O(N log2 N), while
the number of additions is O(3N log2 N/2). By Theorem 4.23, two additional
multiplications and one addition are required for each index (so that we have
2N extra real multiplications and N extra real additions in total), but this does
not affect the operation count, since O(N log2 N + 2N) = O(N log2 N). Since
the operation counts for the IFFT is the same as for the FFT, we only need
to count the additional multiplications needed in forming the vector z = (yn −
iyN−n)/Qn,n. Clearly, this also does not affect the order of the algorithm.
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Since the DCT and IDCT can be implemented using the FFT and IFFT,
it has the same advantages as the FFT when it comes to parallel computing.
Much literature is devoted to reducing the number of multiplications in the
DFT and the DCT even further than what we have done (see [18] for one of the
most recent developments). Another note on computational complexity is in
order: we have not counted the operations sin and cos in the DCT. The reason
is that these values can be precomputed, since we take the sine and cosine of
a specific set of values for each DCT or DFT of a given size. This is contrary
to to multiplication and addition, since these include the input values, which
are only known at runtime. We have, however, not written down that we use
precomputed arrays for sine and cosine in our algorithms: This is an issue to
include in more optimized algorithms.

Exercise 4.7: Trick for reducing the number of multiplica-
tions with the DCT
In this exercise we will take a look at a small trick which reduces the number of
additional multiplications we need for DCT algorithm from Theorem 4.23. This
exercise does not reduce the order of the DCT algorithms, but we will see in
Exercise 4.8 how the result can be used to achieve this.

a) Assume that x is a real signal. Equation (4.12) in the compendium, which
said that

yn = cos
(
π
n

2N

)
<((DFTNx(1))n) + sin

(
π
n

2N

)
=((DFTNx(1))n)

yN−n = sin
(
π
n

2N

)
<((DFTNx(1))n)− cos

(
π
n

2N

)
=((DFTNx(1))n)

for the n’th and N − n’th coefficient of the DCT. This can also be rewritten as

yn =
(
<((DFTNx(1))n) + =((DFTNx(1))n)

)
cos
(
π
n

2N

)
−=((DFTNx(1))n)(cos

(
π
n

2N

)
− sin

(
π
n

2N

)
)

yN−n = −
(
<((DFTNx(1))n) + =((DFTNx(1))n)

)
cos
(
π
n

2N

)
+ <((DFTNx(1))n)(sin

(
π
n

2N

)
+ cos

(
π
n

2N

)
).

Explain that the first two equations require 4 multiplications to compute yn and
yN−n, and that the last two equations require 3 multiplications to compute yn
and yN−n.

b) Explain why the trick in a) reduces the number of additional multiplications
in a DCT, from 2N to 3N/2.

c) Explain why the trick in a) can be used to reduce the number of additional
multiplications in an IDCT with the same number.
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Hint. match the expression eπin/(2N)(yn − iyN−n) you encountered in the
IDCT with the rewriting you did in b.

d) Show that the penalty of the trick we here have used to reduce the number
of multiplications, is an increase in the number of additional additions from N
to 3N/2. Why can this trick still be useful?

Exercise 4.8: An efficient joint implementation of the DCT
and the FFT
In this exercise we will explain another joint implementation of the DFT and
the DCT, which has the benefit of a low multiplication count, at the expense
of a higher addition count. It also has the benefit that it is specialized to real
vectors, with a very structured implementation (this is not always the case for
the quickest FFT implementations. Not surprisingly, one often sacrifices clarity
of code when one pursues higher computational speed). a) of this exercise can be
skipped, as it is difficult and quite technical. For further details of the algorithm
the reader is refered to [38].

a) Let y = DFTNx be the N -point DFT of the real vector x. Show that

<(yn) =


<((DFTN/2x

(e))n) + (CN/4z)n 0 ≤ n ≤ N/4− 1
<((DFTN/2x

(e))n) n = N/4
<((DFTN/2x

(e))n)− (CN/4z)N/2−n N/4 + 1 ≤ n ≤ N/2− 1
(4.13)

=(yn) =


=((DFTN/2x

(e))n) n = 0
=((DFTN/2x

(e))n) + (CN/4w)N/4−n 1 ≤ n ≤ N/4− 1
=((DFTN/2x

(e))n) + (CN/4w)n−N/4 N/4 ≤ n ≤ N/2− 1
(4.14)

where x(e) is as defined in Theorem 2.31, where z,w ∈ RN/4 defined by

zk = x2k+1 + xN−2k−1 0 ≤ k ≤ N/4− 1,
wk = (−1)k(xN−2k−1 − x2k+1) 0 ≤ k ≤ N/4− 1,

Explain from this how you can make an algorithm which reduces an FFT of
length N to an FFT of length N/2 (on x(e)), and two DCT’s of length N/4 (on
z and w). We will call this algorithm the revised FFT algorithm.

a) says nothing about the coefficients yn for n > N
2 . These are obtained in

the same way as before through symmetry. a. also says nothing about yN/2.
This can be obtained with the same formula as in Theorem 2.31.

Let us now compute the number of arithmetic operations our revised algorithm
needs. Denote by the number of real multiplications needed by the revised N -
point FFT algorithm
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b) Explain from the algorithm in a) that

MN = 2(MN/4 + 3N/8) +MN/2 AN = 2(AN/4 + 3N/8) +AN/2 + 3N/2
(4.15)

Hint. 3N/8 should come from the extra additions/multiplications (see Exer-
cise 4.7) you need to compute when you run the algorithm from Theorem 4.23
for CN/4. Note also that the equations in a) require no extra multiplications,
but that there are xix equations involved, each needing N/4 additions, so that
we need 6N/4 = 3N/2 extra additions.

c) Explain why xr = M2r is the solution to the difference equation

xr+2 − xr+1 − 2xr = 3× 2r,

and that xr = A2r is the solution to

xr+2 − xr+1 − 2xr = 9× 2r.

and show that the general solution to these are xr = 1
2r2

r + C2r +D(−1)r for
multiplications, and xr = 3

2r2
r + C2r +D(−1)r for additions.

d) Explain why, regardless of initial conditions to the difference equations,
MN = O

( 1
2N log2 N

)
and AN = O

( 3
2N log2 N

)
both for the revised FFT and

the revised DCT. The total number of operations is thus O(2N log2 N), i.e. half
the operation count of the split-radix algorithm. The orders of these algorithms
are thus the same, since we here have adapted to read data.

e) Explain that, if you had not employed the trick from Exercise 4.7, we would
instead have obtained MN = O

( 2
3 log2 N

)
, and AN = O

( 4
3 log2 N

)
, which

equal the orders for the number of multiplications/additions for the split-radix
algorithm. In particular, the order of the operation count remains the same,
but the trick from Exercise 4.7 turned a bigger percentage of the arithmetic
operations into additions.

The algorithm we here have developed thus is constructed from the beginning
to apply for real data only. Another advantage of the new algorithm is that it
can be used to compute both the DCT and the DFT.

Exercise 4.9: Implementation of the IFFT/IDCT
We did not write down corresponding algorithms for the revised IFFT and IDCT
algorithms. We will consider this in this exercise.
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a) Using equations (2.13) in the compendium-(4.14) in the compendium, show
that

<(yn)−<(yN/2−n) = 2(CN/4z)n
=(yn) + =(yN/2−n) = 2(CN/4w)N/4−n

for 1 ≤ n ≤ N/4− 1. Explain how one can compute z and w from this using
two IDCT’s of length N/4.

b) Using equations (2.13) in the compendium-(4.14) in the compendium, show
that

<(yn) + <(yN/2−n) = <((DFTN/2x
(e))n)

=(yn)−=(yN/2−n) = =((DFTN/2x
(e))n),

and explain how one can compute x(e) from this using an IFFT of length N/2.

4.4 Summary
We started this chapter by extending a previous result which had to do with that
the Fourier series of a symmetric function converged quicker. To build on this
we first needed to define symmetric extensions of vectors and symmetric vectors,
before we classified symmetric extensions in the frequency domain. From this
we could find a nice, orthonormal basis for the symmetric extensions, which
lead us to the definition of the DCT. We also saw a connection with symmetric
filters: These are exactly the filters which preserve symmetric extensions, and
we could characterize symmetric filters restricted to symmetric extension as an
N -dimensional mapping. We also showed that it is smart to replace the DFT
with the DCT when we work with filters which are known to be symmetric.
Among other things, this lead to a better way of approximating analog filters,
and better interpolation of functions.

We also showed how to obtain an efficient implementation of the DCT, which
could reuse the FFT implementation. The DCT has an important role in the
MP3 standard. As we have explained, the MP3 standard applies several filters
to the sound, in order to split it into bands concentrating on different frequency
ranges. In Section 8.3 we will look closer at how these filters can be implemented
and constructed. The implementation can use transforms similar to the MDCT,
as explained in Exercise 4.5. The MDCT is also used in the more advanced
version of the MP3 standard (layer III). Here it is applied to the filtered data to
obtain a higher spectral resolution of the sound. The MDCT is applied to groups
of 576 (in special circumstances 192) samples. The MP3 standard document [16]
does not dig into the theory for this, only representing what is needed in order to
make an implementation. It is somewhat difficult to read this document, since it
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is written in quite a different language, familiar mainly to those working with
international standards.

The different type of cosine-matrices can all be associated with some extension
strategy for the signal. [25] contains a review of these.

The DCT is particularly popular for processing sound data before they are
compressed with lossless techniques such as Huffman coding or arithmetic coding.
The reason is, as mentioned, that the DCT provides a better approximation
from a low-dimensional space than the DFT does, and that it has a very efficient
implementation. Libraries exist which goes into lengths to provide efficient
implementation of the FFT and the DCT. FFTW, short for Fastest Fourier
Transform in the West [14], is perhaps the best known of these.

Signal processing literature often does not motivate digital filters in explaining
where they come from, and where the input to the filters come from. Using
analog filters to motivate this, and to argue for improvements in using the DCT
and symmeric extensions, is not that common. Much literature simply says that
the property of linear phase is good, without elaborating on this further.



Chapter 5

Motivation for wavelets and
some simple examples

In the first part of the book our focus was to approximate functions or vectors
with trigonometric functions. We saw that the Discrete Fourier transform could
be used to obtain a representation of a vector in terms of such functions, and
that computations could be done efficiently with the FFT algorithm. This was
useful for analyzing, filtering, and compressing sound and other discrete data.
The approach with trigonometric functions has some limitations, however. One
of these is that, in a representation with trigonometric functions, the frequency
content is fixed over time. This is in contrast with most sound data, where
the characteristics are completely different in different parts. We have also
seen that, even if a sound has a simple representation in terms of trigonometric
functions on two different parts, the representation of the entire sound may not
be simple. In particular, if the function is nonzero only on a very small interval,
a representation of it in terms of trigonometric functions is not so simple.

In this chapter we are going to introduce the basic properties of an alternative
to Fourier analysis for representing functions. This alternative is called wavelets.
Similar to Fourier analysis, wavelets are also based on the idea of expressing a
function in some basis. But in contrast to Fourier analysis, where the basis is
fixed, wavelets provide a general framework with many different types of bases.
In this chapter we first give a motivation for wavelets, before we continue by
introducing some very simple wavelets. The first wavelet we look at can be
interpreted as an approximation scheme based on piecewise constant functions.
The next wavelet we look at is similar, but with piecewise linear functions used
instead. Following these examples we will establish a more general framework,
based on experiences from the simple wavelets. In the following chapters we will
interpret this framework in terms of filters, and use this connection to construct
even more interesting wavelets.

The examples in this and the next chapters can be run from the notebook
applinalgnbchap5.m.

162
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5.1 Why wavelets?
The left image in Figure 5.1 shows a view of the entire Earth.

Figure 5.1: A view of Earth from space, together with versions of the image
where we have zoomed in.

The startup image in Google EarthTM, a program for viewing satellite images,
maps and other geographic information, is very similar to this. In the middle
image we have zoomed in on the Mexican Gulff, as marked with a rectangle in
the left image. Similarly, in the right image we have further zoomed in on Cuba
and a small portion of Florida, as marked with a rectangle in the middle image.
There is clearly an amazing amount of information available behind a program
like Google EarthTM, since we there can zoom further in, and obtain enough
detail to differentiate between buildings and even trees or cars all over the Earth.
So, when the Earth is spinning in the opening screen of Google EarthTM, all
the Earth’s buildings appear to be spinning with it! If this was the case the
Earth would not be spinning on the screen, since there would just be so much
information to process that a laptop would not be able to display a rotating
Earth.

There is a simple reason that the globe can be shown spinning in spite of
the huge amounts of information that need to be handled. We are going to see
later that a digital image is just a rectangular array of numbers that represent
the color at a dense set of points. As an example, the images in Figure 5.1 are
made up of a grid of 1064× 1064 points, which gives a total of 1 132 096 points.
The color at a point is represented by three eight-bit integers, which means that
the image files contain a total of 3 396 288 bytes each. So regardless of how
close to the surface of the Earth our viewpoint is, the resulting image always
contains the same number of points. This means that when we are far away
from the Earth we can use a very coarse model of the geographic information
that is being displayed, but as we zoom in, we need to display more details and
therefore need a more accurate model.

Observation 5.1. Images models.
When discrete information is displayed in an image, there is no need to use a

mathematical model that contains more detail than what is visible in the image.



CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES164

A consequence of Observation 5.1 is that for applications like Google EarthTM

we should use a mathematical model that makes it easy to switch between different
levels of detail, or different resolutions. Such models are called multiresolution
models, and wavelets are prominent examples of this kind of models. We will
see that multiresolution models also provide us with means of approximating
functions, just as Taylor series and Fourier series. Our new approximation scheme
differs from these in one important respect, however: When we approximate
with Taylor series and Fourier series, the error must be computed at the same
data points as well, so that the error contains just as much information as the
approximating function, and the function to be approximated. Multiresolution
models on the other hand will be defined in such a way that the error and the
“approximating function” each contain half of the information from the function
we approximate, i.e. their amount of data is reduced. This property makes
multiresolution models attractive for the problems at hand, when compared to
approaches such as Taylor series and Fourier series.

When we zoom in with Google EarthTM, it seems that this is done contin-
uously. The truth is probably that the program only has representations at
some given resolutions (since each representation requires memory), and that
one interpolates between these to give the impression of a continuous zoom. In
the coming chapters we will first look at how we can represent the information
at different resolutions, so that only new information at each level is included.

We will now turn to how wavelets are defined more formally, and construct
the simplest wavelet we have. Its construction goes in the following steps: First
we introduce what we call resolution spaces, and the corresponding scaling
function. Then we introduce the detail spaces, and the corresponding mother
wavelet. These two functions will give rise to certain bases for these spaces,
and we will define the Discrete Wavelet Transform as a change of coordinates
between these bases.

5.2 A wavelet based on piecewise constant func-
tions

Our starting point will be the space of piecewise constant functions on an interval
[0, N). This will be called a resolution space.

Definition 5.2. The resolution space V0.
Let N be a natural number. The resolution space V0 is defined as the space

of functions defined on the interval [0, N) that are constant on each subinterval
[n, n+ 1) for n = 0, . . . , N − 1.

Note that this also corresponds to piecewise constant functions which are
periodic with period N . We will, just as we did in Fourier analysis, identify a
function defined on [0, N) with its (period N) periodic extension. An example
of a function in V0 for N = 10 is shown in Figure 5.2. It is easy to check that V0
is a linear space, and for computations it is useful to know the dimension of the
space and have a basis.
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Figure 5.2: A piecewise constant function.

Lemma 5.3. The function φ.
Define the function φ(t) by

φ(t) =
{

1, if 0 ≤ t < 1;
0, otherwise;

(5.1)

and set φn(t) = φ(t− n) for any integer n. The space V0 has dimension N , and
the N functions {φn}N−1

n=0 form an orthonormal basis for V0 with respect to the
standard inner product

〈f, g〉 =
∫ N

0
f(t)g(t) dt. (5.2)

In particular, any f ∈ V0 can be represented as

f(t) =
N−1∑
n=0

cnφn(t) (5.3)

for suitable coefficients (cn)N−1
n=0 . The function φn is referred to as the character-

istic function of the interval [n, n+ 1)

Note the small difference between the inner product we define here from the
inner product we used for functions previously: Here there is no scaling 1/T
involved. Also, for wavelets we will only consider real functions, and the inner
product will therefore not be defined for complex functions. Two examples of
the basis functions defined in Lemma 5.5 are shown in Figure 5.3.

Proof. Two functions φn1 and φn2 with n1 6= n2 clearly satisfy
∫
φn1(t)φn2(t)dt =

0 since φn1(t)φn2(t) = 0 for all values of x. It is also easy to check that ‖φn‖ = 1
for all n. Finally, any function in V0 can be written as a linear combination the
functions φ0, φ1, . . . , φN−1, so the conclusion of the lemma follows.



CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES166

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 5.3: The basis functions φ2 and φ7 from φ0.
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Figure 5.4: Examples of functions from V0. The square wave in V0 (left), and
an approximation to cos t from V0 (right).

In our discussion of Fourier analysis, the starting point was the function
sin(2πt) that has frequency 1. We can think of the space V0 as being analogous
to this function: The function

∑N−1
n=0 (−1)nφn(t) is (part of the) square wave

that we discussed in Chapter 1, and which also oscillates regularly like the sine
function, see the left plot in Figure 5.4. The difference is that we have more
flexibility since we have a whole space at our disposal instead of just one function
— the right plot in Figure 5.4 shows another function in V0.

In Fourier analysis we obtained a linear space of possible approximations by
including sines of frequency 1, 2, 3, . . . , up to some maximum. We use a similar
approach for constructing wavelets, but we double the frequency each time and
label the spaces as V0, V1, V2, . . .

Definition 5.4. Refined resolution spaces.
The space Vm for the interval [0, N) is the space of piecewise linear functions

defined on [0, N) that are constant on each subinterval [n/2m, (n+ 1)/2m) for
n = 0, 1, . . . , 2mN − 1.

Some examples of functions in the spaces V1, V2 and V3 for the interval [0, 10]
are shown in Figure 5.5. As m increases, we can represent smaller details. In
particular, the function in the rightmost is a piecewise constant function that
oscillates like sin(2π22t) on the interval [0, 10].
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Figure 5.5: Piecewise constant approximations to cos t on the interval [0, 10] in
the spaces V1, V2, and V3. The lower right plot shows the square wave in V2.

It is easy to find a basis for Vm, we just use the characteristic functions of
each subinterval.

Lemma 5.5. Basis for Vm.
Let [0, N) be a given interval with N some positive integer. Then the

dimension of Vm is 2mN . The functions

φm,n(t) = 2m/2φ(2mt− n), for n = 0, 1, . . . , 2mN − 1. (5.4)

{φm,n}2mN−1
n=0 form an orthonormal basis for Vm, which we will denote by φm.

Any function f ∈ Vm can thus be represented uniquely as

f(t) =
2mN−1∑
n=0

cm,nφm,n(t).

Proof. The functions given by Equation (5.4) are nonzero on the subintervals
[n/2m, (n+1)/2m) which we referred to in Definition 5.4, so that φm,n1φm,n2 = 0
when n1 6= n2, since these intervals are disjoint. The only mysterious thing may
be the normalisation factor 2m/2. This comes from the fact that

∫ N

0
φ(2mt− n)2 dt =

∫ (n+1)/2m

n/2m
φ(2mt− n)2 dt = 2−m

∫ 1

0
φ(u)2 du = 2−m.

The normalisation therefore thus ensures that ‖φm,n‖ = 1 for all m.
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In the following we will always denote the coordinates in the basis φm by
cm,n. Note that our definition restricts the dimensions of the spaces we study
to be on the form N2m. In Chapter 6 we will explain how this restriction can
be dropped, but until then the dimensions will be assumed to be on this form.
In the theory of wavelets, the function φ is also called a scaling function. The
origin behind this name is that the scaled (and translated) functions φm,n of φ
are used as basis functions for the refined resolution spaces. Later on we will see
that other scaling functions φ can be chosen, where the scaled versions φm,n will
be used to define similar resolution spaces, with slightly different properties.

5.2.1 Function approximation property
Each time m is increased by 1, the dimension of Vm doubles, and the subinterval
on which the functions in Vm are constant are halved in size. It therefore seems
reasonable that, for most functions, we can find good approximations in Vm
provided m is big enough.

Theorem 5.6. Resolution spaces and approximation.
Let f be a given function that is continuous on the interval [0, N ]. Given

ε > 0, there exists an integer m ≥ 0 and a function g ∈ Vm such that∣∣f(t)− g(t)
∣∣ ≤ ε

for all t in [0, N ].

Proof. Since f is (uniformly) continuous on [0, N ], we can find an integer m so
that

∣∣f(t1)−f(t2)
∣∣ ≤ ε for any two numbers t1 and t2 in [0, N ] with |t1−t2| ≤ 2−m.

Define the approximation g by

g(t) =
2mN−1∑
n=0

f
(
tm,n+1/2

)
φm,n(t),

where tm,n+1/2 is the midpoint of the subinterval
[
n2−m, (n+ 1)2−m

)
,

tm,n+1/2 = (n+ 1/2)2−m.

For t in this subinterval we then obviously have |f(t)− g(t)| ≤ ε, and since these
intervals cover [0, N ], the conclusion holds for all t ∈ [0, N ].

Theorem 5.6 does not tell us how to find the approximation g although the
proof makes use of an approximation that interpolates f at the midpoint of each
subinterval. Note that if we measure the error in the L2-norm, we have

‖f − g‖2 =
∫ N

0

∣∣f(t)− g(t)
∣∣2 dt ≤ Nε2,

so ‖f − g‖ ≤ ε
√
N . We therefore have the following corollary.
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Corollary 5.7. Resolution spaces and approximation.
Let f be a given continuous function on the interval [0, N ]. Then

lim
m→∞

‖f − projVm(f)‖ = 0.

Figure 5.6 illustrates how some of the approximations of the function f(x) =
x2 from the resolution spaces for the interval [0, 1] improve with increasing m.
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Figure 5.6: Comparison of the function defined by f(t) = t2 on [0, 1] with the
projection onto V2, V4, and V6, respectively.

5.2.2 Detail spaces and wavelets
So far we have described a family of function spaces that allow us to determine
arbitrarily good approximations to a continuous function. The next step is to
introduce the so-called detail spaces and the wavelet functions. We start by
observing that since

[n, n+ 1) = [2n/2, (2n+ 1)/2) ∪ [(2n+ 1)/2, (2n+ 2)/2),

we have

φ0,n = 1√
2
φ1,2n + 1√

2
φ1,2n+1.
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This provides a formal proof of the intuitive observation that V0 ⊂ V1, for if
g ∈ V0, we can write

g(t) =
N−1∑
n=0

c0,nφ0,n(t) =
N−1∑
n=0

c0,n
(
φ1,2n + φ1,2n+1

)
/
√

2,

and the right-hand side clearly lies in V1. Since also

φm−1,n(t) = 2(m−1)/2φ(2m−1t− n) = 2(m−1)/2φ0,n(2m−1t)

= 2(m−1)/2 1√
2

(φ1,2n(2m−1t) + φ1,2n+1(2m−1t))

= 2(m−1)/2(φ(2mt− 2n) + φ(2mt− (2n+ 1))) = 1√
2

(φm,2n(t) + φm,2n+1(t)),

we also have that

φm−1,n = 1√
2
φm,2n + 1√

2
φm,2n+1, (5.5)

so that also Vk ⊂ Vk+1 for any integer k ≥ 0.

Lemma 5.8. Resolution spaces are nested.
The spaces V0, V1, . . . , Vm, . . . are nested,

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm · · · .

This means that it is meaningful to project Vk+1 onto Vk. The next step is to
characterize the projection from V1 onto V0, and onto the orthogonal complement
of V0 in V1. Before we do this, let us make the following definitions.

Definition 5.9. Detail spaces.
The orthogonal complement of Vm−1 in Vm is denoted Wm−1. All the spaces

Wk are also called detail spaces, or error spaces.

The name detail space is used since the projection from Vm onto Vm−1 in
considered as a (low-resolution) approximation, and the error, which lies in
Wm−1, is the detail which is left out when we replace with this approximation.
We will also write gm = gm−1 + em−1 when we split gm ∈ Vm into a sum of a
low-resolution approximation and a detail component. In the context of our
Google EarthTMexample, in Figure 5.1 you should interpret g0 as the left image,
the middle image as an excerpt of g1, and e0 as the additional details which are
needed to reproduce the middle image from the left image.

Since V0 and W0 are mutually orthogonal spaces they are also linearly
independent spaces. When U and V are two such linearly independent spaces,
we will write U ⊕ V for the vector space consisting of all vectors of the form
u+ v, with u ∈ U , v ∈ V . U ⊕ V is also called the direct sum of U and V . This
also makes sense if we have more than two vector spaces (such as U ⊕ V ⊕W ),
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and the direct sum clearly obeys the associate law U ⊕ (V ⊕W ) = (U ⊕V )⊕W .
Using the direct sum notation, we can first write

Vm = Vm−1 ⊕Wm−1. (5.6)
Since Vm has dimension 2mN , it follows that also Wm has dimension 2mN . We
can continue the direct sum decomposition by also writing Vm−1 as a direct sum,
then Vm−2 as a direct sum, and so on, and end up with

Vm = V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wm−1, (5.7)
where the spaces on the right hand side have dimension N,N, 2N, . . . , 2m−1N .
This decomposition wil be important for our purposes. It says that the resolution
space Vm acan be written as the sum of a lower order resolution space V0, and
m detail spaces W0, . . . ,Wm−1. We will later interpret this splitting into a
low-resolution component and m detail components.

It turns out that the following function will play the same role for the detail
space Wk as the function φ plays for the resolution space Vk.

Definition 5.10. The function ψ.
We define

ψ(t) =
(
φ1,0(t)− φ1,1(t)

)
/
√

2 = φ(2t)− φ(2t− 1), (5.8)
and

ψm,n(t) = 2m/2ψ(2mt− n), for n = 0, 1, . . . , 2mN − 1. (5.9)

The functions φ and ψ are shown in Figure 5.7.
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Figure 5.7: The functions φ and ψ we used to analyse the space of piecewise
constant functions.

As in the proof for Equation (5.5), it follows that

ψm−1,n = 1√
2
φm,2n −

1√
2
φm,2n+1, (5.10)

Clearly ψ is supported on [0, 1), and ‖ψ‖ = 1. From this it follows as for φ0
that the {ψ0,n}N−1

n=0 are orthonormal. In the same way as for φm, it follows



CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES172

also that the {ψm,n}2mN−1
n=0 is orthonormal for any m. We will write ψm for

the orthonormal basis {ψm,n}2mN−1
n=0 , and we will always denote the coordinates

in the basis ψm by wm,n. The next result motivates the definition of ψ, and
states how we can project from V1 onto V0 and W0, i.e. find the low-resolution
approximation and the detail component of g1 ∈ V1.

Lemma 5.11. Orthonormal bases.
For 0 ≤ n < N we have that

projV0(φ1,n) =
{
φ0,n/2/

√
2, if n is even;

φ0,(n−1)/2/
√

2, if n is odd.
(5.11)

projW0(φ1,n) =
{
ψ0,n/2/

√
2, if n is even;

−ψ0,(n−1)/2/
√

2, if n is odd.
(5.12)

In particular, ψ0 is an orthonormal basis for W0. More generally, if g1 =∑2N−1
n=0 c1,nφ1,n ∈ V1, then

projV0(g1) =
N−1∑
n=0

c0,nφ0,n, where c0,n = c1,2n + c1,2n+1√
2

(5.13)

projW0(g1) =
N−1∑
n=0

w0,nψ0,n, where w0,n = c1,2n − c1,2n+1√
2

. (5.14)

Proof. We first observe that φ1,n(t) 6= 0 if and only if n/2 ≤ t < (n + 1)/2.
Suppose that n is even. Then the intersection[

n

2 ,
n+ 1

2

)
∩ [n1, n1 + 1) (5.15)

is nonempty only if n1 = n
2 . Using the orthogonal decomposition formula we get

projV0(φ1,n) =
N−1∑
k=0
〈φ1,n, φ0,k〉φ0,k = 〈φ1,n, φ0,n1〉φ0,n1

=
∫ (n+1)/2

n/2

√
2 dt φ0,n/2 = 1√

2
φ0,n/2.

Using this we also get

projW0(φ1,n) = φ1,n −
1√
2
φ0,n/2 = φ1,n −

1√
2

(
1√
2
φ1,n + 1√

2
φ1,n+1

)
= 1

2φ1,n −
1
2φ1,n+1 = ψ0,n/2/

√
2.
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This proves the expressions for both projections when n is even. When n is
odd, the intersection (5.15) is nonempty only if n1 = (n− 1)/2, which gives the
expressions for both projections when n is odd in the same way. In particular
we get

projW0(φ1,n) = φ1,n −
φ0,(n−1)/2√

2
= φ1,n −

1√
2

(
1√
2
φ1,n−1 + 1√

2
φ1,n

)
= 1

2φ1,n −
1
2φ1,n−1 = −ψ0,(n−1)/2/

√
2.

ψ0 must be an orthonormal basis for W0 since ψ0 is contained in W0, and both
have dimension N .

We project the function g1 in V1 using the formulas in (5.11). We first split
the sum into even and odd values of n,

g1 =
2N−1∑
n=0

c1,nφ1,n =
N−1∑
n=0

c1,2nφ1,2n +
N−1∑
n=0

c1,2n+1φ1,2n+1. (5.16)

We can now apply the two formulas in (5.11),

projV0(g1) = projV0

(
N−1∑
n=0

c1,2nφ1,2n +
N−1∑
n=0

c1,2n+1φ1,2n+1

)

=
N−1∑
n=0

c1,2n projV0(φ1,2n) +
N−1∑
n=0

c1,2n+1 projV0(φ1,2n+1)

=
N−1∑
n=0

c1,2nφ0,n/
√

2 +
N−1∑
n=0

c1,2n+1φ0,n/
√

2

=
N−1∑
n=0

c1,2n + c1,2n+1√
2

φ0,n

which proves Equation (5.13). Equation (5.14) is proved similarly.

In Figure 5.8 we have used Lemma 5.11 to plot the projections of φ1,0 ∈ V1
onto V0 and W0. It is an interesting exercise to see from the plots why exactly
these functions should be least-squares approximations of φ1,n. It is also an
interesting exercise to prove the following from Lemma 5.11:

Proposition 5.12. Projections.
Let f(t) ∈ V1, and let fn,1 be the value f attains on [n, n+ 1/2), and fn,2

the value f attains on [n + 1/2, n + 1). Then projV0(f) is the function in V0
which equals (fn,1 + fn,2)/2 on the interval [n, n+ 1). Moreover, projW0(f) is
the function in W0 which is (fn,1 − fn,2)/2 on [n, n+ 1/2), and −(fn,1 − fn,2)/2
on [n+ 1/2, n+ 1).
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Figure 5.8: The projection of φ1,0 ∈ V1 onto V0 and W0.

In other words, the projection on V0 is constructed by averaging on two
subintervals, while the projection on W0 is constructed by taking the difference
from the mean. This sounds like a reasonable candidate for the least-squares
approximations. In the exercise we generalize these observations.

In the same way as in Lemma 5.11, it is possible to show that

projWm−1(φm,n) =
{
ψm−1,n/2/

√
2, if n is even;

−ψm−1,(n−1)/2/
√

2, if n is odd.
(5.17)

From this it follows as before that ψm is an orthonormal basis forWm. If {Bi}ni=1
are mutually independent bases, we will in the following write (B1,B2, . . . ,Bn)
for the basis where the basis vectors from Bi are included before Bj when i < j.
With this notation, the decomposition in Equation (5.7) can be restated as
follows

Theorem 5.13. Bases for Vm.
φm and (φ0,ψ0,ψ1, · · · ,ψm−1) are both bases for Vm.

The function ψ thus has the property that its dilations and translations
together span the detail components. Later we will encounter other functions,
which also will be denoted by ψ, and have similar properties. In the theory of
wavelets, such ψ are called mother wavelets. There is one important property of
ψ, which we will return to:

Observation 5.14. Vanishing moment.
We have that

∫ N
0 ψ(t)dt = 0.

This can be seen directly from the plot in Figure 5.7, since the parts of
the graph above and below the x-axis cancel. In general we say that ψ has k
vanishing moments if the integrals

∫
tlψ(t)dt = 0 for all 0 ≤ l ≤ k − 1. Due to

Observation 5.14, ψ has one vanishing moment. In Chapter 7 we will show that
mother wavelets with many vanishing moments are very desirable when it comes
to approximation of functions.

We now have all the tools needed to define the Discrete Wavelet Transform.
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Definition 5.15. Discrete Wavelet Transform.
The DWT (Discrete Wavelet Transform) is defined as the change of coordi-

nates from φ1 to (φ0,ψ0). More generally, the m-level DWT is defined as the
change of coordinates from φm to (φ0,ψ0,ψ1, · · · ,ψm−1). In an m-level DWT,
the change of coordinates from

(φm−k+1,ψm−k+1,ψm−k+2, · · · ,ψm−1) to (φm−k,ψm−k,ψm−k+1, · · · ,ψm−1)
(5.18)

is also called the k’th stage. The (m-level) IDWT (Inverse Discrete Wavelet
Transform) is defined as the change of coordinates the opposite way.

The DWT corresponds to replacing as many φ-functions as we can with
ψ-functions, i.e. replacing the original function with a sum of as much detail at
different resolutions as possible. We now can state the following result.

Theorem 5.16. Expression for the DWT.
If gm = gm−1 + em−1 with

gm =
2mN−1∑
n=0

cm,nφm,n ∈ Vm,

gm−1 =
2m−1N−1∑

n=0
cm−1,nφm−1,n ∈ Vm−1 em−1 =

2m−1N−1∑
n=0

wm−1,nψm−1,n ∈Wm−1,

then the change of coordinates from φm to (φm−1,ψm−1) (i.e. first stage in a
DWT) is given by

(
cm−1,n
wm−1,n

)
=
(

1/
√

2 1/
√

2
1/
√

2 −1/
√

2

)(
cm,2n
cm,2n+1

)
(5.19)

Conversely, the change of coordinates from (φm−1,ψm−1) to φm (i.e. the last
stage in an IDWT) is given by

(
cm,2n
cm,2n+1

)
=
(

1/
√

2 1/
√

2
1/
√

2 −1/
√

2

)(
cm−1,n
wm−1,n

)
(5.20)

Proof. Equations (5.5) and (5.10) say that

φm−1,n = φm,2n/
√

2 + φm,2n+1/
√

2 ψm−1,n = φm,2n/
√

2− φm,2n+1/
√

2.

The change of coordinate matrix from the basis {φm−1,n, ψm−1,n} to {φm,2n, φm,2n+1}

is thus
(

1/
√

2 1/
√

2
1/
√

2 −1/
√

2

)
. This proves Equation (5.20). Equation (5.19) follows

immediately since this matrix equals its inverse.
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Above we assumed that N is even. In Exercise 5.8 we will see how we can
handle the case when N is odd.

From Theorem 5.16, we see that, if we had defined

Cm = {φm−1,0, ψm−1,0, φm−1,1, ψm−1,1, · · · , φm−1,2m−1N−1, ψm−1,2m−1N−1}.
(5.21)

i.e. we have reordered the basis vectors in (φm−1,ψm−1) (the subscript m is used
since Cm is a basis for Vm), it is apparent from Equation (5.20) that G = Pφm←Cm
is the matrix where (

1√
2

1√
2

1√
2 − 1√

2

)
is repeated along the main diagonal 2m−1N times. Also, from Equation (5.19) it
is apparent that H = PCm←φm is the same matrix. Such matrices are called block
diagonal matrices. This particular block diagonal matrix is clearly orthogonal.
Let us make the following definition

Definition 5.17. DWT and IDWT kernel transformations.
The matrices H = PCm←φm and G = Pφm←Cm are called the DWT and

IDWT kernel transformations. The DWT and the IDWT can be expressed in
terms of these kernel transformations by

DWT = P(φm−1,ψm−1)←CmH and IDWT = GPCm←(φm−1,ψm−1),

respectively, where

• P(φm−1,ψm−1)←Cm is a permutation matrix which groups the even elements
first, then the odd elements,

• PCm←(φm−1,ψm−1) is a permutation matrix which places the first half at
the even indices, the last half at the odd indices.

Clearly, the kernel transformations H and G also invert each other. The point
of using the kernel transformation is that they compute the output sequentially,
similarly to how a filter does. Clearly also the kernel transformations are very
similar to a filter, and we will return to this in the next chapter.

At each level in a DWT, Vk is split into one low-resolution component from
Vk−1, and one detail component fromWk−1. We have illustrated this in figure 5.9,
where the arrows represent changes of coordinates.

The detail component from Wk−1 is not subject to further transformation.
This is seen in the figure since ψk−1 is a leaf node, i.e. there are no arrows going
out from ψm−1. In a similar illustration for the IDWT, the arrows would go the
opposite way.

The Discrete Wavelet Transform is the analogue in a wavelet setting to the
Discrete Fourier transform. When applying the DFT to a vector of length N ,
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φm
//

""

φm−1
//

##

φm−2
//

##

· · · // φ1
//

  

φ0

ψm−1 ψm−2 ψm−3 ψ0

Figure 5.9: Illustration of a wavelet transform.

one starts by viewing this vector as coordinates relative to the standard basis.
When applying the DWT to a vector of length N , one instead views the vector
as coordinates relative to the basis φm. This makes sense in light of Exercise 5.1.

What you should have learned in this section.

• Definition of resolution spaces (Vm), detail spaces (Wm), scaling function
(φ), and mother wavelet (ψ) for the wavelet based on piecewise constant
functions.

• The nesting of resolution spaces, and how one can project from one reso-
lution space onto a lower order resolution space, and onto its orthogonal
complement.

• The definition of the Discrete Wavelet Transform as a change of coordinates,
and how this can be written down from relations between basis functions.

Exercise 5.1: Samples are the coordinate vector
Show that the coordinate vector for f ∈ V0 in the basis {φ0,0, φ0,1, . . . , φ0,N−1}
is (f(0), f(1), . . . .f(N − 1)).

Exercise 5.2: Proposition 5.12
Prove Proposition 5.12.

Exercise 5.3: Computing projections
In this exercise we will consider the two projections from V1 onto V0 and W0.

a) Consider the projection projV0 of V1 onto V0. Use Lemma 5.11 to write down
the matrix for projV0 relative to the bases φ1 and φ0.

b) Similarly, use Lemma 5.11 to write down the matrix for projW0 : V1 →W0
relative to the bases φ1 and ψ0.
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Exercise 5.4: Computing projections 2
Consider again the projection projV0 of V1 onto V0.

a) Explain why projV0(φ) = φ and projV0(ψ) = 0.

b) Show that the matrix of projV0 relative to (φ0,ψ0) is given by the diagonal
matrix where the first half of the entries on the diagonal are 1, the second half 0.

c) Show in a similar way that the projection of V1 onto W0 has a matrix relative
to (φ0,ψ0) given by the diagonal matrix where the first half of the entries on
the diagonal are 0, the second half 1.

Exercise 5.5: Computing projections
Show that

projV0(f) =
N−1∑
n=0

(∫ n+1

n

f(t)dt
)
φ0,n(t) (5.22)

for any f . Show also that the first part of Proposition 5.12 follows from this.

Exercise 5.6: Finding the least squares error
Show that

‖
∑
n

(∫ n+1

n

f(t)dt
)
φ0,n(t)− f‖2 = 〈f, f〉 −

∑
n

(∫ n+1

n

f(t)dt
)2

.

This, together with the previous exercise, gives us an expression for the least-
squares error for f from V0 (at least after taking square roots). 2DO: Generalize
to m

Exercise 5.7: Projecting on W0

Show that

projW0(f) =
N−1∑
n=0

(∫ n+1/2

n

f(t)dt−
∫ n+1

n+1/2
f(t)dt

)
ψ0,n(t) (5.23)

for any f . Show also that the second part of Proposition 5.12 follows from this.
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Exercise 5.8: When N is odd
When N is odd, the (first stage in a) DWT is defined as the change of coordinates
from (φ1,0, φ1,1, . . . , φ1,N−1) to

(φ0,0, ψ0,0, φ0,1, ψ0,1, . . . , φ0,(N−1)/2, ψ(N−1)/2, φ0,(N+1)/2).

Since all functions are assumed to have period N , we have that

φ0,(N+1)/2 = 1√
2

(φ1,N−1 + φ1,N ) = 1√
2

(φ1,0 + φ1,N−1).

From this relation one can find the last column in the change of coordinate
matrix from φ0 to (φ1,ψ1), i.e. the IDWT matrix. In particular, when N is
odd, we see that the last column in the IDWT matrix circulates to the upper
right corner. In terms of coordinates, we thus have that

c1,0 = 1√
2

(c0,0 + w0,0 + c0,(N+1)/2) c1,N−1 = 1√
2
c0,(N+1)/2. (5.24)

a) If N = 3, the DWT matrix equals 1√
2

1&1 1
1 −1&0

0&0 1

, and the inverse of

this is 1√
2

1&1 −1
1 −1 −1

0&0 2

. Explain from this that, when N is odd, the DWT

matrix can be constructed by adding a column on the form 1√
2 (−1,−1, 0, . . . , 0, 2)

to the DWT matrices we had for N even (in the last row zeros are also added).
In terms of the coordinates, we thus have the additional formulas

c0,0 = 1√
2

(c1,0+c1,1−c1,N−1) w0,0 = 1√
2

(c1,0−c1,1−c1,N−1) c0,(N+1)/2 = 1√
2

2c1,N−1.

(5.25)

b) Explain that the DWT matrix is orthogonal if and only if N is even. Also
explain that it is only the last column which spoils the orthogonality.

5.3 Implementation of the DWT and examples
The DWT is straightforward to implement: One simply needs to iterate Equation
(5.19) in the compendium for m,m−1, . . . , 1. We will use a DWT kernel function
which takes as input the coordinates (cm,0, cm,1, . . .), and returns the coordinates
(cm−1,0, wm−1,0, cm−1,1, wm−1,1, . . .), i.e. computes one stage of the DWT. This is
a different order for the coordinates than that given by the basis (φm,ψm). The
reason is that it is easier with this new order to compute the DWT in-place. As
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an example, the kernel transformation for the Haar wavelet can be implemented
as follows. For simplicity this first version of the code assumes that N is even:

function x = DWTKernelHaar(x, symm, dual)
x = x/sqrt(2);
N = size(x, 1);
for k = 1:2:(N-1)

x(k:(k+1), :) = [x(k, :) + x(k+1, :); x(k, :) - x(k+1, :)];
end

Note that the code above accepts two-dimensional data, just as our function
FFTImpl did. Thus, the function may be applied simultaneously to all channels
in a sound. The mysterious parameters symm and dual will be explained in
Chapter 6. For now they have no role in the code, but will still appear several
places in the code in this section. When N is even, IDWTKernelHaar can be
implemented with the exact same code. When N is odd, we can use the results
from Exercise 5.8 (see also Exercise 5.24). The reason for using a general kernel
function will be apparent later, when we change to different types of wavelets.

Since the code above does not give the coordinates in the same order as
(φm,ψm), an implementation of the DWT needs to organize the DWT coefficients
in the right order, in addition to calling the kernel function for each stage, and
applying the kernel to the right coordinates. Clearly, the coordinates from φm
end up at indices k2m, where m represents the current stage, and k runs through
the indices. The following function, called DWTImpl, follows this procedure. It
takes as input the number of levels, nres, as well as the input vector x, runs
the DWT on x with the given number of resolutions, and returns the result:

function x = DWTImpl(x, nres, f, symmarg, dualarg)
symm = 1;
if nargin >= 4

symm = symmarg;
end
dual = 0;
if nargin >= 5

dual = dualarg;
end
N = size(x, 1);
for res=0:(nres - 1)

x(1:2^res:N, :) = f(x(1:2^res:N, :), symm, dual);
end
x = reorganize_coefficients(x, nres, 1);

Again note that the code is applied to all columns if the data is two-dimensional.
Note also that here the kernel function f is first invoked, one time for each
resolution. Finally, the coefficients are reorganized so that the φm coordinates
come first, followed by the coordinates from the different levels. We have provided
a function reorganize_coefficients which does this reorganization, and you
will be spared the details in this implementation. In Exercise 5.25 we go through
some aspects of this implementation. Note that, although the DWT requires this
reorganization, this reorganization may not be required in practice, as further
processing is needed, for which the coefficients can be accessed where they have
been placed after the in-place operations. Note also the two last arguments,
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symm and dual, which we have not commented on. We will return to these in
Chapter 6. Note that there is some code at the beginning which ensures that
these arguments have default values. This implementation is not recursive, as
the for-loop runs through the different stages. Inside the loop we perform the
change of coordinates from φk to (φk−1,ψk−1) by applying Equation (5.19).
This works on the first coordinates, since the coordinates from φk are stored
first in

(φk,ψk,ψk+1, · · · ,ψm−2,ψm−1).

Finally, the c-coordinates are stored before the w-coordinates. In this imple-
mentation, note that the first levels require the most multiplications, since the
latter levels leave an increasing part of the coordinates unchanged. Note also
that the change of coordinates matrix is a very sparse matrix: At each level a
coordinate can be computed from only two of the other coordinates, so that
this matrix has only two nonzero elements in each row/column. The algorithm
clearly shows that there is no need to perform a full matrix multiplication to
perform the change of coordinates.

The corresponding function for the IDWT, called IDWTImpl, goes as follows:

function x = IDWTImpl(x, nres, f, symmarg, dualarg)
symm = 1;
if nargin >= 4

symm = symmarg;
end
dual = 0;
if nargin >= 5

dual = dualarg;
end
x = reorganize_coefficients(x, nres, 0);
N = size(x, 1);
for res = (nres - 1):(-1):0

x(1:2^res:N, :) = f(x(1:2^res:N, :), symm, dual);
end

Here the steps are simply performed in the reverse order, and by iterating
Equation (5.20). You may be puzzled by the names DWTKernelHaar and
IDWTKernelHaar. In the next sections we will consider other cases, where
the underlying function φ may be a different function, not necessarily piecewise
constant. It will turn out that much of the analysis we have done makes sense
for other functions φ as well, giving rise to other structures which we also will
refer to as wavelets. The wavelet resulting from piecewise constant functions
is thus simply one example out of many, and it is commonly referred to as the
Haar wavelet.

Let us round off this section with some important examples.

Example 5.18. Computing the DWT by hand.
In some cases, the DWT can be computed by hand, keeping in mind its

definition as a change of coordinates. As an example, consider the simple vector
x of length 210 = 1024 defined by

http://folk.uio.no/oyvindry/matinf2360/code/matlab/IDWTImpl.m
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xn =
{

1 for n < 512
0 for n ≥ 512,

and let us compute the 10-level DWT of this vector by first visualizing the
function with these coordinates. Since m = 10 here, we should view x as
coordinates in the basis φ10 of a function f(t) ∈ V10. This is f(t) =

∑511
n=0 φ10,n,

and since φ10,n is supported on [2−10n, 2−10(n+ 1)), the support of f has width
512× 2−10 = 1/2 (512 translates, each with width 2−10). Moreover, since φ10,n
is 210/2 = 25 = 32 on [2−10n, 2−10(n+ 1)) and 0 elsewhere, it is clear that

f(t) =
{

32 for 0 ≤ t < 1/2
0 for 0t ≥ 1/2.

This is by definition a function in V1: f must in fact be a multiplum of φ1,0, since
this also is supported on [0, 1/2). We can thus write f(t) = cφ1,0(t) for some
c. We can find c by setting t = 0. This gives that 32 = 21/2c (since f(0) = 32,
φ1,0(0) = 21/2), so that c = 32/

√
2. This means that f(t) = 32√

2φ1,0(t), f is in
V1, and with coordinates (32/

√
2, 0, . . . , 0) in φ1.

When we run a 10-level DWT we make a change of coordinates from φ10 to
(φ0,ψ0, · · · ,ψ9). The first 9 levels give us the coordinates in (φ1,ψ1,ψ2, . . . ,ψ9),
and these are (32/

√
2, 0, . . . , 0) from what we showed. It remains thus only to

perform the last level in the DWT, i.e. perform the change of coordinates from
φ1 to (φ0,ψ0). Since φ1,0 = 1√

2 (φ0,0 + ψ0,0), so that we get

f(t) = 32√
2
φ1,0(t) = 32√

2
1√
2

(φ0,0 + ψ0,0) = 16φ0,0 + 16ψ0,0.

From this we see that the coordinate vector of f in (φ0,ψ0, · · · ,ψ9), i.e. the
10-level DWT of x, is (16, 16, 0, 0, . . . , 0). Note that here V0 and W0 are both
1-dimensional, since V10 was assumed to be of dimension 210 (in particular,
N = 1).

It is straightforward to verify what we found using the algorithm above:

DWTImpl([ones(512,1); zeros(512,1)], 10, @DWTKernelHaar)

The reason why the method from this example worked was that the vector we
started with had a simple representation in the wavelet basis, actually it equaled
the coordinates of a basis function in φ1. Usually this is not the case, and our
only possibility then is to run the DWT on a computer.

Example 5.19. DWT and sound.
When you run a DWT you may be led to believe that coefficients from

the lower order resolution spaces may correspond to lower frequencies. This
sounds reasonable, since the functions φ(2mt − n) ∈ Vm change more quickly
than φ(t − n) ∈ V0. However, the functions φm,n do not correspond to pure
tones in the setting of wavelets. But we can still listen to sound from the
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different resolution spaces. In Exercise 5.19 you will be asked to implement
a function which runs an m-level DWT on the first samples of the sound file
castanets.wav, extracts the coefficients from the lower order resolution spaces
or the detail spaces, transforms the values back to sound samples with the
IDWT, and plays the result. When you listen to the result the sound is clearly
recognizable for lower values of m, but is degraded for higher values of m. The
explanation is that too much of the detail is omitted when you use a higher m.
To be more precise, when listening to the sound by throwing away everything
from the detail spaces W0,W1, . . . ,Wm−1, we are left with a 2−m share of the
data. Note that this procedure is mathematically not the same as setting some
DFT coefficients to zero, since the DWT does not operate on pure tones.

It is of interest to plot the samples of our test audio file castanets.wav, and
compare it with the first order DWT coefficients of the same samples. This is
shown in Figure 5.10. The first half part of the plot represents the low-resolution
approximation of the sound, the second half part represents the detail/error.
We see that the detail is quite significant in this case. This means that the first
order wavelet approximation does not give a very good approximation to the
sound. In the exercises we will experiment more on this.
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Figure 5.10: The 217 first sound samples (left) and the DWT coefficients (right)
of the sound castanets.wav.

It is also interesting to plot only the detail/error in the sound, for different
resolutions. For this, we must perform a DWT so that we get a representation
in the basis (φ0,ψ0,ψ1, . . . ,ψm−1), set the coefficients from V0 to zero, and
transform back with the IDWT. In figure 5.11 the error is shown for the test
audio file castanets.wav for m = 1, m = 2. This clearly shows that the error
is larger when two levels of the DWT are performed, as one would suspect. It is
also seen that the error is larger in the part of the file where there are bigger
variations. This also sounds reasonable.

The previous example illustrates that wavelets as well may be used to perform
operations on sound. As we will see later, however, our main application for
wavelets will be images, where they have found a more important role than
for sound. Images typically display variations which are less abrupt than the
ones found in sound. Just as the functions above had smaller errors in the
corresponding resolution spaces than the sound had, images are thus more suited
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Figure 5.11: The error (i.e. the contribution from W0 ⊕W1 ⊕ · · · ⊕Wm−1) in
the sound file castanets.wav, for m = 1 and m = 2, respectively.

for for use with wavelets. The main idea behind why wavelets are so useful
comes from the fact that the detail, i.e., wavelet coefficients corresponding to the
spaces Wk, are often very small. After a DWT one is therefore often left with a
couple of significant coefficients, while most of the coefficients are small. The
approximation from V0 can be viewed as a good approximation, even though
it contains much less information. This gives another reason why wavelets
are popular for images: Detailed images can be very large, but when they are
downloaded to a web browser, the browser can very early show a low-resolution of
the image, while waiting for the rest of the details in the image to be downloaded.
When we later look at how wavelets are applied to images, we will need to handle
one final hurdle, namely that images are two-dimensional.

Example 5.20. DWT on the samples of a mathematical function.
Above we plotted the DWT coefficients of a sound, as well as the detail/error.

We can also experiment with samples generated from a mathematical function.
Figure 5.12 plots the error for different functions, with N = 1024.

In these cases, we see that we require large m before the detail/error becomes
significant. We see also that there is no error for the square wave. The reason
is that the square wave is a piecewise constant function, so that it can be
represented exactly by the φ-functions. For the other functions, however, this is
not the case, so we here get an error.

Above we used the functions DWTImpl, IDWTImpl to plot the error. For the
functions we plotted in the previous example it is also possible to compute the
wavelet coefficients, which we previously have denoted by wm,n, exactly. You
will be asked to do this in exercises 5.21 and 5.22. The following example shows
the general procedure which can be used for this:

Example 5.21. Computing the wavelet coefficients.
Let us consider the function f(t) = 1− t/N . This function decreases linearly

from 1 to 0 on [0, N ], so that it is not piecewise constant, and does not lie in any
of the spaces Vm. We can instead consider projVmf ∈ Vm, and apply the DWT
to this. Let us compute the ψm-coordinates wm,n of projVmf in the orthonormal
basis (φ0,ψ0,ψ1, . . . ,ψm−1). The orthogonal decomposition theorem says that



CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES185

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.12: The error (i.e. the contribution from W0 ⊕W1 ⊕ · · · ⊕Wm−1) for
N = 1024 when f is a square wave, the linear function f(t) = 1− 2|1/2− t/N |,
and the trigonometric function f(t) = 1/2 + cos(2πt/N)/2, respectively. The
detail is indicated for m = 6 and m = 8.

wm,n = 〈f, ψm,n〉 =
∫ N

0
f(t)ψm,n(t)dt =

∫ N

0
(1− t/N)ψm,n(t)dt.

Using the definition of ψm,n we see that this can also be written as

2m/2
∫ N

0
(1− t/N)ψ(2mt− n)dt = 2m/2

(∫ N

0
ψ(2mt− n)dt−

∫ N

0

t

N
ψ(2mt− n)dt

)
.

Using Observation 5.14 we get that
∫ N

0 ψ(2mt− n)dt = 0, so that the first term
above vanishes. Moreover, ψm,n is nonzero only on [2−mn, 2−m(n+ 1)), and is 1
on [2−mn, 2−m(n+ 1/2)), and −1 on [2−m(n+ 1/2), 2−m(n+ 1)). We therefore
get
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wm,n = −2m/2

(∫ 2−m(n+1/2)

2−mn

t

N
dt−

∫ 2−m(n+1)

2−m(n+1/2)

t

N
dt

)

= −2m/2

([
t2

2N

]2−m(n+1/2)

2−mn
−
[
t2

2N

]2−m(n+1)

2−m(n+1/2)

)

= −2m/2
((

2−2m(n+ 1/2)2

2N − 2−2mn2

2N

)
−
(

2−2m(n+ 1)2

2N − 2−2m(n+ 1/2)2

2N

))
= −2m/2

(
−2−2mn2

2N + 2−2m(n+ 1/2)2

N
− 2−2m(n+ 1)2

2N

)
= −2−3m/2

2N
(
−n2 + 2(n+ 1/2)2 − (n+ 1)2) = 1

N22+3m/2 .

We see in particular that wm,n → 0 when m→∞. Also, all coordinates were
equal, i.e. wm,0 = wm,1 = wm,2 = · · · . It is not too hard to convince oneself
that this equality has to do with the fact that f is linear. We see also that
there were a lot of computations even in this very simple example. For most
functions we therefore usually do not compute wm,n symbolically, but instead
run implementations like DWTImpl, IDWTImpl on a computer.

What you should have learned in this section.

• Definition of the m-level Discrete Wavelet Transform.

• Implementation of the Haar wavelet transform and its inverse.

• Experimentation with wavelets on sound.

Exercise 5.9: Implement IDWT for The Haar wavelet
Write a function IDWTKernelHaar which uses the formulas (5.24) in the com-
pendium to implement the IDWT, similarly to how the function DWTKernelHaar
implemented the DWT using the formulas (5.25) in the compendium.

Exercise 5.10: Computing projections
Generalize Exercise 5.4 to the projections from Vm+1 onto Vm and Wm.

Exercise 5.11: Scaling a function
Show that f(t) ∈ Vm if and only if g(t) = f(2t) ∈ Vm+1.
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Exercise 5.12: Direct sums
Let C1, C2 . . . , Cn be independent vector spaces, and let Ti : Ci → Ci be linear
transformations. The direct sum of T1, T2,. . . ,Tn, written as T1 ⊕ T2 ⊕ . . .⊕ Tn,
denotes the linear transformation from C1 ⊕ C2 ⊕ · · · ⊕ Cn to itself defined by

T1 ⊕ T2 ⊕ . . .⊕ Tn(c1 + c2 + · · ·+ cn) = T1(c1) + T2(c2) + · · ·+ Tn(cn)

when c1 ∈ C1, c2 ∈ C2, . . . , cn ∈ Cn. Similarly, when A1, A2, . . . , An are square
matrices, A1 ⊕ A2 ⊕ · · · ⊕ An is defined as the block matrix where the blocks
along the diagonal are A1, A2, . . . , An, and where all other blocks are 0. Show
that, if Bi is a basis for Ci then

[T1 ⊕ T2 ⊕ . . .⊕ Tn](B1,B2,...,Bn) = [T1]B1 ⊕ [T2]B2 ⊕ · · · ⊕ [Tn]Bn ,

Here two new concepts are used: a direct sum of matrices, and a direct sum of
linear transformations.

Exercise 5.13: Eigenvectors of direct sums
Assume that T1 and T2 are matrices, and that the eigenvalues of T1 are equal
to those of T2. What are the eigenvalues of T1 ⊕ T2? Can you express the
eigenvectors of T1 ⊕ T2 in terms of those of T1 and T2?

Exercise 5.14: Invertibility of direct sums
Assume that A and B are square matrices which are invertible. Show that A⊕B
is invertible, and that (A⊕B)−1 = A−1 ⊕B−1.

Exercise 5.15: Multiplying direct sums
Let A,B,C,D be square matrices of the same dimensions. Show that (A ⊕
B)(C ⊕D) = (AC)⊕ (BD).

Exercise 5.16: Finding N

Assume that you run an m-level DWT on a vector of length r. What value of
N does this correspond to? Note that an m-level DWT performs a change of
coordinates from φm to (φ0,ψ0,ψ1, . . . ,ψm−2,ψm−1).

Exercise 5.17: Different DWTs for similar vectors
In Figure 5.13 we have plotted the DWT’s of two vectors x1 and x2. In both
vectors we have 16 ones followed by 16 zeros, and this pattern repeats cyclically
so that the length of both vectors is 256. The only difference is that the second
vector is obtained by delaying the first vector with one element.
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Figure 5.13: 2 vectors x1 and x2 which seem equal, but where the DWT’s are
very different.

You see that the two DWT’s are very different: For the first vector we see
that there is much detail present (the second part of the plot), while for the
second vector there is no detail present. Attempt to explain why this is the case.
Based on your answer, also attempt to explain what can happen if you change
the point of discontinuity for the piecewise constant function in Figure 5.20(a)
to something else.

Exercise 5.18: Plotting the DWT on a sound
Run a 2-level DWT on the first 217 sound samples of the audio file castanets.wav,
and plot the values of the resulting DWT-coefficients. Compare the values of
the coefficients from V0 with those from W0 and W1.

Exercise 5.19: Zeroing out DWT coefficients
In this exercise we will experiment with applying an m-level DWT to a sound
file.

a) Write a function playDWT which takes m, a DWT kernel f, an IDWT kernel
invf, and a variable lowres as input, and

• reads the audio file castanets.wav,

• performs an m-level DWT to the first 217 sound samples of x using the
function DWTImpl with DWT kernel f,

• sets all wavelet coefficients representing detail to zero if lowres is true
(i.e. keep only the coordinates from φ0 in the basis (φ0,ψ0,ψ1, . . . ,ψm−2,ψm−1)),

• sets all low-resolution coefficients to zero if lowres is false (i.e. zero out
the coordinates from φ0 and keep the others),

• performs an IDWT on the resulting coefficients using the function IDWTImpl
with IDWT kernel invf,
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• plays the resulting sound.

b) Do the sound samples returned by playDWT lie in [−1, 1]?

c) Run the function playDWT with DWTKernelHaar and IDWTKernelHaar as
inputs, and for different values of m, with ‘lowres‘ set to true (i.e. with the
low-resolution approximation chosen). For which m can you hear that the sound
gets degraded? How does it get degraded? Compare with what you heard
through the function playDFT in Example 2.27, where you performed a DFT on
the sound sample instead, and set some of the DFT coefficients to zero.

d) Repeat the listening experiment from c., but this time with lowres set to
false (i.e. keep only the detail from W0, W1, . . .. What kind of sound do you
hear? Can you recognize the original sound in what you hear?

Exercise 5.20: Construct a sound
Attempt to construct a (nonzero) sound where the function playDWT form the
previous exercise does not change the sound for m = 1, 2.

Exercise 5.21: Exact computation of wavelet coefficients 1
Compute the wavelet detail coefficients analytically for the functions in Exam-
ple 5.20, i.e. compute the quantities wm,n =

∫ N
0 f(t)ψm,n(t)dt similarly to how

this was done in Example 5.21.

Exercise 5.22: Exact compution of wavelet coefficients 2

Compute the wavelet detail coefficients analytically for the functions f(t) =
(
t
N

)k,
i.e. compute the quantities wm,n =

∫ N
0
(
t
N

)k
ψm,n(t)dt similarly to how this was

done in Example 5.21. How do these compare with the coefficients from the
Exercise 5.21?

Exercise 5.23: Computing the DWT of a simple vector
Suppose that we have the vector x with length 210 = 1024, defined by xn = 1
for n even, xn = −1 for n odd. What will be the result if you run a 10-level
DWT on x? Use the function DWTImpl to verify what you have found.

Hint. We defined ψ by ψ(t) = (φ1,0(t)− φ1,1(t))/
√

2. From this connection it
follows that ψ9,n = (φ10,2n−φ10,2n+1)/

√
2, and thus φ10,2n−φ10,2n+1 =

√
2ψ9,n.

Try to couple this identity with the alternating sign you see in x.
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Exercise 5.24: The Haar wavelet when N is odd
Use the results from Exercise 5.8 to rewrite the implementations DWTKernelHaar
and IDWTKernelHaar so that they also work in the case when N is odd.

Exercise 5.25: in-place DWT
Show that the coordinates in φm after an in-place m-level DWT end up at
indices k2m, k = 0, 1, 2, . . .. Show similarly that the coordinates in ψm after an
in-place m-level DWT end up at indices 2m−1 + k2m, k = 0, 1, 2, . . .. Find these
indices in the code for the function reorganize_coefficients.

5.4 A wavelet based on piecewise linear func-
tions

Unfortutately, piecewise constant functions are too simple to provide good
approximations. In this section we are going to extend the construction of
wavelets to piecewise linear functions. The advantage is that piecewise linear
functions are better for approximating smooth functions and data than piecewise
constants, which should translate into smaller components (errors) in the detail
spaces in many practical situations. As an example, this would be useful if we
are interested in compression. In this new setting it turns out that we loose the
orthonormality we had for the Haar wavelet. On the other hand, we will see
that the new scaling functions and mother wavelets are symmetric functions.
We will later see that this implies that the corresponding DWT and IDWT have
simple implementations with higher precision. Our experience from deriving
Haar wavelets will guide us in the construction of piecewise linear wavelets. The
first task is to define the new resolution spaces.

Definition 5.22. Resolution spaces of piecewise linear functions.
The space Vm is the subspace of continuous functions on R which are periodic

with period N , and linear on each subinterval of the form [n2−m, (n+ 1)2−m).
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Figure 5.14: A piecewise linear function and the two functions φ(t) and φ(t− 3).
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Any f ∈ Vm is uniquely determined by its values in the points {2−mn}2mN−1
n=0 .

The linear mapping which sends f to these samples is thus an isomorphism from
Vm onto RN2m , so that the dimension of Vm is N2m. The lft plot in Figure 5.14
shows an example of a piecewise linear function in V0 on the interval [0, 10]. We
note that a piecewise linear function in V0 is completely determined by its value
at the integers, so the functions that are 1 at one integer and 0 at all others are
particularly simple and therefore interesting, see the right plot in Figure 5.14.
These simple functions are all translates of each other and can therefore be built
from one scaling function, as is required for a multiresolution analysis.

Lemma 5.23. The function φ.
Let the function φ be defined by

φ(t) =
{

1− |t|, if −1 ≤ t ≤ 1;
0, otherwise;

(5.26)

and for any m ≥ 0 set

φm,n(t) = 2m/2φ(2mt− n) for n = 0, 1, . . . , 2mN − 1,

and φm = {φm,n}2mN−1
n=0 . φm is a basis for Vm, and φ0,n(t) is the function in V0

with smallest support that is nonzero at t = n.

Proof. It is clear that φm,n ∈ Vm, and

φm,n′(n2−m) = 2m/2φ(2m(2−mn)− n′) = 2m/2φ(n− n′).

Since φ is zero at all nonzero integers, and φ(0) = 1, we see that φm,n′(n2−m) =
2m/2 when n′ = n, and 0 if n′ 6= n. Let Lm : Vm → RN2m be the isomorphism
mentioned above which sends f ∈ Vm to the samples in the points {2−mn}2mN−1

n=0 .
Our calculation shows that Lm(φm,n) = 2m/2en. Since Lm is an isomorphism it
follows that φm = {φm,n}2mN−1

n=0 is a basis for Vm.
Suppose that the function g ∈ V0 has smaller support than φ0,n, but is

nonzero at t = n. We must have that L0(g) = cen for some c, since g is zero on
the integers different from n. But then g is a multiple of φ0,n, so that it is the
function in V0 with smallest support that is nonzero at t = n.

The function φ and its translates and dilates are often referred to as hat
functions for obvious reasons. Note that the new function φ is nonzero for small
negative x-values, contrary to the φ we defined in Chapter 5. If we plotted the
function on [0, N), we would see the nonzero parts at the beginning and end of
this interval, due to the period N , but we will mostly plot on an interval around
zero, since such an interval captures the entire support of the function. Also for
the piecewise linear wavelet the coordinates of a basis function is given by the
samples:

Lemma 5.24. Writing in terms of the samples.
A function f ∈ Vm may be written as
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f(t) =
2mN−1∑
n=0

f(n/2m)2−m/2φm,n(t). (5.27)

An essential property also here is that the spaces are nested.

Lemma 5.25. Resolution spaces are nested.
The piecewise linear resolution spaces are nested,

V0 ⊂ V1 ⊂ · · · ⊂ Vm ⊂ · · · .

Proof. We only need to prove that V0 ⊂ V1 since the other inclusions are similar.
But this is immediate since any function in V0 is continuous, and linear on any
subinterval in the form [n/2, (n+ 1)/2).

In the piecewise constant case, we saw in Lemma 5.5 that the scaling functions
were automatically orthogonal since their supports did not overlap. This is not
the case in the linear case, but we could orthogonalise the basis φm with the
Gram-Schmidt process from linear algebra. The disadvantage is that we lose the
nice local behaviour of the scaling functions and end up with basis functions
that are nonzero over all of [0, N ]. And for most applications, orthogonality is
not essential; we just need a basis. The next step in the derivation of wavelets is
to find formulas that let us express a function given in the basis φ0 for V0 in
terms of the basis φ1 for V1.

Lemma 5.26. The two-scale equation.
The functions φ0,n satisfy the relation

φ0,n = 1√
2

(
1
2φ1,2n−1 + φ1,2n + 1

2φ1,2n+1

)
. (5.28)

Proof. Since φ0,n is in V0 it may be expressed in the basis φ1 with formula
(5.27),

φ0,n(t) = 2−1/2
2N−1∑
k=0

φ0,n(k/2)φ1,k(t).

The relation (5.28) now follows since

φ0,n
(
(2n− 1)/2

)
= φ0,n

(
(2n+ 1)/2

)
= 1/2, φ0,n(2n/2) = 1,

and φ0,n(k/2) = 0 for all other values of k.

The relationship given by Equation (5.28) is shown in Figure 5.15.



CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES193

1.0 0.5 0.0 0.5 1.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 5.15: How φ(t) can be decomposed as a linear combination of φ1,−1,
φ1,0, and φ1,1.

5.4.1 Detail spaces and wavelets
The next step in our derivation of wavelets for piecewise linear functions is
the definition of the detail spaces. We need to determine a space W0 that is
linearly independent from V0, and so that V1 = V0⊕W0. In the case of piecewise
constant functions we started with a function g1 in V1, computed the least
squares approximation g0 in V0, and then defined the error function e0 = g1− g0,
with e0 ∈W0 and W0 as the orthogonal complement of V0 in V1.

It turns out that this strategy is less appealing in the case of piecewise linear
functions. The reason is that the functions φ0,n are not orthogonal anymore
(see Exercise 5.26). Due to this we have no simple, orthogonal basis for the
set of piecewise linear functions, so that the orthogonal decomposition theorem
fails to give us the projection onto V0 in a simple way. It is therefore no reason
to use the orthogonal complement of V0 in V1 as our error space, since it is
hard to write a piecewise linear function as a sum of two other piecewise linear
functions which are orthogonal. Instead of using projections to find low-resolution
approximations, and orthogonal complements to find error functions, we will
attempt the following simple approximation method:

Definition 5.27. Alternative projection.
Let g1 be a function in V1 given by

g1 =
2N−1∑
n=0

c1,nφ1,n. (5.29)

The approximation g0 = P (g1) in V0 is defined as the unique function in V0
which has the same values as g1 at the integers, i.e.

g0(n) = g1(n), n = 0, 1, . . . , N − 1. (5.30)
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It is easy to show that P (g1) actually is different from the projection of g1
onto V0: If g1 = φ1,1, then g1 is zero at the integers, and then clearly P (g1) = 0.
But in Exercise 5.27 you will be asked to compute the projection onto V0 using
different means than the orthogonal decomposition theorem, and the result will
be seen to be nonzero. It is also very easy to see that the coordinates of g0 in φ0
can be obtained by dropping every second coordinate of g0 in φ1. To be more
precise, the following holds:

Lemma 5.28. Expression for the alternative projection.
We have that

P (φ1,n) =
{√

2φ0,n/2, if n is an even integer;
0, otherwise.

Once this approximation method is determined, it is straightforward to
determine the detail space as the space of error functions.

Lemma 5.29. Resolution spaces.
Define

W0 = {f ∈ V1 | f(n) = 0, for n = 0, 1, . . . , N − 1},

and

ψ(t) = 1√
2
φ1,1(t) ψm,n(t) = 2m/2ψ(2mt− n). (5.31)

Suppose that g1 ∈ V1 and that g0 = P (g1). Then

• the error e0 = g1 − g0 lies in W0,

• ψ0 = {ψ0,n}N−1
n=0 is a basis for W0.

• V0 and W0 are linearly independent, and V1 = V0 ⊕W0.

Proof. Since g0(n) = g1(n) for all integers n, e0(n) = (g1 − g0)(n) = 0, so that
e0 ∈W0. This proves the first statement.

For the second statement, note first that

ψ0,n(t) = ψ(t− n) = 1√
2
φ1,1(t− n) = φ(2(t− n)− 1) = φ(2t− (2n+ 1)) = 1√

2
φ1,2n+1(t).

(5.32)

ψ0 is thus a linearly independent set of dimension N , since it corresponds to a
subset of φ1. Since φ1,2n+1 is nonzero only on (n, n+ 1), it follows that all of ψ0
lies in W0. Clearly then ψ0 is also a basis for W0, since W0 also has dimension
N (its image under L1 consists of points where every second component is zero).
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Consider finally a linear combination from φ0 and ψ0 which gives zero:

N−1∑
n=0

anφ0,n +
N−1∑
n=0

bnψ0,n = 0.

If we evaluate this at t = k, we see that ψ0,n(k) = 0, φ0,n(k) = 0 when n 6= k,
and φ0,k(k) = 1. When we evaluate at k we thus get ak, which must be zero. If
we then evaluate at t = k + 1/2 we get in a similar way that all bn = 0, and it
follows that V0 and W0 are linearly independent. That V1 = V0 ⊕W0 follows
from the fact that V1 has dimension 2N , and V0 and W0 both have dimension
N .

We can define Wm in a similar way for m > 0, and generalize the lemma
to Wm. We can thus state the following analog to Theorem 5.16 for writing
gm ∈ Vm as a sum of a low-resolution approximation gm−1 ∈ Vm−1, and a
detail/error component em−1 ∈Wm−1.

Theorem 5.30. Decomposing Vm.
The space Vm can be decomposed as the direct sum Vm = Vm−1 ⊕Wm−1

where

Wm−1 = {f ∈ Vm | f(n/2m−1) = 0, for n = 0, 1, . . . , 2m−1N − 1}.

Wm has the base ψm = {ψm,n}2mN−1
n=0 , and Vm has the two bases

φm = {φm,n}2mN−1
n=0 , and (φm−1,ψm−1) =

(
{φm−1,n}2m−1N−1

n=0 , {ψm−1,n}2m−1N−1
n=0

)
.

With this result we can define the DWT and the IDWT with their stages
as before, but the matrices thesemselves are now different. For the IDWT
(i.e. Pφ1←(φ0,ψ0)), the columns in the matrix can be found from equations (5.28)
and (5.32), i.e.

φ0,n = 1√
2

(
1
2φ1,2n−1 + φ1,2n + 1

2φ1,2n+1

)
ψ0,n = 1√

2
φ1,2n+1. (5.33)

For the DWT we can find the columns in the matrix by rewriting these equations
to

1√
2
φ1,2n = φ0,n −

1
2
√

2
φ1,2n−1 −

1
2
√

2
φ1,2n+1

1√
2
φ1,2n+1 = ψ0,n,
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so that

φ1,2n =
√

2φ0,n −
1
2φ1,2n−1 −

1
2φ1,2n+1 = −

√
2

2 ψ0,n−1 +
√

2φ0,n −
√

2
2 ψ0,n

(5.34)
φ1,2n+1 =

√
2ψ0,n. (5.35)

Example 5.31. DWT on sound.
Later we will write algorithms which performs the DWT/IDWT for the

piecewise linear wavelet, similarly to how we implemented the Haar wavelet
transformation in the previous chapter. This gives us new kernel transformations,
which we will call DWTKernelpwl0, IDWTKernelpwl0 (The 0 stands for 0 vanishing
moments. We defined vanishing moments after Observation 5.14. We will have
more to say about vanishing moments later). Using these new kernels, let us plot
the detail/error in the test audio file castanets.wav for different resolutions, as
we did in Example 5.19. The result is shown in Figure 5.16. When comparing
with Figure 5.11 we see much of the same, but it seems here that the error is
bigger than before. In the next section we will try to explain why this is the
case, and construct another wavelet based on piecewise linear functions which
remedies this.
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Figure 5.16: The error (i.e. the contribution from W0 ⊕W1 ⊕ · · · ⊕Wm−1) in
the sound file castanets.wav, for m = 1 and m = 2, respectively.

Example 5.32. DWT on the samples of a mathematical function.
Let us also repeat Exercise 5.20, where we plotted the detail/error at different

resolutions, for the samples of a mathematical function. Figure 5.17 shows the
new plot.

With the square wave we see now that there is an error. The reason is that
a piecewise constant function can not be represented exactly by piecewise linear
functions, due to discontinuity. For the second function we see that there is no
error. The reason is that this function is piecewise linear, so there is no error
when we represent the function from the space V0. With the third function,
hoewever, we see an error.
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Figure 5.17: The error (i.e. the contribution from W0 ⊕W1 ⊕ · · · ⊕Wm−1) for
N = 1025 when f is a square wave, the linear function f(t) = 1− 2|1/2− t/N |,
and the trigonometric function f(t) = 1/2 + cos(2πt/N)/2, respectivey. The
detail is indicated for m = 6 and m = 8.

What you should have learned in this section.

• Definition of scaling function, mother wavelet, resolution spaces, and detail
spaces for the wavelet of piecewise linear functions.

Exercise 5.26: The sample values are coordinates
Show that, for f ∈ V0 we have that [f ]φ0 = (f(0), f(1), . . . , f(N − 1)). This
generalizes the result for piecewise constant functions.

Exercise 5.27: Computing projections
In this exercise we will show how the projection of φ1,1 onto V0 can be computed.
We will see from this that it is nonzero, and that its support is the entire [0, N ].
Let f = projV0φ1,1, and let xn = f(n) for 0 ≤ n < N . This means that, on
(n, n+ 1), f(t) = xn + (xn+1 − xn)(t− n).

a) Show that
∫ n+1
n

f(t)2dt = (x2
n + xnxn+1 + x2

n+1)/3.
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b) Show that

∫ 1/2

0
(x0 + (x1 − x0)t)φ1,1(t)dt = 2

√
2
(

1
12x0 + 1

24x1

)
∫ 1

1/2
(x0 + (x1 − x0)t)φ1,1(t)dt = 2

√
2
(

1
24x0 + 1

12x1

)
.

c) Use the fact that

∫ N

0
(φ1,1(t)−

N−1∑
n=0

xnφ0,n(t))2dt

=
∫ 1

0
φ1,1(t)2dt− 2

∫ 1/2

0
(x0 + (x1 − x0)t)φ1,1(t)dt− 2

∫ 1

1/2
(x0 + (x1 − x0)t)φ1,1(t)dt

+
N−1∑
n=0

∫ n+1

n

(xn + (xn−1 − xn)t)2dt

and a) and b) to find an expression for ‖φ1,1(t)−
∑N−1
n=0 xnφ0,n(t)‖2.

d) To find the minimum least squares error, we can set the gradient of the
expression in c. to zero, and thus find the expression for the projection of φ1,1
onto V0. Show that the values {xn}N−1

n=0 can be found by solving the equation
Sx = b, where S = 1

3{1, 4, 1} is an N ×N symmetric filter, and b is the vector
with components b0 = b1 =

√
2/2, and bk = 0 for k ≥ 2.

e) Solve the system in d. for some values of N to verify that the projection of
φ1,1 onto V0 is nonzero, and that its support covers the entire [0, N ].

Exercise 5.28: Non-orthogonality for the piecewise linear
wavelet
Show that

〈φ0,n, φ0,n〉 = 2
3 〈φ0,n, φ0,n±1〉 = 1

6 〈φ0,n, φ0,n±k〉 = 0 for k > 1.

As a consequence, the {φ0,n}n are neither orthogonal, nor have norm 1.

Exercise 5.29: Wavelets based on polynomials
The convolution of two functions defined on (−∞,∞) is defined by

(f ∗ g)(x) =
∫ ∞
−∞

f(t)g(x− t)dt.
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Show that we can obtain the piecewise linear φ we have defined as φ = χ[−1/2,1/2)∗
χ[−1/2,1/2) (recall that χ[−1/2,1/2) is the function which is 1 on [−1/2, 1/2) and
0 elsewhere). This gives us a nice connection between the piecewise constant
scaling function (which is similar to χ[−1/2,1/2)) and the piecewise linear scaling
function in terms of convolution.

5.5 Alternative wavelet based on piecewise lin-
ear functions

For the scaling function used for piecewise linear functions, {φ(t−n)}0≤n<N were
not orthogonal anymore, contrary to the case for piecewise constant functions. We
were still able to construct what we could call resolution spaces and detail spaces.
We also mentioned that having many vanishing moments is desirable for a mother
wavelet, and that the scaling function used for piecewise constant functions had
one vanishing moment. It is easily checked, however, that the mother wavelet
we now introduced for piecewise linear functions (i.e. ψ(t) = 1√

2φ1,1(t)) has no
vanishing moments. Therefore, this is not a very good choice of mother wavelet.
We will attempt the following adjustment strategy to construct an alternative
mother wavelet ψ̂ which has two vanishing moments, i.e. one more than the Haar
wavelet.

Idea 5.33. Adjusting the wavelet construction.
Adjust the wavelet construction in Theorem 5.30 to

ψ̂ = ψ − αφ0,0 − βφ0,1 (5.36)

and choose α, β so that ∫ N

0
ψ̂(t) dt =

∫ N

0
tψ̂(t) dt = 0, (5.37)

and define ψm = {ψ̂m,n}N2m−1
n=0 , and Wm as the space spanned by ψm.

We thus have two free variables α, β in Equation (5.36), to enforce the two
conditions in Equation (5.37). In Exercise 5.30 you are taken through the details
of solving this as two linear equations in the two unknowns α and β, and this
gives the following result:

Lemma 5.34. The new function ψ.
The function

ψ̂(t) = ψ(t)− 1
4
(
φ0,0(t) + φ0,1(t)

)
(5.38)

satisfies the conditions (5.37).

Using Equation (5.28), which stated that
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φ0,n = 1√
2

(
1
2φ1,2n−1 + φ1,2n + 1

2φ1,2n+1

)
, (5.39)

we get

ψ̂0,n = ψ0,n −
1
4
(
φ0,n + φ0,n+1

)
= 1√

2
φ1,2n+1 −

1
4

1√
2

(
1
2φ1,2n−1 + φ1,2n + 1

2φ1,2n+1

)
− 1

4
1√
2

(
1
2φ1,2n+1 + φ1,2n+2 + 1

2φ1,2n+3

)
= 1√

2

(
−1

8φ1,2n−1 −
1
4φ1,2n + 3

4φ1,2n+1 −
1
4φ1,2n+2 −

1
8φ1,2n+3

)
(5.40)

Note that what we did here is equivalent to finding the coordinates of ψ̂ in the
basis φ1: Equation (5.38) says that

[ψ̂](φ0,ψ0) = (−1/4,−1/4, 0, . . . , 0)⊕ (1, 0, . . . , 0). (5.41)

Since the IDWT is the change of coordinates from (φ0,ψ0) to φ1, we could also
have computed [ψ̂]φ1 by taking the IDWT of (−1/4,−1/4, 0, . . . , 0)⊕(1, 0, . . . , 0).
In the next section we will consider more general implementations of the DWT
and the IDWT, which we thus can use instead of performing the computation
above.

In summary we have

φ0,n = 1√
2

(1
2φ1,2n−1 + φ1,2n + 1

2φ1,2n+1)

ψ̂0,n = 1√
2

(
−1

8φ1,2n−1 −
1
4φ1,2n + 3

4φ1,2n+1 −
1
4φ1,2n+2 −

1
8φ1,2n+3

)
,

(5.42)

which gives us the change of coordinate matrix Pφ1←(φ0,ψ0). The new function
ψ̂ is plotted in Figure 5.18.

We see that ψ̂ has support (−1, 2), and consist of four linear segments glued
together. This is in contrast with the old ψ, which was simpler in that it had the
shorther support (0, 1), and consisted of only two linear segments glued together.
It may therefore seem surprising that ψ̂ is better suited for approximating
functions than ψ. This is indeed a more complex fact, which may not be deduced
by simply looking at plots of the functions.

Example 5.35. DWT on sound.
Also in this case we will see later how to write kernel transformations

for the alternative piecewise wavelet. We will call these DWTKernelpwl2 and
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Figure 5.18: The function ψ̂ we constructed as an alternative wavelet for
piecewise linear functions.

IDWTKernelpwl2 (2 stands for 2 vanishing moments). Using these we can plot
the detail/error in the test audio file castanets.wav for different resolutions
for our alternative wavelet, as we did in Example 5.19. The result is shown in
Figure 5.19. Again, when comparing with Figure 5.11 we see much of the same.
It is difficult to see an improvement from this figure. However, this figure also
clearly shows a smaller error than the wavelet of the preceding section. A partial
explanation is that the wavelet we now have constructed has two vanishing
moments, while the previous one had not.
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Figure 5.19: The error (i.e. the contribution from W0 ⊕W1 ⊕ · · · ⊕Wm−1) in
the sound file castanets.wav, for m = 1 and m = 2, respectively.

Example 5.36. DWT on the samples of a mathematical function.
Let us also repeat Exercise 5.20 for our alternative wavelet, where we plotted

the detail/error at different resolutions, for the samples of a mathematical
function. Figure 5.20 shows the new plot.

Again for the square wave there is an error, which seems to be slightly lower
than for the previous wavelet. For the second function we see that there is no
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Figure 5.20: The error (i.e. the contribution from W0 ⊕W1 ⊕ · · · ⊕Wm−1) for
N = 1025 when f is a square wave, the linear function f(t) = 1− 2|1/2− t/N |,
and the trigonometric function f(t) = 1/2 + cos(2πt/N)/2, respectivey. The
detail is indicated for m = 6 and m = 8.

error, as before. The reason is the same as before, since the function is piecewise
linear. With the third function there is an error. The error seems to be slightly
lower than for the previous wavelet, which fits well with tha fact that this new
wavelet has a bigger number of vanishing moments.

Example 5.37. Playing sound.
In Exercise 5.19 we implemented a function playDWT which could play the

low resolution part in a sound, and we tested this for the Haar wavelet. Let
us now also test this for the two piecewise linear wavelets we have constructed,
and the new wavelet kernels we have implemented. Code which plays the low
resolution part for all three wavelet kernels can look as follows:

playDWT(m, @DWTKernelHaar, @IDWTKernelHaar, 1);
playDWT(m, @DWTKernelpwl0, @IDWTKernelpwl0, 1);
playDWT(m, @DWTKernelpwl2, @IDWTKernelpwl2, 1);

The first call to playDWT plays the low-resolution part using the Haar wavelet.
The code then moves on to the two piecewise linear wavelets. We clearly hear
different sounds when we run this code for different m, so that the three wavelets
act differently on the sound (if you want, you can here write a for-loop around
the code, running through differentm). Perhaps the alternative piecewise wavelet
gives a bit better quality.
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What you should have learned in this section.

• How one alters the mother wavelet for piecewise linear functions, in order
to add a vanishing moment.

Exercise 5.30: Two vanishing moments
In this exercise we will show that there is a unique function on the form fiven by
Equation (5.36) in the compendium which has two vanishing moments.

a) Show that, when ψ̂ is defined by Equation (5.36) in the compendium, we
have that

ψ̂(t) =



−αt− α for − 1 ≤ t < 0
(2 + α− β)t− α for 0 ≤ t < 1/2
(α− β − 2)t− α+ 2 for 1/2 ≤ t < 1
βt− 2β for 1 ≤ t < 2
0 for all other t

b) Show that

∫ N

0
ψ̂(t)dt = 1

2 − α− β,
∫ N

0
tψ̂(t)dt = 1

4 − β.

c) Explain why there is a unique function on the form given by Equation (5.36)
in the compendium which has two vanishing moments, and that this function is
given by Equation (5.38) in the compendium.

Exercise 5.31: Implement finding ψ with vanishing mo-
ments
In the previous exercise we ended up with a lot of calculations to find α, β in
Equation (5.36) in the compendium. Let us try to make a program which does
this for us, and which also makes us able to generalize the result.

a) Define

ak =
∫ 1

−1
tk(1− |t|)dt, bk =

∫ 2

0
tk(1− |t− 1|)dt, ek =

∫ 1

0
tk(1− 2|t− 1/2|)dt,

for k ≥ 0. Explain why finding α, β so that we have two vanishing moments
in Equation (5.36) in the compendium is equivalent to solving the following
equation:
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(
a0 b0
a1 b1

)(
α
β

)
=
(
e0
e1

)
Write a program which sets up and solves this system of equations, and use this
program to verify the values for α, β we previously have found.

Hint. you can integrate functions in Matlab with the function quad. As an
example, the function φ(t), which is nonzero only on [−1, 1], can be integrated
as follows:

quad(@(t)t.^k.*(1-abs(t)),-1,1)

b) The procedure where we set up a matrix equation in a) allows for generaliza-
tion to more vanishing moments. Define

ψ̂ = ψ0,0 − αφ0,0 − βφ0,1 − γφ0,−1 − δφ0,2. (5.43)

We would like to choose α, β, γ, δ so that we have 4 vanishing moments. Define
also

gk =
∫ 0

−2
tk(1− |t+ 1|)dt, dk =

∫ 3

1
tk(1− |t− 2|)dt

for k ≥ 0. Show that α, β, γ, δ must solve the equation
a0 b0 g0 d0
a1 b1 g1 d1
a2 b2 g2 d2
a3 b3 g3 d3



α
β
γ
δ

 =


e0
e1
e2
e3

 ,

and solve this with your computer.

c) Plot the function defined by (5.43) in the compendium, which you found in
b.

Hint. If t is the vector of t-values, and you write

(t >= 0).*(t <= 1).*(1-2*abs(t-0.5))

you get the points φ1,1(t).

d) Explain why the coordinate vector of ψ̂ in the basis (φ0,ψ0) is

[ψ̂](φ0,ψ0) = (−α,−β,−δ, 0, . . . , 0− γ)⊕ (1, 0, . . . , 0).
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Hint. You can also compare with Equation (5.41) in the compendium here.
The placement of −γ may seem a bit strange here, and has to with that φ0,−1 is
not one of the basis functions {φ0,n}N−1

n=0 . However, we have that φ0,−1 = φ0,N−1,
i.e. φ(t+ 1) = φ(t−N + 1), since we always assume that the functions we work
with have period N .

e) Sketch a more general procedure than the one you found in b., which can be
used to find wavelet bases where we have even more vanishing moments.

Exercise 5.32: ψ for the Haar wavelet with two vanishing
moments
Let φ(t) be the function we used when we defined the Haar-wavelet.

a) Compute projV0(f(t)), where f(t) = t2, and where f is defined on [0, N).

b) Find constants α, β so that ψ̂(t) = ψ(t)−αφ0,0(t)−βφ0,1(t) has two vanishing
moments, i.e. so that 〈ψ̂, 1〉 = 0, and 〈ψ̂, t〉 = 0. Plot also the function ψ̂.

Hint. Start with computing the integrals
∫
ψ(t)dt,

∫
tψ(t)dt,

∫
φ0,0(t)dt,

∫
φ0,1(t)dt,

and
∫
tφ0,0(t)dt,

∫
tφ0,1(t)dt.

c) Express φ and ψ̂ with the help of functions from φ1, and use this to write
down the change of coordinate matrix from (φ0, ψ̂0) to φ1.

Exercise 5.33: More vanishing moments for the Haar wavelet
It is also possible to add more vanishing moments to the Haar wavelet. Define

ψ̂ = ψ0,0 − a0φ0,0 − · · · − ak−1φ0,k−1.

Define also cr,l =
∫ l+1
l

trdt, and er =
∫ 1

0 t
rψ(t)dt.

a) Show that ψ̂ has k vanishing moments if and only if a0, . . . , ak−1 solves the
equation 

c0,0 c0,1 · · · c0,k−1
c1,0 c1,1 · · · c1,k−1
...

...
...

...
ck−1,0 ck−1,1 · · · ck−1,k−1




a0
a1
...

ak−1

 =


e0
e1
...

ek−1

 (5.44)

b) Write a function vanishingmomshaar which takes k as input, solves Equation
(5.44) in the compendium, and returns the vector a = (a0, a1, . . . , ak−1).
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Exercise 5.34: Listening experiments
Run the function playDWT for different m for the Haar wavelet, the piecewise
linear wavelet, and the alternative piecewise linear wavelet, but listen to the
detail components W0⊕W1⊕· · ·⊕Wm−1 instead. Describe the sounds you hear
for different m, and try to explain why the sound seems to get louder when you
increase m.

5.6 Multiresolution analysis: A generalization
Let us summarize the properties of the spaces Vm. In both our examples we
showed that they were nested, i.e.

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊂ · · · .

We also showed that continuous functions could be approximated arbitrarily
well from Vm, as long as m was chosen large enough. Moreover, the space V0 is
closed under all translates, at least if we view the functions in V0 as periodic
with period N . In the following we will always identify a function with this
periodic extension, just as we did in Fourier analysis. When performing this
identification, we also saw that f(t) ∈ Vm if and only if g(t) = f(2t) ∈ Vm+1.
We have therefore shown that the scaling functions we have considered fit into
the following general framework.

Definition 5.38. Multiresolution analysis.
A Multiresolution analysis, or MRA, is a nested sequence of function spaces

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊂ · · · , (5.45)

called resolution spaces, so that
Any function can be approximated arbitrarily well from Vm, as long as m is
large enough,
f(t) ∈ V0 if and only if f(2mt) ∈ Vm,
f(t) ∈ V0 if and only if f(t− n) ∈ V0 for all n.
There is a function φ, called a scaling function, so that φ = {φ(t− n)}0≤n<N is
a basis for V0.

When φ is an orthonormal basis we say that the MRA is orthonormal.

The wavelet of piecewise constant functions was an orthonormal MRA, while
the wavelets for piecewise linear functions were not. Although the definition
above states that any function can be approximated with MRA’s, in practice
one needs to restrict to certain functions: Certain pathological functions may be
difficult to approximate. In the literature one typically requires that the function
is in L2(R), and also that the scaling function and the spaces Vm are in L2(R).
MRA’s are much used, and one can find a wide variety of functions φ, not only
piecewise constant functions, which give rise to MRA’s.
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In the examples we have considered we also chose a mother wavelet. The
term wavelet is used in very general terms. However, the term mother wavelet
is quite concrete, and is what gives rise to the theory of wavelets. This was
necessary in order to efficiently decompose the gm ∈ Vm into a low resolution
approximation gm−1 ∈ Vm−1, and a detail/error em−1 in a detail space we called
Wm−1. We have freedom in how we define these detail spaces, as well as how we
define a mother wavelet whose translates span the detail space (in general we
choose a mother wavelet which simplifies the computation of the decomposition
gm = gm−1 + em−1, but we will see later that it also is desirable to choose a
ψ with other properties). Once we agree on the detail spaces and the mother
wavelet, we can perform a change of coordinates to find detail and low resolution
approximations. We thus have the following general recipe.

Idea 5.39. Recipe for constructing wavelets.
In order to construct MRA’s which are useful for practical purposes, we need

to do the following:

• Find a function φ which can serve as the scaling function for an MRA,

• Find a function ψ so that ψ = {ψ(t−n)}0≤n<N and φ = {φ(t−n)}0≤n<N
together form an orthonormal basis for V1. The function ψ is also called a
mother wavelet.

With V0 the space spanned by φ = {φ(t−n)}0≤n<N , and W0 the space spanned
by ψ = {ψ(t − n)}0≤n<N , φ and ψ should be chosen so that we easily can
compute the decomposition of g1 ∈ V1 into g0 + e0, where g0 ∈ V0 and e0 ∈W0.
If we can achieve this, the Discrete Wavelet Transform is defined as the change
of coordinates from φ1 to (φ0,ψ0).

More generally, if

f(t) =
∑
n

cm,nφm,n =
∑
n

c0,nφ0,n +
∑

m′<m,n

wm′,nψm′,n,

then the m-level DWT is defined by DWT(cm) = (c0,w0, . . . ,wm−1). It is
useful to interpret m as frequency, n as time, and wm,n as the contribution
at frequency m and time n. In this sense, wavelets provide a time-frequency
representation of signals. This is what can make them more useful than Fourier
analysis, which only provides frequency representations.

While there are in general many possible choices of detail spaces, in the
case of an orthonormal wavelet we saw that it was natural to choose the detail
space Wm−1 as the orthogonal complement of Vm−1 in Vm, and obtain the
mother wavelet by projecting the scaling function onto the detail space. Thus,
for orthonormal MRA’s, the low-resolution approximation and the detail can be
obtained by computing projections, and the least squares approximation of f
from Vm can be computed as

projVm(f) =
∑
n

〈f, φm,n〉φm,n(t).
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5.6.1 Working with the samples of f instead of f
In the MRA-setting it helps to think about the continuous-time function f(t)
as the model for an image, which is the object under study. f itself may not
be in any Vm, however (this corresponds to that detail is present in the image
for infinitely many m), and increasing m corresponds to that we also include
the detail we see when we zoom in on the image. But how can we obtain useful
approximations to f from Vm? In case of an orthonormal MRA we can compute
the least squares approximation as above, but we then need to compute the
integrals 〈f, φm,n〉, so that all function values are needed. However, as before
we have only access to some samples f(2−mn), 0 ≤ n < 2mN . These are called
pixel values in the context of images, so that we can only hope to obtain a good
approximation to f (m) (and thus f) from the pixel values. The following result
explains how we can obtain this.

Theorem 5.40. Using the samples.
If f is continuous, and φ has compact support, we have that, for all t,

f(t) = lim
m→∞

2mN−1∑
n=0

2−m∫ N
0 φm,0(t)dt

f(n/2m)φm,n(t).

Proof. We have that

2−m
2mN−1∑
n=0

φm,n =
2mN−1∑
n=0

2−mφm,0(t− 2−mn).

We recognize this as a Riemann sum for the integral
∫ N

0 φm,0(t)dt. Therefore,

lim
m→∞

2mN−1∑
n=0

2−mφm,n =
∫ N

0
φm,0(t)dt.

Also, finitely many n contribute in this sum since φ has compact support. We
now get that

2mN−1∑
n=0

2−mf(n/2m)φm,n(t) =
∑

n so that 2−mn≈t

2−mf(n/2m)φm,n(t)

≈
∑

n so that 2−mn≈t

2−mf(t)φm,n(t)

= f(t)
∑

n so that 2−mn≈t

2−mφm,n(t) ≈ f(t)
∫ N

0
φm,0(t)dt.

where we have used the continuity of f and that

lim
m→∞

2mN−1∑
n=0

2−mφm,n =
∫ N

0
φm,0(t)dt.
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The result follows. Note that here we have not used the requirement that
{φ(t− n)}n are orthogonal.

The coordinate vector x =
(

2−m∫ N
0
φm,0(t)dt

f(n/2m)
)2mN−1

n=0
in φm is therefore

a candidate to an approximation of both f and f (m) from Vm, using only the
pixel values. Normally one drops the leading constant 2−m∫ N

0
φm,0(t)dt

, so that one

simply considers the sample values f(n/2m) as a coordinate vector in φm. This
is used as the input to the DWT.

5.6.2 Increasing the precision of the DWT
Even though the samples of f give a good approximation to f as above, the
approximation and f are still different, so that we obtain different output from
the DWT. In Section 7.1 we will argue that the output from the DWT is
equivalent to sampling the output from certain analog filters. We would like the
difference in the output from these analog filters to be as small as possible. If the
functions φ, ψ are symmetric around 0, we will also see that the analog filters are
symmetric (a filter is symmetric if and only if the convolution kernel is symmetric
around 0), in which case we know that such a high precision implementation is
possible using the simple technique of symmetric extension. Let us summarize
this as the following idea.

Idea 5.41. Symmetric wavelets.
If the functions φ, ψ in a wavelet are symmetric around 0, then we can

obtain an implementation of the DWT with higher precision when we consider
symmetric extensions of the input.

Unfortunately, the piecewise constant scaling function we encountered was
not symmetric. However, the piecewise linear scaling function was, and so are
also many other interesting scaling functions we will encounter later. For a
symmetric function, denote as before the symmetric extension of the input f
with f̆ . If the input x to the DWT are the samples (f(n/2m))2mN−1

n=0 , we create
a vector x̆ representing the samples of f̆ . It is clear that this vector should be

x̆ =
(

(f(n/2m))2mN−1
n=0 , lim

t→N−
f(t), (f((2mN − n)/2m))2mN−1

n=1

)
.

In this vector there is symmetry around entry 2mN , so that the vector is
determined from the 2mN+1 first elements. Also the boundary is not duplicated,
contrary to the previous symmetric extension given by Definition 4.1. We are
thus lead to define a symmetric extension in the following way instead:

Definition 5.42. Symmetric extension of a vector.
By the symmetric extension of x ∈ RN , we mean x̆ ∈ R2N−2 defined by
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x̆k =
{

xk 0 ≤ k < N
x2N−2−k N ≤ k < 2N − 3 (5.46)

With this notation, N − 1 is the symmetry point in all symmetric extensions.
This is illustrated in Figure 5.21
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Figure 5.21: A vector and its symmetric extension. Note that the period of the
vector is now 2N − 2, while it was 2N for the vector shown in Figure 4.1.

From Chapter 4 it follows that symmetric filters preserve the symmetry
around N − 1 when applied to such vectors. We can now define the symmetric
restriction Sr as before, with the definition of symmetric extension replaced with
the above. We now have the following analog to Theorem 4.9. The proof of this
is left as an exercise.

Theorem 5.43. Expression for Sr.

With S =
(
S1&S2
S3&S4

)
∈ R2N−2 × R2N−2 a symmetric filter, with S1 ∈

RN × RN , S2 ∈ RN × RN−2, we have that Sr = S1 +
(
0 (S2)f&0

)
.

With the Haar wavelet we succeeded in finding a function ψ which could be
used in the recipe above. Note, however, that there may be many other ways to
define a function ψ which can be used in the recipe. In the next chapter we will
follow the recipe in order to contruct other wavelets, and we will try to express
which pairs of function φ, ψ are most interesting, and which resolution spaces
are most interesting.

What you should have learned in this section.

• Definition of a multiresolution analysis.

Exercise 5.35: Prove expression for Sr

Prove Theorem 5.43. Use the proof of Theorem 4.9 as a guide.
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Exercise 5.36: Orthonormal basis for the symmetric exten-
sions
In this exercise we will establish an orthonormal basis for the symmetric exten-
sions, as defined by Definition 5.42. This parallels Theorem 4.6.

a) Explain why, if x ∈ R2N−2 is a symmetric extension (according to Def-
inition 4.1), then (x̂)n = zne

−πin, where z is a real vectors which satisfies
zn = z2N−2−n

b) Show that {
e0,

{
1√
2

(ei + e2N−2−i)
}N−2

n=1
, eN−1

}
(5.47)

is an orthonormal basis for the vectors on the form x̂ with x ∈ R2N−2 a
symmetric extension.

c) Show that

1√
2N − 2

cos
(

2π 0
2N − 2k

)
{

1√
N − 1

cos
(

2π n

2N − 2k
)}N−2

n=1
1√

2N − 2
cos
(

2π N − 1
2N − 2k

)
(5.48)

is an orthonormal basis for the symmetric extensions in R2N−2.

d) Assume that S is symmetric. Show that the vectors listed in (5.48) in the
compendium are eigenvectors for Sr, when the vectors are viewed as vectors in
RN , and that they are linearly independent. This shows that Sr is diagonalizable.

Exercise 5.37: Diagonalizing Sr

Let us explain how the matrix Sr can be diagonalized, similarly to how we
previously diagonalized using the DCT. In Exercise 5.36 we showed that the
vectors

{
cos
(

2π n

2N − 2k
)}N−1

n=0
(5.49)

in RN is a basis of eigenvectors for Sr when S is symmetric. Sr itself is not
symmetric, however, so that this basis can not possibly be orthogonal (S is
symmetric if and only if it is orthogonally digonalizable). However, when the
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vectors are viewed in R2N−2 we showed in Exercise 5.36c) an orthogonality
statement which can be written as

2N−3∑
k=0

cos
(

2π n1

2N − 2k
)

cos
(

2π n2

2N − 2k
)

= (N − 1)×


2 if n1 = n2 ∈ {0, N − 1}
1 if n1 = n2 6∈ {0, N − 1}
0 if n1 6= n2

.

(5.50)

a) Show that

(N − 1)×


1 if n1 = n2 ∈ {0, N − 1}
1
2 if n1 = n2 6∈ {0, N − 1}
0 if n1 6= n2

= 1√
2

cos
(

2π n1

2N − 2 · 0
)

1√
2

cos
(

2π n2

2N − 2 · 0
)

+
N−2∑
k=1

cos
(

2π n1

2N − 2k
)

cos
(

2π n2

2N − 2k
)

+ 1√
2

cos
(

2π n1

2N − 2(N − 1)
)

1√
2

cos
(

2π n2

2N − 2(N − 1)
)
.

Hint. Use that cosx = cos(2π − x) to pair the summands k and 2N − 2− k.
Now, define the vector d(I)

n as

dn,N

(
1√
2

cos
(

2π n

2N − 2 · 0
)
,

{
cos
(

2π n

2N − 2k
)}N−2

k=1
,

1√
2

cos
(

2π n

2N − 2(N − 1)
))

,

and define d(I)
0,N = d

(I)
N−1,N = 1/

√
N − 1, and d(I)

n,N =
√

2/(N − 1) when n > 1.
The orthogonal N × N matrix where the rows are d(I)

n is called the DCT-I,
and we will denote it by D(I)

N . DCT-I is also much used, just as the DCT-II of
Chapter 4. The main difference from the previous cosine vectors is that 2N has
been replaced by 2N − 2.

b) Explain that the vectors d(I)
n are orthonormal, and that the matrix

√
2

N − 1


1/
√

2 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/

√
2


(

cos
(

2π n
2N−2k

))


1/
√

2 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/

√
2


is orthogonal.
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c) Explain from b. that
(

cos
(

2π n
2N−2k

))−1
can be written as

2
N − 1


1/2 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/2


(

cos
(

2π n
2N−2k

))


1/2 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/2


With the expression we found in c., Sr can now be diagonalized as(

cos
(

2π n
2N−2k

))
D
(

cos
(

2π n
2N−2k

))−1
.

5.7 Summary
We started this chapter by motivating the theory of wavelets as a different
function approximation scheme, which solved some of the shortcomings of Fourier
series. While one approximates functions with trigonometric functions in Fourier
theory, with wavelets one instead approximates a function in several stages,
where one at each stage attempts to capture information at a given resolution,
using a function prototype. This prototype is localized in time, contrary to
the Fourier basis functions, and this makes the theory of wavelets suitable for
time-frequency representations of signals. We used an example based on Google
Earth to illustrate that the wavelet-based scheme can represent an image at
different resolutions in a scalable way, so that passing from one resolution to
another simply mounts to adding some detail information to the lower resolution
version of the image. This also made wavelets useful for compression, since the
images at different resolutions can serve as compressed versions of the image.

We defined the simplest wavelet, the Haar wavelet, which is a function
approximation scheme based on piecewise constant functions, and deduced its
properties. We defined the Discrete Wavelet Transform (DWT) as a change of
coordinates corresponding to the function spaces we defined. This transform is
the crucial object to study when it comes to more general wavelets also, since
it is the object which makes wavelets useful for computation. In the following
chapters, we will see that reordering of the source and target bases of the
DWT will aid in expressing connections between wavelets and filters, and in
constructing optimized implementations of the DWT.

We then defined another wavelet, which corresponded to a function approxi-
mation scheme based on piecewise linear functions, instead of piecewise constant
functions. There were several differences with the new wavelet when compared
to the previous one. First of all, the basis functions were not orthonormal, and
we did not attempt to make them orthonormal. The resolution spaces we now
defined were not defined in terms of orthogonal bases, and we had some freedom
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on how we defined the detail spaces, since they are not defined as orthogonal
complements anymore. Similarly, we had some freedom on how we define the
mother wavelet, and we mentioned that we could define it so that it is more
suitable for approximation of functions, by adding what we called vanishing
moments.

From these examples of wavelets and their properties we made a generalization
to what we called a multiresolution analysis (MRA). In an MRA we construct
successively refined spaces of functions that may be used to approximate functions
arbitrarily well. We will continue in the next chapter to construct even more
general wavelets, within the MRA framework.

The book [21] goes through developments for wavelets in detail. While
wavelets have been recognized for quite some time, it was with the important
work of Daubechies [8, 9] that they found new arenas in the 80’s. Since then
they found important applications. The main application we will focus on in
later chapters is image processing.



Chapter 6

The filter representation of
wavelets

Previously we saw that analog filters restricted to the Fourier spaces gave rise to
digital filters. These digital filters sent the samples of the input function to the
samples of the output function, and are easily implementable, in contrast to the
analog filters. We have also seen that wavelets give rise to analog filters. This
leads us to believe that the DWT also can be implemented in terms of digital
filters. In this chapter we will prove that this is in fact the case.

There are some differences between the Fourier and wavelet settings, however:

• The DWT is not constructed by looking at the samples of a function, but
rather by looking at coordinates in a given basis.

• The function spaces we work in (i.e. Vm) are different from the Fourier
spaces.

• The DWT gave rise to two different types of analog filters: The filter
defined by Equation (7.16) for obtaining cm,n, and the filter defined by
Equation (7.17) for obtaining wm,n. We want both to correspond to digital
filters.

Due to these differences, the way we realize the DWT in terms of filters will
be a bit different. Despite the differences, this chapter will make it clear
that the output of a DWT can be interpreted as the combined output of two
different filters, and each filter will have an interpretation in terms of frequency
representations. We will also see that the IDWT has a similar interpretation in
terms of filters.

In this chapter we will also see that expressing the DWT in terms of filters
will also enable us to define more general transforms, where even more filters
are used. It is fruitful to think about each filter as concentrating on a particular
frequency range, and that these transforms thus simply splits the input into
different frequency bands. Such transforms have important applications to the

215
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processing and compression of sound, and we will show that the much used MP3
standard for compression of sound takes use of such transforms.

6.1 The filters of a wavelet transformation
We will make the connection with digital filters by looking again at the different
examples of wavelet bases we have seen: The ones for piecewise constant and
piecewise linear functions. For the Haar wavelet we have noted that G and

H are block-diagonal with
(

1√
2

1√
2

1√
2 − 1√

2

)
repeated along the diagonal. For the

piecewise linear wavelet, Equation (5.33) gives that the first two columns in
G = Pφm←Cm take the form

1√
2



1 0
1/2 1
0 0
...

...
0 0

1/2 0


. (6.1)

The remaining columns are obtained by shifting this, as in a circulant Toeplitz
matrix. Similarly, Equation (5.35) gives that the first two columns in H =
PCm←φm take the form

√
2



1 0
−1/2 1

0 0
...

...
0 0
−1/2 0


. (6.2)

Also here, the remaining columns are obtained by shifting this, as in a circulant
Toeplitz matrix. For the alternative piecewise linear wavelet, Equation (5.42)
give all columns in the change of coordinate matrix G = Pφm←Cm also. In
particular, the first two columns in this matrix are

1√
2



1 −1/4
1/2 3/4
0 −1/4
0 −1/8
0 0
...

...
0 0

1/2 −1/8


. (6.3)



CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 217

The first column is the same as before, since there was no change in the definition
of φ. The remaining columns are obtained by shifting this, as in a circulant
Toeplitz matrix. We will explain later how the change of coordinate matrix
H = PCm←φm also can be computed.

In each case above it turned out that the kernel transformations G = Pφm←Cm ,
H = PCm←φm had a special structure: They were obtained by repeating the first
two columns in a circulant way, similarly to how we did in a circulant Toeplitz
matrix. The matrices were not exactly circulant Toeplitz matrices, however, since
there are two different columns repeating. The change of coordinate matrices
occuring in the stages in a DWT are thus not digital filters, but they seem to be
related. Let us start by giving these new matrices names:

Definition 6.1. MRA-matrices.
An N ×N -matrix T , with N even, is called an MRA-matrix if the columns

are translates of the first two columns in alternating order, in the same way as
the columns of a circulant Toeplitz matrix.

From our previous calculations it is clear that, once φ and ψ are given
through an MRA, the corresponding change of coordinate matrices will always
be MRA-matrices. The MRA-matrices is our connection between filters and
wavelets. Let us make the following definition:

Definition 6.2. H0 and H1.
We denote by H0 the (unique) filter with the same first row as H, and by H1

the (unique) filter with the same second row as H. H0 and H1 are also called
the DWT filter components.

Using this definition it is clear that

(Hcm)k =
{

(H0cm)k when k is even
(H1cm)k when k is odd,

since the left hand side depends only on row k in the matrix H, and this is equal
to row k in H0 (when k is even) or row k in H1 (when k is odd). This means
that Hcm can be computed with the help of H0 and H1 as follows:

Theorem 6.3. DWT expressed in terms of filters.
Let cm be the coordinates in φm, and let H0, H1 be defined as above. Any

stage in a DWT can ble implemented in terms of filters as follows:

• Compute H0cm. The even-indexed entries in the result are the cordinates
cm−1 in φm−1.

• Compute H1cm. The odd-indexed entries in the result are the coordinates
wm−1 in ψm−1.
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This gives an important connection between wavelets and filters: The DWT
corresponds to applying two filters, H0 and H1, and the result from the DWT
is produced by assembling half of the coordinates from each. Keeping only
every second coordinate is called downsampling (with a factor of two). Had
we not performed downsampling, we would have ended up with twice as many
coordinates as we started with. Downsampling with a factor of two means that
we end up with the same number of samples as we started with. We also say that
the output of the two filters is critically sampled. Due to the critical sampling, it
is inefficient to compute the full application of the filters. We will return to the
issue of making efficient implementations of critically sampled filter banks later.

We can now complement Figure 5.9 by giving names to the arrows as follows:

φm

H0 //

H1

""

φm−1

H0 //

H1

##

φm−2

H0 //

H1

##

· · · H0 // φ1

H0 //

H1

  

φ0

ψm−1 ψm−2 ψm−3 ψ0

Figure 6.1: Detailed illustration of a wavelet transform.

Let us make a similar anlysis for the IDWT, and let us first make the following
definition:

Definition 6.4. G0 and G1.
We denote by G0 the (unique) filter with the same first column as G, and by

G1 the (unique) filter with the same second column as G. G0 and G1 are also
called the IDWT filter components.

These filters are uniquely determined, since any filter is uniquely determined
from one of its columns. We can now write
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cm = G



cm−1,0
wm−1,0
cm−1,1
wm−1,1
· · ·

cm−1,2m−1N−1
wm−1,2m−1N−1


= G





cm−1,0
0

cm−1,1
0
· · ·

cm−1,2m−1N−1
0


+



0
wm−1,0

0
wm−1,1
· · ·
0

wm−1,2m−1N−1





= G



cm−1,0
0

cm−1,1
0
· · ·

cm−1,2m−1N−1
0


+G



0
wm−1,0

0
wm−1,1
· · ·
0

wm−1,2m−1N−1



= G0



cm−1,0
0

cm−1,1
0
· · ·

cm−1,2m−1N−1
0


+G1



0
wm−1,0

0
wm−1,1
· · ·
0

wm−1,2m−1N−1


.

Here we have split a vector into its even-indexed and odd-indexed elements,
which correspond to the coefficients from φm−1 and ψm−1, respectively. In
the last equation, we replaced with G0, G1, since the multiplications with G
depend only on the even and odd columns in that matrix (due to the zeros
inserted), and these columns are equal in G0, G1. We can now state the following
characterization of the inverse Discrete Wavelet transform:

Theorem 6.5. IDWT expressed in terms of filters.
Let G0, G1 be defined as above. Any stage in an IDWT can be implemented

in terms of filters as follows:

cm = G0



cm−1,0
0

cm−1,1
0
· · ·

cm−1,2m−1N−1
0


+G1



0
wm−1,0

0
wm−1,1
· · ·
0

wm−1,2m−1N−1


. (6.4)

Making a new vector where zeroes have been inserted in this way is also called
upsampling (with a factor of two). We can now also complement Figure 5.9 for
the IDWT with named arrows. This has bee done in Figure 6.2
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φm φm−1G0

oo φm−2G0

oo · · ·
G0

oo φ1G0

oo φ0G0

oo

ψm−1

G1

bb

ψm−2

G1

cc

ψm−3

G1

cc

ψ0

G1

``

Figure 6.2: Detailed illustration of an IDWT.

Note that the filters G0, G1 were defined in terms of the columns of G, while
the filters H0, H1 were defined in terms of the rows of H. This difference is seen
from the computations above to come from that the change of coordinates one
way splits the coordinates into two parts, while the inverse change of coordinates
performs the opposite. Let us summarize what we have found as follows.

Fact 6.6. Computing DWT/IDWT through filters.
The DWT can be computed with the help of two filters H0, H1, as explained

in Theorem 6.3. Any linear transformation computed from two filters H0, H1 in
this way is called a forward filter bank transform. The IDWT can be computed
with the help of two filters G0, G1 as explained in Theorem 6.5. Any linear
transformation computed from two filters G0, G1 in this way is called a reverse
filter bank transform.

In Chapter 8 we will go through how any forward and reverse filter bank
transform can be implemented, once we have the filters H0, H1, G0, and G1.
When we are in a wavelet setting, the filter coefficients in these four filters can
be found from the relations between the bases φ1 and (φ0,ψ0). The filters
H0, H1, G0, G1 can also be constructed from outside a wavelet setting, i.e. that
they do not originate from change of coordinate matrices between certain function
bases. The important point is that the matrices invert each other, but in a signal
processing setting it may also be meaningful to allow for the reverse transform
not to invert the forward transform exactly. This corresponds to some loss of
information when we attempt to reconstruct the original signal using the reverse
transform. A small such loss can, as we will see at the end of this chapter, be
acceptable.

That the reverse transform inverts the forward transform means that GH = I.
If we transpose this expression we get that HTGT = I. Clearly HT is a reverse
filter bank transform with filters (H0)T , (H1)T , and GT is a forward filter bank
transform with filters (G0)T , (G1)T . Due to their usefulness, these transforms
have their own name:

Definition 6.7. Dual filter bank transforms.
Assume that H0, H1 are the filters of a forward filter bank transform, and that

G0, G1 are the filters of a reverse filter bank transform. By the dual transforms
we mean the forward filter bank transform with filters (G0)T , (G1)T , and the
reverse filter bank transform with filters (H0)T , (H1)T .
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In Section 5.3 we used a parameter dual in our call to the DWT amd IDWT
kernel functions. This parameter can now be explained as follows:

Fact 6.8. The dual-parameter in DWT kernel functions..

• If the dual parameter is false, the DWT is computed as the forward filter
bank transform with filters H0, H1, and the IDWT is computed as the
reverse filter bank transform with filters G0, G1.

• If the dual parameter is true, the DWT is computed as the forward filter
bank transform with filters (G0)T , (G1)T , and the IDWT is computed as
the reverse filter bank transform with filters (H0)T , (H1)T .

Note that, even though the reverse filter bank transform G can be associated
with certain function bases, it is not clear if the reverse filter bank transform
HT also can be associated with such bases. We will see in the next chapter that
such bases can in many cases be found. We will also denote these bases as dual
bases.

Note that Figure 6.1 and 6.2 do not indicate the additional downsampling and
upsampling steps described in Theorem 6.3 and 6.5. If we indicate downsampling
with ↓2, and upsampling with ↑2, the algorithms given in Theorem 6.3 and 6.5
can be summarized as in Figure 6.3.

H0c1 // ↓2 // c0 // ↑2 // (cm−1,0, 0, cm−1,1, 0, · · · )
G0

��
c1

OO

��

⊕

H1c1 // ↓2 // w0
// ↑2 // (0, wm−1,0, 0, wm−1,1, · · · )

G1

OO

Figure 6.3: Detailed illustration of a DWT.

Here ⊕ represents summing the elements which point inwards to the plus
sign. In this figure, the left side represents the DWT, the right side the IDWT.
In the literature, wavelet transforms are more often illustrated in this way using
filters, since it makes alle steps involved in the process more clear. This type of
figure also opens for generalization. We will shortly look into this.

There are several reasons why it is smart to express a wavelet transformation
in terms of filters. First of all, it enables us to reuse theoretical results from
the world of filters in the world of wavelets, and to give useful interpretations
of the wavelet transform in terms of frequencies. Secondly, and perhaps most
important, it enables us to reuse efficient implementations of filters in order
to compute wavelet transformations. A lot of work has been done in order to
establish efficient implementations of filters, due to their importance.
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In Example 5.19 we argued that the elements in Vm−1 correspond to frequen-
cies at lower frequencies than those in Vm, since V0 = Span({φ0,n}n) should be
interpreted as content of lower frequency than the φ1,n, withW0 = Span({ψ0,n}n)
the remaining high frequency detail. To elaborate more on this, we have that

φ(t) =
2N−1∑
n=0

(G0)n,0φ1,n(t) (6.5)

ψ(t) =
2N−1∑
n=0

(G1)n,1φ1,n(t)., (6.6)

where (Gk)i,j are the entries in the matrix Gk. Similar equations are true for
φ(t − k), ψ(t − k). Due to Equation (6.5), the filter G0 should have lowpass
characteristics, since it extracts the information at lower frequencies. Similarly,
G1 should have highpass characteristics due to Equation (6.6).

Let us verify these lowpass/highpass characteristics of G0 and G1 for the
wavelets we have considered up to now by plotting their frequency responses. In
order to do this we should make a final remark on how these frequency responses
can be plotted. For all wavelets we look at the filter coefficients are computed,
so that the frequency responses can be easily calculated. However, when we use
a wavelet for computation, we applied it by means of a kernel transformation.
We will later see that the most efficient such kernel transformations do not apply
the filter coefficients directly, but rather a factorization into smaller components
(but see Exercise 6.12 on how we can produce kernel transformations which
use the filter coefficients directly). So how can we find and plot the frequency
response when only the kernel transformation is known? First of all, since the
first column of G is identical to the first column of G0, the first column of G0
can be obtained by applying the IDWT kernel to the vector e0. We can then use
Theorem 3.14 to find the vector frequency response of the filter (i.e. applying
an FFT), and then Theorem 3.21 to find the values of the continuous frequency
response in the points 2πn/N for 0 ≤ n < N . The following code can thus be
used to plot the frequency response of G0, when only the IDWT kernel (called
idwtkernel below) is known.

omega = 2*pi*(0:(N-1))/N;
e0 = [1; zeros(N - 1, 1)]; % Creates e_0
g0 = idwtkernel(e0, 0, 0); % Find the first column of G_0
plot(omega, abs(fft(g0)));

A similar procedure can be applied in order to plot the frequency response of G1
(just replace e0 with e1 in order o exract the second column of G instead). The
frequency responses of H0 and H1 can be found by considering a dual wavelet
transform, since the reverse transform for the dual wavelet has filters (H0)T and
(H1)T . In most of the following examples in this book this procedure will be
applied to plot all frequency responses. We start with the Haar wavelet.

Example 6.9. The Haar wavelet.
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For the Haar wavelet we saw that, in G, the matrix(
1√
2

1√
2

1√
2 − 1√

2

)
(6.7)

repeated along the diagonal. The filters G0 and G1 can be found directly from
these columns:

G0 = {1/
√

2, 1/
√

2}

G1 = {1/
√

2,−1/
√

2}.

We have seen these filters previously: G0 is a movinge average filter of two
elements (up to multiplication with a constant). This is a lowpass filter. G1 is
a bass-reducing filter, which is a highpass filter. Up to a constant, this is also
an approximation to the derivative. Since G1 is constructed from G0 by adding
an alternating sign to the filter coefficients, we know from before that G1 is
the highpass filter corresponding to the lowpass filter G0, so that the frequency
response of the second is given by a shift of frequency with π in the first. The
frequency responses are

λG0(ω) = 1√
2

+ 1√
2
e−iω =

√
2e−iω/2 cos(ω/2)

λG1(ω) = 1√
2
eiω − 1√

2
=
√

2ieiω/2 sin(ω/2).

The magnitude of these are plotted in Figure 6.4, where the lowpass/highpass
characteristics are clearly seen.
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Figure 6.4: The frequency responses λG0(ω) (left) and λG1(ω) (right) for the
Haar wavelet.

By considering the filters where the rows in Equation (6.7), it is clear that

H0 = {1/
√

2, 1/
√

2}

H1 = {−1/
√

2, 1/
√

2},
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so that the frequency responses for the DWT have the same lowpass/highpass
characteristics.

It turns out that this connection between G0 and G1 as lowpass and highpass
filters corresponding to each other can be found in all orthonormal wavelets. We
will prove this in the next chapter.

Example 6.10. Wavelet for piecewise linear functions.
For the wavelet for piecewise linear functions we looked at in the previous

section, Equation (6.1) gives that

G0 = 1√
2
{1/2, 1, 1/2}

G1 = 1√
2
{1}. (6.8)

G0 is again a filter we have seen before: Up to multiplication with a constant, it
is the treble-reducing filter with values from row 2 of Pascal’s triangle. We see
something different here when compared to the Haar wavelet, in that the filter
G1 is not the highpass filter corresponding to G0. The frequency responses are
now

λG0(ω) = 1
2
√

2
eiω + 1√

2
+ 1

2
√

2
e−iω = 1√

2
(cosω + 1)

λG1(ω) = 1√
2
.

λG1(ω) thus has magnitude 1√
2 at all points. The magnitude of λG0(ω) is plotted

in Figure 6.5.
Comparing with Figure 6.4 we see that here also the frequency response has

a zero at π. The frequency response seems also to be flatter around π. For the
DWT, Equation (6.2) gives us

H0 =
√

2{1}
H1 =

√
2{−1/2, 1,−1/2}. (6.9)

Even though G1 was not the highpass filter corresponding to G0, we see that,
up to a constant, H1 is (it is a bass-reducing filter with values taken from row 2
of Pascals triangle).

Note that the role of H1 as the highpass filter corresponding to G0 is the case
in both previous examples. We will prove in the next chapter that this is a much
more general result which holds for all wavelets, not only for the orthonormal
ones.



CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 225

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 6.5: The frequency response λG0(ω) for the first choice of wavelet for
piecewise linear functions.

For the alternative wavelet for piecewise linear functions, we are only able
to find expressions for the filters G0, G1 at this stage (these can be extracted
from Equation (6.3)). In the next chapter we will learn a general technique
of computing the transformations the opposite way from these, so this will be
handled in the next chapter.

6.1.1 The support of the scaling function and the mother
wavelet

The scaling functions and mother wavelets we encounter will turn out to always
be functions with compact support. An interesting consequence of equations
(6.5) and (6.6) is that we can find the size of these supports from the number of
filter coefficients in G0 and G1:

Theorem 6.11. Support size.
Assume that the filters G0, G1 have N0, N1 nonzero filter coefficients, respec-

tively, and that φ and ψ have compact support. Then the support size of φ is
N0 − 1, and the support size of ψ is (N0 +N1)/2− 1. Moreover, when all the
filters are symmetric, the support of φ is symmetric around 0, and the support
of ψ is symmetric around 1/2.

Proof. Let q be the support size of φ. Then the functions φ1,n all have support
size q/2. On the right hand side of Equation (6.5) we thus add N0 functions, all
with support size q/2. These functions are translated with 1/2 with respect to
oneanother, so that the sum has support size q/2 + (N0 − 1)/2. Comparing with
the support of the left hand side we get the equation q = q/2 + (N0 − 1)/2, so
that q = N0 − 1. Similarly, with Equation (6.6), the function on the right hand
side has support size q/2 + (N1 − 1)/2 = (N0 + N1)/2 − 1, which thus is the
support of ψ.
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Assume now also that all filters are symmetric, so that the nonzero filter
coefficients of G0 have indices −(N0 − 1)/2, . . . , (N0 − 1)/2. If φ has support
[q1, q2], φ1,n has support [(q1 + n)/2, (q2 + n)/2]. It follows that the right hand
side of Equation (6.5) has support [(q1 − (N0 − 1)/2)/2, (q2 + (N0 − 1)/2)/2], so
that we obtain the equations

q1 = (q1 − (N0 − 1)/2)/2, and q2 = (q2 + (N0 − 1)/2)/2.

Solving these we obtain that q1 = −(N0 − 1)/2, q2 = (N0 − 1)/2, so that the
support of φ is symmetric around 0. Similarly, the right hand side of Equation
(6.6) has support

[
q1 − N1−3

2
2 ,

q2 + N1+1
2

2

]
=
[
−N0−1

2 − N1−3
2

2 ,
N0−1

2 + N1+1
2

2

]

=
[
−
N0+N1

2 − 1
2 ,

N0+N1
2 − 1

2

]
+ 1.

From this it is clear that ψ has support symmetric around 1/2.

Let us use this theorem to verify the supports for the scaling functions and
mother wavelets we have already encountered:

• For the Haar wavelet, we know that both filters have 2 coefficients. From
Theorem 6.11 it follows that both φ and ψ have support size 1, which
clearly is true.

• For the the piecewise linear wavelet, the filters were symmetric. G0 has 3
filter coefficients so that φ has support size 3 − 1 = 2. G1 has one filter
coefficient, so that the support size of ψ is (3 + 1)/2− 1 = 1. We should
thus have that supp(φ) = [−1, 1], and supp(ψ) = [0, 1]. This is clearly true
from our previous plots of these functions.

• From Equation (6.3) we see that, for the alternative piecewise linear wavelet,
G0 and G1 have 3 and 5 filter coefficients, respectively. ψ has thus support
size (3 + 5)/2 − 1 = 3, so that the support is [−1, 2], which also can be
seen to be the case from Figure 5.18.

6.1.2 Wavelets and symmetric extensions
In practice we want to apply the wavelet transform to a symmetric extension,
since then symmetric filters can give a better approximation to the underlying
analog filters. In order to achieve this, the following result says that we only
need to replace the filters H0, H1, G0, and G1 in the wavelet transform with
(H0)r, (H1)r, (G0)r, and (G1)r.
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Theorem 6.12. Symmetric filters and symmetric extensions.
If the filters H0, H1, G0, and G1 in a wavelet transform are symmetric, then

the DWT/IDWT preserve symmetric extensions (as defined in Definition 5.42).
Also, applying the filters H0, H1, G0, and G1 to x̆ ∈ R2N−2 in the DWT/IDWT
is equivalent to applying (H0)r, (H1)r, (G0)r, and (G1)r to x ∈ RN in the same
way.

Proof. Since H0 and H1 are symmetric, their output from x̆ is also a symmetric
vector, and by assembling their outputs as the even- and odd-indexed entries, we
see that the output (c0, w0, c1, w1, . . .) of the MRA-matrix H also is a symmetric
vector. The same then applies for the matrix G, since it inverts the first. This
proves the first part.

Now, assume that x ∈ RN . By definition of (Hi)r, (Hix̆)n = ((Hi)rx)n
for 0 ≤ n ≤ N − 1. This means that we get the same first N output ele-
ments in a wavelet transform if we repace H0, H1 with (H0)r, (H1)r. Since the
vectors (c0, 0, c1, 0, . . .) and (0, w0, 0, w1, . . .) also are symmetric vectors when
(c0, w0, c1, w1, . . .) is, it follows that (G0)r, (G1)r will reproduce the same first
N elements as G0, G1 also. In conclusion, for symmetric vectors, the wavelet
transform restricted to the first N elements produces the same result when we
replace H0, H1, G0, and G1 with (H0)r, (H1)r, (G0)r, and (G1)r. This proves
the result.

As in Chapter 4, it follows that when the filters of a wavelet are symmetric,
applying (H0)r, (H1)r, (G0)r, and (G1)r to the input better approximates an
underlying analog filter.

In Section 5.3 we used a parameter symm in our call to the DWT amd IDWT
kernel functions. This parameter can now also be explained:

idxDWT kernel parameter symm

Fact 6.13. The symm-parameter in DWT kernel functions.
Assume that the filters H0, H1, G0, and G1 are symmetric. If the symm

parameter is true, the symmetric versions (H0)r, (H1)r, (G0)r, and (G1)r should
be applied in the DWT and IDWT, rather than the filters H0, H1, G0, and G1
themselves. If symm is false, the filters H0, H1, G0, and G1 are applied

In Chapter 8 we will also see how the symmetric versions (H0)r, (H1)r, (G0)r
can be implemented.

What you should have learned in this section.

• How one can find the filters of a wavelet transformation by considering its
matrix and its inverse.

• Forward and reverse filter bank transforms.

• How one can implement the DWT and the IDWT with the help of the
filters.
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• Plot of the frequency responses for the filters of the wavelets we have
considered, and their interpretation as lowpass and highpass filters.

Exercise 6.1: Compute filters and frequency responses 1
Write down the corresponding filters G0 og G1 for Exercise 5.32. Plot their
frequency responses, and characterize the filters as lowpass- or highpass filters.

Exercise 6.2: Symmetry of MRA matrices vs. symmetry of
filters 1
Find two symmetric filters, so that the corresponding MRA-matrix, constructed
with alternating rows from these two filters, is not a symmetric matrix.

Exercise 6.3: Symmetry of MRA matrices vs. symmetry of
filters 2
Assume that an MRA-matrix is symmetric. Are the corresponding filters H0,
H1, G0, G1 also symmetric? If not, find a counterexample.

Exercise 6.4: Finding H0, H1 from the H
Assume that one stage in a DWT is given by the MRA-matrix

H =


1/5 1/5 1/5 0 0 0 · · · 0 1/5 1/5
−1/3 1/3 −1/3 0 0 0 · · · 0 0 0
1/5 1/5 1/5 1/5 1/5 0 · · · 0 0 0
0 0 −1/3 1/3 −1/3 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...


Write down the compact form for the corresponding filters H0, H1, and compute
and plot the frequency responses. Are the filters symmetric?

Exercise 6.5: Finding G0, G1 from the G
Assume that one stage in the IDWT is given by the MRA-matrix
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G =



1/2 −1/4 0 0 · · ·
1/4 3/8 1/4 1/16 · · ·
0 −1/4 1/2 −1/4 · · ·
0 1/16 1/4 3/8 · · ·
0 0 0 −1/4 · · ·
0 0 0 1/16 · · ·
0 0 0 0 · · ·
...

...
...

...
...

0 0 0 0 · · ·
1/4 1/16 0 0 · · ·


Write down the compact form for the filters G0, G1, and compute and plot the
frequency responses. Are the filters symmetric?

Exercise 6.6: Finding H from H0, H1

Assume that H0 = {1/16, 1/4, 3/8, 1/4, 1/16}, and H1 = {−1/4, 1/2,−1/4}.
Plot the frequency responses of H0 and H1, and verify that H0 is a lowpass
filter, and that H1 is a highpass filter. Also write down the change of coordinate
matrix PC1←φ1 for the wavelet corresponding to these filters.

Exercise 6.7: Finding G from G0, G1

Assume that G0 = 1
3{1, 1, 1}, and G1 = 1

5{1,−1, 1,−1, 1}. Plot the frequency
responses of G0 and G1, and verify that G0 is a lowpass filter, and that G1 is a
highpass filter. Also write down the change of coordinate matrix Pφ1←C1 for the
wavelet corresponding to these filters.

Exercise 6.8: Computing by hand
In Exercise 5.17 we computed the DWT of two very simple vectors x1 and x2,
using the Haar wavelet.

a) Compute H0x1, H1x1, H0x2, and H1x2, where H0 and H1 are the filters
used by the Haar wavelet.

b) Compare the odd-indexed elements in H1x1 with the odd-indexed elements
in H1x2. From this comparison, attempt to find an explanation to why the two
vectors have very different detail components.

Exercise 6.9: Comment code
Suppose that we run the following algorithm on the sound represented by the
vector x:
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N=size(x,1);
c = (x(1:2:N, :) + x(2:2:N, :))/sqrt(2);
w = (x(1:2:N, :) - x(2:2:N, :))/sqrt(2);

newx = [c; w];
newx = newx/max(abs(newx));
playerobj=audioplayer(newx,44100);
playblocking(playerobj)

a) Comment the code and explain what happens. Which wavelet is used? What
do the vectors c and w represent? Describe the sound you believe you will hear.

b) Assume that we add lines in the code above which sets the elements in the
vector w to 0 before we compute the inverse operation. What will you hear if
you play the new sound you then get?

Exercise 6.10: Computing filters and frequency responses
1
Let us return to the piecewise linear wavelet from Exercise 5.31.

a) With ψ̂ as defined as in Exercise 5.31b), compute the coordinates of ψ̂ in the
basis φ1 (i.e. [ψ̂]φ1) with N = 8, i.e. compute the IDWT of

[ψ̂](φ0,ψ0) = (−α,−β,−δ, 0, 0, 0, 0,−γ)⊕ (1, 0, 0, 0, 0, 0, 0, 0),

which is the coordinate vector you computed in Exercise 5.31d). For this, you
should use the function IDWTImpl, with the kernel of the piecewise linear wavelet
without symmetric extension as input. Explain that this gives you the filter
coefficients of G1.

b) Plot the frequency response of G1.

Exercise 6.11: Computing filters and frequency responses
2
Repeat the previous exercise for the Haar wavelet as in Exercise 5.33, and plot
the corresponding frequency responses for k = 2, 4, 6.

Exercise 6.12: Implementing with symmetric extension
In Exercise 3.6 we implemented a symmetric filter applied to a vector, i.e. when a
periodic extension is assumed. The corresponding function was called filterS(t,
x), and used the function conv.

a) Reimplement the function filterS so that it also takes a third parameter
symm. If symm is false a periodic extension of x should be performed (i.e. filtering
as we have defined it, and as the previous version of filterS performs it). If
symm is true, symmetric extensions should be used (as given by Definition 5.42).
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b) Implement functions DWTKernelFilters(H0, H1, G0, G1, x, symm, dual)
and IDWTKernelFilters(H0, H1, G0, G1, x, symm, dual) which compute
the DWT and IDWT kernels using theorems 6.3 and 6.5, respectively. This
function thus bases itself on that the filters of the wavelet are known. The
functions should call the function filterS from a). Recall also the definition of
the parameter dual from this section.

With the functions defined in b. you can now define standard DWT and
IDWT kernels in the following way, once the filters are known.

f = @(x, symm, dual) DWTKernelFilters(H0,H1,G0,G1,x,symm,dual);
invf = @(x, symm, dual) IDWTKernelFilters(H0,H1,G0,G1,x,symm,dual);

6.2 Properties of the filter bank transforms of a
wavelet

We have now described the DWT/IDWT as linear transformations G,H so
that GH = I, and where two filters G0, G1 characterize G, two filters H0, H1
characterize H. G and H are not Toeplitz matrices, however, so they are not
filters. Since filters produce the same output frequency from an input frequency,
we must have that G and H produce other (undesired) frequencies in the output
than those that are present in the input. We will call this phenomenon aliasing.
In order for GH = I, the undesired frequencies must cancel each other, so that
we end up with what we started with. Thus, GH must have what we will refer to
as alias cancellation. This is the same as saying that GH is a filter. In order for
GH = I, alias cancellation is not enough: We also need that the amount at the
given frequency is unchanged, i.e. that GHφn = φn for any Fourier basis vector
φn. We then say that we have perfect reconstruction. Perfect reconstruction
is always the case for wavelets by construction, but in signal processing many
interesting examples (G0, G1, H0, H1) exist, for which we do not have perfect
reconstruction. Historically, forward and reverse filter bank transforms have
been around long before they appeared in a wavelet context. Operations where
GHφn = cnφn for all n may also be useful, in particular when cn is close to 1
for all n. If cn is real for all n, we say that we have no phase distortion. If we
have no phase distortion, the output from GH has the same phase, even if we
do not have perfect reconstruction. Such “near-perfect reconstruction systems"
have also been around long before many perfect reconstruction wavelet systems
were designed. In signal processing, these transforms also exist in more general
variants, and we will define these later. Let us summarize as follows.

Definition 6.14. Alias cancellation, phase distortion, and perfect reconstruction.
We say that we have alias cancellation if, for any n,

GHφn = cnφn,

for some constant cn (i.e. GH is a filter). If all cn are real, we say that we
no phase distortion. If GH = I (i.e. cn = 1 for all n) we say that we have
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perfect reconstruction. If all cn are close to 1, we say that we have near-perfect
reconstruction.

In signal processing, one also says that we have perfect- or near-perfect
reconstruction when GH equals Ed, or is close to Ed (i.e. the overall result is a
delay). The reason why a delay occurs has to do with that the transforms are
used in real-time processing, for which we may not be able to compute the output
at a given time instance before we know some of the following samples. Clearly
the delay is unproblematic, since one can still can reconstruct the input from
the output. We will encounter a useful example of near-perfect reconstruction
soon in the MP3 standard.

Let us now find a criterium for alias cancellation: When do we have that
GHe2πirk/N is a multiplum of e2πirk/N , for any r? We first remark that

H(e2πirk/N ) =
{
λH0,re

2πirk/N k even
λH1,re

2πirk/N k odd.

The frequency response of H(e2πirk/N ) is

N/2−1∑
k=0

λH0,re
2πir(2k)/Ne−2πi(2k)n/N +

N/2−1∑
k=0

λH1,re
2πir(2k+1)/Ne−2πi(2k+1)n/N

=
N/2−1∑
k=0

λH0,re
2πi(r−n)(2k)/N +

N/2−1∑
k=0

λH1,re
2πi(r−n)(2k+1)/N

= (λH0,r + λH1,re
2πi(r−n)/N )

N/2−1∑
k=0

e2πi(r−n)k/(N/2).

Clearly,
∑N/2−1
k=0 e2πi(r−n)k/(N/2) = N/2 if n = r or n = r + N/2, and 0 else.

The frequency response is thus the vector

N

2 (λH0,r + λH1,r)er + N

2 (λH0,r − λH1,r)er+N/2,

so that

H(e2πirk/N ) = 1
2(λH0,r + λH1,r)e2πirk/N + 1

2(λH0,r − λH1,r)e2πi(r+N/2)k/N .

(6.10)
Let us now turn to the reverse filter bank transform. We can write

(e2πir·0/N , 0, e2πir·2/N , 0, . . . , e2πir(N−2)/N , 0) = 1
2(e2πirk/N + e2πi(r+N/2)k/N )

(0, e2πir·1/N , 0, e2πir·3/N , . . . , 0, e2πir(N−1)/N ) = 1
2(e2πirk/N − e2πi(r+N/2)k/N ).
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This means that

G(e2πirk/N ) = G0

(
1
2

(
e2πirk/N + e2πi(r+N/2)k/N

))
+G1

(
1
2

(
e2πirk/N − e2πi(r+N/2)k/N

))
=1

2(λG0,re
2πirk/N + λG0,r+N/2e

2πi(r+N/2)k/N ) + 1
2(λG1,re

2πirk/N − λG1,r+N/2e
2πi(r+N/2)k/N )

=1
2(λG0,r + λG1,r)e2πirk/N + 1

2(λG0,r+N/2 − λG1,r+N/2)e2πi(r+N/2)k/N . (6.11)

Now, if we combine equations (6.10) and (6.11), we get

GH(e2πirk/N )

= 1
2(λH0,r + λH1,r)G(e2πirk/N ) + 1

2(λH0,r − λH1,r)G(e2πi(r+N/2)k/N )

= 1
2(λH0,r + λH1,r)

(
1
2(λG0,r + λG1,r)e2πirk/N + 1

2(λG0,r+N/2 − λG1,r+N/2)e2πi(r+N/2)k/N )
)

+ 1
2(λH0,r − λH1,r)

(
1
2(λG0,r+N/2 + λG1,r+N/2)e2πi(r+N/2)k/N + 1

2(λG0,r − λG1,r)e2πirk/N )
)

= 1
4 ((λH0,r + λH1,r)(λG0,r + λG1,r) + (λH0,r − λH1,r)(λG0,r − λG1,r)) e2πirk/N

+ 1
4
(
(λH0,r + λH1,r)(λG0,r+N/2 − λG1,r+N/2) + (λH0,r − λH1,r)(λG0,r+N/2 + λG1,r+N/2)

)
e2πi(r+N/2)k/N

= 1
2(λH0,rλG0,r + λH1,rλG1,r)e2πirk/N + 1

2(λH0,rλG0,r+N/2 − λH1,rλG1,r+N/2)e2πi(r+N/2)k/N .

If we also replace with the continuous frequency response, we obtain the following:

Theorem 6.15. Expression for aliasing.
We have that

GH(e2πirk/N ) =1
2(λH0,rλG0,r + λH1,rλG1,r)e2πirk/N

+ 1
2(λH0,rλG0,r+N/2 − λH1,rλG1,r+N/2)e2πi(r+N/2)k/N .

(6.12)

In particular, we have alias cancellation if and only if

λH0(ω)λG0(ω + π) = λH1(ω)λG1(ω + π). (6.13)

We will refer to this as the alias cancellation condition. If in addition

λH0(ω)λG0(ω) + λH1(ω)λG1(ω) = 2, (6.14)

we also have perfect reconstruction. We will refer to as the condition for perfect
reconstruction.
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No phase distortion means that we have alias cancellation, and that

λH0(ω)λG0(ω) + λH1(ω)λG1(ω) is real.

Now let us turn to how we can construct wavelets/perfect reconstruction systems
from FIR-filters (recall from Chapter 3 that FIR filters where filters with a finite
number of filter coefficients). We will have use for some theorems which allow us
to construct wavelets from prototype filters. In particular we show that, when
G0 and H0 are given lowpass filters which satisfy a certain common property,
we can define unique (up to a constant) highpass filters H1 and G1 so that the
collection of these four filters can be used to implement a wavelet. We first state
the following general theorem.

Theorem 6.16. Criteria for perfect reconstruction.
The following statements are equivalent for FIR filters H0, H1, G0, G1:

• H0, H1, G0, G1 give perfect reconstruction,

• there exist α ∈ R and d ∈ Z so that

(H1)n = (−1)nα−1(G0)n−2d (6.15)
(G1)n = (−1)nα(H0)n+2d (6.16)

2 = λH0,nλG0,n + λH0,n+N/2λG0,n+N/2 (6.17)

Let us translate this to continuous frequency responses. We first have that

λH1(ω) =
∑
k

(H1)ke−ikω =
∑
k

(−1)kα−1(G0)k−2de
−ikω

= α−1
∑
k

(−1)k(G0)ke−i(k+2d)ω = α−1e−2idω
∑
k

(G0)ke−ik(ω+π)

= α−1e−2idωλG0(ω + π).

We have a similar computation for λG1(ω). We can thus state the following:

Theorem 6.17. Criteria for perfect reconstruction.
The following statements are equivalent for FIR filters H0, H1, G0, G1:

• H0, H1, G0, G1 give perfect reconstruction,

• there exist α ∈ R and d ∈ Z so that

λH1(ω) = α−1e−2idωλG0(ω + π) (6.18)
λG1(ω) = αe2idωλH0(ω + π) (6.19)

2 = λH0(ω)λG0(ω) + λH0(ω + π)λG0(ω + π) (6.20)
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Proof. Let us prove first that equations (6.18)- (6.20) for a FIR filter implies
that we have perfect reconstruction. Equations (6.18)-(6.19) mean that the alias
cancellation condition (6.13) is satisfied, since

λH1(ω)λG1(ω + π) =α−1e−2idωλG0(ω + π)(α)e2id(ω+πλH0(ω)
=λH0(ω)λG0(ω + π).

Inserting this in the perfect reconstruction condition (6.20), we get

2 = λH0(ω)λG0(ω) + λG0(ω + π)λH0(ω + π)
= λH0(ω)λG0(ω) + α−1e−2idωλG0(ω + π)αe2idωλH0(ω + π)
= λH0(ω)λG0(ω) + λH1(ω)λG1(ω),

which is Equation (6.14), so that equations (6.18)- (6.20) imply perfect recon-
struction. We therefore only need to prove that any set of FIR filters which give
perfect reconstruction, also satisfy these equations. Due to the calculation above,
it is enough to prove that equations (6.18)-(6.19) are satisfied. The proof of this
will wait till Section 8.1, since it uses some techniques we have not introduced
yet.

Note that, even though conditions (6.18) and (6.19) together ensure that the
alias cancellation condition is satisfied, alias cancellation can occur also if these
conditions are not satisfied. Conditions (6.18) and (6.19) thus give a stronger
requirement than alias cancellation. We will be particularly concerned with
wavelets where the filters are symmetric, for which we can state the following
corollary.

Corollary 6.18. Criteria for perfect reconstruction .
The following statements are equivalent:

• H0, H1, G0, G1 are the filters of a symmetric wavelet,

• λH0(ω), λH1(ω), λG0(ω), λG1(ω) are real functions, and

λH1(ω) = α−1λG0(ω + π) (6.21)
λG1(ω) = αλH0(ω + π) (6.22)

2 = λH0(ω)λG0(ω) + λH0(ω + π)λG0(ω + π). (6.23)

Thw delay d is thus 0 for symmetric wavelets.

Proof. Since H0 is symmetric, (H0)n = (H0)−n, and from equations (6.15) and
(6.16) it follows that

(G1)n−2d = (−1)n−2dα(H0)n = (−1)nα−1(H0)−n
= (−1)(−n−2d)α−1(H0)(−n−2d)+2d = (G1)−n−2d
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This shows that G1 is symmetric about both −2d, in addition to being symmetric
about 0 (by assumption). We must thus have that d = 0, so that (H1)n =
(−1)nα(G0)n and (G1)n = (−1)nα−1(H0)n. We now get that

λH1(ω) =
∑
k

(H1)ke−ikω = α−1
∑
k

(−1)k(G0)ke−ikω

= α−1
∑
k

e−ikπ(G0)ke−ikω = α−1
∑
k

(G0)ke−ik(ω+π)

= α−1λG0(ω + π),

which proves Equation (6.21). Equation (6.21) follows similarly.

When constructing a wavelet it may be that we know one of the two pairs
(G0, G1), (H0, H1), and that we would like to construct the other two. This can
be achieved if we can find the constants d and α from above. If the filters are
symmetric we just saw that d = 0. If G0, G1 are known, it follows from from
equations (6.15) and(6.16) that

1 =
∑
n

(G1)n(H1)n =
∑
n

(G1)nα−1(−1)n(G0)n = α−1
∑
n

(−1)n(G0)n(G1)n,

so that α =
∑
n(−1)n(G0)n(G1)n. On the other hand, if H0, H1 are known

instead, we must have that

1 =
∑
n

(G1)n(H1)n =
∑
n

α(−1)n(H0)n(H1)n = α
∑
n

(−1)n(H0)n(H1)n,

so that α = 1/(
∑
n(−1)n(H0)n(H1)n). Let us use these observations to state

the filters for the alternative wavelet of piecewise linear functions, which is the
only wavelet we have gone through we have not computed the filters and the
frequency response for.

Example 6.19. The alternative piecewise linear wavelet.
In Equation (6.3) we wrote down the first two columns in Pφm←Cm for the

alternative piecewise linear wavelet. This gives us that the filters G0 ans G1 are

G0 = 1√
2
{1/2, 1, 1/2}

G1 = 1√
2
{−1/8,−1/4, 3/4,−1/4,−1/8}. (6.24)

Here G0 was as for the wavelet of piecewise linear functions since we use the
same scaling function. G1 was changed, however. Let us use Theorem 6.17 and
the remark above to compute the two remaining filters H0 and H1. These filters
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are also symmetric, since G0, G1 were. From the simple computation above we
get that

α =
∑
n

(−1)n(G0)n(G1)n = 1
2

(
−1

2

(
−1

4

)
+ 1 · 3

4 −
1
2

(
−1

4

))
= 1

2 .

Theorem 6.17 now gives

(H0)n = α−1(−1)n(G1)n = 2(−1)n(G1)n
(H1)n = α−1(−1)n(G0)n = 2(−1)n(G0)n, (6.25)

so that

H0 =
√

2{−1/8, 1/4, 3/4, 1/4,−1/8}

H1 =
√

2{−1/2, 1,−1/2}. (6.26)

We now have that

λG1(ω) = −1/(8
√

2)e2iω − 1/(4
√

2)eiω + 3/(4
√

2)− 1/(4
√

2)e−iω − 1/(8
√

2)e−2iω

= − 1
4
√

2
cos(2ω)− 1

2
√

2
cosω + 3

4
√

2
.

The magnitude of λG1(ω) is plotted in Figure 6.6. Clearly, G1 now has highpass
characteristics, while the lowpass characteristic of G0 has been preserved.
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Figure 6.6: The frequency response λG1(ω) for the alternative wavelet for
piecewise linear functions.
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The filters G0, G1, H0, H1 are particularly important in applications: Apart
from the scaling factors 1/

√
2,
√

2 in front, we see that the filter coefficients are
all dyadic fractions, i.e. they are on the form β/2j . Arithmetic operations with
dyadic fractions can be carried out exactly on a computer, due to representations
as binary numbers in computers. These filters are thus important in applications,
since they can be used as transformations for lossless coding. The same argument
can be made for the Haar wavelet, but this wavelet had one less vanishing moment.

In the literature, two particular cases of filter banks have been important.
They are both refered to as Quadrature Mirror Filter banks, or QMF filter
banks, and some confusion exist between the two. Let us therefore make precise
definitions of the two.

Definition 6.20. Classical QMF filter banks.
In the classical definition of a QMF filter banks it is required that G0 = H0

and G1 = H1 (i.e. the filters in the forward and reverse transforms are equal),
and that

λH1(ω) = λH0(ω + π). (6.27)

It is straightforward to check that, for a classical QMF filter bank, the
forward and reverse transforms are equal (i.e. G = H). It is easily checked that
conditions (6.18) and (6.19) are satisfied with α = 1, d = 0 for a classical QMF
filter bank. In particular, the alias cancellation condition is satisfied. The perfect
recontruction condition can be written as

2 = λH0(ω)λG0(ω) + λH1(ω)λG1(ω) = λH0(ω)2 + λH0(ω + π)2. (6.28)

Unfortunately, it is impossible to find non-trivial FIR-filters which satisfy this
quadrature formula (Exercise 6.13). Therefore, classical QMF filter banks which
give perfect reconstruction do not exist. Nevertheless, one can construct such
filter banks which give close to perfect reconstruction [19], and this together
with the fulfillment of the alias cancellation condition still make them useful. In
fact, we will see in Section 8.3 that the MP3 standard take use of such filters,
and this explains our previous observation that the MP3 standard does not give
perfect reconstruction. Note, however, that if the filters in a classical QMF filter
bank are symmetric (so that λH0(ω) is real), we have no phase distortion.

The second type of QMF filter bank is defined as follows.

Definition 6.21. Alternative QMF filter banks.
In the alternative definition of a QMF filter bank it is required that G0 =

(H0)T and G1 = (H1)T (i.e. the filter coefficients in the forward and reverse
transforms are reverse of oneanother), and that

λH1(ω) = λH0(ω + π). (6.29)
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The perfect reconstruction condition for an alternative QMF filter bank can
be written as

2 = λH0(ω)λG0(ω) + λH1(ω)λG1(ω) = λH0(ω)λH0(ω) + λH0(ω + π)λH0(ω + π)
= |λH0(ω)|2 + |λH0(ω + π)|2.

We see that the perfect reconstruction property of the two definitions of QMF
filter banks only differ in that the latter take absolute values. It turns out that
the latter also has many interesting solutions, as we will see in Chapter 7. If we
in in condition (6.18) substitute G0 = (H0)T we get

λH1(ω) = α−1e−2idωλG0(ω + π) = α−1e−2idωλH0(ω + π).

If we set α = 1, d = 0, we get equality here. A similar computation follows for
Condition (6.19). In other words, also alternative QMF filter banks satisfy the
alias cancellation condition. In the literature, a wavelet is called orthonormal if
G0 = (H0)T , G1 = (H1)T . From our little computation it follows that alternative
QMF filter banks with perfect reconstruction are examples of orthonormal
wavelets, and correpond to orthonormal wavelets which satisfy α = 1, d = 0.

For the Haar wavelet it is easily checked that G0 = (H0)T , G1 = (H1)T , but
it does not satisfy the relation λH1(ω) = λH0(ω + π). Instead it satsifies the
relation λH1(ω) = −λH0(ω + π). In other words, the Haar wavelet is not an
alternative QMF filter bankthe way we have defined them. The difference lies
only in a sign, however. This is the reason why the Haar wavelet is still listed as
an alternative QMF filter bank in the literature. The additional sign leads to
orthonormnal wavelets which satisfy α = −1, d = 0 instead.

The following is clear for orthonormal wavelets.

Theorem 6.22. Orthogonality og the DWT matrix.
A DWT matrix is orthogonal (i.e. the IDWT equals the transpose of the

DWT) if and only if the filters satisfy G0 = (H0)T , G1 = (H1)T , i.e. if and only
if the MRA equals the dual MRA.

This can be proved simply by observing that, if we transpose the DWT-matrix,
Theorem 6.25 says that we get an IDWT matrix with filters (H0)T , (H1)T , and
this is equal to the IDWT if and only if G0 = (H0)T , G1 = (H1)T . It follows that
QMF filter banks with perfect reconstruction give rise to orthonormal wavelets.

Exercise 6.13: Finding FIR filters
Show that it is impossible to find a non-trivial FIR-filter which satisfies Equation
(6.28) in the compendium.
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Exercise 6.14: The Haar wavelet as an alternative QMF
filter bank
Show that the Haar wavelet satisfies λH1(ω) = −λH0(ω + π), and G0 = (H0)T ,
G1 = (H1)T . The Haar wavelet can thus be considered as an alternative QMF
filter bank.

6.3 A generalization of the filter representation,
and its use in audio coding

It turns out that the filter representation, which we now have used for an
alternative representation of a wavelet transformation, can be generalized in
such a way that it also is useful for audio coding. In this section we will first
define this generalization. We will then state how the MP3 standard encodes
and decodes audio, and see how our generalization is connected to this. Much
literature fails to elaborate on this connection. We will call our generalizations
filter bank transforms, or simply filter banks. Just as for wavelets, filters are
applied differently for the forward and reverse transforms.

We start by defining the forward filter bank transform and its filters.

Definition 6.23. Forward filter bank transform.
Let H0, H1, . . . ,HM−1 be N ×N -filters. A forward filter bank transform H

produces output z ∈ RN from the input x ∈ RN in the following way:

• ziM = (H0x)iM for any i so that 0 ≤ iM < N .

• ziM+1 = (H1x)iM+1 for any i so that 0 ≤ iM + 1 < N .

• . . .

• ziM+(M−1) = (HM−1x)iM+(M−1) for any i so that 0 ≤ iM + (M −1) < N .

In other words, the output of a forward filter bank transform is computed
by applying filters H0, H1, . . . ,HM−1 to the input, and by downsampling and
assembling these so that we obtain the same number of output samples as
input samples (also in this more general setting this is called critical sampling).
H0, H1, . . . ,HM−1 are also called analysis filter components, the output of filter
Hi is called channel i channel, and M is called the number of channels. The
output samples ziM+k are also called the subband samples of channel k.

Clearly this definition generalizes the DWT and its analysis filters, since
these can be obtained by setting M = 2. The DWT is thus a 2-channel forward

filter bank transform. While the DWT produces the output
(
cm−1
wm−1

)
from the

input cm, an M -channel forward filter bank transform splits the output into
M components, instead of 2. Clearly, in the matrix of a forward filter bank
transform the rows repeat cyclically with period M , similarly to MRA-matrices.
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In practice, the filters in a forward filter bank transform are chosen so that
they concentrate on specific frequency ranges. This parallels what we saw for
the filters of a wavelet, where one concentrated on high frequencies, one on low
frequencies. Using a filter bank to split a signal into frequency components is
also called subband coding. But the filters in a filter bank are usually not ideal
bandpass filters. There exist a variety of different filter banks, for many different
purposes [37, 30]. In Chapter 7 we will say more on how one can construct filter
banks which can be used for subband coding.

Let us now turn to reverse filter bank transforms.

Definition 6.24. Reverse filter bank transforms.
Let G0, G1, . . . , GM−1 be N ×N -filters. An reverse filter bank transform G

produces x ∈ RN from z ∈ RN in the following way:

• Define zkRN as the vector where (zk)iM+k = ziM+k for all i so that
0 ≤ iM + k < N , and (zk)s = 0 for all other s.

x = G0z0 +G1z1 + . . .+GM−1zM−1. (6.30)
G0, G1, . . . , GM−1 are also called synthesis filter components.

Again, this generalizes the IDWT and its synthesis filters, and the IDWT
can be seen as a 2-channel reverse filter bank transform. Also, in the matrix of
a reverse filter bank transform, the columns repeat cyclically with period M ,
similarly to MRA-matrices. Also in this more general setting the filters Gi are
in general different from the filters Hi. But we will see that, just as we saw
for the Haar wavelet, there are important special cases where the analysis and
synthesis filters are equal, and where their frequency responses are simply shifts
of oneanother. It is clear that definitions 6.23 and 6.24 give the diagram for
computing forward and reverse filter bank transforms shown in Figure 6.7:

Here ↓M and ↑M means that we extract every M ’th element in the vector,
and add M − 1 zeros between the elements, respectively, similarly to how we
previously defined ↓2 and ↑2. Comparing Figure 6.3 with Figure 6.7 makes the
similarities between wavelet transformations and the transformation used in
the MP3 standard very visible: Although the filters used are different, they are
subject to the same kind of processing, and can therefore be subject to the same
implementations.

In general it may be that the synthesis filters do not invert exactly the
analysis filters. If the synthesis system exactly inverts the analysis system, we
say that we have a perfect reconstruction filter bank. Since the analysis system
introduces undesired frequencies in the different channels, these have to cancel
in the inverse transform, in order to reconstruct the input exactly.

We will have use for the following simple connection between forward and
reverse filter bank transforms, which follows imemdiately from the definitions.

Theorem 6.25. Connection between forward and reverse filter bank transforms.
Assume that H is a forward filter bank transform with filters H0, . . . ,HN−1.

Then HT is a reverse filter bank transform with filters G0 = (H0)T , . . . , GN−1 =
(HN−1)T .
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H0x
↓M // ziM

↑M // z0

G0

��

H1x
↓M // ziM+1

↑M // z1

G1
  

x

==

EE

!!

��

...
...

... ⊕ // x

HM−2x
↓M // ziM+(M−2)

↑M // zM−2

GM−2

>>

HM−1x
↓M // ziM+(M−1)

↑M // zM−1

GM−1

FF

Figure 6.7: Illustration of forward and reverse filter bank transforms.

6.3.1 Forward filter bank transform used for encoding in
the MP3 standard

Now, let us turn to the MP3 standard. The MP3 standard document states
that it applies a filter bank, and explains the following procedure for applying
this filter bank, see p. 67 of the standard document (the procedure is slightly
modified with mathematical terminology adapted to this book):

• Input 32 audio samples at a time.

• Build an input sample vector X ∈ R512, where the 32 new samples are
placed first, all other samples are delayed with 32 elements. In particular
the 32 last samples are taken out.

• Multiply X componentwise with a vector C (this vector is defined through
a table in the standard), to obtain a vector Z ∈ R512. The standard calls
this windowing.

• Compute the vector Y ∈ R64 where Yi =
∑7
j=0 Zi+64j . The standard calls

this a partical calculation.

• Calculate S = MY ∈ R32, where M is the 32× 64- matrix where Mik =
cos((2i + 1)(k − 16)π/64). S is called the vector of output samples, or
output subband samples. The standard calls this matrixing.
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The standard does not motivate these steps, and does not put them into the
filter bank transform framework which we have established. Also, the standard
does not explain how the values in the vector C have been constructed.

Let us start by proving that the steps above really corresponds to applying a
forward filter bank transform, and let us state the corresponding filters of this
transform. The procedure computes 32 outputs in each iteration, and each of
them is associated with a subband. Therefore, from the standard we would guess
that we have M = 32 channels, and we would like to find the corresponding 32
filters H0, H1, . . . ,H31.

It may seem strange to use the name matrixing here, for something which
obviously is matrix multiplication. The reason for this name must be that the
at the origin of the procedure come from outside a linear algebra framework.
The name windowing is a bit strange, too. This really does not correspond to
applying a window to the sound samples as we explained in Section 3.3.1. We
will see that it rather corresponds to applying a filter coefficient to a sound
sample. A third and final thing which seems a bit strange is that the order of the
input samples is reversed, since we are used to having the first sound samples
in time with lowest index. This is perhaps more usual to do in an engineering
context, and not so usual in a mathematical context. FIFO.

Clearly, the procedure above defines a linear transformation, and we need to
show that this linear transformation coincides with the procedure we defined for a
forward filter bank transform, for a set of 32 filters. The input to the transforma-
tion are the audio samples, which we will denote by a vector x. At iteration s of
the procedure above the input audio samples are x32s−512, x32s−510, . . . , x32s−1,
and Xi = x32s−i−1 due to the reversal of the input samples. The output to the
transformation at iteration s of the procedure are the S0, . . . , S31. We assem-
ble these into a vector z, so that the output at iteration s are z32(s−1) = S0,
z32(s−1)+1 = S1,. . . ,z32(s−1)+31 = S31.

We will have use for the following cosine-properties, which are easily verified:

cos (2π(n+ 1/2)(k + 2Nr)/(2N)) = (−1)r cos (2π(n+ 1/2)k/(2N)) (6.31)
cos (2π(n+ 1/2)(2N − k)/(2N)) = − cos (2π(n+ 1/2)k/(2N)) . (6.32)

With the terminology above and using Property (6.31) the transformation can
be written as
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z32(s−1)+n =
63∑
k=0

cos((2n+ 1)(k − 16)π/64)Yk =
63∑
k=0

cos((2n+ 1)(k − 16)π/64)
7∑
j=0

Zk+64j

=
63∑
k=0

7∑
j=0

(−1)j cos((2n+ 1)(k + 64j − 16)π/64)Zk+64j

=
63∑
k=0

7∑
j=0

cos((2n+ 1)(k + 64j − 16)π/64)(−1)jCk+64jXk+64j

=
63∑
k=0

7∑
j=0

cos((2n+ 1)(k + 64j − 16)π/64)(−1)jCk+64jx32s−(k+64j)−1.

Now, if we define {hr}511
r=0 by hk+64j = (−1)jCk+64j , 0 ≤ j < 8, 0 ≤ k < 64, and

h(n) as the filter with coefficients {cos((2n+ 1)(k − 16)π/64)hk}511
k=0, the above

can be simplified as

z32(s−1)+n =
511∑
k=0

cos((2n+ 1)(k − 16)π/64)hkx32s−k−1 =
511∑
k=0

(h(n))kx32s−k−1

= (h(n)x)32s−1 = (En−31h
(n)x)32(s−1)+n.

This means that the output of the procedure stated in the MP3 standard can
be computed as a forward filter bank transform, and that we can choose the
analysis filters as Hn = En−31h

(n).

Theorem 6.26. Forward filter bank transform for the MP3 standard.
Define {hr}511

r=0 by hk+64j = (−1)jCk+64j , 0 ≤ j < 8, 0 ≤ k < 64, and h(n)

as the filter with coefficients {cos((2n + 1)(k − 16)π/64)hk}511
k=0. If we define

Hn = En−31h
(n), the procedure stated in the MP3 standard corresponds to

applying the corresponding forward filter bank transform.

The filters Hn were shown in Example 3.37 as examples of filters which
concentrate on specific frequency ranges. The hk are the filter coefficients of
what is called a prototype filter. This kind of filter bank is also called a cosine-
modulated filter. The multiplication with cos (2π(n+ 1/2)(k − 16)/(2N))hk,
modulated the filter coefficients so that the new filter has a frequency response
which is simply shifted in frequency in a symmetric manner: In Exercise 3.30,
we saw that, by multiplying with a cosine, we could contruct new filters with
real filter coefficients, which also corresponded to shifting a prototype filter in
frequency. Of course, multiplication with a complex exponential would also shift
the frequency response (such filter banks are called DFT-modulated filter banks),
but the problem with this is that the new filter has complex coefficients: It will
turn out that cosine-modulated filter banks can also be constructed so that they
are invertible, and that one can find such filter banks where the inverse is easily
found.
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The effect of the delay in the definition of Hn is that, for each n, the
multiplications with the vector x are “aligned”, so that we can save a lot of
multiplications by performing this multiplication first, and summing these. We
actually save even more multiplications in the sum where j goes from 0 to 7, since
we here multiply with the same cosines. The steps defined in the MP3 standard
are clearly motivated by the desire to reduce the number of multiplications due
to these facts. A simple arithmetic count illutrates these savings: For every 32
output samples, we have the following number of multiplications:

• The first step computes 512 multiplications.

• The second step computes 64 sums of 8 elements each, i.e. a total of
7× 64 = 448 additions (note that q = 512/64 = 8).

The standard says nothing about how the matrix multiplication in the third
step can be implemented. A direct multiplication would yield 32× 64 = 2048
multiplications, leaving a total number of multiplications at 2560. In a direct
implementation of the forward filter bank transform, the computation of 32
samples would need 32 × 512 = 16384 multiplications, so that the procedure
sketched in the standard gives a big reduction.

The standard does not mention all possibilities for saving multiplications,
however: We can reduce the number of multiplications even further, since clearly
a DCT-type implementation can be used for the matrixing operation. We already
have an efficient implementation for multiplication with a 32× 32 type-III cosine
matrix (this is simply the IDCT). We have seen that this implementation can
be chosen to reduce the number of multiplications to N log2 N/2 = 80, so that
the total number of multiplications is 512 + 80 = 592. Clearly then, when we
use the DCT, the first step is the computationally most intensive part.

6.3.2 Reverse filter bank transform used for decoding in
the MP3 standard

Let us now turn to how decoding is specified in the MP3 standard, and see that
we can associate this with a reverse filter bank transform. The MP3 standard
also states the following procedure for decoding:

• Input 32 new subband samples as the vector S.

• Change vector V ∈ R512, so that all elements are delayed with 64 elements.
In particular the 64 last elements are taken out.

• Set the first 64 elements of V as NS ∈ R64, where N is the 64 × 32-
matrix where Nik = cos((16 + i)(2k + 1)π/64). The standard also calls
this matrixing.

• Build the vector U ∈ R512 from V from the formulas U64i+j = V128i+j ,
U64i+32+j = V128i+96+j for 0 ≤ i ≤ 7 and 0 ≤ j ≤ 31, i.e. U is the vector
where V is first split into segments of length 132, and U is constructed by
assembling the first and last 32 elements of each of these segments.
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• Multiply U componentwise with a vector D (this vector is defined in the
standard), to obtain a vector W ∈ R512. The standard also calls this
windowing.

• Compute the 32 next sound samples as
∑15
i=0 W32i+j .

To interpret this also in terms of filters, rewrite first steps 4 to 6 as

x32(s−1)+j =
15∑
i=0

W32i+j =
15∑
i=0

D32i+jU32i+j

=
7∑
i=0

D64i+jU64i+j +
7∑
i=0

D64i+32+jU64i+32+j

=
7∑
i=0

D64i+jV128i+j +
7∑
i=0

D64i+32+jV128i+96+j . (6.33)

The elements in V are obtained by “matrixing” different segments of the vector
z. More precisely, at iteration s we have that


V64r
V64r+1

...
V64r+63

 = N


z32(s−r−1)
z32(s−r−1)+1

...
z32(s−r−1)+31

 ,

so that

V64r+j =
31∑
k=0

cos((16 + j)(2k + 1)π/64)z32(s−r−1)+k

for 0 ≤ j ≤ 63. Since also

V128i+j = V64(2i)+j V128i+96+j = V64(2i+1)+j+32,

we can rewrite Equation (6.33) as

7∑
i=0

D64i+j

31∑
k=0

cos((16 + j)(2k + 1)π/64)z32(s−2i−1)+k

+
7∑
i=0

D64i+32+j

31∑
k=0

cos((16 + j + 32)(2k + 1)π/64)z32(s−2i−2))+k.

Again using Relation (6.31), this can be written as
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31∑
k=0

7∑
i=0

(−1)iD64i+j cos((16 + 64i+ j)(2k + 1)π/64)z32(s−2i−1)+k

+
31∑
k=0

7∑
i=0

(−1)iD64i+32+j cos((16 + 64i+ j + 32)(2k + 1)π/64)z32(s−2i−2)+k.

Now, if we define {gr}511
r=0 by g64i+s = (−1)iC64i+s, 0 ≤ i < 8, 0 ≤ s < 64, and

g(k) as the filter with coefficients {cos((r + 16)(2k + 1)π/64)gr}511
r=0, the above

can be simplified as

31∑
k=0

7∑
i=0

(g(k))64i+jz32(s−2i−1)+k +
31∑
k=0

7∑
i=0

(g(k))64i+j+32z32(s−2i−2)+k

=
31∑
k=0

( 7∑
i=0

(g(k))32(2i)+jz32(s−2i−1)+k +
7∑
i=0

(g(k))32(2i+1)+jz32(s−2i−2)+k

)

=
31∑
k=0

15∑
r=0

(g(k))32r+jz32(s−r−1)+k,

where we observed that 2i and 2i+ 1 together run through the values from 0 to
15 when i runs from 0 to 7. Since z has the same values as zk on the indices
32(s− r − 1) + k, this can be written as

=
31∑
k=0

15∑
r=0

(g(k))32r+j(zk)32(s−r−1)+k

=
31∑
k=0

(g(k)zk)32(s−1)+j+k =
31∑
k=0

((E−kg(k))zk)32(s−1)+j .

By substituting a general s and j we see that x =
∑31
k=0(E−kg(k))zk. We have

thus proved the following.

Theorem 6.27. Reverse filter bank transform for the MP3 standard.
Define {gr}511

r=0 by g64i+s = (−1)iC64i+s, 0 ≤ i < 8, 0 ≤ s < 64, and g(k)

as the filter with coefficients {cos((r + 16)(2k + 1)π/64)gr}511
r=0. If we define

Gk = E−kg
(k), the procedure stated in the MP3 standard corresponds to applying

the corresponding reverse filter bank transform.

In other words, both procedures for encoding and decoding stated in the
MP3 standard both correspond to filter banks: A forward filter bank transform
for the encoding, and a reverse filter bank transform for the decoding. Moreover,
both filter banks can be constructed by cosine-modulating prototype filters, and
the coefficients of these prototype filters are stated in the MP3 standard (up to
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multiplication with an alternating sign). Note, however, that the two prototype
filters may be different. When we compare the two tables for these coefficients in
the standard they do indeed seem to be different. At closer inspection, however,
one sees a connection: If you multiply the values in the D-table with 32, and
reverse them, you get the values in the C-table. This indicates that the analysis
and synthesis prototype filters are the same, up to multiplication with a scalar.
This connection will be explained in Section 8.3.

While the steps defined in the MP3 standard for decoding seem a bit more
complex than the steps for encoding, they are clearly also motivated by the
desire to reduce the number of multiplications. In both cases (encoding and
decoding), the window tables (C and D) are in direct connection with the filter
coefficients of the prototype filter: one simply adds a sign which alternates for
every 64 elements. The standard document does not mention this connection,
and it is perhaps not so simple to find this connection in the literature (but see
[26]).

The forward and reverse filter bank transforms are clearly very related. The
following result clarifies this.

Theorem 6.28. Connection between the forward and reverse filter bank trans-
forms in the MP3 standard.

Assume that a forward filter bank transform has filters on the form Hi =
Ei−31h

(i) for a prototype filter h. Then G = E481H
T is a reverse filter bank

transform with filters on the form Gk = E−kg
(k), where g is a prototype filter

where the elements equal the reverse of those in h. Vice versa, H = E481G
T .

Proof. From Theorem 6.25 we know that HT is a reverse filter bank transform
with filters

(Hi)T = (Ei−31h
(i))T = E31−i(h(i))T .

(h(i))T has filter coefficients cos((2i + 1)(−k − 16)π/64))h−k. If we delay all
(Hi)T with 481 = 512− 31 elements as in the theorem, we get a total delay of
512− 31 + 31− i = 512− i elements, so that we get the filter

E512−i{cos((2i+ 1)(−k − 16)π/64))h−k}k
= E−i{cos((2i+ 1)(−(k − 512)− 16)π/64))h−(k−512)}k
= E−i{cos((2i+ 1)(k + 16)π/64))h−(k−512)}k.

Now, we define the prototype filter g with elements gk = h−(k−512). This has,
just as h, its support on [1, 511], and consists of the elements from h in reverse
order. If we define g(i) as the filter with coefficients cos((2i+ 1)(k+ 16)π/64))gk,
we see that E481H

T is a reverse filter bank transform with filters E−ig(i). Since
g(k) now has been defined as for the MP3 standard, and its elements are the
reverse of those in h, the result follows.

We will have use for this result in Section 8.3, when we find conditions on
the protototype filter in order for the reverse transform to invert the forward
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transform. Preferably, the reverse filter bank transform inverts exactly the
forward filter bank transform. In Exercise 6.16 we construct examples which
show that this is not the case. In the same exercise we also find many examples
where the reverse transform does what we would expect. These examples will
also be explained in Section 8.3, where we also will see how one can get around
this so that we obtain a system with perfect reconstruction. It may seem strange
that the MP3 standard does not do this.

In the MP3 standard, the output from the forward filter bank transform is
processed further, before the result is compressed using a lossless compression
method.

Exercise 6.15: Plotting frequency responses
The values Cq, Dq can be found by calling the functions mp3ctable, mp3dtable
which can be found on the book’s webpage.

a) Use your computer to verify the connection we stated between the tables C
and D, i.e. that Di = 32Ci for all i.

b) Plot the frequency responses of the corresponding prototype filters, and verify
that they both are lowpass filters. Use the connection from Theorem (6.26) to
find the prototype filter coefficients from the Cq.

Exercise 6.16: Implementing forward and reverse filter bank
transforms
It is not too difficult to make implementations of the forward and reverse steps
as explained in the MP3 standard. In this exercise we will experiment with this.
In your code you can for simplicity assume that the input and output vectors to
your methods all have lengths which are multiples of 32. Also, use the functions
mp3ctable, mp3dtable mentioned in the previous exercise.

a) Write a function mp3forwardfbt which implements the steps in the forward
direction of the MP3 standard.

b) Write also a function mp3reversefbt which implements the steps in the
reverse direction.

6.4 Summary
We started this chapter by noting that, by reordering the target base of the
DWT, the change of coordinate matrix took a particular form. From this form
we understood that the DWT could be realized in terms of two filters H0 and
H1, and that the IDWT could be realized in a similar way in terms of two filters
G0 and G1. This gave rise to what we called the filter representation of wavelets.
The filter representation gives an entirely different view on wavelets: instead of
constructing function spaces with certain properties and deducing corresponding
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filters from these, we can instead construct filters with certain properties (such
as alias cancellation and perfect reconstruction), and attempt to construct
corresponding mother wavelets, scaling functions, and function spaces. This
strategy, which replaces problems from function theory with discrete problems,
will be the subject of the next chapter. In practice this is what is done.

We stated what is required for filter bank matrices to invert each other: The
frequency responses of the lowpass filters needed to satisfy a certain equation,
and once this is satsified the highpass filters can easily be obtained in the same
way we previously obtained highpass filters from lowpass filters. We will return
to this equation in the next chapter.

A useful consequence of the filter representation was that we could reuse
existing implementations of filters to implement the DWT and the IDWT, and
reuse existing theory, such as symmetric extensions. For wavelets, symmetric
extensions are applied in a slightly different way, when compared to the develop-
ments which lead to the DCT. We looked at the frequency responses of the filters
for the wavelets we have encountered upto now. From these we saw that G0, H0
were lowpass filters, and that G1, H1 were highpass filters, and we argued why
this is typically the case for other wavelets as well. The filter reprersentation
was also easily generalized from 2 to M > 2 filters, and such transformations
had a similar interpretation in terms of splitting the input into a uniform set of
frequencies. Such transforms were generally called filter bank transforms, and
we saw that the processing performed by the MP3 standard could be interpreted
as a certain filter bank transform, called a cosine-modulated filter bank. This
is just one of many possible filter banks. In fact, the filter bank of the MP3
standard is largely outdated, since it is too simple, and as we will see it does not
even give perfect reconstruction (only alias cancellation and no phase distortion).
It is merely chosen here since it is the simplest to present theoretically, and
since it is perhaps the best known standard for compression of sound. Other
filters banks with better properties have been constructed, and they are used in
more recent standards. In many of these filter banks, the filters do not partition
frequencies uniformly, and have been adapted to the way the human auditory
system handles the different frequencies. Different contruction methods are used
to construct such filter banks. The motivation behind filter bank transforms is
that their output is more suitable for further processing, such as compression, or
playback in an audio system, and that they have efficient implementations.

We mentioned that the MP3 standard does not say how the prototype filters
were chosen. We will have more to say on what dictates their choice in Section 8.3.

There are several differences between the use of wavelet transformations
in wavelet theory, and the use of filter bank transforms in signal processing
theory One is that wavelet transforms are typically applied in stages, while filter
bank transforms often are not. Nevertheless, such use of filter banks also has
theoretical importance, and this gives rise to what is called tree-structured filter
banks [37]. Another difference lies in the use of the term perfect reconstruction
system. In wavelet theory this is a direct consequence of the wavelet construction,
since the DWT and the IDWT correspond to change of coordinates to and from
the same bases. The alternative QMF filter bank was used as an example
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of a filter bank which stems from signal processing, and which also shows
up in wavelet transformation. In signal processing theory, one has a wider
perspective, since one can design many useful systems with fast implementations
when one replaces the perfect reconstruction requirement with a near perfect
reconstruction requirement. One instead requires that the reverse transform
gives alias cancellation. The classical QMF filter banks were an example of this.
The original definition of classical QMF filter banks are from [7], and differ only
in a sign from how they are defined here.

All filters we encounter in wavelets and filter banks in this book are FIR.
This is just done to limit the exposition. Much useful theory has been developed
using IIR-filters.



Chapter 7

Constructing interesting
wavelets

In the previous chapter, from an MRA with corresponding scaling function
and mother wavelet, we defined what we called a forward filter bank transform.
We also defined a reverse filter bank transform, but we did not state an MRA
connected to this, or prove if any such association could be made. In this
chapter we will address this. We will also see, if we start with a forward and
reverse filter bank transform, how we can construct corresponding MRA’s, and
for which transforms we can make this construction. We will see that there
is a great deal of flexibility in the filter bank transforms we can construct (as
this is a discrete problem). Actually it is so flexible that we can construct
scaling functions/mother wavelets with any degree of regularity, and well suited
for approximation of functions. This will also explain our previous interest in
vanishing moments, and explain how we can find the simplest filters which give
rise to a given number of vanishing moments, or a given degree of differentiability..
Answers to these questions certainly transfer much more theory between wavelets
and filters. Several of these filters enjoy a widespread use in applications. We
will look at two of these. These are used for lossless and lossy compression in
JPEG2000, which is a much used standard. These wavelets all have symmetric
filters. We end the chapter by looking at a family of orthonormal wavelets with
different number of vanishing moments.

7.1 From filters to scaling functions and mother
wavelets

Example 7.1. The alternative piecewise linear wavelet.
Let us return to the alternative piecewise linear wavelet. In Example 6.19 we

found the filters H0, H1 for this wavelet, and these determine the dual scaling
function and the dual mother wavelet. We already know how the scaling function

252
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and the mother wavelet look, but how do the dual functions look? It turns
out that there is usually no way to find analytical expressions for these dual
functions (as is the case for the scaling function and the mother wavelet itself
in most cases), but that there still is an algorithm we can apply in order to see
how these functions look. This algorithm is called the cascade algorithm, and
works essentially by computing the coordinates of φ, ψ (or φ̃, ψ̃) in φm (or φ̃m).
By increasing m, we have previously argued that these coordinates are good
approximations to the samples of the functions.

To be more specific, we start with the following observation for the dual
functions (similar observations hold for the scaling function and the mother
wavelet also):

• the coordinates of φ̃ in (φ̃0, ψ̃0, ψ̃1 . . .) is the vector with 1 first, followed
by only zeros,

• the coordinates of ψ̃ in (φ̃0, ψ̃0, ψ̃1 . . .) is the vector with N zeros first,
then a 1, and then only zeros.

The length of these vectors is N2m. The coordinates in φ̃m for φ̃ and ψ̃ can
be obtained by applying the m-level IDWT for the dual wavelet (i.e. the filters
(H0)T , (H1)T are used) to these vectors. In Exercise 7.1 we will study code which
uses this approach to approximate the scaling function and mother wavelet. In
Figure 7.1 we have plotted the resulting coordinates in φ̃10, and thus a good
approximation to φ̃ and ψ̃. We see that these functions look very irregular. Also,
they are very different from the original scaling function and mother wavelet.
We will later argue that this is bad, it would be much better if φ ≈ φ̃ and ψ ≈ ψ̃.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

0

2

4

6

Figure 7.1: Dual scaling function φ̃ (left) and dual mother wavelet ψ̃ (right) for
the alternative piecewise linear wavelet.

From Theorem 6.11 it follows that the support sizes of these dual functions
are are 4 and 3, respectively, so that their supports should be [−2, 2] and [−1, 2],
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respectively. This is the reason why we have plotted the functions over [−2, 2].
The plots seem to confirm the support sizes we have computed.

Let us formalize the cascade algorithm from the previous example as follows.

Definition 7.2. The cascade algorithm.
The cascade algorithm applies a change of coordinates for the functions φ̃, ψ̃

from (φ̃0, ψ̃0, ψ̃1 . . .) to φ̃m, and uses the new coordinates as an an approximation
to the function values of these functions.

7.2 Turning things around: How to construct
useful wavelet bases from filters

In our first examples of wavelets in Chapter 5, we started with some bases og
functions φm, and deduced filters G0 and G1 from these. If we instead start
with the filters G0 and G1, what properties must they fulfill in order for us to
make an association the opposite way? We should thus demand that there exist
functions φ, ψ so that

φ(t) =
2N−1∑
n=0

(G0)n,0φ1,n(t) (7.1)

ψ(t) =
2N−1∑
n=0

(G1)n,1φ1,n(t) (7.2)

Using Equation (7.1), the Fourier transform of φ is

φ̂(ω) = 1√
2π

∫ ∞
−∞

φ(t)e−iωtdt = 1√
2π

∫ ∞
−∞

(∑
n

(G0)n,0
√

2φ(2t− n)
)
e−iωtdt

= 1√
2
√

2π

∑
n

∫ ∞
−∞

(G0)n,0φ(t)e−iω(t+n)/2dt

= 1√
2

(∑
n

(G0)n,0e−iωn/2

)
1√
2π

∫ ∞
−∞

φ(t)e−i(ω/2)t)dt = λG0(ω/2)√
2

φ̂(ω/2).

(7.3)

Clearly this expression can be continued recursively. We can thus state the
following result.

Theorem 7.3. gN .
Define

gN (ω) =
N∏
s=1

λG0(ω/2s)√
2

χ[0,2π](2−Nω). (7.4)
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Then on [0, 2π2N ] we have that φ̂(ν) = gN (ν)φ̂(ν/2N ).

We can now prove the following.

Lemma 7.4. gN (ν) converges.
Assume that

∑
n(G0)n =

√
2 (i.e. λG0(0) =

√
2), and that G0 is a FIR-

filter. Then gN (ν) converges pointwise as N →∞ to an infinitely differentiable
function.

Proof. We need to verify that the infinite product
∏∞
s=1

λG0 (2πν/2s)√
2 converges.

Taking logarithms we get
∑
s ln

(
λG0 (2πν/2s)√

2

)
. To see if this series converges,

we consider the ratio between two successive terms:

ln
(
λG0 (2πν/2s+1)√

2

)
ln
(
λG0 (2πν/2s)√

2

) .

Since
∑
n(G0)n =

√
2, we see that λG0(0) =

√
2. Since limν→0 λG0(ν) =

√
2,

both the numerator and the denominator above tends to 0 (to one inside the

logarithms), so that we can use L’hospital’s rule on
ln
(
λG0 (ν/2)
√

2

)
ln
(
λG0 (ν)
√

2

) to obtain

λG0(ν)
λG0(ν/2)

∑
n(G0)n(−in)e−inν/2/2∑
n(G0)n(−in)e−inν → 1

2 < 1

as ν → 0. It follows that the product converges for any ν. Clearly the conver-
gence is absolute and uniform on compact sets, so that the limit is infinitely
differentiable.

It follows that φ̂, when φ exists, must be an infinitely differentiable function
also. Similarly we get

ψ̂(ω) = 1√
2

(∑
n

(G1)n−1,0e
−iωn/2

)
1√
2π

∫ ∞
−∞

φ(t)e−i(ω/2)t)dt

= 1√
2

(∑
n

(G1)n,0e−iω(n+1)/2

)
φ̂(ω/2) = e−iω/2λG1(ω/2)√

2
φ̂(ω/2).

It follows in the same way that ψ̂ must be an infinitely differentiable function
also.

Now consider the dual filter bank transform,as defined in Chapter 6. Its
synthesis filter are (H0)T and (H1)T . If there exist a scaling function φ̃ and a
mother wavelet ψ̃ for the dual transform, they must in the same way be infinitely
differentiable. Moreover, φ̂, ψ̂, ˆ̃φ, ˆ̃ψ can be found as infinite products of the known
frequency responses. If these functions are in L2R, then we can find unique
functions φ, ψ, φ̃, ψ̃ with these as Fourier transforms.
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So, our goal is to find filters so that the derived infinite products of the
frequency responses lie in L2(R), and so that the constructed functions φ, ψ, φ̃, ψ̃
give rise to “nice” wavelet bases. Some more technical requirements will be
needed in order for this. In order to state these we should be clear on what we
mean by a “nice” basis in this context. First of all, the bases should together
span all of L2(R). But our bases are not orthogonal, so we should have some
substitute for this. We will need the following definitions.

Definition 7.5. Frame.
Let H be a Hilbert space. A set of vectors {un}n is called a frame of H if

there exist constants A > 0 and B > 0 so that, for any f ∈ H,

A‖f‖2 ≤
∑
n

|〈f, un〉|2 ≤ B‖f‖2.

If A = B, the frame is said to be tight.

Note that, for a frame of H, any f ∈ H is uniquely characterized by the
inner products 〈f, un〉. Indeed, if both a, b ∈ H have the same inner products,
then a − b ∈ H have inner products 0, which implies that a = b from the left
inequality.

For every frame one can find a dual frame {ũn}n which satisfies

1
B
‖f‖2 ≤

∑
n

|〈f, ũn〉|2 ≤
1
A
‖f‖2,

and

f =
∑
n

〈f, un〉ũn =
∑
n

〈f, ũn〉un. (7.5)

Thus, if the frame is tight, the dual frame is also tight.
A frame is called a Riesz basis if all its vectors also are linearly independent.

One can show that the vectors in the dual frame of a Riesz basis also are linearly
independent, so that the dual frame of a Riesz basis also is a Riesz basis. It is
also called the dual Riesz basis. We will also need the following definition.

Definition 7.6. Biorthogonal bases.
We say that two bases {fn}n, {gm}m are biorthogonal if 〈fn, gm〉 = 0

whenever n 6= m, and 1 if n = m.

From Equation (7.5) and linear independence, it is clear that the vectors in
a Riesz basis and in its dual Riesz basis are biorthogonal. In the absence of
orthonormal bases for L2(R), the best we can hope for is dual Riesz bases for
L2(R). The following result explains how we can obtain this from the filters.

Proposition 7.7. Biorthogonality.
Assume that the frequency responses λG0 and λH0 can be written as.
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λG0(ω)√
2

=
(

1 + e−iω

2

)L
F(ω) λH0(ω)√

2
=
(

1 + e−iω

2

)L̃
F̃(ω), (7.6)

where F and F̃ are trigonometric polynomials of finite degree. Assume also that,
for some k, k̃ > 0,

Bk = max
ω

∣∣F(ω) · · · F(2k−1ω)
∣∣1/k < 2L−1/2 (7.7)

B̃k = max
ω

∣∣∣F̃(ω) · · · F̃(2k̃−1ω)
∣∣∣1/k̃ < 2L̃−1/2 (7.8)

Then the following hold:

• φ, φ̃ ∈ L2(R), and the corresponding bases φ0 and φ̃0 are biorthogonal.

• ψm,n is a Riesz basis of L2(R).

• ψ̃m,n is the dual Riesz basis of ψm,n. Thus, ψm, n and ψ̃m,n are biorthog-
onal bases, and for any f ∈ L2(R),

f =
∑
m,n

〈f, ψ̃m,n〉ψm,n =
∑
m,n

〈f, ψm,n〉ψ̃m,n. (7.9)

If also

Bk < 2L−1−m B̃k < 2L̃−1−m̃, (7.10)

then

• φ, ψ are m times differentiable and ψ̃ has m+ 1 vanishing moments,

• φ̃, ψ̃ are m̃ times differentiable and ψ has m̃+ 1 vanishing moments.

The proof for Proposition 7.7 is long, technical, and split in many stages.
The entire proof can be found in [5], and we will not go through all of it, only
address some simple parts of it in the following subsections. After that we will
see how we can find G0, H0 so that equations (7.6), (7.7), (7.8) are fulfilled.
Before we continue on this path, several comments are in order.

1. The paper [5] much more general conditions for when filters give rise to a
Riesz basis as stated here. The conditions (7.7), (7.8) are simply chosen because
they apply or the filters we consider.

2. From Equation (7.6) it follows that the flatness in the frequency responses
close to π explains how good the bases are for approximations, since the number
of vanishing moments is infered from the multiplictity of the zero at π for the
frequency response.
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3. From the result we obtain an MRA (with scaling function φ), and a dual
MRA (with scaling function φ̃), as well as mother wavelets (ψ and ψ̃), and we
can define the resolution spaces Vm and the detail spaces Wm as before, as well
as the “dual resolution spaces” Ṽm, (the spaces spanned by φ̃m = {φ̃m,n}n) and
“dual detail spaces” W̃m (the spaces spanned by ψ̃m = {ψ̃m,n}n). In general
Vm is different from Ṽm (except when φ = φ̃), and Wm is in general different
from the orthogonal complement of Vm−1 in Vm (except when φ = φ̃, when all
bases are orthonormal), although constructed so that Vm = Vm−1 ⊕Wm−1. Our
construction thus involves two MRA’s

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊂ · · · Ṽ0 ⊂ Ṽ1 ⊂ Ṽ2 ⊂ · · · ⊂ Ṽm ⊂ · · ·

where there are different scaling functions, satisfying a biorthogonality relation-
ship. This is also called a dual multiresolution analysis.

4. The DWT and IDWT are defined as before, so that the same change
of coordinates can be applied, as dictated by the filter coefficients. As will
be seen below, while proving Proposition 7.7 it also follows that the bases
φ0⊕ψ0⊕ψ1 · · ·ψm−1 and φ̃0⊕ ψ̃0⊕ ψ̃1 · · · ψ̃m−1 are biorthogonal (in addition
to that φm and φ̃m are biorthogonal, as stated). For f ∈ Vm this means that

f(t) =
∑
n

〈f(t), φ̃m,n〉φm,n =
∑
n

〈f(t), φ̃0,n〉φ0,n +
∑

m′<m,n

〈f(t), ψ̃m′,n〉ψm′,n,

since this relationship is fulfilled for any linear combination of the {φm,n}n, or
for any of the {φ0,n, ψm′,n}m′<m,n, due to biorthogonality. Similarly, for f̃ ∈ Ṽm

f̃(t) =
∑
n

〈f̃(t), φm,n〉φ̃m,n =
∑
n

〈f̃(t), φ0,n〉φ̃0,n +
∑

m′<m,n

〈f̃(t), ψm′,n〉ψ̃m′,n.

It follows that for f ∈ Vm and for f̃ ∈ Ṽm the DWT and the IDWT and their
duals can be expressed in terms of inner products as follows.

• The input to the DWT is cm,n = 〈f, φ̃m,n〉. The output of the DWT is
c0,n = 〈f, φ̃0,n〉 and wm′,n = 〈f, ψ̃m′,n〉

• The input to the dual DWT is c̃m,n = 〈f̃ , φm,n〉. The output of the dual
DWT is c̃0,n = 〈f̃ , φ0,n〉 and w̃m′,n = 〈f̃ , ψm′,n〉.

• in the DWT matrix, column k has entries 〈φ1,k, φ̃0,l〉, and 〈φ1,k, ψ̃0,l〉 (with
a similar expression for the dual DWT).

• in the IDWT matrix, column 2k has entries 〈φ0,k, φ̃1,l〉, and column 2k+ 1
has entries 〈ψ0,k, φ̃1,l〉 (with a similar expression for the dual IDWT).

Equation (7.9) comes from eliminating the φm,n by letting m→∞.
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5. When φ = φ̃ (orthonormal MRA’s), the approximations (finite sums)
above coincide with projections onto the spaces Vm, Ṽm,Wm, W̃m. When φ 6= φ̃,
however, there are no reasons to believe that these approximations equal the best
approximations to f from Vm. In this case we have no procedure for computing
best approximations. When f is not in Vm, Ṽm we can, however, consider the
approximations∑

n

〈f(t), φ̃m,n〉φm,n(t) ∈ Vm and
∑
n

〈f(t), φm,n〉φ̃m,n(t) ∈ Ṽm

(when the MRA is orthonormal, this coincides with the best approximation).
Now, we can choose m so large that f(t) =

∑
n cnφm,n(t) + ε(t), with ε(t) a

small function. The first approximation can now be written

∑
n

〈
∑
n′

cn′φm,n′(t) + ε(t), φ̃m,n〉φm,n(t) =
∑
n

cnφm,n(t) +
∑
n

〈ε(t), φ̃m,n〉φm,n(t)

= f(t) +
∑
n

〈ε(t), φ̃m,n〉φm,n(t)− ε(t).

Clearly, the difference
∑
n〈ε(t), φ̃m,n〉φm,n(t) − ε(t) from f is small. It may.

however, be hard to compute the cn above, so that instead, as in Theorem 5.40,
one uses 2−m∫ N

0
φm,0(t)dt

f(n/2m)φm,n(t) as an approximation to f (i.e. use sample

values as cn) also in this more general setting.
6. Previously we were taught to think in a periodic or folded way, so that we

could restrict to an interval [0, N ], and to bases of finite dimensions ({φ0,n}N−1
n=0 ).

But the results above are only stated for wavelet bases of infinite dimension. Let
us therefore say something on how the results carry over to our finite dimensional
setting. If f ∈ L2(R) we can define the function

fper(t) =
∑
k

f(t+ kN) ffold(t) =
∑
k

f(t+ 2kN) +
∑
k

f(2kN − t).

fper and ffold are seen to be periodic with periods N and 2N . It is easy to see
that the restriction of fper to [0, N ] is in L2([0, N ]), and that the restriction of
ffold to [0, 2N ] is in L2([0, 2N ]). In [4] it is shown that the result above extends
to a similar result for the periodized/folded basis (i.e. ψfoldm,n ), so that we obtain
dual Riesz bases for L2([0, N ]) and L2([0, 2N ]) instead of L2(R). The result on
the vanishing moments does not extend, however. One can, however, alter some
of the basis functions so that one achieves this. This simply changes some of the
columns in the DWT/IDWT matrices. Note that our extension strategy is not
optimal. The extension is usually not differentiable at the boundary, so that the
corresponding wavelet coefficients may be large, even though the wavelet has
many vanishing moments. The only way to get around this would be to find an
extension strategy which gave a more regular extension. However, natural images
may not have high regularity, which would make such an extension strategy
useless.
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7.2.1 Sketch of proof for the biorthogonality in Proposi-
tion 7.7 (1)

We first show that φ0 and φ̃0 are biorthogonal. Recall that definition (7.4) said
that gN (ω) =

∏N
s=1

λG0 (ω/2s)√
2 χ[0,2π](2−Nω). Let us similarly define hN (ω) =∏N

s=1
λH0 (ω/2s)√

2 χ[0,2π](2−Nω). Recall that gN → φ̂ and hN → ˆ̃φ pointwise as
N →∞. We have that

gN+1(ω) = λG0(ω/2)√
2

gN (ω/2) hN+1(ω) = λH0(ω/2)√
2

hN (ω/2).

gN , hN are compactly supported, and equal to trigonometric polynomials on
their support, so that gN , hN ∈ L2(R). Since the Fourier transform also is an
isomorphism og L2(R) onto itself, there exist functions uN , vN ∈ L2(R) so that
gN = ûN , hN = v̂N . Since the above relationship equals that of Equation (7.3),
with φ̂ replaced with gN , we must have that

uN+1(t) =
∑
n

(G0)n,0
√

2uN (2t− n) vN+1(t) =
∑
n

(H0)0,n
√

2vN (2t− n).

Now, note that g0(ω) = h0(ω) = χ[0,1](ω). Since 〈u0, v0〉 = 〈g0, h0〉 we get that

∫ −∞
∞

u0(t)v0(t− k)dt =
∫ −∞
∞

g0(ν)h0(ν)e2πikνdν =
∫ 2π

0
e−2πikνdν = δk,0.

Now assume that we have proved that 〈uN (t), vN (t− k)〉 = δk,0. We then get
that

〈uN+1(t), vN+1(t− k)〉 = 2
∑
n1,n2

(G0)n1,0(H0)0,n2〈uN (2t− n1), vN (2(t− k)− n2)〉

= 2
∑
n1,n2

(G0)n1,0(H0)0,n2〈uN (t), vN (t+ n1 − n2 − 2k)〉

=
∑

n1,n2|n1−n2=2k

(G0)n1,0(H0)0,n2 =
∑
n

(H0)0,n−2k(G0)n,0

=
∑
n

(H0)2k,n(G0)n,0 =
∑
n

H2k,nGn,0 = (HG)2k,0 = I2k,0 = δk,0

where we did the change of variables u = 2t− n1. There is an extra argument to
show that gN →L2 φ̂ (stronger than pointwise convergence as was stated above),
so that also uN →L2 φ ∈ L2(R), since the Fourier transform is an isomorphism
of L2(R) onto itself. It follows that

〈φm,k, φ̃m,l〉 = lim
N→∞

〈uN (t− k), vN (t− l)〉 = δk,l.
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While proving this one also establishes that

|φ̂(ω)| ≤ C(1 + |ω|)−1/2−ε | ˆ̃φ(ω)| ≤ C(1 + |ω|)−1/2−ε, (7.11)

where ε = L − 1/2 − logBk/ log 2 > 0 due to Assumption (7.7). In the paper
it is proved that this condition implies that the bases constitute dual frames.
The biorthogonality is used to show that they also are dual Riesz bases (i.e. that
they also are linearly independent).

7.2.2 Sketch of proof for the biorthogonality of in Propo-
sition 7.7 (2)

The biorthogonality of ψm,n and ψ̃m,n can be deduced from the biorthogonality
of φ0 and φ̃0 as follows. We have that

〈ψ0,k, ψ̃0,l〉 =
∑
n1,n2

(G1)n1,1(H1)1,n2〈φ1,n1+2k(t)φ̃1,n2+2l(t)〉

=
∑
n

(G1)n,1(H1)1,n+2(k−l) =
∑
n

(H1)1+2(l−k),n(G1)n,1 =
∑
n

H1+2(l−k),nGn,1

= (HG)1+2(l−k),1 = δk,0.

Similarly,

〈ψ0,kφ̃0,l〉 =
∑
n1,n2

(G1)n1,1(H0)0,n2〈φ1,n1+2k(t)φ̃1,n2+2l(t)〉 =
∑
n

(G1)n,1(H0)0,n+2(k−l)

=
∑
n

(H0)2(l−k),n(G1)n,1 =
∑
n

H2(l−k),nGn,1 = (HG)2(l−k),1 = 0

〈φ0,kψ̃0,l〉 =
∑
n1,n2

(G0)n1,0(H1)1,n2〈φ1,n1+2k(t)φ̃1,n2+2l(t)〉 =
∑
n

(G0)n,0(H1)1,n+2(k−l)

=
∑
n

(H1)1+2(l−k),n(G0)n,0 =
∑
n

H1+2(l−k),nGn,0 = (HG)1+2(l−k),0 = 0.

From this we also get with a simple change of coordinates that

〈ψm,k, ψ̃m,l〉 = 〈ψm,k, φ̃m,l〉 = 〈φm,k, ψ̃m,l〉 = 0.

Finally, if m′ < m, φm′,k′ , ψm′,k can be written as a linear combination of φm,l,
so that 〈φm′,k, ψ̃m,l〉 = 〈ψm′,k, ψ̃m,l〉 = 0 due to what we showed above. Similarly,
〈φ̃m′,k, ψm,l〉 = 〈ψ̃m′,k, ψm,l〉 = 0.

7.2.3 Regularity and vanishing moments
Now assume also that Bk < 2L−1−m, so that logBk < L − 1 −m. We have
that ε = L − 1/2 − logBk/ log 2 > L − 1/2 − L + 1 + m = m + 1/2, so that
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|φ̂(ω)| < C(1 + |ω|)−1/2−ε = C(1 + |ω|)−m−1−δ for some δ > 0. This implies that
φ̂(ω)(1 + |ω|)m < C(1 + |ω|)−1−δ ∈ L1. An important property of the Fourier
transform is that φ̂(ω)(1 + |ω|)m ∈ L1 if and only if φ is m times differentiable.
This property implies that φ, and thus ψ is m times differentiable. Similarly, φ̃,
ψ̃ are m̃ times differentiable.

In [5] it is also proved that if

• ψm,n and ψ̃m,n are biorthogonal bases,

• ψ is m times differentiable with all derivatives ψ(l)(t) of order l ≤ m
bounded, and

• ψ̃(t) < C(1 + |t|)m+1,

then ψ̃ has m+ 1 vanisning moments. In our case we have that ψ and ψ̃ have
compact support, so that these conditions are satisfied. It follows that ψ̃ has
m+ 1 vanisning moments.

In the next section we will construct a wide range of forward and reverse
filter bank transforms which invert each other, and which give rise to wavelets.

In [5] one checks that many of these wavelets satisfy (7.7) and (7.8) (implying
that they give rise to dual Riesz bases for L2(R)), or the more general (7.10)
(implying a certain regularity and a certain number of vanishing moments).
Requirements on the filters lengths in order to obtain a given number of vanishing
moments are also stated.

Exercise 7.1: Implementation of the cascade algorithm
Let us consider the following code, which shows how the cascade algorithm can
be used to plot the scaling functions and the mother wavelet of a wavelet and
its dual wavelet with given kernels, over the interval [a, b].

function plotwaveletfunctions(invf,a,b)
% Plot scaling functions and mother wavelets (dual or not),...
% using the cascade algorithm.
nres = 10;
t=linspace(a,b,(b-a)*2^nres);

coordsvm = zeros((b-a)*2^nres, 1);
coordsvm(1) = 1;
coordsvm = 2^(nres/2)*IDWTImpl(coordsvm, nres, invf, 0, 0);
subplot(2, 2, 1);
plot(t,coordsvm([(b*2^nres+1):((b-a)*2^nres) 1:(b*2^nres)]))
title(’\phi’)

coordsvm = zeros((b-a)*2^nres, 1);
coordsvm(b - a + 1) = 1;
coordsvm = 2^(nres/2)*IDWTImpl(coordsvm, nres, invf, 0, 0);
subplot(2, 2, 2);
plot(t,coordsvm([(b*2^nres+1):((b-a)*2^nres) 1:(b*2^nres)]))
title(’\psi’)

coordsvm = zeros((b-a)*2^nres, 1);
coordsvm(1) = 1;
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coordsvm = 2^(nres/2)*IDWTImpl(coordsvm, nres, invf, 0, 1);
subplot(2, 2, 3);
plot(t,coordsvm([(b*2^nres+1):((b-a)*2^nres) 1:(b*2^nres)]))
title(’\phi~’)

coordsvm = zeros((b-a)*2^nres, 1);
coordsvm(b - a + 1) = 1;
coordsvm = 2^(nres/2)*IDWTImpl(coordsvm, nres, invf, 0, 1);
subplot(2, 2, 4);
plot(t,coordsvm([(b*2^nres+1):((b-a)*2^nres) 1:(b*2^nres)]))
title(’\psi~’)

a) Run the function plotwaveletfunctions with the three different kernels
IDWTKernelHaar, IDWTKernelpwl0, and ‘IDWTKernelpwl2‘ to plot all scaling
functions and mother wavelets for the Haar wavelet and the two piecewise linear
wavelets we have encountered. This should verify the different plots for these we
have seen previously in the book.

b) Explain that the input to IDWTImpl in the code above are the coordinates of
φ0,0, ψ0,0, φ̃0,0, and ψ̃0,0 in the basis (φ0,ψ0,ψ1,ψ2, · · · ,ψm−1), respectively.

c) In the code above, we wanted the functions to be plotted on [a, b]. Explain
from this why the coordsvm-vector have been rearranged as on the line where
the plot-command is called.

d) In the code above, we turned off symmetric extensions (the symm-argument is
0). Attempt to use symmetric extensions instead, and observe the new plots you
obtain. Can you explain why these new plots do not show the correct functions,
while the previous plots are correct?

e) In the code you see that all values are scaled with the factor 2m/2 before
they are plotted. Can you think out an explanation to why this is done?

Exercise 7.2: Using the cascade algorithm
In Exercise 6.10 we constructed a new mother wavelet ψ̂ for piecewise linear
functions by finding constants α, β, γ, δ so that

ψ̂ = ψ − αφ0,0 − βφ0,1 − δφ0,2 − γφ0,N−1.

Use the cascade algorithm to plot ψ̂. Do this by using the wavelet kernel for
the piecewise linear wavelet (do not use the code above, since we have not
implemented kernels for this wavelet yet).

Exercise 7.3: Implementing the traspose transforms
Since the dual of a wavelet is constructed by transposing filters, one may suspect
that taking the dual is the same as taking the transpose. However, show that
the DWT, the dual DWT, the transpose of the DWT, and the transpose of the
dual DWT, can be computed as follows:
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DWTImpl( x, m, DWTkernel, 1, 0); % DWT
DWTImpl( x, m, DWTkernel, 1, 1); % Dual DWT
IDWTImpl(x, m, IDWTkernel, 1, 1); % Transpose of the DWT
IDWTImpl(x, m, IDWTkernel, 1, 0); % Transpose of the dual DWT

Similar statements hold for the IDWT as well.

7.3 Vanishing moments
The scaling functions and mother wavelets we constructed in Chapter 5 were
very simple. They were however, enough to provide scaling functions which
were differentiable. This may clearly be important for signal approximation, at
least in cases where we know certain things about the regularity of the functions
we approximate. However, there seemed to be nothing which dictated how the
mother wavelet should be chosen in order to be useul. To see that this may pose
a problem, consider the mother wavelet we hose for piecewise linear functions.
Set N = 1 and consider the space V10, which has dimension 210. When we
apply a DWT, we start with a function g10 ∈ V10. This may be a very good
representation of the underlying data. However, when we compute gm−1 we
just pick every other coefficient from gm. By the time we get to g0 we are just
left with the first and last coefficient from g10. In some situations this may be
adequate, but usually not.

Idea 7.8. Approximation.
We would like a wavelet basis to be able to represent f efficiently. By this

we mean that the approximation f (m) =
∑
n c0,nφ0,n +

∑
m′<m,n wm′,nψm′,n to

f from Observation 7.11 should converge quickly for the f we work with, as
m increases. This means that, with relatively few ψm,n, we can create good
approximations of f .

In this section we will address a property which the mother wavelet must
fulfill in order to be useful in this respect. To motivate this property, let us first
use decompose f ∈ Vm as

f =
N−1∑
n=0
〈f, φ̃0,n〉φ0,n +

m−1∑
r=0

2rN−1∑
n=0

〈f, ψ̃r,n〉ψr,n. (7.12)

If f is s times differentiable, it can be represented as f = Ps(x) +Qs(x), where
Ps is a polynomial of degree s, and Qs is a function which is very small (Ps
could for instance be a Taylor series expansion of f). If in addition 〈tk, ψ̃〉 = 0,
for k = 1, . . . , s, we have also that 〈tk, ψ̃r,t〉 = 0 for r ≤ s, so that 〈Ps, ψ̃r,t〉 = 0
also. This means that Equation (7.12) can be written
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f =
N−1∑
n=0
〈Ps +Qs, φ̃0,n〉φ0,n +

m−1∑
r=0

2rN−1∑
n=0

〈Ps +Qs, ψ̃r,n〉ψr,n

=
N−1∑
n=0
〈Ps +Qs, φ̃0,n〉φ0,n +

m−1∑
r=0

2rN−1∑
n=0

〈Ps, ψ̃r,n〉ψr,n +
m−1∑
r=0

2rN−1∑
n=0

〈Qs, ψ̃r,n〉ψr,n

=
N−1∑
n=0
〈f, φ̃0,n〉φ0,n +

m−1∑
r=0

2rN−1∑
n=0

〈Qs, ψ̃r,n〉ψr,n.

Here the first sum lies in V0. We see that the wavelet coefficients from Wr are
〈Qs, ψ̃r,n〉, which are very small since Qs is small. This means that the detail in
the different spaces Wr is very small, which is exactly what we aimed for. Let
us summarize this as follows:

Theorem 7.9. Vanishing moments.
If a function f ∈ Vm is r times differentiable, and ψ̃ has r vanishing mo-

ments, then f can be approximated well from V0. Moreover, the quality of this
approximation improves when r increases.

Having many vanishing moments is thus very good for compression, since
the corresponding wavelet basis is very efficient for compression. In particular,
if f is a polynomial of degree less than or equal to k − 1 and ψ̃ has k vanishing
moments, then the detail coefficients wm,n are exactly 0. Since (φ, ψ) and (φ̃,
ψ̃) both are wavelet bases, it is equally important for both to have vanishing
moments. We will in the following concentrate on the number of vanishing
moments of ψ.

The Haar wavelet has one vanishing moment, since ψ̃ = ψ and
∫ N

0 ψ(t)dt = 0
as we noted in Observation 5.14. It is an exercise to see that the Haar wavelet
has only one vanishing moment, i.e.

∫ N
0 tψ(t)dt 6= 0.

Theorem 7.10. Vanishing moments.
Assume that the filters are chosen so that the scaling functions exist. Then

the following hold

• The number of vanishing moments of ψ̃ equals the multiplicity of a zero at
ω = π for λG0(ω).

• The number of vanishing moments of ψ equals the multiplicity of a zero at
ω = π for λH0(ω).

number of vanishing moments of ψ, ψ̃ equal the multiplicities of the zeros of the
frequency responses λH0(ω), λG0(ω), respectively, at ω = π.

In other words, the flatter the frequency responses λH0(ω) and λG0(ω) are near
high frequencies (ω = π), the better the wavelet functions are for approximation
of functions. This is analogous to the smoothing filters we constructed previously,
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where the use of values from Pascals triangle resulted in filters which behaved
like the constant function one at low frequencies. The frequency response for the
Haar wavelet had just a simple zero at π, so that it cannot represent functions
efficiently. The result also proves why we should consider G0, H0 as lowpass
filters, G1, H1 as highpass filters.

Proof. We have that

λs−ψ̃(−t)
(ν) = −

∫ ∞
−∞

ψ̃(−t)e−2πiνtdt. (7.13)

By differentiating this expression k times w.r.t. ν (differentiate under the integral
sign) we get

(λs−ψ̃(−t)
)(k)(ν) = −

∫
(−2πit)kψ̃(t)e−2πiνtdt. (7.14)

Evaluating this at ν = 0 gives

(λs−ψ̃(−t)
)(k)(0) = −

∫
(−2πit)kψ̃(t)dt. (7.15)

From this expression it is clear that the number of vanishing moments of ψ̃
equals the multiplicity of a zero at ν = 0 for λs−ψ̃(−t)

(ν), which we have already
shown equals the multiplicity of a zero at ω = 0 for λH1(ω). Similarly it follows
that the number of vanishing moments of ψ equals the multiplicity of a zero at
ω = 0 for λG1(ω). Since we know that λG0(ω) has the same number of zeros at
π as λH1(ω) has at 0, and λH0(ω) has the same number of zeros at π as λG1(ω)
has at 0, the result follows.

These results explain how we can construct φ, ψ, φ̃, ψ̃ from FIR-filters H0,
H1, G0, G1 satisfying the perfect reconstruction condition. Also, the results
explain how we can obtain such functions with as much differentiability and
as many vanishing moments as we want. We will use these results in the next
section to construct interesting wavelets. There we will also cover how we can
construct the simplest possible such filters.

There are some details which have been left out in this section: We have not
addressed why the wavelet bases we have constructed are linearly independent,
and why they span L2(R). Dual Riesz bases. These details are quite technical,
and we refer to [5] for them. Let us also express what we have found in terms of
analog filters.

Observation 7.11. Analog filters.
Let

f(t) =
∑
n

cm,nφm,n =
∑
n

c0,nφ0,n +
∑

m′<m,n

wm′,nψm′,n ∈ Vm.

cm,n and wm,n can be computed by sampling the output of an analog filter. To
be more precise,
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cm,n = 〈f, φ̃m,n〉 =
∫ N

0
f(t)φ̃m,n(t)dt =

∫ N

0
(−φ̃m,0(−t))f(2−mn− t)dt

wm,n = 〈f, ψ̃m,n〉 =
∫ N

0
f(t)ψ̃m,n(t)dt =

∫ N

0
(−ψ̃m,0(−t))f(2−mn− t)dt.

In other words, cm,n can be obtained by sampling s−φ̃m,0(−t)(f(t)) at the points
2−mn, wm,n by sampling s−ψ̃m,0(−t)(f(t)) at 2−mn, where the analog filters
s−φ̃m,0(−t), s−ψ̃m,0(−t) were defined in Theorem 1.39, i.e.

s−φ̃m,0(−t)(f(t)) =
∫ N

0
(−φ̃m,0(−s))f(t− s)ds (7.16)

s−ψ̃m,0(−t)(f(t)) =
∫ N

0
(−ψ̃m,0(−s))f(t− s)ds. (7.17)

A similar statement can be made for f̃ ∈ Ṽm. Here the convolution kernels
of the filters were as before, with the exception that φ, ψ were replaced by φ̃, ψ̃.
Note also that, if the functions φ̃, ψ̃ are symmetric, we can increase the precision
in the DWT with the method of symmetric extension also in this more general
setting.

7.4 Characterization of wavelets w.r.t. number
of vanishing moments

We have seen that wavelets are particularly suitable for approximation of func-
tions when the mother wavelet or the dual mother wavelet have vanishing
moments. The more vanishing moments they have, the more attractive they
are. In this section we will attempt to characterize wavelets which have a given
number of vanishing moments. In particular we will characterize the simplest
such, those where the filters have few filters coefficients.

There are two particular cases we will look at. First we will consider the case
when all filters are symmetric. Then we will look at the case of orthonormal
wavelets. It turns out that these two cases are mutually disjoint (except for
trivial examples), but that there is a common result which can be used to
characterize the solutions to both problems. We will state the results in terms
of the multiplicities of the zeros of λH0 , λG0 at π, which we proved are the same
as the number of vanishing moments.

7.4.1 Symmetric filters
The main result when the filters are symmetric looks as follows.

Theorem 7.12. Wavelet crirteria.
Assume that H0, H1, G0, G1 are the filters of a wavelet, and that
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• the filters are symmetric,

• λH0 has a zero of multiplicity N1 at π,

• λG0 has a zero of multiplicity N2 at π.

Then N1 and N2 are even, and there exist a polynomial Q which satisfies

u(N1+N2)/2Q(1− u) + (1− u)(N1+N2)/2Q(u) = 2. (7.18)

so that λH0(ω), λG0(ω) can be written on the form

λH0(ω) =
(

1
2(1 + cosω)

)N1/2
Q1

(
1
2(1− cosω)

)
(7.19)

λG0(ω) =
(

1
2(1 + cosω)

)N2/2
Q2

(
1
2(1− cosω)

)
, (7.20)

where Q = Q1Q2.

Proof. Since the filters are symmetric, λH0(ω) = λH0(−ω) and λG0(ω) =
λG0(−ω). Since einω + e−inω = 2 cos(nω), and since cos(nω) is the real part of
(cosω + i sinω)n, which is a polynomial in cosk ω sinl ω with l even, and since
sin2 ω = 1− cos2 ω, λH0 and λG0 can both be written on the form P (cosω), with
P a real polynomial.

Note that a zero at π in λH0 , λG0 corresponds to a factor of the form 1+e−iω,
so that we can write

λH0(ω) =
(

1 + e−iω

2

)N1

f(eiω) = e−iN1ω/2 cosN1(ω/2)f(eiω),

where f is a polynomial. In order for this to be real, we must have that
f(eiω) = eiN1ω/2g(eiω) where g is real-valued, and then we can write g(eiω) as a
real polynomial in cosω. This means that λH0(ω) = cosN1(ω/2)P1(cosω), and
similarly for λG0(ω). Clearly this can be a polynomial in eiω only if N1 is even.
Both N1 and N2 must then be even, and we can write

λH0(ω) = cosN1(ω/2)P1(cosω) = (cos2(ω/2))N1/2P1(1− 2 sin2(ω/2))
= (cos2(ω/2))N1/2Q1(sin2(ω/2)),

where we have used that cosω = 1− 2 sin2(ω/2), and defined Q1 by the relation
Q1(x) = P1(1−2x). Similarly we can write λG0(ω) = (cos2(ω/2))N2/2Q2(sin2(ω/2))
for another polynomial Q2. Using the identities

cos2 ω

2 = 1
2(1 + cosω) sin2 ω

2 = 1
2(1− cosω),
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we see that λH0 and λG0 satisfy equations (7.19) and (7.20). With Q = Q1Q2,
Equation (6.20) can now be rewritten as

2 = λG0(ω)λH0(ω) + λG0(ω + π)λH0(ω + π)

=
(
cos2(ω/2)

)(N1+N2)/2
Q(sin2(ω/2)) +

(
cos2((ω + π)/2)

)(N1+N2)/2
Q(sin2((ω + π)/2))

= (cos2(ω/2))(N1+N2)/2Q(sin2(ω/2)) + (sin2(ω/2))(N1+N2)/2Q(cos2(ω/2))
= (cos2(ω/2))(N1+N2)/2Q(1− cos2(ω/2)) + (1− cos2(ω/2))(N1+N2)/2Q(cos2(ω/2))

Setting u = cos2(ω/2) we see that Q must fulfill the equation

u(N1+N2)/2Q(1− u) + (1− u)(N1+N2)/2Q(u) = 2,

which is Equation (7.18). This completes the proof.

While this result characterizes all wavelets with a given number of vanishing
moments, it does not say which of these have fewest filter coefficients. The
polynomial Q decides the length of the filters H0, G0, however, so that what we
need to do is to find the polynomial Q of smallest degree. In this direction, note
first that the polynomials uN1+N2 and (1− u)N1+N2 have no zeros in common.
Bezouts theorem, proved in Section 7.4.3, states that the equation

uNq1(u) + (1− u)Nq2(u) = 1 (7.21)

has unique solutions q1, q2 with deg(q1),deg(q2) < (N1 +N2)/2. To find these
solutions, substituting 1− u for u gives the following equations:

uNq1(u) + (1− u)Nq2(u) = 1
uNq2(1− u) + (1− u)Nq1(1− u) = 1,

and uniqueness in Bezouts theorem gives that q1(u) = q2(1− u), and q2(u) =
q1(1− u). Equation (7.21) can thus be stated as

uNq2(1− u) + (1− u)Nq2(u) = 1,

and comparing with Equation (7.18) (set N = (N1 +N2)/2) we see that Q(u) =
2q2(u). uNq1(u) + (1− u)Nq2(u) = 1 now gives

q2(u) = (1− u)−N (1− uNq1(u)) = (1− u)−N (1− uNq2(1− u))

=
(
N−1∑
k=0

(
N + k − 1

k

)
uk +O(uN )

)
(1− uNq2(1− u))

=
N−1∑
k=0

(
N + k − 1

k

)
uk +O(uN ),
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where we have used the first N terms in the Taylor series expansion of (1−u)−N
around 0. Since q2 is a polynomial of degree N − 1, we must have that

Q(u) = 2q2(u) = 2
N−1∑
k=0

(
N + k − 1

k

)
uk. (7.22)

Define Q(N)(u) = 2
∑N−1
k=0

(
N+k−1

k

)
uk. The first Q(N) are

Q(1)(u) = 2 Q(2)(u) = 2 + 4u
Q(3)(u) = 2 + 6u+ 12u2 Q(4)(u) = 2 + 8u+ 20u2 + 40u3,

for which we compute

Q(1)
(

1
2(1− cosω)

)
= 2

Q(2)
(

1
2(1− cosω)

)
= −e−iω + 4− eiω

Q(3)
(

1
2(1− cosω)

)
= 3

4e
−2iω − 9

2e
−iω + 19

2 −
9
2e

iω + 3
4e

2iω

Q(4)
(

1
2(1− cosω)

)
= −5

8e
−3iω + 5e−2iω − 131

8 e−iω + 26− 131
8 eiω + 5e2iω − 5

8e
3iω,

Thus in order to construct wavelets where λH0 , λG0 have as many zeros at π as
possible, and where there are as few filter coefficients as possible, we need to
compute the polynomials above, factorize them into polynomials Q1 and Q2,
and distribute these among λH0 and λG0 . Since we need real factorizations, we
must in any case pair complex roots. If we do this we obtain the factorizations

Q(1)
(

1
2(1− cosω)

)
= 2

Q(2)
(

1
2(1− cosω)

)
= 1

3.7321(eiω − 3.7321)(e−iω − 3.7321)

Q(3)
(

1
2(1− cosω)

)
= 3

4
1

9.4438(e2iω − 5.4255eiω + 9.4438)

× (e−2iω − 5.4255e−iω + 9.4438)

Q(4)
(

1
2(1− cosω)

)
= 5

8
1

3.0407
1

7.1495(eiω − 3.0407)(e2iω − 4.0623eiω + 7.1495)

× (e−iω − 3.0407)(e−2iω − 4.0623e−iω + 7.1495), (7.23)

The factors in these factorizations can be distributed as factors in the frequency
responses of λH0(ω), and λG0(ω). One possibility is to let one of these frequency
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responses absorb all the factors, another possibility is to split the factors as evenly
as possible across the two. When a frequency response absorbs more factors, the
corresponding filter gets more filter coefficients. In the following examples, both
factor distribution strategies will be encountered. Note that it is straightforward
to use your computer to factor Q into a product of polynomials Q1 and Q2.
First the roots function can be used to find the roots in the polynomials. Then
the conv function can be used to multiply together factors corresponding to
different roots, to obtain the coefficients in the polynomials Q1 and Q2.

7.4.2 Orthonormal wavelets
Now we turn to the case of orthonormal wavelets, i.e. where G0 = (H0)T ,
G1 = (H1)T . For simplicity we will assume d = 0, α = −1 in conditions
(6.18) and (6.19) (this corresponded to requiring λH1(ω) = −λH0(ω + π) in the
definition of alternative QMF filter banks). We will also assume for simplicity
that G0 is causal, meaning that t−1, t−2, . . . all are zero (the other solutions can
be derived from this). We saw that the Haar wavelet was such an orthonormal
wavelet. We have the following result:

Theorem 7.13. Criteria for perfect reconstruction.
Assume thatH0, H1, G0, G1 are the filters of an orthonormal wavelet (i.e.H0 =

(G0)T andH1 = (G1)T ) which also is an alternative QMF filter bank (i.e. λH1(ω) =
−λH0(ω + π)). Assume also that λG0(ω) has a zero of multiplicity N at π and
that G0 is causal. Then there exists a polynomial Q which satisfies

uNQ(1− u) + (1− u)NQ(u) = 2, (7.24)
so that if f is another polynomial which satisfies f(eiω)f(e−iω) = Q

( 1
2 (1− cosω)

)
,

λG0(ω) can be written on the form

λG0(ω) =
(

1 + e−iω

2

)N
f(e−iω), (7.25)

We avoided stating λH0(ω) in this result, since the relation H0 = (G0)T gives
that λH0(ω) = λG0(ω). In particular, λH0(ω) also has a zero of multiplicity N
at π. That G0 is causal is included to simplify the expression further.

Proof. The proof is very similar to the proof of Theorem 7.12. N vanishing
moments and that G0 is causal means that we can write

λG0(ω) =
(

1 + e−iω

2

)N
f(e−iω) = (cos(ω/2))Ne−iNω/2f(e−iω),

where f is a real polynomial. Also

λH0(ω) = λG0(ω) = (cos(ω/2))NeiNω/2f(eiω).
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Condition (6.20) now says that

2 = λG0(ω)λH0(ω) + λG0(ω + π)λH0(ω + π)
= (cos2(ω/2))Nf(eiω)f(e−iω) + (sin2(ω/2))Nf(ei(ω+π))f(e−i(ω+π)).

Now, the function f(eiω)f(e−iω) is symmetric around 0, so that it can be written
on the form P (cosω) with P a polynomial, so that

2 = (cos2(ω/2))NP (cosω) + (sin2(ω/2))NP (cos(ω + π))
= (cos2(ω/2))NP (1− 2 sin2(ω/2)) + (sin2(ω/2))NP (1− 2 cos2(ω/2)).

If we as in the proof of Theorem 7.12 define Q by Q(x) = P (1 − 2x), we can
write this as

(cos2(ω/2))NQ(sin2(ω/2)) + (sin2(ω/2))NQ(cos2(ω/2)) = 2,
which again gives Equation (7.18) for finding Q. What we thus need to do
is to compute the polynomial Q

( 1
2 (1− cosω)

)
as before, and consider the

different factorizations of this on the form f(eiω)f(e−iω). Since this polynomial
is symmetric, a is a root if and only 1/a is, and if and only if ā is. If the real
roots are

b1, . . . ., bm, 1/b1, . . . , 1/bm,
and the complex roots are

a1, . . . , an, a1, . . . , an and 1/a1, . . . , 1/an, 1/a1, . . . , 1/an,
we can write

Q

(
1
2(1− cosω)

)
= K(e−iω − b1) . . . (e−iω − bm)
× (e−iω − a1)(e−iω − a1)(e−iω − a2)(e−iω − a2) · · · (e−iω − an)(e−iω − an)
× (eiω − b1) . . . (eiω − bm)
× (eiω − a1)(eiω − a1)(eiω − a2)(eiω − a2) · · · (eiω − an)(eiω − an)

where K is a constant. We now can define the polynomial f by

f(eiω) =
√
K(eiω − b1) . . . (eiω − bm)
× (eiω − a1)(eiω − a1)(eiω − a2)(eiω − a2) · · · (eiω − an)(eiω − an)

in order to obtain a factorization Q
( 1

2 (1− cosω)
)

= f(eiω)f(e−iω). This con-
cludes the proof.
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In the previous proof we note that the polynomial f is not unique - we could
pair the roots in many different ways. The new algorithm is thus as follows:

• As before, write Q
( 1

2 (1− cosω)
)
as a polynomial in eiω, and find the

roots.

• Split the roots into the two classes

{b1, . . . ., bm, a1, . . . , an, a1, . . . , an}

and

{1/b1, . . . , 1/bm, 1/a1, . . . , 1/an, 1/a1, . . . , 1/an},

and form the polynomial f as above.

• Compute λG0(ω) =
(

1+e−iω
2

)N
f(e−iω).

Clearly the filters obtained with this strategy are not symmetric since f is not
symmetric. In Section 7.7 we will take a closer look at wavelets constructed in
this way.

7.4.3 The proof of Bezouts theorem
Theorem 7.14. Existence of polynomials.

If p1 and p2 are two polynomials, of degrees n1 and n2 respectively, with no
common zeros, then there exist unique polynomials q1, q2, of degree less than
n2, n1, respectively, so that

p1(x)q1(x) + p2(x)q2(x) = 1. (7.26)

Proof. We first establish the existence of q1, q2 satisfying Equation (7.26). Denote
by deg(P ) the degree of the polynomial P . Renumber the polynomials if necessary,
so that n1 ≥ n2. By polynomial division, we can now write

p1(x) = a2(x)p2(x) + b2(x),

where deg(a2) = deg(p1)− deg(p2), deg(b2) < deg(p2). Similarly, we can write

p2(x) = a3(x)b2(x) + b3(x),

where deg(a3) = deg(p2) − deg(b2), deg(b3) < deg(b2). We can repeat this
procedure, so that we obtain a sequence of polynomials an(x), bn(x) so that

bn−1(x) = an+1(x)bn(x) + bn+1(x), (7.27)

where deg an+1 = deg(bn−1) − deg(bn), deg(bn+1 < deg(bn). Since deg(bn) is
strictly decreasing, we must have that bN+1 = 0 and bN 6= 0 for some N ,
i.e. bN−1(x) = aN+1(x)bN (x). Since bN−2 = aNbN−1 + bN , it follows that bN−2
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can be divided by bN , and by induction that all bn can be divided by bN , in
particlar p1 and p2 can be divided by bN . Since p1 and p2 have no common
zeros, bN must be a nonzero constant.

Using Equation (7.27), we can write recursively

bN = bN−2 − aNbN−1

= bN−2 − aN (bN−3 − aN−1bN−2)
= (1 + aNaN−1)bN−2 − aNbN−3.

By induction we can write

bN = a
(1)
N,kbN−k + a

(2)
N,kbN−k−1.

We see that the leading order term for a(1)
N,k is aN · · · aN−k+1, which has degree

(deg(bN−2)−deg(bN−1)+· · ·+(deg(bN−k−1)−deg(bN−k) = deg(bN−k−1)−deg(bN−1),

while the leading order term for a(2)
N,k is aN · · · aN−k+2, which similarly has order

deg(bN−k)− deg(bN−1). For k = N − 1 we find

bN = a
(1)
N,N−1b1 + a

(2)
N,N−1b0 = a

(1)
N,N−1p2 + a

(2)
N,N−1p1, (7.28)

with deg(a(1)
N,N−1) = deg(p1) − deg(bN−1) < deg(p1) (since by construction

deg(bN−1) > 0), and deg(a(2)
N,N−1) = deg(p2) − deg(bN−1) < deg(p2). From

Equation (7.28) it follows that q1 = a
(2)
N,N−1/bN and q2a

(1)
N,N−1/bN satisfies

Equation (7.26), and that they satisfy the required degree constraints.
Now we turn to uniquness of solutions q1, q2. Assume that r1, r2 are two

other solutions to Equation (7.26). Then

p1(q1 − r1) + p2(q2 − r2) = 0.

Since p1 and p2 have no zeros in common this means that every zero of p2 is a
zero of q1 − r1, with at least the same multiplicity. If q1 6= r1, this means that
deg(q1 − r1) ≥ deg(p2), which is impossible since deg(q1) < deg(p2), deg(r1) <
deg(p2). Hence q1 = r1. Similarly q2 = r2, establishing uniqueness.

Exercise 7.4: Compute filters
Compute the filters H0, G0 in Theorem 7.12 when N = N1 = N2 = 4, and
Q1 = Q(4), Q2 = 1. Compute also filters H1, G1 so that we have perfect
reconstruction (note that these are not unique).
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7.5 A design strategy suitable for lossless com-
pression

We choose Q1 = Q, Q2 = 1. In this case there is no need to find factors in Q.
The frequency responses of the filters in the filter factorization are

λH0(ω) =
(

1
2(1 + cosω)

)N1/2
Q(N)

(
1
2 (1− cosω)

)
λG0(ω) =

(
1
2(1 + cosω)

)N2/2
, (7.29)

where N = (N1 +N2)/2. Since Q(N) has degree N−1, λH0 has degree N1 +N1 +
N2 − 2 = 2N1 +N2 − 2, and λG0 has degree N2. These are both even numbers,
so that the filters have odd length. The names of these filters are indexed by
the filter lengths, and are called Spline wavelets, since, as we now now will show,
the scaling function for this design strategy is the B-spline of order N2: we have
that

λG0(ω) = 1
2N2/2 (1 + cosω)N2/2 = cos(ω/2)N2 .

Letting s be the analog filter with convolution kernel φ we can as in Equation
(7.3) write

λs(f) = λs(f/2k)
k∏
i=1

λG0(2πf/2i)
2 = λs(f/2k)

k∏
i=1

cosN2(πf/2i)
2

= λs(f/2k)
k∏
i=1

(
sin(2πf/2i)
2 sin(πf/2i)

)N2

= λs(f/2k)
(

sin(πf)
2k sin πf/2k

)N2

,

where we have used the identity cosω = sin(2ω)
2 sinω . If we here let k →∞, and use

the identity limf→0
sin f
f = 1, we get that

λs(f) = λs(0)
(

sin(πf)
πf

)N2

.

On the other hand, the frequency response of χ[−1/2,1/2)(t)

=
∫ 1/2

−1/2
e−2πiftdt =

[
1

−2πif e
−2πift

]1/2

−1/2

= 1
−2πif (e−πif − eπif ) = 1

−2πif 2i sin(−πf) = sin(πf)
πf

.
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Due to this
(

sin(πf)
πf

)N2
is the frequency response of ∗N2

k=1χ[−1/2,1/2)(t). By the
uniqueness of the frequency response we have that φ(t) = φ̂(0)∗N2

k=1χ[−1/2,1/2)(t).
In Exercise 7.6 you will be asked to show that this scaling function gives rise to
the multiresolution analysis of functions which are piecewise polynomials which
are differentiable at the borders, also called splines. This explains why this type
of wavelet is called a spline wavelet. To be more precise, the resolution spaces
are as follows.

Definition 7.15. Resolution spaces of piecewise polynomials.
We define Vm as the subspace of functions which are r− 1 times continuously

differentiable and equal to a polynomial of degree r on any interval of the form
[n2−m, (n+ 1)2−m].

Note that the piecewise linear wavelet can be considered as the first Spline
wavelet. This is further considered in the following example.

Example 7.16. The Spline 5/3 wavelet.
For the case of N1 = N2 = 2 when the first design strategy is used, equations

(7.19) and (7.20) take the form

λG0(ω) = 1
2(1 + cosω) = 1

4e
iω + 1

2 + 1
4e
−iω

λH0(ω) = 1
2(1 + cosω)Q(1)

(
1
2(1− cosω)

)
= 1

4(2 + eiω + e−iω)(4− eiω − e−iω)

= −1
4e

2iω + 1
2e

iω + 3
2 + 1

2e
−iω − 1

4e
−2iω.

The filters G0, H0 are thus

G0 =
{

1
4 ,

1
2 ,

1
4

}
H0 =

{
−1

4 ,
1
2 ,

3
2 ,

1
2 ,−

1
4

}
The length of the filters are 3 and 5 in this case, so that this wavelet is called
the Spline 5/3 wavelet. Up to a constant, the filters are seen to be the same as
those of the alternative piecewise linear wavelet, see Example 6.19. Now, how
do we find the filters (G1, H1)? Previously we saw how to find the constant α in
Theorem 6.17 when we knew one of the two pairs (G0, G1), (H0, H1). This was
the last part of information we needed in order to construct the other two filters.
Here we know (G0, H0) instead. In this case it is even easier to find (G1, H1)
since we can set α = 1. This means that (G1, H1) can be obtained simply by
adding alternating signs to (G0, H0), i.e. they are the corresponding highpass
filters. We thus can set

G1 =
{
−1

4 ,−
1
2 ,

3
2 ,−

1
2 ,−

1
4

}
H1 =

{
−1

4 ,
1
2 ,−

1
4

}
.



CHAPTER 7. CONSTRUCTING INTERESTING WAVELETS 277

We have now found all the filters. It is clear that the forward and reverse filter
bank transforms here differ only by multiplication with a constant from those of
the the alternative piecewise linear wavelet, so that this gives the same scaling
function and mother wavelet as that wavelet.

The coefficients for the Spline wavelets are always dyadic fractions, and are
therefore suitable for lossless compression, as they can be computed using low
precision arithmetic and bitshift operations. The particular Spline wavelet from
Example 7.16 is used for lossless compression in the JPEG2000 standard.

Exercise 7.5: Viewing the frequency response
In this exercise we will see how we can view the frequency responses, scaling
functions and mother wavelets for any spline wavelet.

a) Write a function which takes N1 and N2 as input, computes the filter coef-
ficients of H0 and G0 using equation (7.29) in the compendium, and plots the
frequency responses of G0 and H0. Recall that the frequency response can be
obtained from the filter coefficients by taking a DFT. You will have use for the
conv function here, and that the frequency response (1 + cosω)/2 corresponds
to the filter with coefficients {1/4, 1/2, 1/4}.

b) Recall that in Exercise 6.12 we implemented DWT and IDWT kernels, which
worked for any set of symmetric filters. Combine these kernels with your computa-
tion of the filter coefficients from a), and use the function plotwaveletfunctions
to plot the corresponding scaling functions and mother wavelets for different N1
and N2.

Exercise 7.6: Wavelets based on higher degree polynomials
Show that Br(t) = ∗rk=1χ[−1/2,1/2)(t) is r − 2 times differentiable, and equals a
polynomial of degree r − 1 on subintervals of the form [n, n+ 1]. Explain why
these functions can be used as basis for the spaces Vj of functions which are
piecewise polynomials of degree r−1 on intervals of the form [n2−m, (n+1)2−m],
and r − 2 times differentiable. Br is also called the B-spline of order r.

7.6 A design strategy suitable for lossy compres-
sion

The factors of Q are split evenly among Q1 and Q2. In this case we need to
factorize Q into a product of real polynomials. This can be done by finding
all roots, and pairing the complex conjugate roots into real second degree
polynomials (if Q is real, its roots come in conjugate pairs), and then distribute
these as evenly as possible among Q1 and Q2. These filters are called the
CDF-wavelets, after Cohen, Daubechies, and Feauveau, who discovered them.
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Example 7.17. The CDF 9/7 wavelet.
We choose N1 = N2 = 4. In Equation (7.23) we pair inverse terms to obtain

Q(3)
(

1
2(1− cosω)

)
= 5

8
1

3.0407
1

7.1495(eiω − 3.0407)(e−iω − 3.0407)

× (e2iω − 4.0623eiω + 7.1495)(e−2iω − 4.0623e−iω + 7.1495)

= 5
8

1
3.0407

1
7.1495(−3.0407eiω + 10.2456− 3.0407e−iω)

× (7.1495e2iω − 33.1053eiω + 68.6168− 33.1053e−iω + 7.1495e−2iω).

We can write this as Q1Q2 with Q1(0) = Q2(0) when

Q1(ω) = −1.0326eiω + 3.4795− 1.0326e−iω

Q2(ω) = 0.6053e2iω − 2.8026eiω + 5.8089− 2.8026e−iω + 0.6053e−2iω,

from which we obtain

λG0(ω) =
(

1
2(1 + cosω)

)2
Q1(ω)

= −0.0645e3iω − 0.0407e2iω + 0.4181eiω + 0.7885
+ 0.4181e−iω − 0.0407e−2iω − 0.0645e−3iω

λH0(ω) =
(

1
2(1 + cosω)

)2
40Q2(ω)

= 0.0378e4iω − 0.0238e3iω − 0.1106e2iω + 0.3774eiω + 0.8527
+ 0.3774e−iω − 0.1106e−2iω − 0.0238e−3iω + 0.0378e−4iω.

The filters G0, H0 are thus

G0 = {0.0645, 0.0407,−0.4181,−0.7885,−0.4181, 0.0407, 0.0645}
H0 = {−0.0378, 0.0238, 0.1106,−0.3774,−0.8527,−0.3774, 0.1106, 0.0238,−0.0378}.

The corresponding frequency responses are plotted in Figure 7.2.
It is seen that both filters are lowpass filters also here, and that the are closer

to an ideal bandpass filter. Here, the frequency response acts even more like the
constant zero function close to π, proving that our construction has worked. We
also get

G1 = {−0.0378,−0.0238, 0.1106, 0.3774,−0.8527, 0.3774, 0.1106,−0.0238,−0.0378}
H1 = {−0.0645, 0.0407, 0.4181,−0.7885, 0.4181, 0.0407,−0.0645}.
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Figure 7.2: The frequency responses λH0(ω) (left) and λG0(ω) (right) for the
CDF 9/7 wavelet.

The length of the filters are 9 and 7 in this case, so that this wavelet is called
the CDF 9/7 wavelet. This wavelet is for instance used for lossy compression with
JPEG2000 since it gives a good tradeoff between complexity and compression.

In Example 6.19 we saw that we had analytical expressions for the scaling
functions and the mother wavelet, but that we could not obtain this for the dual
functions. For the CDF 9/7 wavelet it turns out that none of the four functions
have analytical expressions. Let us therefore use the cascade algorithm, as we
did in Example 7.1 to plot these functions. Note first that since G0 has 7 filter
coefficients, and G1 has 9 filter coefficients, it follows from Theorem 6.11 that
supp(φ) = [−3, 3], supp(ψ) = [−3, 4], supp(φ̃) = [−4, 4], and supp(ψ̃) = [−3, 4].
Plotting the scaling functions and mother wavelets over these supports using
the cascade algorithm gives the plots in Figure 7.3. Again they have irregular
shapes, but now at least the functions and dual functions more resemble each
other.

In the above example there was a unique way of factoring Q into a product
of real polynomials. For higher degree polynomials there is no unique way to
form to distribute the factors, and we will not go into what strategy can be used
for this. In general, the steps we must go through are as follows:

• Compute the polynomial Q, and find its roots.

• Pair complex conjugate roots into real second degree polynomials, and
form polynomials Q1, Q2.

• Compute the coefficients in equations (7.19) and (7.20).

Exercise 7.7: Generate plots
Generate the plots from Figure 7.3 using the cascade algorithm. Reuse the code
from Exercise 7.1 in order to achieve this.
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Figure 7.3: Scaling functions and mother wavelets for the CDF 9/7 wavelet.

7.7 Orthonormal wavelets
Since the filters here are not symmetric, the method of symmetric extension does
not work in the same simple way as before. This partially explains why symmetric
filters are used more often: They may not be as efficient in representing functions,
since the corresponding basis is not orthogonal, but their simple implementation
still makes them attractive.

In Theorem 7.13 we characterized orthonormal wavelets where G0 was causal.
All our filters have an even number, say 2L, of filter coefficients. We can also
find an orthonormal wavelet where H0 has a minimum possible overweight of
filter coefficients with negative indices, H1 a minimum possible overweight of
positive indices, i.e. that the filters can be written with the following compact
notation:

H0 = {t−L, . . . , t−1, t0, t1, . . . , tL−1} H1 = {s−L+1, . . . , s−1, s0, s1, . . . , sL}.
(7.30)

To see why, Theorem 6.17 says that we first can shift the filter coefficients of
H0 so that it has this form (we then need to shift G0 in the opposite direction).
H1, G1 then can be defined by α = 1 and d = 0. We will follow this convention
for the orthonormal wavelets we look at.
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The polynomials Q(0), Q(1), and Q(2) require no further action to obtain
the factorization f(eiω)f(e−iω) = Q

( 1
2 (1− cosω)

)
. The polynomial Q(3) in

Equation (7.23) can be factored further as

Q(3)
(

1
2(1− cosω)

)
= 5

8
1

3.0407
1

7.1495(e−3iω − 7.1029e−2iω + 19.5014−iω − 21.7391)

× (e3iω − 7.1029e2iω + 19.5014iω − 21.7391),

which gives that f(eiω) =
√

5
8

1
3.0407

1
7.1495 (e3iω−7.1029e2iω+19.5014iω−21.7391).

This factorization is not unique, however. This gives the frequency response
λG0(ω) =

(
1+e−iω

2

)N
f(e−iω) as

1
2(e−iω + 1)

√
2

1
4(e−iω + 1)2

√
1

3.7321(e−iω − 3.7321)

1
8(e−iω + 1)3

√
3
4

1
9.4438(e−2iω − 5.4255e−iω + 9.4438)

1
16(e−iω + 1)4

√
5
8

1
3.0407

1
7.1495(e−3iω − 7.1029e−2iω + 19.5014−iω − 21.7391),

which gives the filters

G0 = (H0)T =(
√

2/2,
√

2/2)

G0 = (H0)T =(−0.4830,−0.8365,−0.2241, 0.1294)
G0 = (H0)T =(0.3327, 0.8069, 0.4599,−0.1350,−0.0854, 0.0352)
G0 = (H0)T =(−0.2304,−0.7148,−0.6309, 0.0280, 0.1870,−0.0308,−0.0329, 0.0106)

so that we get 2, 4, 6 and 8 filter coefficients in G0 = (H0)T . We see that the
filter coefficients when N = 1 are those of the Haar wavelet. The three next
filters we have not seen before. The filter G1 = (H1)T can be obtained from the
relation λG1(ω) = −λG0(ω + π), i.e. by reversing the elements and adding an
alternating sign, plus an extra minus sign, so that

G1 = (H1)T =(
√

2/2,−
√

2/2)

G1 = (H1)T =(0.1294, 0.2241,−0.8365, 0.4830)
G1 = (H1)T =(0.0352, 0.0854,−0.1350,−0.4599, 0.8069,−0.3327)
G1 = (H1)T =(0.0106, 0.0329,−0.0308,−0.1870, 0.0280, 0.6309,−0.7148, 0.2304).
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Figure 7.4: The magnitudes |λG0(ω)| = |λH0(ω)| for the first orthonormal
wavelets.

Frequency responses are shown in Figure 7.4 for N = 1 to N = 6. It is seen that
the frequency responses get increasingly flatter as N increases. The frequency
responses are now complex, so their magnitudes are plotted.

Clearly these filters have lowpass characteristic. We also see that the high-
pass characteristics resemble the lowpass characteristics. We also see that the
frequency response gets flatter near the high and low frequencies, as N increases.
One can verify that this is the case also when N is increased further. The shapes
for higher N are very similar to the frequency responses of those filters used in
the MP3 standard (see Figure 3.12). One difference is that the support of the
latter is concentrated on a smaller set of frequencies.

The way we have defined the filters, one can show in the same way as in
the proof of Theorem 6.11 that, when all filters have 2N coefficients, φ = φ̃ has
support [−N + 1, N ], ψ = ψ̃ has support [−N + 1/2, N − 1/2] (i.e. the support
of ψ is symmetric about the origin). In particular we have that

• for N = 2: supp(φ) = [−1, 2], supp(ψ) = [−3/2, 3/2],

• for N = 3: supp(φ) = [−2, 3], supp(ψ) = [−5/2, 5/2],

• for N = 4: supp(φ) = [−3, 4], supp(ψ) = [−7/2, 7/2].

The scaling functions and mother wavelets are shown in Figure 7.5. All functions
have been plotted over [−4, 4], so that all these support sizes can be verified.
Also here we have used the cascade algorithm to approximate the functions.
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Figure 7.5: The scaling functions and mother wavelets for orthonormal wavelets
with N vanishing moments, for different values of N .

7.8 Summary
We started the section by showing how filters from filter bank matrices can give
rise to scaling functions and mother wavelets. We saw that we obtained dual
function pairs in this way, which satisfied a mutual property called biorthogonal-
ity. We then saw how differentiable scaling functions or mother wavelets with
vanishing moments could be constructed, and we saw how we could construct
the simplest such. These could be found in terms of the frequency responses
of the involved filters. Finally we studied some examples with applications to
image compression.

For the wavelets we constructed in this chapter, we also plotted the corre-
sponding scaling functions and mother wavelets (see figures 7.1, 7.3, 7.5). The
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importance of these functions are that they are particularly suited for approxi-
mation of regular functions, and providing a compact representation of these
functions which is localized in time. It seems difficult to guess that these strange
shapes are connected to such approximation. Moreover, it may seem strange
that, although these functions are useful, we can’t write down exact expressions
for them, and they are only approximated in terms of the Cascade Algorithm.

In the literature, the orthonormal wavelets with compact support we have
constructed were first constructed in [8]. Biorthogonal wavelets were first con-
structed in [5].



Chapter 8

The polyphase
representation and wavelets

In Chapter 6 we saw that we could express wavelet transformations and more
general transformations in terms of filters. Through this we obtained intuition
for what information the different parts of a wavelet transformation represent,
in terms of lowpass and highpass filters. We also obtained some insight into the
filters used in the transformation used in the MP3 standard. We expressed the
DWT and IDWT implementations in terms of what we called kernel transforma-
tions, and these were directly obtained from the filters of the wavelet.

We have looked at many wavelets, however, but have only stated the kernel
transformation for the Haar wavelet. In order to use these wavelets in sound
and image processing, or in order to use the cascade algorithm to plot the
corresponding scaling functions and mother wavelets, we need to make these
kernel transformations. This will be one of the goals in this chapter. This will
be connected to what we will call the polyphase representation of the wavelet.
This representation will turn out to be useful for different reasons than the
filter representation as well. First of all, with the polyphase representation,
transformations can be viewed as block matrices where the blocks are filters.
This allows us to prove results in a different way than for filter bank transforms,
since we can prove results through block matrix manipulation. There will be
two major results we will prove in this way.

First, in Section 8.1 we obtain a factorization of a wavelet transformation
into sparse matrices, called elementary lifting matrices. We will show that this
factorization reduces the number of arithmetic operations, and also enables
us to compute the DWT in-place, in a similar way to how the FFT could
be computed in-place after a bit-reversal. This is important: recall that we
previously factored a filter into a product of smaller filters which is useful for
efficient hardware implementations. But this did not address the fact that
only every second component of the filters needs to be evaluated in the DWT,
something any efficient implementation of the DWT should take into account.

285
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The factorization into sparse matrices will be called the lifting factorization, and
it will be clear from this factorization how the wavelet kernels and their duals can
be implemented. We will also see how we can use the polyphase representation
to prove the remaining parts of Theorem 6.17.

Secondly, in Section 8.3 we will use the polyphase representation to analyze
how the forward and reverse filter bank transforms from the MP3 standard can
be chosen in order for us to have perfect or near perfect reconstruction. Actually,
we will obtain a factorization of the polyphase representation into block matrices
also here, and the conditions we need to put on the prototype filters will be clear
from this.

8.1 The polyphase representation and the lifting
factorization

Let us start by defining the basic concepts in the polyphase representation.

Definition 8.1. Polyphase components and representation.
Assume that S is a matrix, and that M is a number. By the polyphase

components of S we mean the matrices S(i,j) defined by S(i,j)
r1,r2 = Si+r1M,j+r2M ,

i.e. the matrices obtained by taking everyM ’th component of S. By the polyphase
representation of S we mean the block matrix with entries S(i,j).

The polyphase representation applies in particular for vectors. Since a vector
x only has one column, we write x(p) for its polyphase components.

Example 8.2. A 6× 6 MRA-matrix.
Consider the 6× 6 MRA-matrix

S =


2 3 0 0 0 1
4 5 6 0 0 0
0 1 2 3 0 0
0 0 4 5 6 0
0 0 0 1 2 3
6 0 0 0 4 5

 . (8.1)

The polyphase components of S are

S(0,0) =

 2 0 0
0 2 0
0 0 2

 S(0,1) =

 3 0 1
1 3 0
0 1 3


S(1,0) =

 4 6 0
0 4 6
6 0 4

 S(1,1) =

 5 0 0
0 5 0
0 0 5


We will mainly be concerned with polyphase representations of MRA matrices.

For such matrices we have the following result (this result can be stated more
generally for any filter bank transform).
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Theorem 8.3. Similarity.
When S is an MRA-matrix, the polyphase components S(i,j) are filters (in

general different from the filters considered in Chapter 6), i.e. the polyphase
representation is a 2 × 2-block matrix where all blocks are filters. Also, S is
similar to its polyphase representation, through a permutation matrix P which
places the even-indexed elements first.

To see why, note that when P is the permutation matrix defined above,
then PS consists of S with the even-indexed rows grouped first, and since
also SPT = (PST )T , SPT groups the even-indexed columns first. From these
observations it is clear that PSPT is the polyphase representation of S, so that
S is similar to its polyphase representation.

We also have the following result on the polyphase representation. This result
is easily proved from manipulation with block matrices, and is therefore left to
the reader.

Theorem 8.4. Products and transpose.
Let A and B be (forward or reverse) filter bank transforms, and denote the

corresponding polyphase components by A(i,j), B(i,j). The following hold

• C = AB is also a filter bank transform, with polyphase components
C(i,j) =

∑
k A

(i,k)B(k,j).

• AT is also a filter bank transform, with polyphase components ((AT )(i,j))k,l =
(A(j,i))l,k.

Also, the polyphase components of the identity matrix is the M ×M -block
matrix with the identity matrix on the diagonal, and 0 elsewhere.

To see an application of the polyphase representation, let us prove the final
ingredient of Theorem 6.17. We need to prove the following:

Theorem 8.5. Criteria for perfect reconstruction.
For any set of FIR filters H0, H1, G0, G1 which give perfect reconstruction,

there exist α ∈ R and d ∈ Z so that

λH1(ω) = α−1e−2idωλG0(ω + π) (8.2)
λG1(ω) = αe2idωλH0(ω + π). (8.3)

Proof. Let H(i,j) be the polyphase components of H, G(i,j) the polyphase
components of G. GH = I means that(

G(0,0) G(0,1)

G(1,0) G(1,1)

)(
H(0,0) H(0,1)

H(1,0) H(1,1)

)
=
(
I 0
0 I

)
.

If we here multiply with
(
G(1,1) −G(0,1)

−G(1,0) G(0,0)

)
on both sides to the left, or with(

H(1,1) −H(0,1)

−H(1,0) H(0,0)

)
on both sides to the right, we get
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(
G(1,1) −G(0,1)

−G(1,0) G(0,0)

)
=
(

(G(0,0)G(1,1) −G(1,0)G(0,1))H(0,0) (G(0,0)G(1,1) −G(1,0)G(0,1))H(0,1)

(G(0,0)G(1,1) −G(1,0)G(0,1))H(1,0) (G(0,0)G(1,1) −G(1,0)G(0,1))H(1,1)

)
(
H(1,1) −H(0,1)

−H(1,0) H(0,0)

)
=
(

(H(0,0)H(1,1) −H(1,0)H(0,1))G(0,0) (H(0,0)H(1,1) −H(1,0)H(0,1))G(0,1)

(H(0,0)H(1,1) −H(1,0)H(0,1))G(1,0) (H(0,0)H(1,1) −H(1,0)H(0,1))G(1,1)

)
Now since G(0,0)G(1,1) − G(1,0)G(0,1) and H(0,0)H(1,1) − H(1,0)H(0,1) also are
circulant Toeplitz matrices, the expressions above give that

l(H(0,0)) ≤ l(G(1,1)) ≤ l(H(0,0))
l(H(0,1)) ≤ l(G(0,1)) ≤ l(H(0,1))
l(H(1,0)) ≤ l(G(1,0)) ≤ l(H(1,0))

so that we must have equality here, and with both

G(0,0)G(1,1) −G(1,0)G(0,1) and H(0,0)H(1,1) −H(1,0)H(0,1)

having only one nonzero diagonal. In particular we can define the diagonal
matrix D = H(0,0)H(1,1) −H(0,1)H(1,0) = α−1Ed (for some α, d), and we have
that

(
G(0,0) G(0,1)

G(1,0) G(1,1)

)
=
(
αE−dH

(1,1) −αE−dH(0,1)

−αE−dH(1,0) αE−dH
(0,0)

)
.

The first columns here state a relation between G0 and H1, while the second
columns state a relation between G1 and H0. It is straightforward to show that
these relations imply equation (8.2)-(8.3). The details for this can be found in
Exercise 8.1.

In the following we will find factorizations of 2× 2-block matrices where the
blocks are filters, into simpler such matrices. The importance of Theorem 8.3 is
then that MRA-matrices can be written as a product of simpler MRA matrices.
These simpler MRA matrices will be called elementary lifting matrices, and will
be of the following type.

Definition 8.6. Elementary lifting matrices.
A matrix on the form (

I S
0 I

)
where S is a filter is called an elementary lifting matrix of even type. A matrix
on the form (

I 0
S I

)
is called an elementary lifting matrix of odd type.
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The following are the most useful properties of elementary lifting matrices:

Lemma 8.7. Lifting lemma.
The following hold:(

I S
0 I

)T
=
(
I 0
ST I

)
, and

(
I 0
S I

)T
=
(
I ST

0 I

)
,

(
I S1
0 I

)(
I S2
0 I

)
=
(
I S1 + S2
0 I

)
, and

(
I 0
S1 I

)(
I 0
S2 I

)
=
(

I 0
S1 + S2 I

)
,

(
I S
0 I

)−1
=
(
I −S
0 I

)
, and

(
I 0
S I

)−1
=
(
I 0
−S I

)
These statements follow directly from Theorem 8.4. Due to Property 2, one

can assume that odd and even types of lifting matrices appear in alternating
order, since matrices of the same type can be grouped together. The following
result states why elementary lifting matrices can be used to factorize general
MRA-matrices:

Theorem 8.8. Multiplying.

Any invertible matrix on the form S =
(
S(0,0) S(0,1)

S(1,0) S(1,1)

)
, where the S(i,j) are

filters with a finite numer of filter coefficients, can be written on the form

Λ1 · · ·Λn
(
α0Ep 0

0 α1Eq

)
, (8.4)

where Λi are elementary lifting matrices, p, q are integers, α0, α1 are nonzero
scalars, and Ep, Eq are time delay filters. The inverse is given by(

α−1
0 E−p 0

0 α−1
1 E−q

)
(Λn)−1 · · · (Λ1)−1. (8.5)

Note that (Λi)−1 can be computed with the help of Property 3 of Lemma 8.7.

Proof. The proof will use the concept of the length of a filter, as defined in

Definition 3.5. Let S =
(
S(0,0) S(0,1)

S(1,0) S(1,1)

)
be an arbitrary invertible matrix.

We will incrementally find an elementary lifting matrix Λi with filter Si in the
lower left or upper right corner so that ΛiS has filters of lower length in the
first column. Assume first that l(S(0,0)) ≥ l(S(1,0)), where l(S) is the length of
a filter as given by Definition 3.5. If Λi is of even type, then the first column in
ΛiS is (

I Si
0 I

)(
S(0,0)

S(1,0)

)
=
(
S(0,0) + SiS

(1,0)

S(1,0)

)
. (8.6)
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Si can now be chosen so that l(S(0,0) + SiS
(1,0)) < l(S(1,0)). To see how,

recall that we in Section 3.1 stated that multiplying filters corresponds to
multiplying polynomials. Si can thus be found from polynomial division with
remainder: when we divide S(0,0) by S(1,0), we actually find polynomials Si
and P with l(P ) < l(S(1,0)) so that S(0,0) = SiS

(1,0) + P , so that the length of
P = S(0,0) − SiS(1,0) is less than l(S(1,0)). The same can be said if Λi is of odd
type, in which case the first and second components are simply swapped. This
procedure can be continued until we arrive at a product

Λn · · ·Λ1S

where either the first or the second component in the first column is 0. If the
first component in the first column is 0, the identity(

I 0
−I I

)(
I I
0 I

)(
0 X
Y Z

)
=
(
Y X + Z
0 −X

)
explains that we can bring the matrix to a form where the second element in
the first column is zero instead, with the help of the additional lifting matrices

Λn+1 =
(
I&I
0&I

)
, and Λn+2 =

(
I&0
−I&I

)
, so that we always can assume that

the second element in the first column is 0, i.e.

Λn · · ·Λ1S =
(
P Q
0 R

)
,

for some matrices P,Q,R. From the proof of Theorem 6.17 we will see that
in order for S to be invertible, we must have that S(0,0)S(1,1) − S(0,1)S(1,0) =
−α−1Ed for some nonzero scalar α and integer d. Since(

P Q
0 R

)
is also invertible, we must thus have that PR must be on the form αEn. When
the filters have a finite number of filter coefficients, the only possibility for this
to happen is when P = α0Ep and R = α1Eq for some p, q, α0, α1. Using this,
and also isolating S on one side, we obtain that

S = (Λ1)−1 · · · (Λn)−1
(
α0Ep Q

0 α1Eq

)
, (8.7)

Noting that(
α0Ep Q

0 α1Eq

)
=
(

1 1
α1
E−qQ

0 1

)(
α0Ep 0

0 α1Eq

)
,

we can rewrite Equation (8.7) as

S = (Λ1)−1 · · · (Λn)−1
(

1 1
α1
E−qQ

0 1

)(
α0Ep 0

0 α1Eq

)
,
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which is a lifting factorization of the form we wanted to arrive at. The last matrix
in the lifting factorization is not really a lifting matrix, but it too can easily be
inverted, so that we arrive at Equation (8.5). This completes the proof.

Factorizations on the form given by Equation (8.4) will be called lifting
factorizations. Assume that we have applied Theorem 8.8 in order to get a
factorization of the polyphase representation of the DWT kernel of the form

Λn · · ·Λ2Λ1H =
(
α 0
0 β

)
. (8.8)

Theorem 8.7 then immediately gives us the following factorizations.

H = (Λ1)−1(Λ2)−1 · · · (Λn)−1
(
α 0
0 β

)
(8.9)

G =
(

1/α 0
0 1/β

)
Λn · · ·Λ2Λ1 (8.10)

HT =
(
α 0
0 β

)
((Λn)−1)T ((Λn−1)−1)T · · · ((Λ1)−1)T (8.11)

GT = (Λ1)T (Λ2)T · · · (Λn)T
(

1/α 0
0 1/β

)
. (8.12)

Since HT and GT are the kernel transformations of the dual IDWT and the
dual DWT, respectively, these formulas give us recipes for computing the DWT,
IDWT, dual IDWT, and the dual DWT, respectively. All in all, everything can
be computed by combining elementary lifting steps.

In practice, one starts with a given wavelet with certain proved properties
such as the ones from Chapter 7, and applies an algorithm to obtain a lifting
factorization of the polyphase representation of the kernels. The algorihtm can
easily be written down from the proof of Theorem 8.8. The lifting factorization
is far from unique, and the algorithm only gives one of them.

It is desirable for an implementation to obtain a lifting factorization where the
lifting steps are as simple as possible. Let us restrict to the case of wavelets with
symmetric filters, since the wavelets used in most applications are symmetric.
In particular this means that S(0,0) is a symmetric matrix, and that S(1,0) is
symmetric about −1/2 (see Exercise 8.7).

Assume that we in the proof of Theorem 8.8 add an elementary lifting of
even type. At this step we then compute S(0,0) + SiS

(1,0) in the first entry of
the first column. Since S(0,0) is now assumed symmetric, SiS(1,0) must also be
symmetric in order for the length to be reduced. And since the filter coefficients
of S(1,0) are assumed symmetric about −1/2, Si must be chosen with symmetry
around 1/2.

For most of our wavelets we will consider in the following examples it will
turn out the filters in the first column differ in the number of filter coefficients
by 1 at all steps. When this is the case, we can choose a filter of length 2 to
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reduce the length by 2, so that the Si in an even lifting step can be chosen on
the form Si = λi{1, 1}. Similarly, for an odd lifting step, Si can be chosen on
the form Si = λi{1, 1}. Let us summarize this as follows:

Theorem 8.9. Differing by 1.
When the filters in a wavelet are symmetric and the lengths of the filters in

the first column differ by 1 at all steps in the lifting factorization, the lifting
steps of even and odd type take the simplified form(

I λi{1, 1}
0 I

)
and

(
I 0

λi{1, 1} I

)
,

respectively.

The lifting steps mentioned in this theorem are quickly computed due to
their simple structure. The corresponding MRA matrices are



1 λ 0 0 · · · 0 0 λ
0 1 0 0 · · · 0 0 0
0 λ 1 λ · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · λ 1 λ
0 0 0 0 · · · 0 0 1


and



1 0 0 0 · · · 0 0 0
λ 1 λ 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 0 1 0
λ 0 0 0 · · · 0 λ 1


,

respectively, or



1 2λ 0 0 · · · 0 0 0
0 1 0 0 · · · 0 0 0
0 λ 1 λ · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · λ 1 λ
0 0 0 0 · · · 0 0 1


and



1 0 0 0 · · · 0 0 0
λ 1 λ 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 0 1 0
0 0 0 0 · · · 0 2λ 1


(8.13)

if we use symmetric extensions as defined by Definition 5.42 (we have used
Theorem 5.43). Each lifting step leaves every second element unchanged, while
for the remaining elements, we simply add the two neighbours. Clearly these
computations can be computed in-place, without the need for extra memory
allocations. From this it is also clear how we can compute the entire DWT/IDWT
in-place. We simply avoid the reorganizing into the (φm−1,ψm−1)-basis until
after all the lifting steps. After the application of the matrices above, we have
coordinates in the Cm-basis. Here only the coordinates with indices (0, 2, 4, . . .)
need to be further transformed, so the next step in the algorithm should work
directly on these. After the next step only the coordinates with indices (0, 4, 8, . . .)
need to be further transformed, and so on. From this it is clear that
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• the ψm−k coordinates are found at indices 2k−1 + r2k, i.e. the last k bits
are 1 followed by k − 1 zeros.

• the φ0 coordinates are found at indices r2m, i.e. the last m bits are 0.

If we place the last k bits of the ψm−k-coordinates in front in reverse order, and
the the last m bits of the φ0-coordinates in front, the coordinates have the same
order as in the (φm−1,ψm−1)-basis. This is also called a partial bit-reverse, and
is related to the bit-reversal performed in the FFT algorithm.

Clearly, these lifting steps are also MRA-matrices with symmetric filters, so
that our procedure factorizes an MRA-matrix with symmetric filters into simpler
MRA-matrices which also have symmetric filters.

8.1.1 Reduction in the number of arithmetic operations
with the lifting factorization

The number of arithmetic operations needed to apply matrices on the form
stated in Equation (8.13) is easily computed. The number of multiplications
is N/2 if symmetry is exploited as in Observation 4.21 (N if symmetry is not
exploited). Similarly, the number of additions is N . Let K be the total number
of filter coefficients in H0, H1. In the following we will see that each lifting step
can be chosen to reduce the number of filter coefficients in the MRA matrix by 4,
so that a total number of K/4 lifting steps are required. Thus, a total number of
KN/8 (KN/4) multiplications, and KN/4 additions are required when a lifting
factorization is used. In comparison, a direct implementation would require
KN/4 (KN/2) multiplications, and KN/2 additions. For the examples we will
consider, we therefore have the following result.

Theorem 8.10. Reducing arithmetic operations.
The lifting factorization approximately halves the number of additions and

multiplications needed, when compared with a direct implementation (regardless
of whether symmetry is exploited or not).

Exercise 8.1: The frequency responses of the polyphase
components
Let H and G be MRA-matrices for a DWT/IDWT, with corresponding filters
H0, H1, G0, G1, and polyphase components H(i,j), G(i,j).

a) Show that

λH0(ω) = λH(0,0)(2ω) + eiωλH(0,1)(2ω)
λH1(ω) = λH(1,1)(2ω) + e−iωλH(1,0)(2ω)
λG0(ω) = λG(0,0)(2ω) + e−iωλG(1,0)(2ω)
λG1(ω) = λG(1,1)(2ω) + eiωλG(0,1)(2ω).
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b) In the proof of the last part of Theorem 6.17, we defered the last part, namely
that equations (7.29) in the compendium-(8.3) in the compendium follow from

(
G(0,0) G(0,1)

G(1,0) G(1,1)

)
=
(
αE−dH

(1,1) −αE−dH(0,1)

−αE−dH(1,0) αE−dH
(0,0)

)
.

Prove this based on the result from a).

Exercise 8.2: Finding new filters
Let S be a filter. Show that

a)

G

(
I 0
S I

)
is an MRA matrix with filters G̃0, G1, where

λG̃0
(ω) = λG0(ω) + λS(2ω)e−iωλG1(ω),

b)

G

(
I S
0 I

)
is an MRA matrix with filters G0, G̃1, where

λG̃1
(ω) = λG1(ω) + λS(2ω)eiωλG0(ω),

c) (
I 0
S I

)
H

is an MRA-matrix with filters H0, H̃1, where

λH̃1
(ω) = λH1(ω) + λS(2ω)e−iωλH0(ω).

d) (
I S
0 I

)
H

is an MRA-matrix with filters H̃0, H1, where

λH̃0
(ω) = λH0(ω) + λS(2ω)eiωλH1(ω).

In summary, this exercise shows that one can think of the steps in the lifting
factorization as altering one of the filters of an MRA-matrix in alternating order.
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Exercise 8.3: Relating to the polyphase components
Show that S is a filter of length kM if and only if the entries {Si,j}M−1

i,j=0 in the
polyphase representation of S satisfy S(i+r) mod M,(j+r) mod M = Si,j . In other
words, S is a filter if and only if the polyphase representation of S is a “block-
circulant Toeplitz matrix”. This implies a fact that we will use: GH is a filter
(and thus provides alias cancellation) if blocks in the polyphase representations
repeat cyclically as in a Toeplitz matrix (in particular when the matrix is
block-diagonal with the same block repeating on the diagonal).

Exercise 8.4: QMF filter banks
Recall from Definition 6.20 that we defined a classical QMF filter bank as one
where M = 2, G0 = H0, G1 = H1, and λH1(ω) = λH0(ω + π). Show that the
forward and reverse filter bank transforms of a classical QMF filter bank take
the form

H = G =
(
A −B
B A

)

Exercise 8.5: Alternative QMF filter banks
Recall from Definition 6.21 that we defined an alternative QMF filter bank as
one where M = 2, G0 = (H0)T , G1 = (H1)T , and λH1(ω) = λH0(ω + π). Show
that the forward and reverse filter bank transforms of an alternative QMF filter
bank take the form.

H =
(
AT BT

−B A

)
G =

(
A −BT
B AT

)
=
(
AT BT

−B A

)T
.

Exercise 8.6: Alternative QMF filter banks with additional
sign
Consider alternative QMF filter banks where we take in an additional sign, so
that λH1(ω) = −λH0(ω + π) (the Haar wavelet was an example of such a filter
bank). Show that the forward and reverse filter bank transforms now take the
form

H =
(
AT BT

B −A

)
G =

(
A BT

B −AT
)

=
(
AT BT

B −A

)T
.

It is straightforward to check that also these satisfy the alias cancellation con-
dition, and that the perfect reconstruction condition also here takes the form
|λH0(ω)|2 + |λH0(ω + π)|2 = 2.
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8.2 Examples of lifting factorizations
We have seen that the polyphase representations of wavelet kernels can be
factored into a product of elementary lifting matrices. In this section we will
compute the exact factorizations for the wavelets we have considered. In the
exercises we will then complete the implementations, so that we can make actual
experiments, such as listening to the low-resolution approximations in sound, or
using the cascade algorithm to plot scaling functions and mother wavelets. We
will omit the Haar wavelet. One can easily write down a lifting factorization for
this as well, but there is little to save in this factorization when compared to the
direct form of this we already have considered.

First we will consider the two piecewise linear wavelets we have looked at.
It turns out that their lifting factorizations can be obtained in a direct way by
considering the polyphase representations as a change of coordinates. To see
how, we first define

Dm = {φm,0, φm,2, φm,4 . . . , φm,1, φm,3, φm,5, . . .}, (8.14)

PDm←φm is clearly the permutation matrix P used in the similarity between
a matrix and its polyphase representation. Let now H and G be the kernel
transformations of a wavelet. The polyphase representation of H is

PHPT = PDm←φmPCm←φmPφm←Dm = P(φ1,ψ1)←φmPφm←Dm = P(φ1,ψ1)←Dm .

Taking inverses here we obtain that PGPT = PDm←(φ1,ψ1). We therefore have
the following result:

Theorem 8.11. The polyphase representation.
The polyphase representation of H equals the change of coordinates ma-

trix P(φ1,ψ1)←Dm , and the polyphase representation of G equals the change of
coordinates matrix PDm←(φ1,ψ1).

Example 8.12. Lifting factorization of the piecewise linear wavelet.
Let us consider the piecewise linear wavelet from Section 5.4, for which we

found that the change of coordinate matrix G was given by Equation (6.1). In
the four different polyphase components of G, let us underline the corresponding
elements:

1√
2



1 0
1/2 1
0 0
...

...
0 0

1/2 0


,

1√
2



1 0
1/2 1
0 0
...

...
0 0

1/2 0


,

1√
2



1 0
1/2 1
0 0
...

...
0 0

1/2 0


,

1√
2



1 0
1/2 1
0 0
...

...
0 0

1/2 0


. (8.15)

we get the following:
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• The upper left polyphase component G(0,0) is 1√
2I.

• The upper right polyphase component G(0,1) is 0.

• The lower left polyphase component G(1,0) is 1√
2S1, where S1 is the filter

{1/2, 1/2}.

• The lower right polyphase component G(1,1) is 1√
2I.

In other words, the polyphase representation of G is 1√
2

(
I 0

1
2{1, 1} I

)
. Due to

Theorem 8.7, the polyphase representation of H is
√

2
(

I 0
− 1

2{1, 1} I

)
We can

summarize that the polyphase representations of the kernels H and G for the
piecewise linear wavelet are

√
2
(

I 0
− 1

2{1, 1} I

)
and 1√

2

(
I 0

1
2{1, 1} I

)
, (8.16)

respectively.

Example 8.13. Lifting factorization of the alternative piecewise linear wavelet.
Let us now consider the alternative piecewise linear wavelet. In this case,

Equation (6.3) shows that PD1←(φ1,ψ̂1) (the polyphase representation of H) is
not on the form (

I 0
S1 I

)
for some filter S1, since there is more than one element in every column. Recall,
however, that the alternative piecewise linear wavelet was obtained by construct-
ing a new mother wavelet ψ̂ from the old ψ. ψ̂ is defined in Section 5.5 by
Equation (5.38), which said that

ψ̂(t) = ψ(t)− 1
4
(
φ0,0(t) + φ0,1(t)

)
.

From this equation it is clear that

P(φ1,ψ1)←(φ1,ψ̂1) =
(
I S2
0 I

)
,

where S2 = − 1
4{1, 1}. We can now write the polyphase representation of G as

PD1←(φ1,ψ̂1) = PD1←(φ1,ψ1)P(φ1,ψ1)←(φ1,ψ̂1). = 1√
2

(
I 0

1
2{1, 1} I

)(
I − 1

4{1, 1}
0 I

)
.

In other words, also here the same type of matrix could be used to express the
change of coordinates. This matrix is also easily invertible, so that the polyphase
representation of H is
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√
2
(
I 1

4{1, 1}
0 I

)(
I 0

− 1
2{1, 1} I

)
.

In this case we required one additional lifting step. We can thus conclude that the
polyphase representations of the kernels H and G for the alternative piecewise
linear wavelet are

√
2
(
I 1

4{1, 1}
0 I

)(
I 0

− 1
2{1, 1} I

)
and 1√

2

(
I 0

1
2{1, 1} I

)(
I − 1

4{1, 1}
0 I

)
,

(8.17)
respectively.

Example 8.14. Lifting factorization of the Spline 5/3 wavelet.
Let us consider the Spline 5/3 wavelet, which we defined in Example 7.16.

Let us start by looking at, and we recall that

H0 =
{
−1

4 ,
1
2 ,

3
2 ,

1
2 ,−

1
4

}
H1 =

{
−1

4 ,
1
2 ,−

1
4

}
.

from which we see that the polyphase components of H are(
H(0,0) H(0,1)

H(1,0) H(1,1)

)
=
(
{− 1

4 ,
3
2 ,−

1
4}

1
2 {1, 1}

− 1
4 {1, 1}

1
2I

)
We see here that the upper filter has most filter coefficients in the first column,
so that we must start with an elementary lifting of even type. We need to find a
filter S1 so that S1{−1/4,−1/4}+ {−1/4, 3/2,−1/4} has fewer filter coefficients
than {−1/4, 3/2,−1/4}. It is clear that we can choose S1 = {−1,−1}, and that

Λ1H =
(
I {−1,−1}
0 I

)(
{− 1

4 ,
3
2 ,−

1
4}

1
2{1, 1}

− 1
4{1, 1}

1
2I

)
=
(

2I 0
− 1

4{1, 1}
1
2I

)
Now we need to apply an elementary lifting of odd type, and we need to find a
filter S2 so that S2I − 1

4{1, 1} = 0. Clearly we can choose S2 = {1/8, 1/8}, and
we get

Λ2Λ1H =
(

I 0
1
8{1, 1} I

)(
2I 0

− 1
4{1, 1}

1
2I

)
=
(

2I 0
0 1

2I

)
.

Multiplying with inverses of elementary lifting steps, we now obtain that the
polyphase representations of the kernels for the Spline 5/3 wavelet are

H =
(
I {1, 1}
0 I

)(
I 0

− 1
8{1, 1} I

)(
2I 0
0 1

2I

)
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and

G =
( 1

2I 0
0 2I

)(
I 0

1
8{1, 1} I

)(
I {−1,−1}
0 I

)
,

respectively. Two lifting steps are thus required. We also see that the lifting
steps involve only dyadic fractions, just as the filter coefficients did. This means
that the lifting factorization also can be used for lossless operations.

Example 8.15. Lifting factorization of the CDF 9/7 wavelet.
For the wavelet we considered in Example 7.17, it is more cumbersome to

compute the lifting factorization by hand. It is however, straightforward to write
an algorithm which computes the lifting steps, as these are performed in the
proof of Theorem 8.8. You will be spared the details of this algorithm. Also,
when we use these wavelets in implementations later they will use precomputed
values of these lifting steps, and you can take these implementations for granted
too. If we run the algorithm for computing the lifting factorization we obtain
that the polyphase representations of the kernels H and G for the CDF 9/7
wavelet are

(
I 0.5861{1, 1}
0 I

)(
I 0

0.6681{1, 1} I

)(
I −0.0700{1, 1}
0 I

)
×
(

I 0
−1.2002{1, 1} I

)(
−1.1496 0

0 −0.8699

)
and(

−0.8699 0
0 −1.1496

)(
I 0

1.2002{1, 1} I

)(
I 0.0700{1, 1}
0 I

)
×
(

I 0
−0.6681{1, 1} I

)(
I −0.5861{1, 1}
0 I

)
,

respectively. In this case four lifting steps were required.

Perhaps more important than the reduction in the number of arithmetic
operations is the fact that the lifting factorization splits the DWT and IDWT
into simpler components, each very attractive for hardware implementations
since a lifting step only requires the additional value λi from Theorem 8.9. Lifting
actually provides us with a complete implementation strategy for the DWT and
IDWT, in which the λi are used as precomputed values.

Finally we will find a lifting factorization for orthonormal wavelets. Note
that here the filters H0 and H1 are not symmetric, and each of them has an
even number of filter coefficients. There are thus a different number of filter
coefficients with positive and negative indices, and in Section 7.7 we defined the
filters so that the filter coefficients were as symmetric as possible when it came
to the number of nonzero filter coefficients with positive and negative indices.

Example 8.16. Lifting of orthonormal wavelets.
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We will attempt to construct a lifting factorization where the following
property is preserved after each lifting step:

P1: H(0,0), H(1,0) have a minimum possible overweight of filter coefficients
with negative indices.

This property stems from the assumption in Section 7.7 that H0 is assumed
to have a minimum possible overweight of filter coefficients with negative indices.
To see that this holds at the start, assume as before that all the filters have 2L
nonzero filter coefficients, so that H0 and H1 are on the form given by Equation
(7.30). Assume first that L is even. It is clear that

H(0,0) = {t−L, . . . , t−2, t0, t2, . . . , tL−2}
H(0,1) = {t−L+1, . . . , t−3, t−1, t1, . . . , tL−1}

H(1,0) = {s−L+1, . . . , s−1, s1, s3, . . . , sL−1}
H(1,1) = {s−L+2, . . . , s−2, s0, s2, . . . , sL}.

Clearly P1 holds. Assume now that L is odd. It is now clear that

H(0,0) = {t−L+1, . . . , t−2, t0, t2, . . . , tL−1}
H(0,1) = {t−L, . . . , t−3, t−1, t1, . . . , tL−2}

H(1,0) = {s−L+2, . . . , s−1, s1, s3, . . . , sL}
H(1,1) = {s−L+1, . . . , s−2, s0, s2, . . . , sL−1}.

In this case it is seen that all filters have equally many filter coefficients with
positive and negative indices, so that P1 holds also here.

Now let us turn to the first lifting step. We will choose it so that the number
of filter coefficients in the first column is reduced with 1, and so that H(0,0) has
an odd number of coefficients. If L is even, we saw that H(0,0) and H(1,0) had
an even number of coefficients, so that the first lifting step must be even. To
preserve P1, we must cancel t−L, so that the first lifting step is

Λ1 =
(
I −t−L/s−L+1
0 I

)
.

If L is odd, we saw that H(0,0) and H(1,0) had an odd number of coefficients, so
that the first lifting step must be odd. To preserve P1, we must cancel sL, so
that the first lifting step is

Λ1 =
(

I 0
−sL/tL−1 I

)
.

Now that we have a difference of one filter coefficent in the first column, we
will reduce the entry with the most filter coefficients with two with a lifting step,
until we have H(0,0) = {K}, H(1,0) = 0 in the first column.
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Assume first that H(0,0) has the most filter coefficients. We then need to
apply an even lifting step. Before an even step, the first column has the form(

{t−k, . . . , t−1, t0, t1, . . . , tk}
{s−k, . . . , s−1, s0, s1, . . . , sk−1}

)
.

We can then choose Λi =
(
I {−t−k/s−k,−tk/sk−1}
0 I

)
as a lifting step.

Assume then that H(1,0) has the most filter coefficients. We then need to
apply an odd lifting step. Before an odd step, the first column has the form(

{t−k, . . . , t−1, t0, t1, . . . , tk}
{s−k−1, . . . , s−1, s0, s1, . . . , sk}

)
.

We can then choose Λi =
(

I 0
{−s−k−1/t−k,−sk/tk} I

)
as a lifting step.

If L is even we end up with a matrix on the form
(
α {0,K}
0 β

)
, and we can

choose the final lifting step as Λn =
(
I {0,−K/β}
0 I

)
.

If L is odd we end up with a matrix on the form(
α K
0 β

)
,

and we can choose the final lifting step as Λn =
(
I −K/β
0 I

)
. Again using

equations (8.9)-(8.10), this gives us the lifting factorizations.
In summary we see that all even and odd lifting steps take the form(

I {λ1, λ2}
0 I

)
and

(
I 0

λ1, λ2} I

)
. We see that symmetric lifting steps cor-

respond to the special case when λ1 = λ2. The even and odd lifting matrices
now used are



1 λ1 0 0 · · · 0 0 λ2
0 1 0 0 · · · 0 0 0
0 λ2 1 λ1 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · λ2 1 λ1
0 0 0 0 · · · 0 0 1


and



1 0 0 0 · · · 0 0 0
λ2 1 λ1 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 0 1 0
λ1 0 0 0 · · · 0 λ2 1


,

(8.18)

respectively. We note that when we reduce elements to the left and right in
the upper and lower part of the first column, the same type of reductions must
occur in the second column, since the determinant H(0,0)H(1,1) −H(0, 1)H(1,0)

is a constant after any number of lifting steps.
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This example explains the procedure for finding the lifting factorization
into steps of the form given in Equation (8.18). You will be spared the details
of writing an implementation which applies this procedure. In order to use
orthornormal wavelets in implementations, we have implemented a function
liftingfactortho, which takes N as input, and sets global variables lambdas,
alpha, and beta, so that the factorization (8.8) holds. lambdas is an n×2-matrix
so that the filter coefficients {λ1, λ2} or {λ1, λ2} in the i’th lifting step is found
in row i of lambdas. In the exercises, you will be asked to implement both
these nonsymmetric elementary lifting steps, as well as kernel transformations
for orthonormal wavelets, which assume that these global variables have been
set, and describe the lifting steps of the wavelet (Exercise 8.10).

Exercise 8.7: Polyphase components for symetric filters
Assume that the filters H0, H1 of a wavelet are symmetric, and denote by S(i,j)

the polyphase components of the corresponding MRA-matrix H. Show that
S(0,0) and S(1,1) are symmetric filters, that the filter coefficients of S(1,0) has
symmetry about −1/2, and that S(0,1) has symmetry about 1/2. Also show a
similar statement for the MRA-matrix G of the inverse DWT.

Exercise 8.8: Implement elementary lifting steps
Write functions liftingstepevensymm and liftingstepoddsymm which take λ,
a vector x, and symm as input, and apply the elementary lifting matrices as in
Equation (8.13) in the compendium, respectively, to x. The parameter symm
should indicate whether symmetric extensions shall be applied. Your code should
handle both when N is odd, and when N is even (as noted previously, when
symmetric extensions are not applied, we assume that N is even). The function
should not perform matrix multiplication, and apply as few multiplications as
possible.

Exercise 8.9: Implementing kernels transformations using
lifting
Up to now in this chapter we have obtained lifting factorizations for four different
wavelets where the filters are symmetric. Let us now implement the kernel
transformations for these wavelets. Your functions should call the functions
from Exercise 8.8 in order to compute the individual lifting steps. Recall that
the kernel transformations should take the input vector x, symm (i.e. whether
symmetric extension should be applied), and dual (i.e. whether the dual wavelet
transform should be applied) as input. You will need equations (8.13) in the
compendium-(8.12) in the compendium here, in order to complete the kernels
for bot the transformations and the dual transformations.
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a) Write the DWT and IDWT kernel transformations for the piecewise linear
wavelet. Your functions should use the lifting factorizations in (8.16) in the
compendium. Call your functions DWTKernelpwl0 and IDWTKernelpwl0.

b) Write the DWT and IDWT kernel transformations for the alternative piece-
wise linear wavelet. The lifting factorizations are now given by (8.17) in the
compendium instead. Call your functions DWTKernelpwl2 and IDWTKernelpwl2.

c) Write the DWT and IDWT kernel transformations for the Spline 5/3 wavelet,
using the lifting factorization obtained in Example 8.14. Call your functions
DWTKernel53 and IDWTKernel53.

d) Write the DWT and IDWT kernel transformations for the CDF 9/7 wavelet,
using the lifting factorization obtained in Example 8.15. Call your functions
DWTKernel97 and IDWTKernel97.

e) In Chapter 5, we listened to the low-resolution approximations and detail
components in sound for three different wavelets, using the function playDWT.
Repeat these experiments with the Spline 5/3 and the CDF 9/7 wavelet, using
the new kernels we have implemented in this exercise.

f) Use the function plotwaveletfunctions from Exercise 7.1 to plot all scaling
functions and mother wavelets for the Spline 5/3 and the CDF 9/7 wavelets,
using the kernels you have implemented.

Exercise 8.10: Lifting orthonormal wavelets
In this exercise we will implement the kernel transformations for orthonormal
wavelets.

a) Write functions liftingstepeven and liftingstepodd which take λ1, λ2
and a vector x as input, and apply the elementary lifting matrices (8.18) in the
compendium, respectively, to x. Assume that N is even.

b) Write functions DWTKernelOrtho and IDWTKernelOrtho which take a vec-
tor x as input, and apply the DWT and IDWT kernel transformations for
orthonormal wavelets to x. You should call the functions liftingstepeven and
liftingstepodd. As mentioned, assume that global variables lambdas, alpha,
and beta have been set, so that the lifting factorization (8.8) in the compendium
holds, where lambdas is a n× 2-matrix so that the filter coefficients {λ1, λ2} or
{λ1, λ2} in the i’th lifting step is found in row i of lambdas. Recall that the last
lifting step was even.

c) Listen to the low-resolution approximations and detail components in sound
for orthonormal wavelets for N = 1, 2, 3, 4, again using the function playDWT.
You need to call the function liftingfactortho in order to set the kernel for
the different values of N .
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d) Use the function plotwaveletfunctions from Exercise 7.1 to plot all scaling
functions and mother wavelets for orthonormal wavelets for N = 1, 2, 3, 4. Since
the wavelets are orthonormal, we should have that φ = φ̃, and ψ = ψ̃. In other
words, you should see that the bottom plots equal the upper plots.

Exercise 8.11: 4 vanishing moments
In Exercise 5.31 we found constants α, β, γ, δ which give the coordinates of ψ̂ in
(φ1, ψ̂1), where ψ̂ had four vanishing moments, and where we worked with the
multiresolution analysis of piecewise constant functions.

a) Show that the polyphase representation of G when ψ̂ is used as mother
wavelet can be factored as

1√
2

(
I 0

{1/2, 1/2} I

)(
I {−γ,−α,−β,−δ}
0 I

)
. (8.19)

You here need to reconstruct what you did in the lifting factorization for the
alternative piecewise linear wavelet, i.e. write

PD1←(φ1,ψ̂1) = PD1←(φ1,ψ1)P(φ1,ψ1)←(φ1,ψ̂1).

By inversion, find also a lifting factorization of H.

Exercise 8.12: Wavelet based on piecewise quadratic scaling
function
In Exercise 7.4 you should have found the filters

H0 = 1
128{−5, 20,−1,−96, 70, 280, 70,−96,−1, 20,−5}

H1 = 1
16{1,−4, 6,−4, 1}

G0 = 1
16{1, 4, 6, 4, 1}

G1 = 1
128{5, 20, 1,−96,−70, 280,−70,−96, 1, 20, 5}.

a) Show that

(
I − 1

128{5,−29,−29, 5}
0 I

)(
I 0

−{1, 1} I

)(
I − 1

4{1, 1}
0 I

)
G =

( 1
4 0
0 4

)
.

From this we can easily derive the lifting factorization of G.

b) Implement the kernels of the wavelet of this exercise using what you did in
Exercise 6.12.
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c) Listen to the low-resolution approximations and detail components in sound
for this wavelet.

d) Use the function plotwaveletfunctions from Exercise 7.1 to plot all scaling
functions and mother wavelets for this wavelet.

8.3 Cosine-modulated filter banks and the MP3
standard

Previously we saw that the MP3 standard used a certain filter bank, called a
cosine-modulated filter bank. We also illustrated that, surprisingly for a much
used international standard, the synthesis system did not exactly invert the
analysis system, i.e. we do not have perfect reconstruction, only “near-perfect
reconstruction”. In this section we will first explain how this filter bank can be
constructed, and why it can not give perfect reconstruction. In particular it will
be clear how the prototype filter can be constructed. We will then construct a
very similar filter bank, which actually can give perfect reconstruction. It may
seem very surprising that the MP3 standard does not use this filter bank instead
due to this. The explanation may lie in that the MP3 standard was established
at about the same time as these filter banks were developed, so that the standard
did not capture this very similar filter bank with perfect reconstruction.

8.3.1 Polyphase representations of the filter bank trans-
forms of the MP3 standard

The main idea is to find the polyphase representations of the forward and reverse
filter bank transforms of the MP3 standard. We start with the expression

z32(s−1)+n =
511∑
k=0

cos((n+ 1/2)(k − 16)π/32)hkx32s−k−1, (8.20)

which lead to the expression of the forward filter bank transform (Theorem 6.26).
Using that any k < 512 can be written uniquely on the form k = m+ 64r, where
0 ≤ m < 64, and 0 ≤ r < 8, we can rewrite this as

=
63∑
m=0

7∑
r=0

(−1)r cos (2π(n+ 1/2)(m− 16)/64)hm+64rx32s−(m+64r)−1

=
63∑
m=0

cos (2π(n+ 1/2)(m− 16)/64)
7∑
r=0

(−1)rhm+32·2rx32(s−2r)−m−1.

Here we also used Property (6.31). If we write

V (m) = {(−1)0hm, 0, (−1)1hm+64, 0, (−1)2hm+128, . . . , (−1)7hm+7·64, 0},
(8.21)



CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS306

for 0 ≤ m ≤ 63, and we can write the expression above as

63∑
m=0

cos (2π(n+ 1/2)(m− 16)/64)
15∑
r=0

V (m)
r x32(s−r)−m−1

=
63∑
m=0

cos (2π(n+ 1/2)(m− 16)/64)
15∑
r=0

V (m)
r x

(32−m−1)
s−1−r

=
63∑
m=0

cos (2π(n+ 1/2)(m− 16)/64) (V (m)x(32−m−1))s−1,

where we recognized x32(s−r)−m−1 in terms of the polyphase components of
x, and the inner sum as a convolution. We remark that the inner terms
{(V (m)x(32−m−1))s−1}63

m=0 here are what the standard calls partial calculations
(windowing refers to multiplication with the combined set of filter coefficients of
the V (m)), and that matrixing here represents the multiplication with the cosine
entries. Since z(n) = {z32(s−1)+n}∞s=0 is the n’th polyphase component of z, this
can be written as

z(n) =
63∑
m=0

cos (2π(n+ 1/2)(m− 16)/64) IV (m)x(32−m−1).

In terms of matrices this can be written as

z =

 cos (2π(0 + 1/2) · (−16)/64) I · · · cos (2π(0 + 1/2) · (47)/64) I
...

. . .
...

cos (2π(31 + 1/2) · (−16)/64) I · · · cos (2π(31 + 1/2) · (47)/64) I



×


V (0) 0 · · · 0 0
0 V (1) · · · 0 0
...

...
...

...
...

0 0 · · · V (62) 0
0 0 · · · 0 V (63)



x(31)

x(30)

...
x(−32)

 .

If we place the 15 first columns in the cosine matrix last using Property (6.31)
(we must then also place the 15 first rows last in the second matrix), we obtain
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z =

 cos (2π(0 + 1/2) · (0)/64) I · · · cos (2π(0 + 1/2) · (63)/64) I
...

. . .
...

cos (2π(31 + 1/2) · (0)/64) I · · · cos (2π(31 + 1/2) · (63)/64) I



×



0 · · · 0 V (16) · · · 0
...

...
...

...
. . .

...
0 · · · 0 0 · · · V (63)

−V (0) · · · · · · 0 · · · 0
...

. . .
...

...
... 0

0 · · · −V (15) 0 · · · 0




x(31)

x(30)

...
x(−32)

 .

Using Equation (6.32) to combine column k and 64− k in the cosine matrix (as
well as row k and 64− k in the second matrix), we can write this as

 cos (2π(0 + 1/2) · (0)/64) I · · · cos (2π(0 + 1/2) · (31)/64) I
...

. . .
...

cos (2π(31 + 1/2) · (0)/64) I · · · cos (2π(31 + 1/2) · (31)/64) I

(A′ B′
)

x(31)

x(30)

...
x(−32)

 .

where

A′ =



0 0 · · · 0 V (16) 0 · · · 0
0 0 · · · V (15) 0 V (17) · · · 0
...

...
. . .

...
...

...
. . . 0

0 V (1) · · · 0 0 0 · · · V (31)

V (0) 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 · · · 0



B′ =



0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
V(32) 0 · · · 0 0 0 · · · 0
0 V (33) · · · 0 0 0 · · · −V (63)

...
...

. . .
...

...
...

. . .
...

0 0 · · · V (47) 0 −V (49) · · · 0


.

Using Equation (4.3), the cosine matrix here can be written as
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√
M

2 (DM )T


√

2 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1

 .

The above can thus be written as

4(D32)T
(
A B

)

x(31)

x(30)

...
x(−32)

 ,

where A and B are the matrices A′, B′ with the first row multiplied by
√

2
(i.e. replace V (16) with

√
2V (16) in the matrix A′). Using that x(−i) = E1xi for

1 ≤ i ≤ 32, we can write this as

4(D32)T
(
A B

)


x(31)

...
x(0)

E1x
(31)

...
E1x

(0)


= 4(D32)T

A
x

(31)

...
x(0)

+B

E1x
(31)

...
E1x

(0)


 ,

which can be written as

4(D32)T



0 0 · · · 0
√

2V (16) 0 · · · 0
0 0 · · · V (15) 0 V (17) · · · 0
...

...
. . .

...
. . .

...
...

0 V (1) · · · 0 0 0 · · · V (31)

V (0) + E1V
(32) 0 · · · 0 0 0 · · · 0

0 E1V
(33) · · · 0 0 0 · · · −E1V

(63)

...
...

. . .
...

...
...

. . .
...

0 0 · · · E1V
(47) 0 −E1V

(49) · · · 0



x
(31)

...
x(0)

 ,

which also can be written as
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4(D32)T



0 · · · 0
√

2V (16) 0 · · · 0 0
0 · · · V (17) 0 V (15) · · · 0 0
...

. . .
...

. . .
...

...
...

...
V (31) · · · 0 0 0 · · · V (1) 0
0 · · · 0 0 0 · · · 0 V (0) + E1V

(32)

−E1V
(63) · · · 0 0 0 · · · E1V

(33) 0
...

. . .
...

...
...

. . .
...

...
0 · · · −E1V

(49) 0 E1V
(47) · · · 0 0



 x
(0)

...
x(31)

 .

We have therefore proved the following result.

Theorem 8.17. Polyphase factorization of a forward filter bank transform based
on a prototype filter.

The polyphase form of a forward filter bank transform based on a prototype
filter can be factored as

4(D32)T



0 · · · 0
√

2V (16) 0 · · · 0 0
0 · · · V (17) 0 V (15) · · · 0 0
...

. . .
...

. . .
...

...
...

...
V (31) · · · 0 0 0 · · · V (1) 0
0 · · · 0 0 0 · · · 0 V (0) + E1V

(32)

−E1V
(63) · · · 0 0 0 · · · E1V

(33) 0
...

. . .
...

...
...

. . .
...

...
0 · · · −E1V

(49) 0 E1V
(47) · · · 0 0


(8.22)

Due to Theorem 6.28, it is also very simple to write down the polyphase
factorization of the reverse filter bank transform as well. Since E481G

T is a
forward filter bank transform where the prototype filter has been reversed,
E481G

T can be factored as above, with V (m) replaced by W (m), with W (m)

being the filters derived from the synthesis prototype filter in reverse order. This
means that the polyphase form of G can be factored as
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4



0 0 · · · (W (31))T 0 −E−1(W (63))T · · · 0
...

...
. . .

...
. . .

...
...

...
0 (W (17))T · · · 0 0 0 · · · −E−1(W (49))T√

2(W (16))T 0 · · · 0 0 0 · · · 0
0 (W (15))T · · · 0 0 0 · · · E−1(W (47))T
...

...
. . .

...
...

...
. . .

...
0 0 · · · (W (1))T 0 E−1(W (33))T · · · 0
0 0 · · · 0 (W (0))T + E−1(W (32))T 0 · · · 0


×D32E481. (8.23)

Now, if we define U (m) as the filters derived from the synthesis prototype filter
itself, we have that

(W (k))T = −E−14V
(64−k), 1 ≤ k ≤ 15 (W (0))T = E−16V

(0).

Inserting this in Equation (8.23) we get the following result:

Theorem 8.18. Polyphase factorization of a reverse filter bank transform based
on a prototype filter.

Assume that G is a reverse filter filter bank transform based on a prototype
filter, and that U (m) are the filters derived from this prototype filter. Then the
polyphase form of G can be factored as

4



0 0 · · · −U (33) 0 E−1U
(1) · · · 0

...
...

. . .
...

. . .
...

...
...

0 −U (47) · · · 0 0 0 · · · E−1U
(15)

−
√

2U (48) 0 · · · 0 0 0 · · · 0
0 −U (49) · · · 0 0 0 · · · −E−1U

(17)

...
...

. . .
...

...
...

. . .
...

0 0 · · · −U (63) 0 −E−1U
(31) · · · 0

0 0 · · · 0 E−2U
(0) − E−1U

(32) 0 · · · 0


×D32E33. (8.24)

Now, consider the matrices

(
V (32−i) V (i)

−E1V
(64−i) E1V

(32+i)

)
and

(
−U (32+i) E−1U

(i)

−U (64−i) −E−1U
(32−i)

)
. (8.25)

for 1 ≤ i ≤ 15. These make out submatrices in the matrices in equations (8.22)
and (8.24). Clearly, only the product of these matrices influence the result. Since
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(
−U (32+i) E−1U

(i)

−U (64−i) −E−1U
(32−i)

)(
V (32−i) V (i)

−E1V
(64−i) E1V

(32+i)

)
=
(
−U (32+i) U (i)

−U (64−i) −U (32−i)

)(
V (32−i) V (i)

−V (64−i) V (32+i)

)
(8.26)

we have the following result.
Theorem 8.19. Filter bank transforms.

Let H,G be forward and reverse filter bank transforms defined from analysis
and synthesis prototype filters. Let also V (k) be the prototype filter of H, and
U (k) the reverse of the prototype filter of G. If

(
−U (32+i) U (i)

−U (64−i) −U (32−i)

)(
V (32−i) V (i)

−V (64−i) V (32+i)

)
= c

(
Ed 0
0 Ed

)
(
√

2V (16))(−
√

2U (48)) = cEd

(V (0) + E1V
(32))(E−2U

(0) − E−1U
(32)) = cEd (8.27)

for 1 ≤ i ≤ 15, then GH = 16cE33+32d.
This result is the key ingredient we need in order to construct forward and

reverse systems which together give perfect reconstuction. In Exercise 8.15 we
go through how we can use lifting in order to express a wide range of possible
(U, V ) matrix pairs which satisfy Equation (8.27). This turns the problem of
constructing cosine-modulated filter banks which are useful for audio coding
into an optimization problem: the optimization variables are values λi which
characterize lifting steps, and the objective function is the deviation of the
corresponding prototype filter from an ideal bandpass filter. This optimization
problem has been subject to a lot of research, and we will not go into details on
this.

8.3.2 The prototype filters chosen in the MP3 standard
Now, let us return to the MP3 standard. We previously observed that in this
standard the coefficients in the synthesis prototype filter seemed to equal 32
times the analysis prototype filter. This indicates that U (k) = 32V (k). A closer
inspection also yields that there is a symmetry in the values of the prototype
filter: We see that Ci = −C512−i (i.e. antisymmetry) for most values of i. The
only exception is for i = 64, 128, . . . , 448, for which Ci = C512−i (i.e. symmetry).
The antisymmetry can be translated to that the filter coefficients of V (k) equal
those of V (64−k) in reverse order, with a minus sign. The symmetry can be
translated to that V (0) is symmetric. These observations can be rewritten as

V (64−k) = −E14(V (k))T , 1 ≤ k ≤ 15. (8.28)
V (0) = E16(V (0))T . (8.29)
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Inserting first that U (k) = 32V (k) in Equation (8.26) gives

(
−U (32+i) U (i)

−U (64−i) −U (32−i)

)(
V (32−i) V (i)

−V (64−i) V (32+i)

)
=32

(
−V (32+i) V (i)

−V (64−i) −V (32−i)

)(
V (32−i) V (i)

−V (64−i) V (32+i)

)
.

Substituting for V (32+i) and V (64−i) after what we found by inspection now
gives

32
(
E14(V (32−i))T V (i)

E14(V (i))T −V (32−i)

)(
V (32−i) V (i)

E14(V (i))T −E14(V (32−i))T
)

=32
(
E14 0
0 E14

)(
(V (32−i))T V (i)

(V (i))T −V (32−i)

)(
V (32−i) V (i)

(V (i))T −(V (32−i))T
)

=32
(
E14 0
0 E14

)(
V (32−i) V (i)

(V (i))T −(V (32−i))T
)T (

V (32−i) V (i)

(V (i))T −(V (32−i))T
)

=32
(
E14 0
0 E14

)(
V (i)(V (i))T + V (32−i)(V (32−i))T 0

0 V (i)(V (i))T + V (32−i)(V (32−i))T
)
.

(8.30)

Due to Exercise 8.6 (set A = (V (32−i))T , B = (V (i))T ), with

H =
(
V (32−i) V (i)

(V (i))T −(V (32−i))T
)

G =
(

(V (32−i))T V (i)

(V (i))T −V (32−i)

)
we recognize an alternative QMF filter bank. We thus have alias cancellation,
with perfect reconstruction only if |λH0(ω)|2 + |λH0(ω + π)|2. For the two
remaining filters we compute

(
√

2V (16))(−
√

2U (48))
= −64V (16)V (48) = 64E14V

(16)(V (16))T = 32E14(V (16)(V (16))T + V (16)(V (16))T )
(8.31)

and

(V (0) + E1V
(32))(E−2U

(0) − E−1U
(32))

= 32(V (0) + E1V
(32))(E−2V

(0) − E−1V
(32)) = 32E−2(V (0) + E1V

(32))(V (0) − E1V
(32))

= 32E−2(V (0))2 − (V (32))2) = 32E14((V (0)(V (0))T + V (32)(V (32))T )). (8.32)

We see that the filters from equations (8.30)-(8.32) are similar, and that we thus
can combine them into
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{V (i)(V (i))T + V (32−i)(V (32−i))T }16
i=0. (8.33)

All of these can be the identity, expect for 1024V (16)(V (16))T , since we know
that the product of two FIR filters is never the identity, except when both are
delays (And all V (m) are FIR, since the prototype filters defined by the MP3
standard are FIR). This single filter is thus what spoils for perfect reconstruction,
so that we can only hope for alias cancellation, and this happens when the filters
from Equation (8.33) all are equal. Ideally this is close to cI for some scalar c,
and we then have that

GH = 16 · 32cE33+448 = 512cE481I.

This explains the observation from the MP3 standard that GH seems to be close
to E481. Since all the filters V (i)(V (i))T +V (32−i)(V (32−i))T are symmetric, GH
is also a symmetric filter due to Theorem 8.4, so that its frequency response is
real, so that we have no phase distortion. We can thus summarize our findings
as follows.

Observation 8.20. MP3 standard.
The prototype filters from the MP3 standard do not give perfect reconstruc-

tion. They are found by choosing 17 filters {V (k)}16
k=0 so that the filters from

Equation (8.33) are equal, and so that their combination into a prototype filter
using equations (8.21) and (8.28) is as close to an ideal bandpass filter as possible.
When we have equality the alias cancellation condition is satisfied, and we also
have no phase distortion. When the common value is close to 1

512I, GH is close
to E481, so that we have near-perfect reconstruction.

This states clearly the optimization problem which the values stated in the
MP3 standard solves.

8.3.3 How can we obtain perfect reconstruction?
How can we overcome the problem that 1024V (16)(V (16))T 6= I, which spoiled
for perfect reconstruction in the MP3 standard? It turns out that we can address
this a simple change in our procedure. In Equation (8.20) we replace with

z32(s−1)+n =
511∑
k=0

cos((n+ 1/2)(k + 1/2− 16)π/32)hkx32s−k−1, (8.34)

i.e. 1/2 is added inside the cosine. We now have the properties

cos (2π(n+ 1/2)(k + 64r + 1/2)/(2N)) = (−1)r cos (2π(n+ 1/2)(k + 1/2)/(2N))
(8.35)

cos (2π(n+ 1/2)(2N − k − 1 + 1/2)/(2N)) = − cos (2π(n+ 1/2)(k + 1/2)/(2N)) .
(8.36)
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Due to the first property, we can deduce as before that

z(n) =
63∑
m=0

cos (2π(n+ 1/2)(m+ 1/2− 16)/64) IV (m)x(32−m−1),

where the filters V (m) are defined as before. As before placing the 15 first
columns of the cosine-matrix last, but instead using Property (8.36) to combine
columns k and 64− k − 1 of the cosine-matrix, we can write this as

 cos (2π(0 + 1/2) · (0 + 1/2)/64) I · · · cos (2π(0 + 1/2) · (31 + 1/2)/64) I
...

. . .
...

cos (2π(31 + 1/2) · (0 + 1/2)/64) I · · · cos (2π(31 + 1/2) · (31 + 1/2)/64) I

(A B
) x(31)

...
x(−32)


where

A =



0 0 · · · V (15) V (16) · · · · · · 0
...

...
. . .

...
...

. . .
...

...
0 V (1) · · · 0 0 · · · V (30) 0

V (0) 0 · · · 0 0 · · · · · · V (31)

0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 · · · 0



B =



0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
V(32) 0 · · · 0 0 0 · · · −V (63)

0 V (33) · · · 0 0 · · · −V (62) 0
...

...
. . .

...
...

. . .
...

...
0 0 · · · V (47) −V (48) · · · · · · 0


.

Since the cosine matrix can be written as
√

M
2 D

(iv)
M , the above can be written as

4D(iv)
M

(
A B

) x(31)

...
x(−32)

 .

As before we can rewrite this as



CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS315

4D(iv)
M

(
A B

)


x(31)

...
x(0)

E1x
(31)

...
E1x

(0)


= 4D(iv)

M

A
x

(31)

...
x(0)

+B

E1x
(31)

...
E1x

(0)


 ,

which can be written as

4D(iv)
M



0 0 · · · V (15) V (16) · · · · · · 0
...

...
. . .

...
...

. . .
...

...
0 V (1) · · · 0 0 · · · V (30) 0

V (0) 0 · · · 0 0 · · · · · · V (31)

E1V(32) 0 · · · 0 0 · · · · · · −E1V
(63)

0 E1V
(33) · · · 0 0 · · · −E1V

(62) 0
...

...
. . .

...
...

. . .
...

...
0 0 · · · E1V

(47) −E1V
(48) · · · · · · 0



x
(31)

...
x(0)

 ,

which also can be written as

4D(iv)
M



0 0 · · · V (16) V (15) · · · · · · 0
...

...
. . .

...
...

. . .
...

...
0 V (30) · · · 0 0 · · · V (1) 0

V (31) 0 · · · 0 0 · · · · · · V (0)

−E1V(63) 0 · · · 0 0 · · · · · · E1V
(32)

0 −E1V
(62) · · · 0 0 · · · E1V

(33) 0
...

...
. . .

...
...

. . .
...

...
0 0 · · · −E1V

(48) E1V
(47) · · · · · · 0



 x
(0)

...
x(31)

 .

We therefore have the following result

Theorem 8.21. Polyphase factorization of a forward filter bank transform based
on a prototype filter, modified version.

The modified version of the polyphase form of a forward filter bank transform
based on a prototype filter can be factored as
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4D(iv)
M



0 0 · · · V (16) V (15) · · · · · · 0
...

...
. . .

...
...

. . .
...

...
0 V (30) · · · 0 0 · · · V (1) 0

V (31) 0 · · · 0 0 · · · · · · V (0)

−E1V(63) 0 · · · 0 0 · · · · · · E1V
(32)

0 −E1V
(62) · · · 0 0 · · · E1V

(33) 0
...

...
. . .

...
...

. . .
...

...
0 0 · · · −E1V

(48) E1V
(47) · · · · · · 0


(8.37)

Clearly this factorization avoids having two blocks of filters: There are now
16 2× 2-polyphase matrices, and as we know, each of them can be invertible, so
that the full matrix can be inverted in a similar fashion as before. It is therefore
now possible to obtain perfect reconstruction. Although we do not state recipes
for implementing this, one has just as efficient implementations as in the MP3
standard.

Since we ended up with the 2× 2 polyphase matrices Mk, we can apply the
lifting factorization in order to halve the number of multiplications/additions.
This is not done in practice, since a lifting factorization requires that we compute
all outputs at once. In audio coding it is required that we compute the output
progressively, due to the large size of the input vector. The procedure above is
therefore mostly useful for providing the requirements for the filters, while the
preceding comments can be used for the implementation.

Exercise 8.13: Run forward and reverse transform
Run the forward and then the reverse transform from Exercise 6.16 on the vector
(1, 2, 3, . . . , 8192). Verify that there seems to be a delay on 481 elements, as
promised by Therorem 8.20. Do you get the exact same result back?

Exercise 8.14: Verify statement of filters
Use your computer to verify the symmetries we have stated for the symmetries
in the prototype filters, i.e. that

Ci =
{
−C512−i i 6= 64, 128, . . . , 448
C512−i i = 64, 128, . . . , 448.

Explain also that this implies that hi = h512−i for i = 1, . . . , 511. In other words,
the prototype filter has symmetry around (511 + 1)/2 = 256, so that it has linear
phase.
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Exercise 8.15: Lifting
We mentioned that we could use the lifting factorization to construct filters on
the form stated in Equation (8.21) in the compendium, so that the matrices on
the form given by Equation (8.25) in the compendium, i.e.(

V (32−i) V (i)

−V (64−i) V (32+i)

)
,

are invertible. Let us see what kind of lifting steps produce such matrices.

a) Show that the lifting steps(
I λE2
0 I

)
and

(
I 0
λI I

)
applied in alternating order to a matrix on the form given by Equation (8.25)
in the compendium, where the filters are on the from given by Equation (8.21)
in the compendium, again produces matrices and filters on these forms. This
explains how we can parametrize a larger number of such matrices with the help
of lifting steps.It also explain why the inverse matrix is on the form stated in
Equation (8.25) in the compendium with filters on the same form, since the
inverse lifting steps are of the same type.

b) Explain that 16 numbers {λi}16
i=1 are needed (together with what we start

with on the diagonal in the lifting construction), in order to construct filters so
that the prototype filter has 512 coefficients. Since there are 15 submatrices,
this gives 240 optimization variables.

Lifting gives the following strategy for finding a corresponding synthesis
prototype filter which gives perfect reconstruction: First compute matrices V,W
which are inverses of oneanother using lifting (using the lifting steps of this
exercise ensures that all filters will be on the form stated in Equation (8.21) in
the compendium), and write

VW =
(
V (1) V (2)

−V (3) V (4)

)(
W (1) −W (3)

W (2) W (4)

)
=
(
V (1) V (2)

−V (3) V (4)

)(
(W (1))T (W (2))T
−(W (3))T (W (4))T

)T
=
(
V (1) V (2)

−V (3) V (4)

)(
E15(W (1))T E15(W (2))T
−E15(W (3))T E15(W (4))T

)T (
E15 0
0 E15

)
= I.

Now, the matrices U (i) = E15(W (i))T are on the form stated in Equation (8.21)
in the compendium, and we have that(

V (1) V (2)

−V (3) V (4)

)(
U (1) U (2)

−U (3) U (4)

)
=
(
E−15 0
0 E−15

)
We can now conclude from Theorem 8.19 that if we define the synthesis prototype
filter as therein, and set c = 1, d = −15, we have that GH = 16E481−32·15 =
16E1.
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8.4 Summary
We defined the polyphase representation of a matrix, and proved some useful
properties. For filter bank transforms, the polyphase representation was a block
matrix where the blocks are filters, and these blocks/filters were called polyphase
components. In particular, the filter bank transforms of wavelets were 2×2-block
matrices of filters. We saw that, for wavelets, the polyphase representation could
be realized through a rearrangement of the wavelet bases, and thus paralleled
the development in Chapter 6 for expressing the DWT in terms of filters, where
we instead rearranged the target base of the DWT.

We showed with two examples that factoring the polyphase representation
into simpler matrices (also refered to as a polyphase factorization) could be
a useful technique. First, for wavelets (M = 2), we established the lifting
factorization. This is useful not only since it factorizes the DWT and the IDWT
into simpler operations, but also since it reduces the number of arithmetic
operations in these. The lifting factorization is therefore also used in practical
implementations, and we applied it to some of the wavelets we constructed in
Chapter 7. The JPEG2000 standard document [17] explains a procedure for
implementing some of these wavelet transforms using lifting, and the values of
the lifting steps used in the standard thus also appear here.

The polyphase representation was also useful for proving the characterization
of wavelets we encountered in Chapter 7, which we used to find expressions for
many useful wavelets.

The polyphase representation was also useful to explain how the prototype
filters of the MP3 standard should be chosen, in order for the reverse filter bank
transform to invert the forward filter bank transform. Again this was attacked
by factoring the polyphase representation of the forward and reverse filter bank
transforms. The parts of the factorization which represented the prototype
filters were represented by a sparse matrix, and it was clear from this matrix
what properties we needed to put on the prototype filter, in order to have alias
cancellation, and no phase distortion. In fact, we proved that the MP3 standard
could not possible give perfect reconstruction, but it was very clear from our
construction how the filter bank could be modified in order for the overall system
to provide perfect reconstruction.

The lifting scheme as introduced here was first proposed by Sweldens [35].
How to use lifting for in-place calculation for the DWT was also suggested by
Sweldens [34].

This development concludes the one-dimensional aspect of wavelets in this
book. In the following we will extend our theory to also apply for images. Images
will be presented in Chapter 9. After that we will define the tensor product
concept, which will be the key ingredient to apply wavelets to two-dimensional
objects such as images.



Chapter 9

Digital images

Upto now we have presented wavelets in a one-dimensional setting. Images,
however, are two-dimensional by nature. This poses another challenge, which we
did not encounter in the case of sound signals. In this chapter we will establish
the mathematics to handle this, but first we will present some basics on images,
as well as how they can be represented and manipulated with simple mathematics.
Images are a very important type of digital media, and this material is thus useful,
general knowledge for anyone with a digital camera and a computer. For many
scientists this material is also an essential tool. As an example, in astrophysics
data from both satellites and distant stars and galaxies is collected in the form
of images, and information is extracted from the images with advanced image
processing techniques. As another example, medical imaging makes it possible
to gather different kinds of information in the form of images, even from the
inside of the body. By analysing these images it is possible to discover tumours
and other disorders.

We will see how filter-based operations extend naturally to the two-dimensional
setting of images. Smoothing and edge detections are the two main examples
of filter-based operations we will concider for images. The key mathematical
concept in this extension is the tensor product, which can be thought of as
a general tool for constructing two-dimensional objects from one-dimensional
counterparts. We will also see that the tensor product allows us to establish an
efficient implementation of filtering for images, efficient meaning a complexity
substantially less than what is required by general linear transformations.

We will finally consider useful coordinate changes for images. Recall that
the DFT, the DCT, and the wavelet transform were all defined as changes of
coordinates for vectors or functions of one variable, and therefore cannot be
directly applied to two-dimensional data like images. It turns out that the tensor
product can also be used to extend changes of coordinates to a two-dimensional
setting.

319
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9.1 What is an image?
Before we do computations with images, it is helpful to be clear about what an
image really is. Images cannot be perceived unless there is some light present,
so we first review superficially what light is.

9.1.1 Light
Fact 9.1. Light.

Light is electromagnetic radiation with wavelengths in the range 400–700 nm
(1 nm is 10−9 m): Violet has wavelength 400 nm and red has wavelength 700
nm. White light contains roughly equal amounts of all wave lengths.

Other examples of electromagnetic radiation are gamma radiation, ultraviolet
and infrared radiation and radio waves, and all electromagnetic radiation travel
at the speed of light (≈ 3 × 108 m/s). Electromagnetic radiation consists of
waves and may be reflected and refracted, just like sound waves (but sound
waves are not electromagnetic waves).

We can only see objects that emit light, and there are two ways that this
can happen. The object can emit light itself, like a lamp or a computer monitor,
or it reflects light that falls on it. An object that reflects light usually absorbs
light as well. If we perceive the object as red it means that the object absorbs
all light except red, which is reflected. An object that emits light is different; if
it is to be perceived as being red it must emit only red light.

9.1.2 Digital output media
Our focus will be on objects that emit light, for example a computer display. A
computer monitor consists of a matrix of small dots which emit light. In most
technologies, each dot is really three smaller dots, and each of these smaller
dots emit red, green and blue light. If the amounts of red, green and blue is
varied, our brain merges the light from the three small light sources and perceives
light of different colors. In this way the color at each set of three dots can be
controlled, and a color image can be built from the total number of dots.

It is important to realise that it is possible to generate most, but not all,
colors by mixing red, green and blue. In addition, different computer monitors
use slightly different red, green and blue colors, and unless this is taken into
consideration, colors will look different on the two monitors. This also means
that some colors that can be displayed on one monitor may not be displayable
on a different monitor.

Printers use the same principle of building an image from small dots. On
most printers however, the small dots do not consist of smaller dots of different
colors. Instead as many as 7–8 different inks (or similar substances) are mixed
to the right color. This makes it possible to produce a wide range of colors, but
not all, and the problem of matching a color from another device like a monitor
is at least as difficult as matching different colors across different monitors.
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Video projectors builds an image that is projected onto a wall. The final
image is therefore a reflected image and it is important that the surface is white
so that it reflects all colors equally.

The quality of a device is closely linked to the density of the dots.

Fact 9.2. Resolution.
The resolution of a medium is the number of dots per inch (dpi). The number

of dots per inch for monitors is usually in the range 70–120, while for printers it is
in the range 150–4800 dpi. The horizontal and vertical densities may be different.
On a monitor the dots are usually referred to as pixels (picture elements).

9.1.3 Digital input media
The two most common ways to acquire digital images is with a digital camera
or a scanner. A scanner essentially takes a photo of a document in the form of
a matrix of (possibly colored) dots. As for printers, an important measure of
quality is the number of dots per inch.

Fact 9.3. Printers.
The resolution of a scanner usually varies in the range 75 dpi to 9600 dpi,

and the color is represented with up to 48 bits per dot.

For digital cameras it does not make sense to measure the resolution in dots
per inch, as this depends on how the image is printed (its size). Instead the
resolution is measured in the number of dots recorded.

Fact 9.4. Pixels.
The number of pixels recorded by a digital camera usually varies in the range

320× 240 to 6000× 4000 with 24 bits of color information per pixel. The total
number of pixels varies in the range 76 800 to 24 000 000 (0.077 megapixels to
24 megapixels).

For scanners and cameras it is easy to think that the more dots (pixels), the
better the quality. Although there is some truth to this, there are many other
factors that influence the quality. The main problem is that the measured color
information is very easily polluted by noise. And of course high resolution also
means that the resulting files become very big; an uncompressed 6000× 4000
image produces a 72 MB file. The advantage of high resolution is that you can
magnify the image considerably and still maintain reasonable quality.

9.1.4 Definition of digital image
We have already talked about digital images, but we have not yet been precise
about what they are. From a mathematical point of view, an image is quite
simple.

Fact 9.5. Digital image.
A digital image P is a matrix of intensity values {pi,j}M,N

i,j=1. For grey-level
images, the value pi,j is a single number, while for color images each pi,j is a
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vector of three or more values. If the image is recorded in the rgb-model, each
pi,j is a vector of three values,

pi,j = (ri,j , gi,j , bi,j),

that denote the amount of red, green and blue at the point (i, j).

Note that, when referring to the coordinates (i, j) in an image, i will refer to
row index, j to column index, in the same was as for matrices. In particular,
the top row in the image have coordinates {(0, j)}N−1

j=0 , while the left column in
the image has coordinates {(i, 0)}M−1

i=0 . With this notation, the dimension of the
image is M ×N . The value pi,j gives the color information at the point (i, j).
It is important to remember that there are many formats for this. The simplest
case is plain black and white images in which case pi,j is either 0 or 1. For
grey-level images the intensities are usually integers in the range 0–255. However,
we will assume that the intensities vary in the interval [0, 1], as this sometimes
simplifies the form of some mathematical functions. For color images there are
many different formats, but we will just consider the rgb-format mentioned in
the fact box. Usually the three components are given as integers in the range
0–255, but as for grey-level images, we will assume that they are real numbers
in the interval [0, 1] (the conversion between the two ranges is straightforward,
see Example 9.10 below).

Figure 9.1: Our test image.

In Figure 9.1 we have shown the test image we will work with, called the
Lena image. It is named after the girl in the image. This image is also used as a
test image in many textbooks on image processing.

In Figure 9.2 we have shown the corresponding black and white, and grey-level
versions of the test image.

Fact 9.6. Intensity.
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Figure 9.2: Black and white (left), and grey-level (right) versions of the image
in Figure 9.1.

In these notes the intensity values pi,j are assumed to be real numbers in the
interval [0, 1]. For color images, each of the red, green, and blue intensity values
are assumed to be real numbers in [0, 1].

Figure 9.3: 18× 18 pixels excerpt of the color image in Figure 9.1. The grid
indicates the borders between the pixels.

If we magnify the part of the color image in Figure 9.1 around one of the
eyes, we obtain the images in figures 9.3-9.4. As we can see, the pixels have
been magnified to big squares. This is a standard representation used by many
programs — the actual shape of the pixels will depend on the output medium.
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Figure 9.4: 50× 50 pixels excerpt of the color image in Figure 9.1.

Nevertheless, we will consider the pixels to be square, with integer coordinates
at their centers, as indicated by the grids in figures 9.3-9.4.

Fact 9.7. Shape of pixel.
The pixels of an image are assumed to be square with sides of length one,

with the pixel with value pi,j centered at the point (i, j).

9.2 Some simple operations on images
Images are two-dimensional matrices of numbers, contrary to the sound signals
we considered in the previous section. In this respect it is quite obvious that we
can manipulate an image by performing mathematical operations on the numbers.
In this section we will consider some of the simpler operations. In later sections
we will go through more advanced operations, and explain how the theory for
these can be generalized from the corresponding theory for one-dimensional
(sound) signals (which we wil go through first).

In order to perform these operations, we need to be able to use images with
a programming environment.

9.2.1 Images and Matlab
An image can also be thought of as a matrix, by associating each pixel with an
element in a matrix. The matrix indices thus correspond to positions in the pixel
grid. Black and white images correspond to matrices where the elements are
natural numbers between 0 and 255. To store a color image, we need 3 matrices,
one for each color component. We will also view this as a 3-dimensional matrix.
In the following, operations on images will be implemented in such a way that
they are applied to each color component simultaneously. This is similar to the
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FFT and the DWT, where the operations were applied to each sound channel
simultaneously.

Since images are viewed as 2-dimensional or 3-dimensional matrices, we can
use any linear algebra software in order to work with images. After we now have
made the connection with matrices, we can create images from mathematical
formulas, just as we could with sound in the previuos sections. But what we also
need before we go through operations on images, is, as in the sections on sound,
means of reading an image from a file so that its contents are accessible as a
matrix, and write images represented by a matrix which we have constructed
ourself to file. Reading a function from file can be done with help of the function
imread. If we write

X = double(imread(’filename.fmt’, ’fmt’))

the image with the given path and format is read, and stored in the matrix
which we call X. ’fmt’ can be ’jpg’,’tif’, ’gif’, ’png’, and so on. This parameter is
optional: If it is not present, the program will attempt to determine the format
from the first bytes in the file, and from the filename. After the call to imread,
we have a matrix where the entries represent the pixel values, and of integer
data type (more precisely, the data type uint8). To perform operations on the
image, we must first convert the entries to the data type double, as shown above.
Similarly, the function imwrite

can be used to write the image represented by a matrix to file. If we write

imwrite(uint8(X), ’filename.fmt’, ’fmt’)

the image represented by the matrix X is written to the given path, in the given
format. Before the image is written to file, you see that we have converted the
matrix values back to the integer data type. In other words: imread and imwrite
both assume integer matrix entries, while operations on matrices assume double
matrix entries. If you want to print images you have created yourself, you can
use this function first to write the image to a file, and then send that file to
the printer using another program. Finally, we need an alternative to playing a
sound, namely displaying an image. The function imshow(uint8(X)) displays
the matrix X as an image in a separate window. Also here we needed to convert
the samples using the function uint8.

The following examples go through some much used operations on images.

Example 9.8. Normalising the intensities.
We have assumed that the intensities all lie in the interval [0, 1], but as we

noted, many formats in fact use integer values in the range [0,255]. And as we
perform computations with the intensities, we quickly end up with intensities
outside [0, 1] even if we start out with intensities within this interval. We
therefore need to be able to normalise the intensities. This we can do with the
simple linear function

g(x) = x− a
b− a

, a < b,
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which maps the interval [a, b] to [0, 1]. A simple case is mapping [0, 255] to [0, 1]
which we accomplish with the scaling g(x) = x/255. More generally, we typically
perform computations that result in intensities outside the interval [0, 1]. We
can then compute the minimum and maximum intensities pmin and pmax and
map the interval [pmin, pmax] back to [0, 1]. Below we have shown a function
mapto01 which achieves this task.

function Z=mapto01(X)
minval = min(min(min(X)));
maxval = max(max(max(X)));
Z = (X - minval)/(maxval-minval);

Several examples of using this function will be shown below. A good question
here is why the functions min and max are called three times in succession. The
reason is that there is a third “dimension” in play, besides the spatial x- and
y-directions. This dimension describes the coulor components in each pixel,
which are usually the red-, green-, and blue color components.

Example 9.9. Extracting the different colors.
If we have a color image

P = (ri,j , gi,j , bi,j)m,ni,j=1,

it is often useful to manipulate the three color components separately as the
three images

Pr = (ri,j)m,ni,j=1, Pr = (gi,j)m,ni,j=1, Pr = (bi,j)m,ni,j=1.

As an example, let us first see how we can produce three separate images, showing
the R,G, and B color components, respectively. Let us take the image lena.png
used in Figure 9.1. When the image is read (first line below), the returned
object has three dimensions. The first two dimensions represent the spatial
directions (the row-index and column-index). The third dimension represents
the color component. One can therefore view images representing the different
color components with the help of the following code:

X1 = zeros(size(img));
X1(:,:,1) = X1(:,:,1);

X2 = zeros(size(img));
X2(:,:,2) = X2(:,:,2);

X3=zeros(size(img));
X3(:,:,3) = X3(:,:,3);

The resulting images are shown in Figure 9.5.

Example 9.10. Converting from color to grey-level.
If we have a color image we can convert it to a grey-level image. This means

that at each point in the image we have to replace the three color values (r, g, b)
by a single value p that will represent the grey level. If we want the grey-level
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Figure 9.5: The red, green, and blue components of the color image in Figure 9.1.

image to be a reasonable representation of the color image, the value p should
somehow reflect the intensity of the image at the point. There are several ways
to do this.

It is not unreasonable to use the largest of the three color components as a
measure of the intensity, i.e, to set p = max(r, g, b). The result of this can be
seen in the left image of Figure 9.6.

An alternative is to use the sum of the three values as a measure of the total
intensity at the point. This corresponds to setting p = r + g + b. Here we have
to be a bit careful with a subtle point. We have required each of the r, g and b
values to lie in the range [0, 1], but their sum may of course become as large as
3. We also require our grey-level values to lie in the range [0, 1] so after having
computed all the sums we must normalise as explained above. The result can be
seen in the middle images of Figure 9.6.

A third possibility is to think of the intensity of (r, g, b) as the length of the
color vector, in analogy with points in space, and set p =

√
r2 + g2 + b2. Again,

we may end up with values in the range [0,
√

3] so we have to normalise like we
did in the second case. The result is shown in the right image of Figure 9.6.

Let us sum this up as follows: A color image P = (ri,j , gi,j , bi,j)m,ni,j=1 can be
converted to a grey level image Q = (qi,j)m,ni,j=1 by one of the following three
operations:

• Set qi,j = max(ri,j , gi,j , bi,j) for all i and j.

• Compute q̂i,j = ri,j + gi,j + bi,j for all i and j.

• Transform all the values to the interval [0, 1] by setting

qi,j = q̂i,j
maxk,l q̂k,l

.

• Compute q̂i,j =
√
r2
i,j + g2

i,j + b2
i,j for all i and j.
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• Transform all the values to the interval [0, 1] by setting

qi,j = q̂i,j
maxk,l q̂k,l

.

If img is an M ×N image, this can be implemented by using most of the code
from the previous example, and replacing with the lines

X1 = max(img, [], 3);

X2 = img(:, :, 1) + img(:, :, 2) + img(:, :, 3);
X2 = 255*mapto01(X2);

X3 = sqrt(img(:,:,1).^2 + img(:,:,2).^2 + img(:,:,3).^2);
X3 = 255*mapto01(X3);

respectively. In practice one of the last two methods are usually preferred,
perhaps with a preference for the last method, but the actual choice depends on
the application.

Figure 9.6: Alternative ways to convert the color image in Figure 9.1 to a grey
level image. The result is mapped to (0, 1).

Example 9.11. Computing the negative image.
In film-based photography a negative image was obtained when the film was

developed, and then a positive image was created from the negative. We can
easily simulate this and compute a negative digital image.

Suppose we have a grey-level image P = (pi,j)m,ni,j=1 with intensity values in
the interval [0, 1]. Here intensity value 0 corresponds to black and 1 corresponds
to white. To obtain the negative image we just have to replace an intensity p
by its ’mirror value’ 1− p. This is also easily translated to code as above. The
resulting image is shown in Figure 9.7.

Example 9.12. Increasing the contrast.
A common problem with images is that the contrast often is not good enough.

This typically means that a large proportion of the grey values are concentrated
in a rather small subinterval of [0, 1]. The obvious solution to this problem is
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Figure 9.7: The negative versions of the corresponding images in Figure 9.6.
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Figure 9.8: Some functions that can be used to improve the contrast of an
image.

Figure 9.9: The middle functions in Figure 9.8 have been applied to a grey-level
version of the test image.

to somehow spread out the values. This can be accomplished by applying a
function f to the intensity values, i.e., new intensity values are computed by the
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formula
p̂i,j = f(pi,j)

for all i and j. If we choose f so that its derivative is large in the area where
many intensity values are concentrated, we obtain the desired effect.

Figure 9.8 shows some examples. The functions in the left plot have quite
large derivatives near x = 0.5 and will therefore increase the contrast in images
with a concentration of intensities with value around 0.5. The functions are all
on the form

fn(x) =
arctan

(
n(x− 1/2)

)
2 arctan(n/2) + 1

2 . (9.1)

For any n 6= 0 these functions satisfy the conditions fn(0) = 0 and fn(1) = 1.
The three functions in the left plot in Figure 9.8 correspond to n = 4, 10, and
100. In the left plot in Figure 9.9 the middle function has been applied to the
image in Figure 9.6(c). Since the image was quite well balanced, this has made
the dark areas too dark and the bright areas too bright.

Functions of the kind shown in the right plot have a large derivative near
x = 0 and will therefore increase the contrast in an image with a large proportion
of small intensity values, i.e., very dark images. These functions are given by

gε(x) = ln(x+ ε)− ln ε
ln(1 + ε)− ln ε , (9.2)

and the ones shown in the plot correspond to ε = 0.1, 0.01, and 0.001. In the
right plot in Figure 9.9 the middle function has been applied to the same image.
This has made the image as a whole too bright, but has brought out the details
of the road which was very dark in the original.

Increasing the contrast is easy to implement. The following function uses the
contrast adjusting function from Equation (9.2), with ε as in that equation as
parameter

function Z=contrastadjust(X,epsilon)
Z = X/255; % Maps the pixel values to [0,1]
Z = (log(Z+epsilon) - log(epsilon))/...

(log(1+epsilon)-log(epsilon));
Z = Z*255; % Maps the values back to [0,255]

This has been used to generate the right image in Figure 9.9.

What you should have learned in this section.

• How to read, write, and show images on your computer.

• How to extract different color components.

• How to convert from color to grey-level images.

• How to use functions for adjusting the contrast.
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Exercise 9.1: Generate black and white images
Black and white images can be generated from greyscale images (with values
between 0 and 255) by replacing each pixel value with the one of 0 and 255
which is closest. Use this strategy to generate the black and white image shown
in Figure 9.2(b).

Exercise 9.2: Adjust contrast in images 1
Generate the right image in Figure 9.9 on your own by writing code which uses
the function contrastadjust.

Exercise 9.3: Adjust contrast in images 2
Let us also consider the second way we mentioned for increasing the contrast.

a) Write a function contrastadjust0 which instead uses the function from
Equation (9.1) in the compendium to increase the contrast. n should be a
parameter to the function.

b) Generate the left image in Figure 9.9 on your own by using your code from
Exercise 9.2, and instead calling the function contrastadjust0.

Exercise 9.4: Adjust contrast in images 3
In this exercise we will look at another function for increasing the contrast of a
picture.

a) Show that the function f : R→ R given by

fn(x) = xn,

for all n maps the interval [0, 1]→ [0, 1], and that f ′(1)→∞ as n→∞.

b) The color image secret.jpg,shown in Figure 9.10, contains some informa-
tion that is nearly invisible to the naked eye on most computer monitors. Use
the function f(x), to reveal the secret message.

Hint. You will first need to convert the image to a greyscale image. You can
then use the function contrastadjust as a starting point for your own program.
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Figure 9.10: Secret message.

9.3 Filter-based operations on images
The next examples of operations on images we consider will use filters. These
examples define what it means to apply a filter to two-dimensional data. We
start with the following definition of a computational molecule. This term stems
from image processing, and seems at the outset to be unrelated to filters.

Definition 9.13. Computational molecules.
We say that an operation S on an image X is given by the computational

molecule

A =



...
...

...
...

...
· · · a−1,−1 a−1,0 a−1,1 · · ·
· · · a0,−1 a0,0 a0,1 · · ·
· · · a1,−1 a1,0 a1,1 · · ·
...

...
...

...
...


if we have that

(SX)i,j =
∑
k1,k2

ak1,k2Xi−k1,j−k2 . (9.3)

In the molecule, indices are allowed to be both positive and negative, we underline
the element with index (0, 0) (the center of the molecule), and assume that ai,j
with indices falling outside those listed in the molecule are zero (as for compact
filter notation).

In Equation (9.3), it is possible for the indices i − k1 and j − k2 to fall
outside the legal range for X. We will solve this case in the same way as we
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did for filters, namely that we assume that X is extended (either periodically
or symmetrically) in both directions. The interpretation of a computational
molecule is that we place the center of the molecule on a pixel, multiply the
pixel and its neighbors by the corresponding weights ai,j in reverse order, and
finally sum up in order to produce the resulting value. This type of operation
will turn out to be particularly useful for images. The following result expresses
how computational molecules and filters are related. It states that, if we apply
one filter to all the columns, and then another filter to all the rows, the end
result can be expressed with the help of a computational molecule.

Theorem 9.14. Filtering and computational molecules.
Let S1 and S2 be filters with compact filter notation t1 and t2, respectively,

and consider the operation S where S1 is first applied to the columns in the
image, and then S2 is applied to the rows in the image. Then S is an operation
which can be expressed in terms of the computational molecule ai,j = (t1)i(t2)j .

Proof. Let Xi,j be the pixels in the image. When we apply S1 to the columns
of X we get the image Y defined by

Yi,j =
∑
k1

∑
(t1)k1Xi−k1,j .

When we apply S2 to the rows of Y we get the image Z defined by

Zi,j =
∑
k2

(t2)k2Yi,j−k2 =
∑
k2

(t2)k2

∑
k1

(t1)k1Xi−k1,j−k2

=
∑
k1

∑
k2

(t1)k1(t2)k2Xi−k1,j−k2 .

Comparing with Equation (9.3) we see that S is given by the computational
molecule with entries ai,j = (t1)i(t2)j .

Note that, when we filter an image with S1 and S2 in this way, the order
does not matter: since computing S1X is the same as applying S1 to all columns
of X, and computing Y (S2)T is the same as applying S2 to all rows of Y , the
combined filtering operation, denoted S, takes the form

S(X) = S1X(S2)T , (9.4)

and the fact that the order does not matter simply boils down to the fact that
it does not matter which of the left or right multiplications we perform first.
Applying S1 to the columns of X is what we call a vertical filtering operation,
while applying S2 to the rows of X is what we call a horizontal filtering operation.
We can thus state the following.

Observation 9.15. Order of vertical and horizontal filtering.
The order of vertical and horizontal filtering of an image does not matter.
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Most computational molecules we will consider in the following can be
expressed in terms of filters as in this theorem, but clearly there exist also
computational molecules which are not on this form, since the matrix A with
entries ai,j = (t1)i(t2)j has rank one, and a general computational molecule can
have any rank. In most of the examples the filters are symmetric.

Assume that the image is stored as the matrix X. In Exercise 9.5 you will be
asked to implement a function tensor_impl which computes the transformation
S(X) = S1X(S2)T , where X, S1, and S2 are input. If the computational molecule
is obtained by applying the filter S1 to the columns, and the filter S2 to the
rows, we can compute it with the following code: (we have assumed that the
filter lengths are odd, and that the middle filter coefficient has index 0):

function y = S1(x):
y = filterS(S1, x, 1)

function y = S2(x):
y = filterS(S2, x, 1)

Y = tensor_impl(X, S1, S2)

We have here used the function filterS to implement the filtering, so that we
assume that the image is periodically or symmetrically extended. The above
code uses symmetric extension, and can thus be used for symmetric filters. If
the filter is non-symmetric, we should use a periodic extension instead, for which
the last parameter to filterS should be changed.

9.3.1 Tensor product notation for operations on images
Filter-based operations on images can be written compactly using what we
will call tensor product notation. This is part of a very general tensor product
framework, and we will review parts of this framework for the sake of completeness.
Let us first define the tensor product of vectors.

Definition 9.16. Tensor product of vectors.
If x,y are vectors of length M and N , respectively, their tensor product

x ⊗ y is defined as the M × N -matrix defined by (x ⊗ y)i,j = xiyj . In other
words, x⊗ y = xyT .

The tensor product xyT is also called the outer product of x and y (contrary
to the inner product 〈x,y〉 = xTy). In particular x⊗ y is a matrix of rank 1,
which means that most matrices cannot be written as a tensor product of two
vectors. The special case ei⊗ej is the matrix which is 1 at (i, j) and 0 elsewhere,
and the set of all such matrices forms a basis for the set of M ×N -matrices.

Observation 9.17. Standard basis for LM,N (R).
Let EM = {ei}M−1

i=0 EN = {ei}N−1
i=0 be the standard bases for RM and RN .

Then

EM,N = {ei ⊗ ej}(M−1,N−1)
(i,j)=(0,0)
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is a basis for LM,N (R), the set of M ×N -matrices. This basis is often referred
to as the standard basis for LM,N (R).

The standard basis thus consists of rank 1-matrices. An image can simply be
thought of as a matrix in LM,N (R), and a computational molecule is simply a
special type of linear transformation from LM,N (R) to itself. Let us also define
the tensor product of matrices.

Definition 9.18. Tensor product of matrices.
If S1 : RM → RM and S2 : RN → RN are matrices, we define the linear

mapping S1 ⊗ S2 : LM,N (R)→ LM,N (R) by linear extension of (S1 ⊗ S2)(ei ⊗
ej) = (S1ei)⊗ (S2ej). The linear mapping S1 ⊗ S2 is called the tensor product
of the matrices S1 and S2.

A couple of remarks are in order. First, from linear algebra we know that,
when S is linear mapping from V and S(vi) is known for a basis {vi}i of V , S is
uniquely determined. In particular, since the {ei⊗ej}i,j form a basis, there exists
a unique linear transformation S1⊗S2 so that (S1⊗S2)(ei⊗ej) = (S1ei)⊗(S2ej).
This unique linear transformation is what we call the linear extension from
the values in the given basis. Clearly, by linearity, also (S1 ⊗ S2)(x ⊗ y) =
(S1x)⊗ (S2y), since

(S1 ⊗ S2)(x⊗ y) = (S1 ⊗ S2)((
∑
i

xiei)⊗ (
∑
j

yjej)) = (S1 ⊗ S2)(
∑
i,j

xiyj(ei ⊗ ej))

=
∑
i,j

xiyj(S1 ⊗ S2)(ei ⊗ ej) =
∑
i,j

xiyj(S1ei)⊗ (S2ej)

=
∑
i,j

xiyjS1ei((S2ej))T = S1(
∑
i

xiei)(S2(
∑
j

yjej))T

= S1x(S2y)T = (S1x)⊗ (S2y).

Here we used the result from Exercise 9.9. We can now prove the following.

Theorem 9.19. Comact filter notationa and computational molecules.
If S1 : RM → RM and S2 : RN → RN are matrices of linear transformations,

then (S1 ⊗ S2)X = S1X(S2)T for any X ∈ LM,N (R). In particular S1 ⊗ S2 is
the operation which applies S1 to the columns of X, and S2 to the resulting rows.
In other words, if S1, S2 have compact filter notations t1 and t2, respectively,
then S1 ⊗ S2 has computational molecule t1 ⊗ t2.

We have not formally defined the tensor product of compact filter notations.
This is a straightforward extension of the usual tensor product of vectors, where
we additionally mark the element at index (0, 0).

Proof. We have that
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(S1 ⊗ S2)(ei ⊗ ej) = (S1ei)⊗ (S2ej)
= (coli(S1))⊗ (colj(S2)) = coli(S1)(colj(S2))T

= coli(S1)rowj((S2)T ) = S1(ei ⊗ ej)(S2)T .

This means that (S1 ⊗ S2)X = S1X(S2)T for any X ∈ LM,N (R) also, since
equality holds on the basis vectors ei ⊗ ej . Since the matrix A with entries
ai,j = (t1)i(t2)j also can be written as t1 ⊗ t2, the result follows.

We have thus shown that we alternatively can write S1⊗S2 for the operations
we have considered. This notation also makes it easy to combine several two-
dimensional filtering operations:

Corollary 9.20. Composing tensor products.
We have that (S1 ⊗ T1)(S2 ⊗ T2) = (S1S2)⊗ (T1T2).

Proof. By Theorem 9.19 we have that

(S1⊗T1)(S2⊗T2)X = S1(S2XT
T
2 )TT1 = (S1S2)X(T1T2)T = ((S1S2)⊗(T1T2))X.

for any X ∈ LM,N (R). This proves the result.

Suppose that we want to apply the operation S1 ⊗ S2 to an image. We can
factorize S1 ⊗ S2 as

S1 ⊗ S2 = (S1 ⊗ I)(I ⊗ S2) = (I ⊗ S2)(S1 ⊗ I). (9.5)

Moreover, since

(S1 ⊗ I)X = S1X (I ⊗ S2)X = X(S2)T = (S2X
T )T ,

S1 ⊗ I is a vertical filtering operation, and I ⊗ S2 is a horizontal filtering
operation in this factorization. For filters we have an even stronger result: If
S1, S2, S3, S4 all are filters, we have from Corollary 9.20 that (S1⊗S2)(S3⊗S4) =
(S3 ⊗ S4)(S1 ⊗ S2), since all filters commute. This does not hold in general since
general matrices do not commute.

We will now consider two important examples of filtering operations on
images: smoothing and edge detection/computing partical derivatives. For all
examples we will use the tensor product notation for these operations.

Example 9.21. Smoothing an image.
When we considered filtering of digital sound, we observed that replacing

each sample of a sound by an average of the sample and its neighbours dampened
the high frequencies of the sound. Let us consider the computational molecules
where such a filter is applied to both the rows and the columns. For the one-
dimensional case on sound, we argued that filter coefficients taken from Pascal’s
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triangle give good smoothing effects. The same can be argued for images. If we
use the filter S = 1

4{1, 2, 1} (row 2 from Pascal’s triangle), Theorem 9.14 says
that we obtain the computational molecule

A = 1
16

1 2 1
2 4 2
1 2 1

 . (9.6)

This means that we compute the new pixels by

p̂i,j = 1
16
(
4pi,j + 2(pi,j−1 + pi−1,j + pi+1,j + pi,j+1)

+ pi−1,j−1 + pi+1,j−1 + pi−1,j+1 + pi+1,j+1
)
.

If we instead use the filter S = 1
64{1, 6, 15, 20, 15, 6, 1} (row 6 from Pascal’s

triangle), we get the computational molecule

1
4096



1 6 15 20 15 6 1
6 36 90 120 90 36 6
15 90 225 300 225 90 15
20 120 300 400 300 120 20
15 90 225 300 225 90 15
6 36 90 120 90 36 6
1 6 15 20 15 6 1


. (9.7)

For both molecules the weights sum to one, so that the new intensity values p̂i,j
are weighted averages of the intensity values on the right. We anticipate that
both molecules give a smoothing effect, but that the second molecules provides
more smoothing. The result of applying the two molecules in (9.6) and (9.7) to
our greyscale-image is shown in the two right images in Figure 9.11. With the
help of the function tensor_impl, smoothing with the first molecule (9.6) above
can be obtained by writing

function y = S(x)
y = filterS([1 2 1]/4, x, 1);

Y = tensor_impl(X, @S, @S);

To make the smoothing effect visible, we have zoomed in on the face in the
image. The smoothing effect is clarly best visible in the second image.

Smoothing effects are perhaps more visible if we use a simple image, as the
one in the left part of Figure 9.12.

Again we have used the filter S = 1
4{1, 2, 1}. Here we also have shown what

happens if we only smooth the image in one of the directions. The smoothing
effects are then only seen in one of the vertical or horizontal directions. In the
right image we have smoothed in both directions. We clearly see the union of
the two one-dimensional smoothing operations then.
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Figure 9.11: The two right images show the effect of smoothing the left image.

Figure 9.12: The results of smoothing the simple image to the left with the
filter 1

4{1, 2, 1} horizontally, vertically, and both, respectively.

Let us summarize from this example as follows.

Observation 9.22. Smoothing an image.
An image P can be smoothed by applying a smoothing filter to the rows,

and then to the columns.

Another operation on images which can be expressed in terms of compu-
tational molecules is edge detection. An edge in an image is characterised by
a large change in intensity values over a small distance in the image. For a
continuous function this corresponds to a large derivative. An image is only
defined at isolated points, so we cannot compute derivatives, but we have a
perfect situation for applying numerical differentiation. Since a grey-level image
is a scalar function of two variables, numerical differentiation techniques can be
applied.

Partial derivative in x-direction. Let us first consider computation of
the partial derivative ∂P/∂x at all points in the image. Note first that it is
the second coordinate in an image which refers to the x-direction used when
plotting functions. This means that the familiar symmetric Newton quotient
approximation for the partial derivative [23] takes the form

∂P

∂x
(i, j) ≈ pi,j+1 − pi,j−1

2 , (9.8)
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where we have used the convention h = 1 which means that the derivative is
measured in terms of ’intensity per pixel’. This corresponds to applying the
bass-reducing filter S = 1

2{1, 0,−1} to all the rows (alternatively, applying the
tensor product I ⊗ S to the image). We can thus express this in terms of
computational molecules as follows.

Observation 9.23. The partial derivative ∂P/∂x.
Let P = (pi,j)m,ni,j=1 be a given image. The partial derivative ∂P/∂x of the

image can be computed with the computational molecule

1
2

0 0 0
1 0 −1
0 0 0

 . (9.9)

We have included the two rows of 0s just to make it clear how the computa-
tional molecule is to be interpreted when we place it over the pixels. If we apply
the smooth-function to the same excerpt of the Lena image with this molecule,
we obtain the left image in Figure 9.13. It shows many artefacts since the pixel
values lie outside the legal range: many of the intensities are in fact negative.
More specifically, the intensities turn out to vary in the interval [−0.424, 0.418].
We therefore normalise and map all intensities to [0, 1]. The result of this is
shown in the middle image. The predominant color of this image is an average
grey, i.e, an intensity of about 0.5. To get more detail in the image we therefore
try to increase the contrast by applying the function f50 in equation (9.1) to
each intensity value. The result is shown in the right image in Figure 9.13 which
does indeed show more detail.

Figure 9.13: Experimenting with the partial derivative in the x-direction for
the image in 9.6. The left image has artefacts, since the pixel values are outside
the legal range. We therefore normalize the intensities to lie in [0, 25] (middle),
before we increase the contrast (right).

It is important to understand the colors in these images. We have computed
the derivative in the x-direction, and we recall that the computed values varied
in the interval [−0.424, 0.418]. The negative value corresponds to the largest
average decrease in intensity from a pixel pi−1,j to a pixel pi+1,j . The positive
value on the other hand corresponds to the largest average increase in intensity.
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A value of 0 in the left image in Figure 9.13 corresponds to no change in intensity
between the two pixels.

When the values are mapped to the interval [0, 1] in the middle image in
Figure 9.13, the small values are mapped to something close to 0 (almost black),
the maximal values are mapped to something close to 1 (almost white), and the
values near 0 are mapped to something close to 0.5 (grey). In the right image in
Figure 9.13 these values have just been emphasised even more.

The right image in Figure 9.13 tells us that in large parts of the image there
is very little variation in the intensity. However, there are some small areas
where the intensity changes quite abruptly, and if you look carefully you will
notice that in these areas there is typically both black and white pixels close
together, like down the vertical front corner of the bus. This will happen when
there is a stripe of bright or dark pixels that cut through an area of otherwise
quite uniform intensity.

Partial derivative in y-direction. The partial derivative ∂P/∂y can be
computed analogously to ∂P/∂x, i.e. we apply the filter −S = 1

2{−1, 0, 1} to
all columns of the image (alternatively, apply the tensor product −S ⊗ I to the
image), where S is the filter which we used for edge detection in the x-direction.
Note that the positive direction of this axis in an image is opposite to the
direction of the y-axis we use when plotting functions.

Observation 9.24. The partial derivative ∂P/∂y.
Let P = (pi,j)m,ni,j=1 be a given image. The partial derivative ∂P/∂y of the

image can be computed with the computational molecule

1
2

0 1 0
0 0 0
0 −1 0

 . (9.10)

The result is shown in Figure 9.15(b). The intensities have been normalised
and the contrast enhanced by the function f50 from Equation (9.1).

The gradient. The gradient of a scalar function is often used as a measure of
the size of the first derivative. The gradient is defined by the vector

∇P =
(
∂P

∂x
,
∂P

∂y

)
,

so its length is given by

|∇P | =

√√√√(∂P
∂x

)2

+
(
∂P

∂y

)2

.

When the two first derivatives have been computed it is a simple matter to
compute the gradient vector and its length; the resulting is shown as an image
in Figure 9.14c.
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Figure 9.14: The computed gradient (left). In the middle the intensities have
been normalised to the [0, 255], and to the right the contrast has been increased.

The image of the gradient looks quite different from the images of the two
partial derivatives. The reason is that the numbers that represent the length of
the gradient are (square roots of) sums of squares of numbers. This means that
the parts of the image that have virtually constant intensity (partial derivatives
close to 0) are colored black. In the images of the partial derivatives these values
ended up in the middle of the range of intensity values, with a final color of grey,
since there were both positive and negative values.

The left image in Figure 9.14 shows the computed values of the gradient.
Note that it is possible that the length of the gradient could be outside the legal
range of values. This would have been seen as artefacts in this image. In the
middle image the intensities have been mapped to the legal range. To enhance
the contrast further we have to do something different from what was done in
the other images since we now have a large number of intensities near 0. The
solution is to apply a function like the ones shown in the right plot in Figure 9.8
to the intensities. If we use the function g0.01 defined in equation(9.2) we obtain
the right image in Figure 9.14.

9.3.2 Comparing the first derivatives
Figure 9.15 shows the two first-order partial derivatives and the gradient. If
we compare the two partial derivatives we see that the x-derivative seems to
emphasise vertical edges while the y-derivative seems to emphasise horizontal
edges. This is precisely what we must expect. The x-derivative is large when
the difference between neighbouring pixels in the x-direction is large, which is
the case across a vertical edge. The y-derivative enhances horizontal edges for a
similar reason.

The gradient contains information about both derivatives and therefore
emphasises edges in all directions. It also gives a simpler image since the sign of
the derivatives has been removed.



CHAPTER 9. DIGITAL IMAGES 342

Figure 9.15: The first-order partial derivatives in the x- and y-direction,
respectively. In both images, the computed numbers have been normalised and
the contrast enhanced.

9.3.3 Second-order derivatives
To compute the three second order derivatives we can combine the two com-
putational molecules which we already have described. For the mixed second
order derivative we get (I ⊗ S)((−S)⊗ I) = −S ⊗ S. For the last two second
order derivative ∂2P

∂x2 , ∂
2P
∂y2 , we can also use the three point approximation to the

second derivative [23]

∂P

∂x2 (i, j) ≈ pi,j+1 − 2pi,j + pi,j−1 (9.11)

to the second derivative (again we have set h = 1). This gives a smaller
molecule than if we combine the two molecules for order one differentiation
(i.e. (I ⊗ S)(I ⊗ S) = (I ⊗ S2) and ((−S) ⊗ I)((−S) ⊗ I) = (S2 ⊗ I)), since
S2 = 1

2{1, 0,−1} 1
2{1, 0,−1} = 1

4{1, 0,−2, 0, 1}.

Observation 9.25. Second order derivatives of an image.
The second order derivatives of an image P can be computed by applying

the computational molecules
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∂2P

∂x2 :

0 0 0
1 −2 1
0 0 0

 , (9.12)

∂2P

∂y∂x
: 1

4

−1 0 1
0 0 0
1 0 −1

 , (9.13)

∂2P

∂y2 :

0 1 0
0 −2 0
0 1 0

 . (9.14)

Figure 9.16: The second-order partial derivatives in the xx-, xy-, and yy-
directions, respectively. In all images, the computed numbers have been nor-
malised and the contrast enhanced.

With the information in Observation 9.25 it is quite easy to compute the
second-order derivatives, and the results are shown in Figure 9.16. The computed
derivatives were first normalised and then the contrast enhanced with the function
f100 in each image, see equation (9.1).

As for the first derivatives, the xx-derivative seems to emphasise vertical
edges and the yy-derivative horizontal edges. However, we also see that the
second derivatives are more sensitive to noise in the image (the areas of grey are
less uniform). The mixed derivative behaves a bit differently from the other two,
and not surprisingly it seems to pick up both horizontal and vertical edges.

This procedure can be generalized to higher order derivatives also. To apply
∂k+lP
∂xk∂yl

to an image we can compute Sl ⊗ Sk where Sr corresponds to any point
method for computing the r’th order derivative. We can also compute (Sl)⊗(Sk),
where we iterate the filter S = 1

2{1, 0,−1} for the first derivative, but this gives
longer filters.

Let us also apply the molecules for differentiation to a chess pattern test
image. In Figure 9.17 we have applied S ⊗ I, I ⊗ S, and S ⊗ S, I ⊗ S2, and
S2 ⊗ I to the example image shown in the upper left.

These images make it is clear that S ⊗ I detects all horizontal edges, that
I ⊗ S detects all vertical edges, and that S ⊗ S detects all points where abrupt
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Figure 9.17: Different tensor products representing partial derivatives applied
to a simple chess pattern example image (upper left). The tensor products are
S ⊗ I, I ⊗ S, S ⊗ S, I ⊗ S2, and S2 ⊗ I.

changes appear in both directions. We also see that the second order partial
derivative detects exactly the same edges which the first order partial derivative
found. Note that the edges detected with I⊗S2 are wider than the ones detected
with I ⊗ S. The reason is that the filter S2 has more filter coefficients than
S. Also, edges are detected with different colors. This reflects whether the
difference between the neighbouring pixels is positive or negative. The values
after we have applied the tensor product may thus not lie in the legal range
of pixel values (since they may be negative). The figures have taken this into
account by mapping the values back to a legal range of values, as we did in
Chapter 9. Finally, we also see additional edges at the first and last rows/edges
in the images. The reason is that the filter S is defined by assuming that the
pixels repeat periodically (i.e. it is a circulant Toeplitz matrix). Due to this, we
have additional edges at the first/last rows/edges. This effect can also be seen in
Chapter 9, although there we did not assume that the pixels repeat periodically.

Defining a two-dimensional filter by filtering columns and then rows is not
the only way we can define a two-dimensional filter. Another possible way is
to let the MN ×MN -matrix itself be a filter. Unfortunately, this is a bad way
to define filtering of an image, since there are some undesirable effects near the
boundaries between rows: in the vector we form, the last element of one row
is followed by the first element of the next row. These boundary effects are
unfortunate when a filter is applied.
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What you should have learned in this section.

• The operation X → S1X(S2)T can be used to define operations on images,
based on one-dimensional operations S1 and S2. This amounts to applying
S1 to all columns in the image, and then S2 to all rows in the result. You
should know how this operation can be conveniently expressed with tensor
product notation, and that in the typical case when S1 and S2 are filters,
this can equivalently be expressed in terms of computational molecules.

• The case when the Si are smoothing filters gives rise to smoothing opera-
tions on images.

• A simple highpass filter, corresponding to taking the derivative, gives rise
to edge-detection operations on images.

Exercise 9.5: Implement a tensor product
Implement a function tensor_impl which takes a matrix X, and functions S1
and S2 as parameters, and applies S1 to the columns of X, and S2 to the rows of
X.

Exercise 9.6: Generate images
Write code which calls the function tensor_impl with appropriate filters and
which generate the following images:

a) The right image in Figure 9.11.

b) The right image in Figure 9.13.

c) The images in figures 9.14.

d) The images in Figure 9.15.

e) The images in Figure 9.16.

Exercise 9.7: Interpret tensor products
Let the filter S be defined by S = {−1, 1}.

a) Let X be a matrix which represents the pixel values in an image. What can
you say about how the new images (S ⊗ I)X og (I ⊗ S)X look? What are the
interpretations of these operations?

b) Write down the 4⊗ 4-matrix X = (1, 1, 1, 1)⊗ (0, 0, 1, 1). Compute (S⊗ I)X
by applying the filters to the corresponding rows/columns of X as we have learnt,
and interpret the result. Do the same for (I ⊗ S)X.
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Exercise 9.8: Computational molecule of moving average
filter
Let S be the moving average filter of length 2L+1, i.e. T = 1

L{1, · · · , 1, 1, 1, · · · , 1︸ ︷︷ ︸
2L+1 times

}.

What is the computational molecule of S ⊗ S?

Exercise 9.9: Bilinearity of the tensor product
Show that the mapping F (x,y) = x⊗y is bi-linear, i.e. that F (αx1 +βx2,y) =
αF (x1,y) + βF (x2,y), and F (x, αy1 + βy2) = αF (x,y1) + βF (x,y2).

Exercise 9.10: Attempt to write as tensor product
Attempt to find matrices S1 : RM → RM and S2 : RN → RN so that the
following mappings from LM,N (R) to LM,N (R) can be written on the form
X → S1X(S2)T = (S1 ⊗ S2)X. In all the cases, it may be that no such S1, S2
can be found. If this is the case, prove it.

a) The mapping which reverses the order of the rows in a matrix.

b) The mapping which reverses the order of the columns in a matrix.

c) The mapping which transposes a matrix.

Exercise 9.11: Computational molecules
Let the filter S be defined by S = {1, 2, 1}.

a) Write down the computational molecule of S ⊗ S.

b) Let us define x = (1, 2, 3), y = (3, 2, 1), z = (2, 2, 2), and w = (1, 4, 2).
Compute the matrix A = x⊗ y + z ⊗w.

c) Compute (S ⊗ S)A by applying the filter S to every row and column in the
matrix the way we have learnt. If the matrix A was more generally an image,
what can you say about how the new image will look?

Exercise 9.12: Computational molecules
Let S = 1

4{1, 2, 1} be a filter.

a) What is the effect of applying the tensor products S ⊗ I, I ⊗ S, and S ⊗ S
on an image represented by the matrix X?

b) Compute (S ⊗ S)(x⊗ y), where x = (4, 8, 8, 4), y = (8, 4, 8, 4) (i.e. both x
and y are column vectors).
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Exercise 9.13: Comment on code
Suppose that we have an image given by the M ×N -matrix X, and consider the
following code:

for n=1:N
X(1, n) = 0.25*X(N, n) + 0.5*X(1, n) + 0.25*X(2, n);
X(2:(N-1), n) = 0.25*X(1:(N-2), n) + 0.5*X(2:(N-1), n) ...

+ 0.25*X(3:N, n);
X(N, n) = 0.25*X(N-1, n) + 0.5*X(N, n) + 0.25*X(1, n);

end
for m=1:M

X(m, 1) = 0.25*X(m, M) + 0.5*X(m, 1) + 0.25*X(m, 2);
X(m, 2:(M-1)) = 0.25*X(m, 1:(M-2)) + 0.5*X(m, 2:(M-1),) ...

+ 0.25*X(m, 3:M);
X(m, M) = 0.25*X(m, M-1) + 0.5*X(m, M) + 0.25*X(m, 1);

end

Which tensor product is applied to the image? Comment what the code does, in
particular the first and third line in the inner for-loop. What effect does the
code have on the image?

Exercise 9.14: Eigenvectors of tensor products
Let vA be an eigenvector of A with eigenvalue λA, and vB an eigenvector of
B with eigenvalue λB. Show that vA ⊗ vB is an eigenvector of A ⊗ B with
eigenvalue λAλB . Explain from this why ‖A⊗B‖ = ‖A‖‖B‖, where ‖ ·‖ denotes
the operator norm of a matrix.

Exercise 9.15: The Kronecker product
The Kronecker tensor product of two matrices A and B, written A ⊗k B, is
defined as

A⊗k B =


a1,1B a1,2B · · · a1,MB
a2,1B a2,2B · · · a2,MB

...
...

. . .
...

ap,1B ap,2B · · · ap,MB

 ,

where the entries of A are ai,j . The tensor product of a p×M -matrix, and a
q ×N -matrix is thus a (pq)× (MN)-matrix. Note that this tensor product in
particular gives meaning for vectors: if x ∈ RM , y ∈ RN are column vectors,
then x⊗k y ∈ RMN is also a column vector. In this exercise we will investigate
how the Kronecker tensor product is related to tensor products as we have
defined them in this section.

a) Explain that, if x ∈ RM , y ∈ RN are column vectors, then x ⊗k y is the
column vector where the rows of x ⊗ y have first been stacked into one large
row vector, and this vector transposed. The linear extension of the operation
defined by
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x⊗ y ∈ RM,N → x⊗k y ∈ RMN

thus stacks the rows of the input matrix into one large row vector, and transposes
the result.

b) Show that (A ⊗k B)(x ⊗k y) = (Ax) ⊗k (By). We can thus use any of
the defined tensor products ⊗, ⊗k to produce the same result, i.e. we have the
commutative diagram shown in Figure 9.18, where the vertical arrows represent
stacking the rows in the matrix, and transposing, and the horizontal arrows
represent the two tensor product linear transformations we have defined. In
particular, we can compute the tensor product in terms of vectors, or in terms
of matrices, and it is clear that the Kronecker tensor product gives the matrix
of tensor product operations.

x⊗ y A⊗B//

��

(Ax)⊗ (By)

��
x⊗k y

A⊗kB// (Ax)⊗k (By),

Figure 9.18: Tensor products

c) Using the Euclidean inner product on L(M,N) = RMN , i.e.

〈X,Y 〉 =
M−1∑
i=0

N−1∑
j=0

Xi,jYi,j .

and the correspondence in a) we can define the inner product of x1 ⊗ y1 and
x2 ⊗ y2 by

〈x1 ⊗ y1,x2 ⊗ y2〉 = 〈x1 ⊗k y1,x2 ⊗k y2〉.

Show that

〈x1 ⊗ y1,x2 ⊗ y2〉 = 〈x1,x2〉〈y1,y2〉.

Clearly this extends linearly to an inner product on LM,N .

d) Show that the FFT factorization can be written as(
FN/2 DN/2FN/2
FN/2 −DN/2FN/2

)
=
(
IN/2 DN/2
IN/2 −DN/2

)
(I2 ⊗k FN/2).

Also rewrite the sparse matrix factorization for the FFT from Equation (2.18)
in the compendium in terms of tensor products.
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9.4 Change of coordinates in tensor products
Filter-based operations were not the only operations we considered for sound.
We also considered the DFT, the DCT, and the wavelet transform, which
were changes of coordinates which gave us useful frequency- or time-frequency
information. We would like to define similar changes of coordinates for images,
which also give useful such information. Tensor product notation will also be
useful in this respect, and we start with the following result.

Theorem 9.26. The basis B1 ⊗ B2.
If B1 = {vi}M−1

i=0 is a basis for RM , and B2 = {wj}N−1
j=0 is a basis for RN , then

{vi ⊗wj}(M−1,N−1)
(i,j)=(0,0) is a basis for LM,N (R). We denote this basis by B1 ⊗ B2.

Proof. Suppose that
∑(M−1,N−1)

(i,j)=(0,0) αi,j(vi ⊗wj) = 0. Setting hi =
∑N−1
j=0 αi,jwj

we get

N−1∑
j=0

αi,j(vi ⊗wj) = vi ⊗ (
N−1∑
j=0

αi,jwj) = vi ⊗ hi.

where we have used the bi-linearity of the tensor product mapping (x,y)→ x⊗y
(Exercise 9.9). This means that

0 =
(M−1,N−1)∑
(i,j)=(0,0)

αi,j(vi ⊗wj) =
M−1∑
i=0

vi ⊗ hi =
M−1∑
i=0

vih
T
i .

Column k in this matrix equation says 0 =
∑M−1
i=0 hi,kvi, where hi,k are the

components in hi. By linear independence of the vi we must have that h0,k =
h1,k = · · · = hM−1,k = 0. Since this applies for all k, we must have that all
hi = 0. This means that

∑N−1
j=0 αi,jwj = 0 for all i, from which it follows by

linear independence of the wj that αi,j = 0 for all j, and for all i. This means
that B1 ⊗ B2 is a basis.

In particular, as we have already seen, the standard basis for LM,N (R) can be
written EM,N = EM ⊗ EN . This is the basis for a useful convention: For a tensor
product the bases are most naturally indexed in two dimensions, rather than
the usual sequential indexing. This difference translates also to the meaning
of coordinate vectors, which now are more naturally thought of as coordinate
matrices:

Definition 9.27. Coordinate matrix.
Let B = {bi}M−1

i=0 , C = {cj}N−1
j=0 be bases for RM and RN , and let A ∈

LM,N (R). By the coordinate matrix of A in B ⊗ C we mean the M ×N -matrix
X (with components Xkl) such that A =

∑
k,lXk,l(bk ⊗ cl).

We will have use for the following theorem, which shows how change of
coordinates in RM and RN translate to a change of coordinates in the tensor
product:
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Theorem 9.28. Change of coordinates in tensor products.
Assume that

• B1, C1 are bases for RM , and that S1 is the change of coordinates matrix
from B1 to C1,

• B2, C2 are bases for RN , and that S2 is the change of coordinates matrix
from B2 to C2.

Both B1 ⊗ B2 and C1 ⊗ C2 are bases for LM,N (R), and if X is the coordinate
matrix in B1 ⊗ B2, and Y the coordinate matrix in C1 ⊗ C2, then the change of
coordinates from B1 ⊗ B2 to C1 ⊗ C2 can be computed as

Y = S1X(S2)T . (9.15)

Proof. Let cki be the i’th basis vector in Ck, bki the i’th basis vector in Bk,
k = 1, 2. Since any change of coordinates is linear, it is enough to show that it
coincides with X → S1X(S2)T for any basis vector in B1 ⊗B2. The basis vector
b1i ⊗ b2j has coordinate vector X = ei ⊗ ej in B1 ⊗ B2. With the mapping
X → S1X(S2)T this is sent to

S1X(S2)T = S1(ei⊗ej)(S2)T = S1ei(ej)T (S2)T = S1ei(S2ej)T = coli(S1)(colj(S2))T .

On the other hand, since column i in S1 is the coordinates of b1i in the basis C1,
and column j in S2 is the coordinates of b2j in the basis C2, we can write

b1i ⊗ b2j =
(∑

k

(S1)k,ic1k

)
⊗

(∑
l

(S2)l,jc2l

)
=
∑
k,l

(S1)k,i(S2)l,j(c1k ⊗ c2l)

=
∑
k,l

(coli(S1))k(colj(S2))l(c1k ⊗ c2l)

=
∑
k,l

(coli(S1)(colj(S2))T )k,l(c1k ⊗ c2l).

This shows that the coordinate matrix of b1i⊗b2j in C1⊗C2 is coli(S1)(colj(S2))T .
This means that the change of coordinates coincides with the mapping X →
S1X(S2)T for any vector in B1 ⊗ B2, so that the change of coordinates is given
by X → S1X(S2)T for all vectors also.

In both cases of filtering and change of coordinates in tensor products, we
see that we need to compute the mapping X → S1X(S2)T . As we have seen,
this amounts to a row/column-wise operation, which we restate as follows:

Observation 9.29. Change of coordinates in tensor products.
The change of coordinates from B1 ⊗ B2 to C1 ⊗ C2 can be implemented as

follows:
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• For every column in the coordinate matrix in B1 ⊗ B2, perform a change
of coordinates from B1 to C1.

• For every row in the resulting matrix, perform a change of coordinates
from B2 to C2.

We can again use the funtion tensor_impl in order to implement change of
coordinates for a tensor product. We just need to replace the filters with the
functions S1 and S2 for computing the corresponding changes of coordinates:

Y = tensor_impl(X, S1, S2)

The operation X → (S1)X(S2)T , which we now have encountered in two different
ways, is one particular type of linear transformation from RN2 to itself (see
Exercise 9.15 for how the matrix of this linear transformation can be constructed).
While a general such linear transformation requires N4 multiplications (i.e. when
we perform a full matrix multiplication), X → (S1)X(S2)T can be implemented
generally with only 2N3 multiplications (since multiplication of two N × N -
matrices require N3 multiplications in general). The operation X → (S1)X(S2)T
is thus computationally simpler than linear transformations in general. In
practice the operations S1 and S2 are also computationally simpler, since they
can be filters, FFT’s, or wavelet transformations, so that the complexity in
X → (S1)X(S2)T can be even lower.

In the following examples, we will interpret the pixel values in an image as
coordinates in the standard basis, and perform a change of coordinates.

Example 9.30. Change of coordinates with the DFT.
The DFT is one particular change of coordinates which we have considered.

It was the change of coordinates from the standard basis to the Fourier basis.
A corresponding change of coordinates in a tensor product is obtained by
substituting the DFT as the functions S1, S2 for implementing the changes
of coordinates above. The change of coordinates in the opposite direction is
obtained by using the IDFT instead of the DFT.

Modern image standards do typically not apply a change of coordinates to
the entire image. Rather the image is split into smaller squares of appropriate
size, called blocks, and a change of coordinates is performed independently for
each block. In this example we have split the image into blocks of size 8× 8.

Recall that the DFT values express frequency components. The same applies
for the two-dimensional DFT and thus for images, but frequencies are now
represented in two different directions. Let us introduce a neglection threshold
in the same way as in Example 2.28, to view the image after we set certain
frequencies to zero. As for sound, this has little effect on the human perception
of the image, if we use a suitable neglection threshold. After we have performed
the two-dimensional DFT on an image, we can neglect DFT-coefficients below a
threshold on the resulting matrix X with the following code:
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X = X.*(abs(X) >= threshold);

abs(X)>=threshold now instead returns a threshold matrix with 1 and 0 of the
same size as X.

In Figure 9.19 we have applied the two-dimensional DFT to our test image.
We have then neglected DFT coefficients which are below certain thresholds,
and transformed the samples back to reconstruct the image. When increasing
the threshold, the image becomes more and more unclear, but the image is quite
clear in the first case, where as much as more than 76.6% of the samples have
been zeroed out. A blocking effect at the block boundaries is clearly visible.

Figure 9.19: The effect on an image when it is transformed with the DFT, and
the DFT-coefficients below a certain threshold are zeroed out. The threshold
has been increased from left to right, from 100, to 200, and 400. The percentage
of pixel values that were zeroed out are 76.6, 89.3, and 95.3, respectively.

Example 9.31. Change of coordinates with the DCT.
Similarly to the DFT, the DCT was the change of coordinates from the

standard basis to what we called the DCT basis. Change of coordinates in
tensor products between the standard basis and the DCT basis is obtained by
substituting with the DCT and the IDCT for the changes of coordinates S1, S2
above.

The DCT is used more than the DFT in image processing. In particular, the
JPEG standard applies a two-dimensional DCT, rather than a two-dimensional
DFT. With the JPEG standard, the blocks are always 8× 8, as in the previous
example. It is of course not a coincidence that a power of 2 is chosen here: the
DCT, as the DFT, has an efficient implementation for powers of 2.

If we follow the same strategy for the DCT as for the DFT example, so that
we zero out DCT-coefficients which are below a given threshold 1, and use the
same block sizes, we get the images shown in Figure 9.20. We see similar effects
as with the DFT.

It is also interesting to compare with what happens when we drop splitting
the image into blocks. Of course, when we neglect many of the DCT-coefficients,

1The JPEG standard does not do exactly the kind of thresholding described here. Rather
it performs what is called a quantization.
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Figure 9.20: The effect on an image when it is transformed with the DCT, and
the DCT-coefficients below a certain threshold are zeroed out. The threshold
has been increased from left to right, from 30, to 50, and 100. The percentage of
pixel values that were zeroed out are 93.2, 95.8, and 97.7, respectively.

we should see some artifacts, but there is no reason to believe that these should
be at the old block boundaries. The new artifacts can be seen in Figure 9.21,
where the same thresholds as before have been used. Clearly, the new artifacts
take a completely different shape.

Figure 9.21: The effect on an image when it is transformed with the DCT, and
the DCT-coefficients below a certain threshold are zeroed out. The image has
not been split into blocks here, and the same thresholds as in Figure 9.20 were
used. The percentage of pixel values that were zeroed out are 93.2, 96.6, and
98.8, respectively.

In the exercises you will be asked to implement functions which generate the
images shown in these examples.

What you should have learned in this section.

• The operation X → S1X(S2)T can also be used to facilitate change of
coordinates in images, in addition to filtering images. In other words,
change of coordinates is done first column by column, then row by row.
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The DCT and the DFT are particular changes of coordinates used for
images.

Exercise 9.16: Implement DFT and DCT on blocks
In this section we have used functions which apply the DCT and the DFT either
to subblocks of size 8×8, or to the full image. Implement functions which applies
the DFT, IDFT, DCT, and IDCT, to consecutive segments of length 8.

Exercise 9.17: Implement two-dimensional FFT and DCT
Write down code for running FFT2, IFFT2, DCT2, and IDCT2 on an image,
using the function tensor_impl.

Exercise 9.18: Zeroing out DCT coefficients
The following function showDCThigher applies the DCT to an image in the same
way as the JPEG standard does. The function takes a threshold parameter, and
sets DCT coefficients below this value to zero:

function showDCThigher(threshold)
img = double(imread(’images/lena.png’, ’png’));
zeroedout = 0;
img = tensor_impl(img, @DCTImpl8, @DCTImpl8);
thresholdmatr = (abs(img) >= threshold);
zeroedout = zeroedout + prod(size(img)) ...

- sum(sum(sum(thresholdmatr)));
img = tensor_impl(img.*thresholdmatr, @IDCTImpl8, @IDCTImpl8);
imshow(uint8(255*mapto01(img)));
fprintf(’%i percent of samples zeroed out\n’, ...

100*zeroedout/prod(size(img)));

function x = DCTImpl8(x)
N = size(x, 1);
for n = 1:8:N

x(n:(n+7), :) = DCTImpl(x(n:(n+7), :));
end

function x = IDCTImpl8(x)
N = size(x, 1);
for n = 1:8:N

x(n:(n+7), :) = IDCTImpl(x(n:(n+7), :));
end

a) Explain this code line by line.

b) Run showDCThigher for different threshold parameters, and check that this
reproduces the test images of this section, and prints the correct numbers of
values which have been neglected (i.e. which are below the threshold) on screen.
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Exercise 9.19: Comment code
Suppose that we have given an image by the matrix X. Consider the following
code:

threshold = 30;
[M, N] = size(X);
for n = 1:N

X(:, n) = FFTImpl(X(:, n), @FFTKernelStandard);
end
for m = 1:M

X(m, :) = FFTImpl((X(m, :))’, @FFTKernelStandard);
end

X = X.*(abs(X) >= threshold);

for n = 1:N
X(:, n) = FFTImpl(X(:, n), @FFTKernelStandard, 0);

end
for m = 1:M

X(m, :) = FFTImpl((X(m, :))’, @FFTKernelStandard, 0);
end

Comment what the code does. Comment in particular on the meaning of the
parameter threshold, and what effect this has on the image.

9.5 Summary
We started by discussing the basic question what an image is, and took a closer
look at digital images. We then went through several operations which give
meaning for digital images. Many of these operations could be described in
terms of a row/column-wise application of filters, and more generally in term
of what we called computational molecules. We defined the tensor product,
and saw how our operations could be expressed within this framework. The
tensor product framework could also be used to state change of coordinates for
images, so that we could consider changes of coordinates such as the DFT and
the DCT also for images. The algorithm for computing filtering operations or
changes of coordinates for images turned out to be similar, in the sense that the
one-dimensional counterparts were simply assplied to the rows and the columns
in the image.

In introductory image processing textbooks, many other image processing
methods are presented. We have limited to the techniques presented here, since
our interest in images is mainly for transformation operations which are useful
for compression. An excellent textbook on image processing which uses Matlab is
[15]. This contains important topics such as image restoration and reconstruction,
geometric transformations, morphology, and object recognition. None of these
are considered in this book.

In much literature, one only mentions that filtering can be extended to images
by performing one-dimensional filtering for the rows, followed by one-dimensional
filtering for the columns, without properly explaining why this is the natural
thing to do. The tensor product may be the most natural concept to explain this,
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and a concept which is firmly established in mathematical literature. Tensor
products are usually not part of beginning courses in linear algebra. We have
limited the focus here to an introduction to tensor products, and the theory
needed to explain filtering an image, and computing the two-dimensional wavelet
transform. Some linear algebra books (such as [22]) present tensor products in
exercise form only, and often only mentions the Kronecker tensor product, as we
defined it.

Many international standards exist for compression of images, and we will
take a closer look at two of them in this book. The JPEG standard, perhaps the
most popular format for images on the Internet, applies a change of coordinates
with a two-dimensional DCT, as described in this chapter. The compression
level in JPEG images is selected by the user and may result in conspicuous
artefacts if set too high. JPEG is especially prone to artefacts in areas where
the intensity changes quickly from pixel to pixel. JPEG is usually lossy, but may
also be lossless and has become. The standard defines both the algorithms for
encoding and decoding and the storage format. The extension of a JPEG-file is
.jpg or .jpeg. JPEG is short for Joint Photographic Experts Group, and was
approved as an international standard in 1994. A more detailed description of
the standard can be found in [27].

The second standard we will consider is JPEG2000. It was developed to
address some of the shortcomings of JPEG, and is based on wavelets. The
standard document for this [17] does not focus on explaining the theory behind
the standard. As the MP3 standard document, it rather states step-by-step
procedures for implementing the standard.

The theory we present related to these image standards concentrate on
transforming the image (either with a DWT or a DCT) to obtain something
which is more suitable for (lossless or lossy) compression. However, many other
steps are also needed in order to obtain a full image compression system. One of
these is quantization. In the simplest form of quantization, every resulting sample
from the transformation is rounded to a fixed number of bits. Quantization can
also be done in more advanced ways than this: We have already mentioned that
the MP3 standard may use different number of bits for values in the different
subbands, depending on the importance of the samples for the human perception.
The JPEG2000 standard quantizes in such a way that there is bigger interval
around 0 which is quantized to 0, i.e. the rounding error is allowed to be bigger
in an interval around 0. Standards which are lossless do not apply quantization,
since this always leads to loss.

Somewhere in the image processing or sound processing pipeline, we also
need a step which actually achieves compression of the data. Different standards
use different lossless coding techniques for this. JPEG2000 uses an advances
type of arithmetic coding for this. JPEG can also use arithmetic coding, but
also Huffman coding.

Besides transformation, quantization, and coding, many other steps are
used, which have different tasks. Many standards preprocess the pixel values
before a transform is applied. Preprocessing may mean to center the pixel
values around a certain value (JPEG2000 does this), or extracting the different
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image components before they are processed separately. Also, the image is often
split into smaller parts (often called tiles), which are processed separately. For
big images this is very important, since it allows users to zoom in on a small
part of the image, without processing larger uninteresting parts of the image.
Independent processing of the separate tiles makes the image compression what
we call error-resilient, to errors such as transmission errors, since errors in one
tile does not propagate to errors in the other tiles. It is also much more memory-
friendly to process the image in several smaller parts, since it is not required
to have the entire image in memory at any time. It also gives possibilities for
parallel computing. For standards such as JPEG and JPEG2000, tiles are split
into even smaller parts, called blocks, where parts of the processing within each
block also is performed independently. This makes the possibilities for parallel
computing even bigger.

An image standard also defines how to store metadata about an image, and
what metadata is accepted, like resolution, time when the image was taken,
where the image was taken (such as GPS coordinates), and similar information.
Metadata can also tell us how the color in the image are represented. As we have
already seen, in most color images the color of a pixel is represented in terms of
the amount of red, green and blue or (r, g, b). But there are other possibilities
as well: Instead of storing all 24 bits of color information in cases where each of
the three color components needs 8 bits, it is common to create a table of up to
256 colors with which a given image could be represented quite well. Instead of
storing the 24 bits, one then just stores a color table in the metadata, and at
each pixel, the eight bits corresponding to the correct entry in the table. This is
usually referred to as eight-bit color, and the table is called a look-up table or
palette. For large photographs, however, 256 colors is far from sufficient to obtain
reasonable colour reproduction. Metadata is usually stored in the beginning of
the file, formatted in a very specific way.



Chapter 10

Using tensor products to
apply wavelets to images

Previously we have used the theory of wavelets to analyze sound. We would also
like to use wavelets in a similar way to analyze images. Since the tensor product
concept constructs two dimensional objects (matrices) from one-dimensional
objects (vectors), we are lead to believe that tensor products can also be used to
apply wavelets to images. In this chapter we will see that this can indeed be
done. The vector spaces we Vm encountered for wavelets were function spaces,
however. What we therefore need first is to establish a general definition of
tensor products of function spaces. This will be done in the first section of this
chapter. In the second section we will then specialize the function spaces to the
spaces Vm we use for wavelets, and interpret the tensor product of these and the
wavelet transform applied to images more carefully. Finally we will look at some
examples on this theory applied to some example images.

The examples in this chapter can be run from the notebook applinalgnbchap10.m.

10.1 Tensor product of function spaces
In the setting of functions, it will turn out that the tensor product of two
univariate functions can be most intiutively defined as a function in two variables.
This seems somewhat different from the strategy of Chapter 9, but we will see
that the results we obtain will be very similar.

Definition 10.1. Tensor product of function spaces.
Let U1 and U2 be vector spaces of functions, defined on the intervals [0,M)

and [0, N), respectively, and suppose that f1 ∈ U1 and f2 ∈ U2. The tensor
product of f1 and f2, denoted f1 ⊗ f2, is the function in two variables defined
on [0,M)× [0, N) by

(f1 ⊗ f2)(t1, t2) = f1(t1)f2(t2).

358
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f1 ⊗ f2 is also called the separable extension of f1 and f2 to two variables.
The tensor product of the spaces U1 ⊗ U2 is the vector space spanned by the
two-variable functions {f1 ⊗ f2}f1∈U1,f2∈U2 .

We will always assume that the spaces U1 and U2 consist of functions which
are at least integrable. In this case U1 ⊗ U2 is also an inner product space, with
the inner product given by a double integral,

〈f, g〉 =
∫ N

0

∫ M

0
f(t1, t2)g(t1, t2)dt1dt2. (10.1)

In particular, this says that

〈f1 ⊗ f2, g1 ⊗ g2〉 =
∫ N

0

∫ M

0
f1(t1)f2(t2)g1(t1)g2(t2)dt1dt2

=
∫ M

0
f1(t1)g1(t1)dt1

∫ N

0
f2(t2)g2(t2)dt2 = 〈f1, g1〉〈f2, g2〉.

(10.2)

This means that for tensor products, a double integral can be computed as the
product of two one-dimensional integrals. This formula also ensures that inner
products of tensor products of functions obey the same rule as we found for
tensor products of vectors in Exercise 9.15.

The tensor product space defined in Definition 10.1 is useful for approximation
of functions of two variables if each of the two spaces of univariate functions
have good approximation properties.

Idea 10.2. Using tensor products for approximation.
If the spaces U1 and U2 can be used to approximate functions in one variable,

then U1 ⊗ U2 can be used to approximate functions in two variables.

We will not state this precisely, but just consider some important examples.

Example 10.3. Tensor products of polynomials.
Let U1 = U2 be the space of all polynomials of finite degree. We know that

U1 can be used for approximating many kinds of functions, such as continuous
functions, for example by Taylor series. The tensor product U1 ⊗ U1 consists of
all functions on the form

∑
i,j αi,jt

i
1t
j
2. It turns out that polynomials in several

variables have approximation properties analogous to univariate polynomials.

Example 10.4. Tensor products of Fourier spaces.
Let U1 = U2 = VN,T be the Nth order Fourier space which is spanned by the

functions

e−2πiNt/T , . . . , e−2πit/T , 1, e2πit/T , . . . , e2πiNt/T

The tensor product space U1 ⊗ U1 now consists of all functions on the form
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N∑
k,l=−N

αk,le
2πikt1/T e2πilt2/T .

One can show that this space has approximation properties similar to VN,T for
functions in two variables. This is the basis for the theory of Fourier series in
two variables.

In the following we think of U1 ⊗ U2 as a space which can be used for
approximating a general class of functions. By associating a function with the
vector of coordinates relative to some basis, and a matrix with a function in two
variables, we have the following parallel to Theorem 9.26:

Theorem 10.5. Bases for tensor products of function spaces.
If {fi}M−1

i=0 is a basis for U1 and {gj}N−1
j=0 is a basis for U2, then {fi ⊗

gj}(M−1,N−1)
(i,j)=(0,0) is a basis for U1 ⊗ U2. Moreover, if the bases for U1 and U2 are

orthogonal/orthonormal, then the basis for U1 ⊗ U2 is orthogonal/orthonormal.

Proof. The proof is similar to that of Theorem 9.26: if

(M−1,N−1)∑
(i,j)=(0,0)

αi,j(fi ⊗ gj) = 0,

we define hi(t2) =
∑N−1
j=0 αi,jgj(t2). It follows as before that

∑M−1
i=0 hi(t2)fi = 0

for any t2, so that hi(t2) = 0 for any t2 due to linear independence of the fi. But
then αi,j = 0 also, due to linear independene of the gj . The statement about
orthogonality follows from Equation (10.2).

We can now define the tensor product of two bases of functions as before,
and coordinate matrices as before:

Definition 10.6. Coordinate matrix.
if B = {fi}M−1

i=0 and C = {gj}N−1
j=0 , we define B ⊗ C as the basis {fi ⊗

gj}(M−1,N−1)
(i,j)=(0,0) for U1 ⊗ U2. We say that X is the coordinate matrix of f if

f(t1, t2) =
∑
i,j Xi,j(fi ⊗ gj)(t1, t2), where Xi,j are the elements of X.

Theorem 9.28 can also be proved in the same way in the context of function
spaces. We state this as follows:

Theorem 10.7. Change of coordinates in tensor products of function spaces.
Assume that U1 and U2 are function spaces, and that

• B1, C1 are bases for U1, and that S1 is the change of coordinates matrix
from B1 to C1,

• B2, C2 are bases for U2, and that S2 is the change of coordinates matrix
from B2 to C2.
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Both B1⊗B2 and C1⊗C2 are bases for U1⊗U2, and if X is the coordinate matrix
in B1 ⊗ B2, Y the coordinate matrix in C1 ⊗ C2, then the change of coordinates
from B1 ⊗ B2 to C1 ⊗ C2 can be computed as

Y = S1X(S2)T . (10.3)

10.2 Tensor product of function spaces in a wavelet
setting

We will now specialize the spaces U1, U2 from Definition 10.1 to the resolution
spaces Vm and the detail spaces Wm, arising from a given wavelet. We can in
particular form the tensor products φ0,n1 ⊗ φ0,n2 . We will assume that

• the first component φ0,n1 has period M (so that {φ0,n1}M−1
n1=0 is a basis for

the first component space),

• the second component φ0,n2 has period N (so that {φ0,n2}N−1
n2=0 is a basis

for the second component space).

When we speak of V0 ⊗ V0 we thus mean an MN -dimensional space with basis
{φ0,n1 ⊗ φ0,n2}

(M−1,N−1)
(n1,n2)=(0,0), where the coordinate matrices are M × N . This

difference in the dimension of the two components is done to allow for images
where the number of rows and columns may be different. In the following we
will implicitly assume that the component spaces have dimension M and N , to
ease notation. If we use that (φm−1,ψm−1) also is a basis for Vm, we get the
following corollary to Theorem 10.5:

Corollary 10.8. Bases for tensor products.
Let φ, ψ be a scaling function and a mother wavelet. Then the two sets of

tensor products given by

φm ⊗ φm = {φm,n1 ⊗ φm,n2}n1,n2

and

(φm−1,ψm−1)⊗ (φm−1,ψm−1)
= {φm−1,n1 ⊗ φm−1,n2 ,

φm−1,n1 ⊗ ψm−1,n2 ,

ψm−1,n1 ⊗ φm−1,n2 ,

ψm−1,n1 ⊗ ψm−1,n2}n1,n2

are both bases for Vm ⊗ Vm. This second basis is orthogonal/orthonormal
whenever the first basis is.
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From this we observe that, while the one-dimensional wavelet decomposition
splits Vm into a direct sum of the two vector spaces Vm−1 and Wm−1, the
corresponding two-dimensional decomposition splits Vm ⊗ Vm into a direct sum
of four tensor product vector spaces. These vector spaces deserve individual
names:

Definition 10.9. Tensor product spaces.
We define the following tensor product spaces:

• The space W (0,1)
m spanned by {φm,n1 ⊗ ψm,n2}n1,n2 ,

• The space W (1,0)
m spanned by {ψm,n1 ⊗ φm,n2}n1,n2 ,

• The space W (1,1)
m spanned by {ψm,n1 ⊗ ψm,n2}n1,n2 .

Since these spaces are linearly independent, we can write

Vm ⊗ Vm = (Vm−1 ⊗ Vm−1)⊕W (0,1)
m−1 ⊕W

(1,0)
m−1 ⊕W

(1,1)
m−1 . (10.4)

Also in the setting of tensor products we refer to Vm−1 ⊗ Vm−1 as the space of
low-resolution approximations. The remaining parts, W (0,1)

m−1 , W
(1,0)
m−1 , and W

(1,1)
m−1 ,

are refered to as detail spaces. The coordinate matrix of

2m−1N∑
n1,n2=0

(cm−1,n1,n2(φm−1,n1 ⊗ φm−1,n2) + w
(0,1)
m−1,n1,n2

(φm−1,n1 ⊗ ψm−1,n2)+

w
(1,0)
m−1,n1,n2

(ψm−1,n1 ⊗ φm−1,n2) + w
(1,1)
m−1,n1,n2

(ψm−1,n1 ⊗ ψm−1,n2))
(10.5)

in the basis (φm−1,ψm−1)⊗ (φm−1,ψm−1) is
cm−1,0,0 · · · w

(0,1)
m−1,0,0 · · ·

...
...

...
...

w
(1,0)
m−1,0,0 · · · w

(1,1)
m−1,0,0 · · ·

...
...

...
...

 . (10.6)

The coordinate matrix is thus split into four submatrices:

• The cm−1-values, i.e. the coordinates for Vm−1 ⊕ Vm−1. This is the upper
left corner in Equation (10.6).

• The w(0,1)
m−1-values, i.e. the coordinates for W (0,1)

m−1 . This is the upper right
corner in Equation (10.6).

• The w(1,0)
m−1-values, i.e. the coordinates for W (1,0)

m−1 . This is the lower left
corner in Equation (10.6).
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• The w(1,1)
m−1-values, i.e. the coordinates for W (1,1)

m−1 . This is the lower right
corner in Equation (10.6).

The w(i,j)
m−1-values are as in the one-dimensional situation often refered to as

wavelet coefficients. Let us consider the Haar wavelet as an example.
Example 10.10. Piecewise constant functions.

If Vm is the vector space of piecewise constant functions on any interval of
the form [k2−m, (k + 1)2−m) (as in the piecewise constant wavelet), Vm ⊗ Vm is
the vector space of functions in two variables which are constant on any square
of the form [k12−m, (k1 + 1)2−m)× [k22−m, (k2 + 1)2−m). Clearly φm,k1 ⊗φm,k2

is constant on such a square and 0 elsewhere, and these functions are a basis for
Vm ⊗ Vm.

Let us compute the orthogonal projection of φ1,k1 ⊗φ1,k2 onto V0⊗V0. Since
the Haar wavelet is orthonormal, the basis functions in (10.4) are orthonormal,
and we can thus use the orthogonal decomposition formula to find this projection.
Clearly φ1,k1 ⊗ φ1,k2 has different support from all except one of φ0,n1 ⊗ φ0,n2 .
Since

〈φ1,k1 ⊗ φ1,k2 , φ0,n1 ⊗ φ0,n2〉 = 〈φ1,k1 , φ0,n1〉〈φ1,k2 , φ0,n2〉 =
√

2
2

√
2

2 = 1
2

when the supports intersect, we obtain

projV0⊗V0(φ1,k1⊗φ1,k2) =


1
2 (φ0,k1/2 ⊗ φ0,k2/2) when k1, k2 are even
1
2 (φ0,k1/2 ⊗ φ0,(k2−1)/2) when k1 is even, k2 is odd
1
2 (φ0,(k1−1)/2 ⊗ φ0,k2/2) when k1 is odd, k2 is even
1
2 (φ0,(k1−1)/2 ⊗ φ0,(k2−1)/2) when k1, k2 are odd

So, in this case there were 4 different formulas, since there were 4 different
combinations of even/odd. Let us also compute the projection onto the orthogonal
complement of V0⊗V0 in V1⊗V1, and let us express this in terms of the φ0,n, ψ0,n,
like we did in the one-variable case. Also here there are 4 different formulas.
When k1, k2 are both even we obtain

φ1,k1 ⊗ φ1,k2 − projV0⊗V0(φ1,k1 ⊗ φ1,k2)

= φ1,k1 ⊗ φ1,k2 −
1
2(φ0,k1/2 ⊗ φ0,k2/2)

=
(

1√
2

(φ0,k1/2 + ψ0,k1/2)
)
⊗
(

1√
2

(φ0,k2/2 + ψ0,k2/2)
)
− 1

2(φ0,k1/2 ⊗ φ0,k2/2)

= 1
2(φ0,k1/2 ⊗ φ0,k2/2) + 1

2(φ0,k1/2 ⊗ ψ0,k2/2)

+ 1
2(ψ0,k1/2 ⊗ φ0,k2/2) + 1

2(ψ0,k1/2 ⊗ ψ0,k2/2)− 1
2(φ0,k1/2 ⊗ φ0,k2/2)

= 1
2(φ0,k1/2 ⊗ ψ0,k2/2) + 1

2(ψ0,k1/2 ⊗ φ0,k2/2) + 1
2(ψ0,k1/2 ⊗ ψ0,k2/2).
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Here we have used the relation φ1,ki = 1√
2 (φ0,ki/2 +ψ0,ki/2), which we have from

our first analysis of the Haar wavelet. Checking the other possibilities we find
similar formulas for the projection onto the orthogonal complement of V0 ⊗ V0
in V1 ⊗ V1 when either k1 or k2 is odd. In all cases, the formulas use the basis
functions for W (0,1)

0 , W (1,0)
0 , W (1,1)

0 . These functions are shown in Figure 10.1,
together with the function φ⊗ φ ∈ V0 ⊗ V0.
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Figure 10.1: The functions φ ⊗ φ, φ ⊗ ψ, ψ ⊗ φ, ψ ⊗ ψ, which are bases for
(V0 ⊗ V0)⊕W (0,1)

0 ⊕W (1,0)
0 ⊕W (1,1)

0 for the Haar wavelet.

Example 10.11. Piecewise linear functions.
If we instead use any of the wavelets for piecewise linear functions, the wavelet

basis functions are not orthogonal anymore, just as in the one-dimensional case.
The new basis functions are shown in Figure 10.2 for the alternative piecewise
linear wavelet.

An immediate corollary of Theorem 10.7 is the following:

Corollary 10.12. Implementing tensor product.
Let

Am = P(φm−1,ψm−1)←φm

Bm = Pφm←(φm−1,ψm−1)
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Figure 10.2: The functions φ ⊗ φ, φ ⊗ ψ, ψ ⊗ φ, ψ ⊗ ψ, which are bases for
(V0⊗V0)⊕W (0,1)

0 ⊕W (1,0)
0 ⊕W (1,1)

0 for the alternative piecewise linear wavelet.

be the stages in the DWT and the IDWT, and let

X = (cm,i,j)i,j Y =
(

(cm−1,i,j)i,j (w(0,1)
m−1,i,j)i,j

(w(1,0)
m−1,i,j)i,j (w(1,1)

m−1,i,j)i,j

)
(10.7)

be the coordinate matrices in φm ⊗ φm, and (φm−1,ψm−1) ⊗ (φm−1,ψm−1),
respectively. Then

Y = AmXA
T
m (10.8)

X = BmY B
T
m (10.9)

By the m-level two-dimensional DWT/IDWT (or DWT2/IDWT2) we mean the
change of coordinates where this is repeated m times as in a DWT/IDWT.

It is straightforward to make implementations of DWT2 and IDWT2, in the
same way we implemented DWTImpl and IDWTImpl. In Exercise 10.1 you will
be asked to program functions DW2TImpl and IDW2TImpl for this. Each stage
in DWT2 and IDWT2 can now be implemented by substituting the matrices
Am, Bm above into the code following Theorem 9.28. When using many levels
of the DWT2, the next stage is applied only to the upper left corner of the
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matrix, just as the DWT at the next stage only is applied to the first part of
the coordinates. At each stage, the upper left corner of the coordinate matrix
(which gets smaller at each iteration), is split into four equally big parts. This is
illustrated in Figure 10.3, where the different types of coordinates which appear
in the first two stages in a DWT2 are indicated.

Figure 10.3: Illustration of the different coordinates in a two level DWT2 before
the first stage is performed (left), after the first stage (middle), and after the
second stage (right).

It is instructive to see what information the different types of coordinates
in an image represent. In the following examples we will discard some types of
coordinates, and view the resulting image. Discarding a type of coordinates will
be illustrated by coloring the corresponding regions from Figure 10.3 black. As
an example, if we perform a two-level DWT2 (i.e. we start with a coordinate
matrix in the basis φ2 ⊗ φ2), Figure 10.4 illustrates first the collection of all
coordinates, and then the resulting collection of coordinates after removing
subbands at the first level successively.

Figure 10.4: Graphical representation of neglecting the wavelet coefficients
at the first level. After applying DWT2, the wavelet coefficients are split into
four parts, as shown in the left figure. In the following figures we have removed
coefficients from W

(1,1)
1 , W (1,0)

1 , and W (0,1)
1 , in that order.

Figure 10.5 illustrates in the same way incremental removal of the subbands
at the second level.
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Figure 10.5: Graphical representation of neglecting the wavelet coefficients
at the second level. After applying the second stage in DWT2, the wavelet
coefficients from the upper left corner are also split into four parts, as shown in
the left figure. In the following figures we have removed coefficients from W

(1,1)
2 ,

W
(1,0)
2 , and W (0,1)

2 , in that order.

Before we turn to experiments on images using wavelets, we would like to make
another interpretation on the corners in the matrices after the DWT2, which cor-
respond to the different coordinates (cm−1,i,j)i,j , (w(0,1))m−1,i,j , (w(1,0))m−1,i,j ,
and (w(1,1))m−1,i,j . It turns out that these corners have natural interpretations
in terms of the filter characterization of wavelets, as given in Chapter 6. Recall
again that in a DWT2, the DWT is first applied to the columns in the image,
then to the rows in the image. Recall first that the DWT2 applies first the DWT
to all columns, and then to all rows in the resulting matrix.

First the DWT is applied to all columns in the image. Since the first half of
the coordinates in a DWT are outputs from a lowpass filter H0 (Theorem 6.3),
the upper half after the DWT has now been subject to a lowpass filter to the
columns. Similarly, the second half of the coordinates in a DWT are outputs
from a highpass filter H1 (Theorem 6.3 again), so that the bottom half after the
DWT has been subject to a highpass filter to the columns.

Then the DWT is applied to all rows in the image. Similarly as when we
applied the DWT to the columns, the left half after the DWT has been subject
to the same lowpass filter to the rows, and the right half after the DWT has
been subject to the same highpass filter to the rows.

These observations split the resulting matrix after DWT2 into four blocks,
with each block corresponding to a combination of lowpass and highpass filters.
The following names are thus given to these blocks:

• The upper left corner is called the LL-subband,

• The upper right corner is called the LH-subband,

• The lower left corner is called the HL-subband,

• The lower right corner is called the HH-subband.

The two letters indicate the type of filters which have been applied (L=lowpass,
H=highpass). The first letter indicates the type of filter which is applied to the
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columns, the second indicates which is applied to the rows. The order is therefore
important. The name subband comes from the interpretation of these filters as
being selective on a certain frequency band. In conclusion, a block in the matrix
after the DWT2 corresponds to applying a combination of lowpass/higpass filters
to the rows of the columns of the image. Due to this, and since lowpass filters
extract slow variations, highpass filters abrupt changes, the following holds:

Observation 10.13. Visual interpretation of the DWT2.
After the DWT2 has been applied to an image, we expect to see the following:

• In the upper left corner, slow variations in both the vertical and horizontal
directions are captured, i.e. this is a low-resolution version of the image.

• In the upper right corner, slow variations in the vertical direction are
captured, together with abrupt changes in the horizontal direction.

• In the lower left corner, slow variations in the horizontal direction are
captured, together with abrupt changes in the vertical direction.

• In the lower right corner, abrupt changes in both directions appear are
captured.

These effects will be studied through examples in the next section.

What you should have learned in this section.

• The special interpretation of DWT2 applied to an image as splitting into
four types of coordinates (each being one corner of the image), which rep-
resent lowpass/highpass combinations in the horizontal/vertical directions.

10.3 Experiments with images using wavelets
In this section we will make some experiments with images using the wavelets we
have considered .( CHECK: footnote at end of sentence placed in parenthesis)
(Note also that Matlab has a wavelet toolbox which could be used for these
purposes. We will however not go into the usage of this, since we implement the
DWT from scratch.) The wavelet theory is applied to images in the following way:
We first visualize the pixels in the image as coordinates in the basis φm ⊗ φm
(so that the image has size (2mM)× (2mN)). As in the case for sound, this will
represent a good approximation wehn m is large. We then perform a change
of coordinates with the DWT2. As we did for sound, we can then either set
the detail components from the W (i,j)

k -spaces to zero, or the low-resolution
approximation from V0 ⊗ V0 to zero, depending on whether we want to inspect
the detail components or the low-resolution approximation. Finally we apply
the IDWT2 to end up with coordinates in φm ⊗ φm again, and display the new
image with pixel values equal to these coordinates.
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Example 10.14. Applying the Haar wavelet to a very simple example image.
Let us apply the Haar wavelet to the sample chess pattern example image

from Figure 9.17. The lowpass filter of the Haar wavelet was essentially a
smoothing filter with two elements. Also, as we have seen, the highpass filter
essentially computes an approximation to the partial derivative. Clearly, abrupt
changes in the vertical and horizontal directions appear here only at the edges
in the chess pattern, and abrupt changes in both directions appear only at the
grid points in the chess pattern. Due to Observation 10.13, after a DWT2 we
expect to see the following:

• In the upper left corner, we should see a low-resolution version of the
image.

• In the upper right corner, only the vertical edges in the chess pattern
should be visible.

• In the lower left corner, only the horizontal edges in the chess pattern
should be visible.

• In the lower right corner, only the grid points in the chess pattern should
be visible.

In Figure 10.6 we have applied one level of the DWT2 to the chess pattern
example image, and all these effects are seen clearly here.

Figure 10.6: The chess pattern example image after application of the DWT2.
The Haar wavelet was used.

Example 10.15. Creating thumbnail images.
Let us apply the Haar wavelet to our sample image. After the DWT2,

the upper left submatrices represent the low-resolution approximations from
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Vm−1 ⊗ Vm−1, Vm−2 ⊗ Vm−2, and so on. We can now use the following code to
store the low-resolution approximation for m = 1:

X = DWT2Impl(X, 1, @DWTKernelHaar);
X = X(1:(size(X,1)/2), 1:(size(X,2)/2),:);
X = mapto01(X); X = X*255;

Note that here it is necessary to map the result back to [0, 255].

Figure 10.7: The corresponding thumbnail images for the Image of Lena,
obtained with a DWT of 1, 2, 3, and 4 levels.

In Figure 10.7 the results are shown up to 4 resolutions. In Figure 10.8 we
have also shown the entire result after a 1- and 2-stage DWT2 on the image.
The first two thumbnail images can be seen as the the upper left corners of the
first two images. The other corners represent detail.

Figure 10.8: The corresponding image resulting from a wavelet transform with
the Haar-wavelet for m = 1 and m = 2.

Example 10.16. Detail and low-resolution approximations with the Haar
wavelet.

In Exercise 10.4 you will be asked to implement a function showDWT which
displays the low-resolution approximations or the detail components for our test
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image for any wavelet, using functions we have previously implemented. Let
us take a closer look at the images generated when the Haar wavelet is used.
Above we viewed the low-resolution approximation as a smaller image. Let us
compare with the image resulting from setting the wavelet detail coefficients to
zero, and viewing the result as an image of the same size. In particular, let us
neglect the wavelet coefficients as pictured in Figure 10.4 and Figure 10.5. Since
the Haar wavelet has few vanishing moments, we should expect that the lower
order resolution approximations from V0 are worse when m increase. Figure 10.9
confirms this for the lower order resolution approximations.

Figure 10.9: Image of Lena, with detail at the first 1, 2, 3, and 4 levels zeroed
out, respectively, for the Haar wavelet.

Alternatively, we should see that the higher order detail spaces contain
more information. The new images when showDWT is used to display the detail
components for the Haar wavelet are shown in Figure 10.10.
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Figure 10.10: The corresponding detail for the images in Figure 10.9, with the
Haar wavelet.

The black color indicates values which are close to 0. In other words, most of
the coefficients are close to 0, which reflects one of the properties of the wavelet.

Example 10.17. Experimenting with different wavelets.
Using the function showDWT, we can display the low-resolution approximations

at a given resolution of our image test file lena.png, for the Spline 5/3 and CDF
9/7 wavelets in addition to the Haar wavelet, with the following code:

showDWT(m, @DWTKernelHaar, @IDWTKernelHaar, 1);
showDWT(m, @DWTKernel53, @IDWTKernel53, 1);
showDWT(m, @DWTKernel97, @IDWTKernel97, 1);

The first call to showDWT displays the result using the Haar wavelet. The second
call to showDWT moves to the Spline 5/3 wavelet, and the third call uses the CDF
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9/7 wavelet. We can repeat this for various number of levels m, and compare
the different images.

Example 10.18. The Spline 5/3 wavelet and removing bands in the detail
spaces.

Since the detail components now are split into three bands, another thing we
can try is to neglect only parts of the detail components (i.e.e some of W (1,1)

m ,
W

(1,0)
m , W (0,1)

m ), contrary to the one-dimensional case. Let us use the Spline 5/3
wavelet. The resulting images when the bands on the first level indicated in
Figure 10.4 are removed are shown in Figure 10.11.

Figure 10.11: Image of Lena, with various bands of detail at the first level
zeroed out. From left to right, the detail at W (1,1)

1 , W (1,0)
1 , W (0,1)

1 , as illustrated
in Figure 10.4. The Spline 5/3 wavelet was used.

The resulting images when the bands on the second level indicated in Fig-
ure 10.5 are removed are shown in Figure 10.12.

Figure 10.12: Image of Lena, with various bands of detail at the second level
zeroed out. From left to right, the detail at W (1,1)

2 , W (1,0)
2 , W (0,1)

2 , as illustrated
in Figure 10.5. The Spline 5/3 wavelet was used.

The image is seen still to resemble the original one, even after two levels of
wavelets coefficients have been neglected. This in itself is good for compression
purposes, since we may achieve compression simply by dropping the given
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coefficients. However, if we continue to neglect more levels of coefficients, the
result will look poorer. In Figure 10.13 we have also shown the resulting image
after the third and fourth level of detail have been neglected. Although we still
can see details in the image, the quality in the image is definitely poorer.

Figure 10.13: Image of Lena, with detail including level 3 and 4 zeroed out.
The Spline 5/3 wavelet was used.

Although the quality is poorer when we neglect levels of wavelet coefficients,
all information is kept if we additionally include the detail/bands. In Figure 10.14,
we have shown the corresponding detail for the two right images in Figure 10.11,
and Figure 10.13. Clearly, more detail can be seen in the image when more of
the detail is included.

Example 10.19. the CDF 9/7 wavelet.
Let us repeat the previous example for the CDF 9/7 wavelet, using the

function showDWT you implemented in Exercise 10.4. We should now see improved
images when we discard the detail in the images. Figure 10.15 confirms this for
the lower resolution spaces,

while Figure 10.16 confirms this for the higher order detail spaces.

As mentioned, the procedure developed in this section for applying a wavelet
transform to an image with the help of the tensor product construction, is
adopted in the JPEG2000 standard. This lossy (can also be used as lossless)
image format was developed by the Joint Photographic Experts Group and
published in 2000. After significant processing of the wavelet coefficients, the
final coding with JPEG2000 uses an advanced version of arithmetic coding.
At the cost of increased encoding and decoding times, JPEG2000 leads to as
much as 20 % improvement in compression ratios for medium compression rates,
possibly more for high or low compression rates. The artefacts are less visible
than in JPEG and appear at higher compression rates. Although a number of
components in JPEG2000 are patented, the patent holders have agreed that the
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Figure 10.14: The corresponding detail for the image of Lena. The Spline 5/3
wavelet was used.

core software should be available free of charge, and JPEG2000 is part of most
Linux distributions. However, there appear to be some further, rather obscure,
patents that have not been licensed, and this may be the reason why JPEG2000
is not used more. The extension of JPEG2000 files is .jp2.

What you should have learned in this section.

• How to call functions which perform different wavelet transformations on
an image.

• Be able to interpret the detail components and low-resolution approxima-
tions in what you see.
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Figure 10.15: Image of Lena, with higher levels of detail neglected. The CDF
9/7 wavelet was used.

Exercise 10.1: Implement two-dimensional DWT
Implement functions DW2TImpl and IDW2TImpl which perform them-level DWT2
and the IDWT2, respectively, on an image. The functions should take the
same input as DWTImpl and IDWTImpl, with the input vector replaced with a
two-dimensional object. The functions should at each stage call DWTImpl and
IDWTImpl with m = 1, and each call to these functions should alter the appropri-
ate upper left submatrix in the coordinate matrix. If the image has several color
components, the functions should be applied to each color component. There
are three color components in the test image ’lena.png’.



CHAPTER 10. USING TENSOR PRODUCTS TO APPLY WAVELETS TO IMAGES377

Figure 10.16: The corresponding detail for the image of Lena. The CDF 9/7
wavelet was used.

Exercise 10.2: Comment code
Assume that we have an image represented by the M ×N -matrix X, and consider
the following code:

for n = 1:N
c = (X(1:2:M, n) + X(2:2:M, n))/sqrt(2);
w = (X(1:2:M, n) - X(2:2:M, n))/sqrt(2);
X(:, n) = [c; w];

for m = 1:M
c = (X(m, 1:2:N) + X(m, 2:2:N))/sqrt(2);
w = (X(m, 1:2:N) - X(m, 2:2:N))/sqrt(2);
X(m, :) = [c w];
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a) Comment what the code does, and explain what you will see if you display X
as an image after the code has run.

b) The code above has an inverse transformation, which reproduce the original
image from the transformed values which we obtained. Assume that you zero
out the values in the lower left and the upper right corner of the matrix X after
the code above has run, and that you then reproduce the image by applying this
inverse transformation. What changes can you then expect in the image?

Exercise 10.3: Comment code
In this exercise we will use the filters G0 = {1, 1}, G1 = {1,−1}.

a) Let X be a matrix which represents the pixel values in an image. Define
x = (1, 0, 1, 0) and y = (0, 1, 0, 1). Compute (G0 ⊗G0)(x⊗ y).

b) For a general image X, describe how the images (G0 ⊗G0)X, (G0 ⊗G1)X,
(G1 ⊗G0)X, and (G1 ⊗G1)X may look.

c) Assume that we run the following code on an image represented by the matrix
X:

[M, N]=size(X);
for n=1:N

c = X(1:2:M, n) + X(2:2:M, n);
w = X(1:2:M, n) - X(2:2:M, n);
X(:, n) = [c; w];

end

for m=1:M
c = X(m, 1:2:N) + X(m, 2:2:N);
w = X(m, 1:2:N) - X(m, 2:2:N);
X(m, :) = [c w];

end

Comment the code. Describe what will be shown in the upper left corner of
X after the code has run. Do the same for the lower left corner of the matrix.
What is the connection with the images (G0 ⊗G0)X, (G0 ⊗G1)X, (G1 ⊗G0)X,
and (G1 ⊗G1)X?

Exercise 10.4: Zeroint out DWT coefficients
In this exercise we will experiment with applying the m-level DWT2 to an image.

a) Write a function showDWT, which takes m, a DWT kernel f, an IDWT kernel
invf, and a variable lowres as input, and

• reads the image file lena.png,

• performs an m-level DWT2 on the image samples using the function
DW2TImpl, with DWT kernel f
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• sets all wavelet coefficients representing detail to zero if lowres is true
(i.e. keep only the low-resolution coordinates from φ0 ⊗ φ0),

• sets all low-resolution coordinates to zero if lowres is false (i.e. keep only
the detail coordinates),

• performs an IDWT2 on the resulting coefficients using the function IDW2TImpl,
with IDWT kernel invf,

• displays the resulting image.

b) Do the image samples returned by showDWT lie in [0, 255]?

c) Run the function showDWT for different values of m for the Haar wavelet, with
lowres set to true. Describe what you see for different m. For which m can
you see that the image gets degraded? How does it get degraded? Compare
with what you saw with the function showDCThigher in Exercise 9.18, where
you performed a DCT on the image samples instead, and set DCT coefficients
below a given threshold to zero.

d) Repeat what you did in c., but this time with lowres set to false instead.
What kind of image do you see now? Can you recognize the original image in
what you see? Try to explain why the images seem to get clearer when you
increase m.

e) In the code in Example 10.17, set lowres to false in the call to showDWT also
for the other wavelets. and repeat what you did in d..

Exercise 10.5: Experiments on a test image
In Figure 10.17 we have applied the DWT2 with the Haar wavelet to an image
very similar to the one you see in Figure 10.6. You see here, however, that there
seems to be no detail components, which is very different from Figure 10.6, even
though the images are very similar. Attempt to explain what causes this to
happen.

Hint. Compare with Exercise 5.17.
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Figure 10.17: A simple image before and after one level of the DWT2. The
Haar wavelet was used.

10.4 An application to the FBI standard for com-
pression of fingerprint images

In the beginning of the 1990s, the FBI had a major problem when it came to their
archive of fingerprint images. With more than 200 million fingerprint records,
their digital storage exploded in size, so that some compression strategy needed
to be employed. Several strategies were tried, for instance the widely adopted
JPEG standard. The problem with JPEG had to do with the blocking artefacts,
which we saw in Section 9.4. Among other strategies, FBI chose a wavelet-based
strategy due to its nice properties. The particular way wavelets are applied in
this strategy is called Wavelet transform/scalar quantization (WSQ).

Fingerprint images are a very specific type of images, as seen in Figure 10.18.
They differ from natural images by having a large number of abrupt changes.
One may ask whether other wavelets than the ones we have used up to now are
more suitable for compressing such images. After all, the technique of vanishing
moments we have used for constructing wavelets are most suitable when the
images display some regularity (as many natural images do). Extensive tests
were undertaken to compare different wavelets, and the CDF 9/7 wavelet used
by JPEG2000 turned out to perform very well, also for fingerprint images. One
advantage with the choice of this wavelet for the FBI standard is that one then
can exploit existing wavelet transformations from the JPEG2000 standard.

Besides the choice of wavelet, one can also ask other questions in the quest to
compress fingerprint images: What number of levels is optimal in the application
of the DWT2? And, while the levels in a DWT2 (see Figure 10.3) have an
interpretation as change of coordinates, one can apply a DWT2 to the other
subbands as well. This can not be interpreted as a change of coordinates, but
if we assume that these subbands have the same characteristics as the original
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Figure 10.18: A typical fingerprint image.

image, the DWT2 will also help us with compression when applied to them.
Let us illustrate how the FBI standard applies the DWT2 to the different
subbands. We will split this process into five stages. The subband structures
and the resulting images after stage 1-4 are illustrated in Figure 10.19 and in
Figure 10.20, respectively.

1. First apply the first stage in a DWT2. This gives the upper left corners in
the two figures.

2. Then apply a DWT2 to all four resulting subbands. This is different from
the DWT2, which only continues on the upper left corner. This gives the
upper right corners in the two figures.

3. Then apply a DWT2 in three of the four resulting subbands. This gives
the lower left corners.

4. In all remaining subbands, the DWT2 is again applied. This gives the
lower right corners.

Now for the last stage. A DWT2 is again applied, but this time only to the upper
left corner. The subbands are illustrated in Figure 10.21, and in Figure 10.22
the resulting image is shown.

When establishing the standard for compression of fingerprint images, the
FBI chose this subband decomposition. In Figure 10.23 we also show the
corresponding low resolution approximation and detail.

As can be seen from the subband decomposition, the low-resolution approxi-
mation is simply the approximation after a five stage DWT2.

The original JPEG2000 standard did not give the possibility for this type
of subband decomposition. This has been added to a later extension of the
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Figure 10.19: Subband structure after the different stages of the wavelet
applications in the FBI fingerprint compression scheme.

standard, which makes the two standards more compatible. IN FBI’s system,
there are also other important parts besides the actual compression strategy,
such as fingerprint pattern matching: In order to match a fingerprint quickly
with the records in the database, several characteristics of the fingerprints are
stored, such as the number of lines in the fingerprint, and points where the lines
split or join. When the database is indexed with this information, one may not
need to decompress all images in the database to perform matching. We will
not go into details on this here.
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Figure 10.20: The fingerprint image after several DWT’s.

Exercise 10.6: Implement the fingerprint compression scheme
Write code which generates the images shown in figures 10.20, 10.22, and 10.23.
Use the functions DW2TImpl and IDW2TImpl with the CDF 9/7 wavelet kernel
functions as input.
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Figure 10.21: Subbands structure after all stages.

Figure 10.22: The resulting image obtained with the subband decomposition
employed by the FBI.
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Figure 10.23: The low-resolution approximation and the detail obtained by the
FBI standard for compression of fingerprint images, when applied to our sample
fingerprint image.
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10.5 Summary
We extended the tensor product construction to functions by defining the tensor
product of functions as a function in two variables. We explained with some
examples that this made the tensor product formalism useful for approximation
of functions in several variables. We extended the wavelet transform to the tensor
product setting, so that it too could be applied to images. We also performed
several experiments on our test image, such as creating low-resolution images and
neglecting wavelet coefficients. We also used different wavelets, such as the Haar
wavelet, the Spline 5/3 wavelet, and the CDF 9/7 wavelet. The experiments
confirmed what we previously have proved, that wavelets with many vanishing
moments are better suited for compression purposes.

The specification of the JPGE2000 standard can be found in [17]. In [36],
most details of this theory is covered, in particular details on how the wavelet
coefficients are coded (which is not covered here).

One particular application of wavelets in image processing is the compression
of fingerprint images. The standard which describes how this should be performed
can be found in [11]. In [2], the theory is described. The book [13] uses the
application to compression of fingerprint images as an example of the usefulness
of recent developments in wavelet theory.



Appendix A

Basic Linear Algebra

This book assumes that the student has taken a beginning course in linear algebra
at university level. In this appendix we summarize the most important concepts
one needs to know from linear algebra. Note that what is listed here should not
be considered as a substitute for such a course: It is important for the student
to go through a full course in linear algebra, in order to get good intuition for
these concepts through extensive exercises. Such exercises are omitted here.

A.1 Matrices
An m×n-matrix is simply a set of mn numbers, stored in m rows and n columns.
We write akn for the entry in row k and column n of the matrix A. The zero
matrix, denoted 0 is the matrix with all zeroes. A square matrix (i.e. where
m = n) is said to be diagonal if akn = 0 whenever k 6= n. The identity matrix,
denoted I, or In to make the dimension of the matrix clear, is the diagonal
matrix where the entries on the diagonal are 1, the rest zeroes. If A is a matrix
we will denote the transpose of A by AT . If A is invertible we denote its inverse
by A−1. We say that a matrix A is orthogonal if ATA = AAT = I. A matrix is
called sparse if most of the entries in the matrix are zero.

A.2 Vector spaces
A set of vectors V is called a vector space if . . .We say that the vectors
{v0,v1, . . . ,vn−1} are linearly independent if, whenever

∑n−1
i=0 civi = 0, we must

have that all ci = 0. We will say that a set of vectors B = {v0,v1, . . . ,vn−1}
from V is a basis for V if the vectors are linearly independent, and span V .

Subspaces of RN , and function spaces.
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A.3 Inner products and orthogonality
Most vector spaces in this book are inner product spaces. A (real) inner product
on a vector space is a binary operation, written as (u,v)→ 〈u,v〉, which fulfills
the following properties for any vectors u, v, and w:

• 〈u,v〉 = 〈v,u〉

• 〈u+ v,w〉 = 〈u,w〉+ 〈v,w〉

• 〈cu,v〉 = c〈u,v〉 for any scalar c

• 〈u,u〉 ≥ 0, and 〈u,u〉 = 0 if and only if u = 0.

u and v are said to be orthogonal if 〈u,v〉 = 0. In this book we have seen
two important examples of inner product spaces. First of all the Euclidean inner
product, which is defined by

〈u,v〉 =
n−1∑
i=0

uivi (A.1)

for any u, v in Rn. For functions we have seen examples which are variants of
the following form:

〈f, g〉 =
∫
f(t)g(t)dt. (A.2)

Any set of mutually orthogonal elements are also linearly independent. A basis
where all basis vectors are mutually orthogonal is called an orthogonal basis. If
additionally the vectors all have length 1, we say that the basis is orthonormal.
If x is in a vector space with an orthogonal basis B = {vk}n−1

k=0 , we can express
x as

〈x,v0〉
〈v0,v0〉

v0 + 〈x,v1〉
〈v1,v1〉

v1 + · · ·+ 〈x,vn−1〉
〈vn−1,vn−1〉

vn−1. (A.3)

In other words, the weights in linear combinations are easily found when the
basis is orthogonal. This is also called the orthogonal decomposition theorem.

By the projection of a vector x onto a subspace U we mean the vector
y = projUx which minimizes the distance ‖y − x‖. If vi is an orthogonal basis
for U , we have that projUx can be written by Equation (A.3).

A.4 Coordinates and change of coordinates
If B = {v0,v1, . . . ,vn−1} is a basis for a vector space, and x =

∑n−1
i=0 xivi, we

say that (x0, x1, . . . , xn−1) is the coordinate vector of x w.r.t. the basis B. We
also write [x]B for this coordinate vector.



APPENDIX A. BASIC LINEAR ALGEBRA 389

If B and C are two different bases for the same vector space, we can write
down the two coordinate vectors [x]B and [x]C . A useful operation is to transform
the coordinates in B to those in C, i.e. apply the transformation which sends [x]B
to [x]C. This is a linear transformation, and we will denote the n × n-matrix
of this linear transformation by PC←B, and call this the change of coordinate
matrix from B to C In other words, the change of coordinate matrix is defined
by requiring that

PC←B[x]B = [x]C . (A.4)

It is straightforward to show that PC←B = (PB←C)−1, so that matrix inversion
can be used to compute the change of coordinate matrix the opposite way. It
is also straightforward to show that the columns in the change of coordinate
matrix can be obtained by expressing the old basis in terms of the new basis,
i.e. finding the vectors [PB←C(vi)]C .

If L is a linear transformation between the spaces V and W , and B is a
basis for V , C a basis for W , we can consider the operation which sends the
coordinates of v ∈ V in the basis B to the coordinates of Lv ∈W in the basis C.
This is represented by a matrix, called the matrix of L relative to the bases B
and C. Similarly to change of coordinate matrices, the columns of the matrix of
L relative to the bases B and C are given by [L(vi)]C .

A.5 Eigenvectors and eigenvalues
If A is a linear transformation from a vector space to itself, a vector v is called
an eigenvector if there exists a scalar λ so that Av = λv. λ is called the
corresponding eigenvalue.

If the matrix A is symmetric, the following hold:

• The eigenvalues of A are real,

• the eigenspaces of A are orthonormal,

• any vector can be decomposed as a sum of eigenvectors from A.

Fo non-symmetric matrices, these results do not hold in general. But for filters,
clearly the second and third property always hold, regardless of whether the
filter is symmetric or not.

A.6 Diagonalization
One can show that, for a symmetric matrix, A = PDPT where D is a digonal
matrix and the eigenvalues of A are the values on the diagonal of D, and P
is a matrix where the columns are the eigenvectors of A, with corresponding
eigenvalue appearing in the same column in D.



Appendix B

Signal processing and linear
algebra: a translation guide

This book should not be considered as a standard signal processing textbook.
There are several reasons for this. First of all, much signal processing literature
is written for people with an engineering background. This book is written for
people with a basic linear algebra background. Secondly, the book does not
give a comprehensive treatment of all basic signal processing concepts. Signal
processing concepts are introduced whenever they are needed to encompass
the mathematical exposition. In order to learn more about the different signal
processing concepts, the reader can consult many excellent textbooks, such
as [28, 1, 25, 32]. The translation guide of this chapter may be of some help
in this respect, when one tries to unify material presented here with material
from these signal processing textbooks. The translation guide handles both
differences in notation between this book and signal processing literature, and
topical differences. Most topical differences are also elaborated further in the
summaries of the different chapters. The book has adopted most of its notation
and concepts from mathematical literature.

B.1 Complex numbers
There are several differences between engineering literature and mathematics.
In mathematics literature, i is used for the imaginary complex number which
satisfies i2 = −1. In engineering literature, the name j is used instead.

B.2 Functions
What in signal processing are refered to as continuous-time signals, are here
refered to as functions. Usually we refer to a function by the letter f , according
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to the mathematical tradition. The variable is mostly time, represented by the
symbol t.

In signal processing, one often uses capital letters to denote a function which
is the Fourier transform of another function, so that the Fourier ransform of
x would be denoted by X. Here we simply denote a periodic function by its
Fourier coefficients yn, and we avoid the CTFT. We use analog filters, however,
which also work in continuous time. Analog filters preserve frequencies, and we
have used ν to denote frequency (variations per second), and not used angular
frequency ω. In signal processing literature it is common to junp between the
two.

B.3 Vectors
Discrete-time signals, as they are used in signal processing, are here mostly
refered to as vectors. To as big extent as possible, we have attempted to keep
vectors finite-dimensional. Vectors are in boldface (i.e. x), but its elements are
not in boldface, and with subscripts (i.e. xn). Superscripts are also used to
differ between vectors with the same base name (i.e. x(1), x(2) etc.), so that
this does not interfer with the vector indices. In signal processing literature the
corresponding notation would be x for the signal, and x[n] for its elements, and
signals with equal base names could be named like x1[n], x2[n].

We have sometimes denoted the Fourier transform of x by x̂, according to
the mathematical tradition. More often we have distuinguished between a vector
and its Discrete Fourier transform by using x for the first, and y for the latter.
This also makes us distuinguish between the input and output to a filter, where
we instead use z for the latter. Much signal processing literature write (capital)
X for the DFT of the vector x.

B.4 Inner products and orthogonality
Throughout the book we have defined inner products for functions (for Fourier
analysis and wavelets), and we have also used the standard inner product of
RN . from this we have deduced the orthogonality of several basis functions used
in signal processing theory. That the functions are orthogonal, as well as the
inner product itself are, however, often not commented on in signal processing
literature. As an unfortunate consequence, one has to explain the expression for
the Fourier series using other means than the orthogonal decomposition formula
and the least squares method. Also, one does not mention that the DFT is a
unitary transformation.

B.5 Matrices and filters
Boldface notation is not used for matrices, according to the mathematical
tradition. In signal processing, it is not common to formulate matrix equations,
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such as for the DFT and DCT, or matrix factorizations. Instead one typically
writes down each equation, one equation for each row in y = Ax, i.e. not
recognizing matrix/vector multiplication. We have sticked to the name filtering
operations, but made it clear that this is nothing but a linear transformation
with a Toeplitz matrix as its matrix. In particular, we alternately use the terms
filtering and multiplication with a Toeplitz matrix. The characterization of filters
as circulant Toeplitz matrices is usually not done in signal processing literature
(but see [13]). In this text we allow for matrices also to be of infinite dimensions,
expanding on the common use in linear algebra. When infinite dimensions are
assumed, infinite in both directions is assumed. Matrices are scaled if necessary
to make them unitary, in particular the DCT and the DFT. This scaling is
usually not done in signal processing literature.

Representing a filter in terms of a finite matrix and restriction of a filter to a
finite signal. This is usually omitted in signal processing literature.

One of the most important statements in signal processing is that convolution
in time is equivalent to multiplication in frequency. We have presented a
compelling interpretation of this in linear algebra terms. Since the frequency
response simply are eigenvalues of the filter, and convolution simply is matrix
factorization, multiplication in frequency simply means to multiply two diagonal
matrices to obtain the frequency response of the product. Moreover, the Fourier
basis vectors can be interpreted as eigenvectors.

B.6 Convolution
While we have defined the concept of convolution, readers familiar with signal
processing may have noticed that this concept has not been used much. The
reason is that we have wanted to present convolution as a matrix multiplication
(to adapt to mathematical tradition), and that we have used the concept of
filtering often instead. In signal processing literature one defines convolution in
terms of vectors of infinite length. We have avoided this, since in practice vectors
always need to be truncated to finite lengths. Due to this, we also have analyzed
how a finite vector may be turned into a periodic vector (periodic or symmetric
extension), and how this affects our analysis. Also we have concentrated on
FIR-filters, and this makes us avoid convergence issues. Note that we do not
present matrix multiplication as a method of implementing filtering, due to
the special structure of this operation. We do not suggest other methods for
implementation than applying the convolution formula in a brute-force way, or
factoring the filter in simpler components.

B.7 Polyphase factorizations and lifting
In signal processing literature, it is not common to associate polyphase com-
ponents with matrices, but rather with Laurent polynomials generated from
the corresponding filter. The Laurent polynomial is nothing else than the Z-
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transform of the associated filter. Associating polyphase components with blocks
in a block matrix makes this book fit with block matrix methods in linear algebra
textbooks.

The polyphase factorization serves two purposes in this book. Firstly, the
lifting factorization (as used for wavelets) is derived from it, and put in a linear
algebra framework as a factorization into sparse matrices, similarly to the FFT
factorization. Thereby it fits together with many of the matrix factorization
results from classical linear algebra, where also sparsity is what makes the
factorization good for computation.

Secondly, the polyphase factorization of the filter bank transforms in the
MP3 standard are derived (also as a sparse matrix factorization), and from this
it is apparent what properties to put on the prototype filters in order to obtain
useful transforms. In fact, from this factorization it became apparent that the
MP3 filter bank transforms could be expressed in terms of alternative QMF filter
banks (i.e. M = 2).

These two topics (lifting and the MP3 filter bank transform polyphase
factorization) are usually not presented in a unified way in textbooks. we see
here that there is a big advantage of doing this, since the second can build on
theory from the first.

B.8 Transforms in general
In signal processing, one often refers to the forward and reverse filter bank
transforms as analysis and synthesis, respectively, and for obvious reasons. In
mathematical literature, one instead often use the term change of coordinates in
a wavelet setting. These terms are not normally used in mathematical literature,
where the term basis vectors/change of coordinate matrices would be used instead.
Also, the output from a forward filter bank transform is often refered to as the
transformed vector, and the result we get when we apply the reverse filter bank
transform to this is called the reconstructed vector.

This exposition takes extra care in presenting how the DCT is derived
naturally from the DFT. In particular both the DFT and the DCT are derived as
matrices of eigenvectors for finite-dimensional filters. The DCT is derived from
the DFT in that one restricts to a certain subset of vectors. The orthogonality
of these matrices follows from the orthogonality of distinct eigenspaces.

B.9 Perfect reconstruction systems
The term biorthogonality is not used to describe a mutual property of the filters
of wavelets. Borthogonality corresponds simply to two matrices being inverses
of oneanother. For the same reason, the term perfect reconstruction is not used
much. Much wavelet theory refer to a property called delay normalization. This
terms has been avoided by mostly considering wavelets with symmetric filters,
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for which delay-normalization is automatic. There are, however, many examples
of wavelets where this term is important.

B.10 Z-transform and frequency response
The Z-transform and the frequency response are much used in signal processing
literaure, and are important concepts for filter design. We have deliberately
dropped the Z-transform. Due to this, much signal processing has of course
been left out, since placements of poles and zeroes are not performed outside or
inside the unit circle, since the frequency response only captures the values on
the unit circle. Placement of poles and circles is perhaps the most-used design
feature in filter design. The focus here is on implementing filters, not designing
them, however.

In signal processing literature, the DTFT and the Z-transform is used,
assuming that the inputs and outputs are vectors of infinite length. In practice
of course, some truncation is needed, since only finite-dimensional arithmetic is
performed by the computer. How this truncation is to be done without affecting
the computations is thus never mentioned in signal processing, although it is
always performed somehow. This exposition shows that this truncation can be
taken as part of the theory, without seriously affecting the results.



Nomenclature

symbol definition
T Period of a function
ν Frequency
fN Nth order Fourier series of f
VN,T Nth order Fourier space
DN,T Order N real Fourier basis for VN,T
FN,T Order N complex Fourier basis for VN,T
f̆ Symmetric extension of the function f
λs(ν) Frequency response of an analog filter
fs Sampling frequency
Ts Sampling period
N Number of points in a DFT/DCT
FN = {φ0,φ1, · · · ,φN−1} Fourier basis for RN
FN NimesN -Fourier matrix
x̂ DFT of the vector x
A Conjugate of a matrix
AH Conjugate transpose of a matrix
x(e) Vector of even samples
x(o) Vector of odd samples
O(N) Order of an algorithm
l(S) Length of a filter
x ∗ y Convolution of vectors
λS,n Vector frequency response of a digital filter
Ed Filter which delays with d samples
ω Angular frequency
λS(ω) Continuous frequency response of a digital filter
x̆ Symmetric extension of a vector
Sr Symmetric restriction of S
Sf Matrix with the columns reversed
DN = {d0,d1, · · · ,dN−1} N -point DCT basis for RN
DCTN N ×N -DCT matrix
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symbol definition
φ Scaling function
Vm Resolution space
rφm Basis for Vm
cm,n Coordinates in φm
Wm Detail space
rU ⊕ V Direct sum of vector spaces
ψm Basis for Wm

wm,n Coordinates in ψm
Cm Reordering of (φm−1,ψm−1)
φ̃ Dual scaling function
ψ̃ Dual mother wavelet
Ṽm Dual resolution space
W̃m Dual detail space
Dm Reordering of φm
EN = {e0, e1, · · · , eN−1} Standard basis for RN
⊗ Tensor product
W

(0,1)
m Resolution m Complementary wavelet space, LH

W
(1,0)
m Resolution m Complementary wavelet space, HL

W
(1,1)
m Resolution m Complementary wavelet space, HH

AT Transpose of a matrix
A−1 Inverse of a matrix
〈u,v〉 Inner product
[x]B Coordinate vector of x relative to the basis B
PC←B Change of coordinate matrix from B to C
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AD conversion, 41
algebra, 97
Alias cancellation, 231
Alias cancellation condition, 233
Aliasing, 231
analysis, 12

equations, 12
Analysis filter components of a forward

filter bank transform, 240
Angular frequency, 105
Arithmetic operation count

DCT, 156
FFT, 76
revised DCT, 159
revised FFT, 159
symmetric filters, 151
with tensor products, 351

audioplayer, 43
audiowrite, 43

Bandpass filter, 116
Basis

C, 176
D, 296
φm, 167
ψm, 171
DCT, 142
for VN,T , 12, 20
Fourier, 49

basis, 387
Biorthogonal

bases, 256
Biorthogonality, 256
bit rate, 41
Bit-reversal

DWT, 293
FFT, 73

block diagonal matrices, 176
block matrix, 71
Blocks, 356

Cascade algorithm, 254
Causal filter, 271
Change of coordinate matrix, 388
Change of coordinates, 388

in tensor product, 349
Channel, 240
Compact support, 36
Complex Fourier coefficients, 22
Computational molecule, 332

Partial derivative in x-direction,
338

Partial derivative in y-direction,
340

Second order derivatives, 342
smoothing, 337

Conjugate transpose, 51
continuous sound, 1
Continuous-time Fourier transform, 39
conv, 92
Convolution

analog, 36
kernel, 36
vectors, 91

coordinate matrix, 349
Coordinate vector, 388
Coordinates in φm, 168
Coordinates in ψm, 171
Cosine matrices, 143
Cosine matrix inverse
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type I, 213
type II, 143
type III, 143, 147

critical sampling, 218
CTFT, 39

DCT
I, 212

dct, 144
DCT basis, 142
DCT coefficients, 142
DCT matrix, 142
DCT-I factorization, 212
DCT-II factorization, 143
DCT-III factorization, 143
DCT-IV factorization, 147
Detail space, 170
DFT coefficients, 50
DFT matrix factorization, 72
Diagonalization

with FN , 96
digital

sound, 39, 41
digital filter, 96
Direct sum

linear transformations, 186
vector spaces, 170

Dirichlet conditions, 13
Discrete Cosine transform, 142
Discrete Fourier transform, 50
Discrete Wavelet Transform, 174
downsampling, 218
Dual

detail space, 257
mother wavelet, 255
multiresolution analysis, 258
resolution space, 257
scaling function, 255
wavelet transforms, 220

DWT kernel parameter dual, 221

eigenvalue, 389
eigenvector, 389
elementary lifting matrix

even type, 288
odd type, 288

used for non-symmetric filters, 301
used for symmetric filters, 292

error-resilient, 356

FFT, 69
twiddle factors, 79

fft, 74
FFT algorithm

Non-recursive, 81
Radix, 82
Split-radix, 82

Filter
bandpass, 116
highpass, 116
ideal highpass, 116
ideal lowpass, 116
length, 91
linear phase, 139
lowpass, 116
moving average, 114
MP3 standard, 118
time delay, 112

Filter bank, 240
Cosine-modulated, 244

Filter bank transform, 240
Filter coefficients, 88
Filter echo, 113
FIR filters, 128
flop count, 85
Forward filter bank transform, 240

in a wavelet setting, 220
Fourier analysis, 20
Fourier coefficients, 11
Fourier domain, 12
Fourier matrix, 50
Fourier series, 10

square wave, 13
triangle wave, 15

Fourier space, 10
Frequency domain, 12
Frequency response

analog filter, 35
continuous, 105
vector, 96

Haar wavelet, 181
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Highpass filter, 116

idct, 144
Ideal highpass filter, 116
Ideal lowpass filter, 116
IDFT, 52
IDFT matrix factorization, 72
ifft, 74
IMDCT, 148
Implementation

Cascade algorithm to plot wavelet
functions, 262

DCT, 154
DCT2, 354
DFT, 54
FFT
Nonrecursive, 81
revised, 158
Split-radix, 82

FFT2, 354
Generic DWT2, 375
Generic IDWT2, 375
IDCT, 156
IDCT2, 354
IFFT2, 354
lifting step
elementary, 302
non-symmetric, 303

listening to detail part in sound,
189

listening to high-frequency part in
sound, 64

listening to low-frequency part in
sound, 64

listening to low-resolution part in
sound, 189

Tensor product, 345
viewing detail part in images, 379
viewing low-resolution part in im-

ages, 379
Wavelet kernel

alternative piecewise linear wavelet,
303

alternative piecewise linear wavelet
with 4 vanishing moments, 304

CDF 9/7 wavelet, 303

orthonormal wavelets, 303
piecewise linear wavelet, 302
piecewise quadratic wavelet, 304
Spline 5/3 wavelet, 303

impulse response, 98
imread, 325
imshow, 325
imwrite, 325
In-place

bit-reversal implementation, 73
DWT implementation, 179
FFT implementation, 73
lifting implementation, 292

In-place implementation
DWT, 293

Inner product
of functions in a Fourier setting,

10
of functions in a tensor product

setting, 359
of functions in a wavelet setting,

165
of vectors, 49

interpolating polynomial, 61
interpolation formula, 63

ideal
periodic functions, 63

Inverse Discrete Wavelet Transform, 175

JPEG
standard, 356

JPEG2000
lossless compression, 277
lossy compression, 279
standard, 277

Kernel transformations, 176
Kronecker tensor product, 347

least square error, 10
length of a filter, 91
Lifting factorization, 291

alternative piecewise linear wavelet,
298

alternative piecewise linear wavelet
with 4 vanishing moments, 304
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CDF 9/7 wavelet, 299
orthonormal wavelets, 301
piecewise linear wavelet, 297
piecewise quadratic wavelet, 304
Spline 5/3 wavelet, 298

Linear phase filter, 139
linearly independent, 387
loglog, 80
Lowpass filter, 116
LTI filters, 97

matrix of a linear transformation rela-
tive to bases, 389

MDCT, 147
mother wavelets, 174
MP3

and the DCT, 160
FFT, 66
filters, 118
standard, 37
window, 110

MP3 standard
matrixing, 242
partial calculation, 242
windowing, 242

MRA-matrix, 217
multiresolution analysis, 206
multiresolution model, 164

Near-perfect reconstruction, 231

OrderN complex Fourier basis for VN,T ,
21

Order of an algorithm, 75
Orthogonal

basis, 388
matrix, 387
vectors, 388

Orthogonal decomposition theorem, 388
Orthonormal

basis, 388
MRA, 206

Orthonormal wavelets, 239
Outer product, 334

Parallel computing

with the DCT, 157
with the DWT, 356
with the FFT, 77

Perfect reconstruction, 231
perfect reconstruction condition, 233
Perfect reconstruction filter bank, 241
Phase distortion, 231
play, 42
playblocking, 42
Polyphase

component of a vector, 77
Polyphase components, 286
Polyphase representation, 286
projection, 388
psycho-acoustic model, 37
pure digital tone, 49
pure tone, 5

QMF filter banks, 238
Alternative definition, 239
Classical definition, 238

Resolution space, 166
Reverse filter bank transform

in a wavelet setting, 220
Reverse filter bank transforms, 241
roots, 270

samples, 41
sampling, 41

frequency, 41
period, 41
rate, 41

scaling function, 168, 206
separable extension, 358
sound channel, 43
Sparse matrix, 387
square wave, 7
Standard

JPEG, 356
JPEG2000, 277
MP3, 39

subband
HH, 367
HL, 367
LH, 367
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LL, 367
Subband coding, 240
Subband samples of a filter bank trans-

form, 240
Support, 36
Symmetric

vector, 134
Symmetric extension

of function, 32
used by the DCT, 134
used by wavelets, 209

Symmetric restriction of a symmetric
filter, 139

synthesis, 12
equation, 12
vectors, 51

Synthesis filter components of a reverse
filter bank transform, 241

tensor product, 319
of function spaces, 358
of functions, 358
of matrices, 335
of vectors, 334

Tiles, 356
time domain, 12
time-invariant, 97
toc, 79
Toeplitz matrix, 88

circulant, 88
triangle wave, 7

Unitary matrix, 51
upsampling, 219

Vector space
of symmetric vectors, 134

Wavelets
Alternative piecewise linear, 200
CDF 9/7, 277
Orthonormal, 280
Piecewise linear, 194
Spline, 275
Spline 5/3, 276

wavread, 43

window, 108
Hamming, 109
Hanning, 112
in the MP3 standard, 110
rectangular, 109


	Preface
	Sound and Fourier series
	Characteristics of sound: Loudness and frequency
	The frequency of a sound

	Fourier series: Basic concepts
	Fourier series for symmetric and antisymmetric functions

	Complex Fourier series
	Some properties of Fourier series
	Rate of convergence for Fourier series

	Operations on sound: filters
	The MP3 standard
	Summary

	Digital sound and Discrete Fourier analysis
	Digital sound and simple operations on digital sound
	Playing a sound

	Discrete Fourier analysis and the discrete Fourier transform
	Connection between the DFT and Fourier series. Sampling and the sampling theorem
	The Fast Fourier Transform (FFT)
	Reduction in the number of multiplications with the FFT
	The FFT when N=N1N2

	Summary

	Operations on digital sound: digital filters
	Matrix representations of filters
	Convolution

	Formal definition of filters and the vector frequency response
	Using digital filters to approximate analog filters

	The continuous frequency response and properties
	Windowing operations

	Some examples of filters
	More general filters
	Implementation of filters
	Implementation of filters using the DFT
	Factoring a filter into several filters

	Summary

	Symmetric filters and the DCT
	Symmetric vectors and the DCT
	Improvements from using the DCT to interpolate functions and approximate analog filters
	Implementations of symmetric filters

	Efficient implementations of the DCT
	Efficient implementations of the IDCT
	Reduction in the number of multiplications with the DCT

	Summary

	Motivation for wavelets and some simple examples
	Why wavelets?
	A wavelet based on piecewise constant functions
	Function approximation property
	Detail spaces and wavelets

	Implementation of the DWT and examples
	A wavelet based on piecewise linear functions
	Detail spaces and wavelets

	Alternative wavelet based on piecewise linear functions
	Multiresolution analysis: A generalization
	Working with the samples of f instead of f
	Increasing the precision of the DWT

	Summary

	The filter representation of wavelets
	The filters of a wavelet transformation
	The support of the scaling function and the mother wavelet
	Wavelets and symmetric extensions

	Properties of the filter bank transforms of a wavelet
	A generalization of the filter representation, and its use in audio coding
	Forward filter bank transform used for encoding in the MP3 standard
	Reverse filter bank transform used for decoding in the MP3 standard

	Summary

	Constructing interesting wavelets
	From filters to scaling functions and mother wavelets
	Turning things around: How to construct useful wavelet bases from filters
	Sketch of proof for the biorthogonality in Proposition 7.7 (1)
	Sketch of proof for the biorthogonality of in Proposition 7.7 (2)
	Regularity and vanishing moments

	Vanishing moments
	Characterization of wavelets w.r.t. number of vanishing moments
	Symmetric filters
	Orthonormal wavelets
	The proof of Bezouts theorem

	A design strategy suitable for lossless compression
	A design strategy suitable for lossy compression
	Orthonormal wavelets
	Summary

	The polyphase representation and wavelets
	The polyphase representation and the lifting factorization
	Reduction in the number of arithmetic operations with the lifting factorization

	Examples of lifting factorizations
	Cosine-modulated filter banks and the MP3 standard
	Polyphase representations of the filter bank transforms of the MP3 standard
	The prototype filters chosen in the MP3 standard
	How can we obtain perfect reconstruction?

	Summary

	Digital images
	What is an image?
	Light
	Digital output media
	Digital input media
	Definition of digital image

	Some simple operations on images
	Images and Matlab

	Filter-based operations on images
	Tensor product notation for operations on images
	Comparing the first derivatives
	Second-order derivatives

	Change of coordinates in tensor products
	Summary

	Using tensor products to apply wavelets to images
	Tensor product of function spaces
	Tensor product of function spaces in a wavelet setting
	Experiments with images using wavelets
	An application to the FBI standard for compression of fingerprint images
	Summary

	Basic Linear Algebra
	Matrices
	Vector spaces
	Inner products and orthogonality
	Coordinates and change of coordinates
	Eigenvectors and eigenvalues
	Diagonalization

	Signal processing and linear algebra: a translation guide
	Complex numbers
	Functions
	Vectors
	Inner products and orthogonality
	Matrices and filters
	Convolution
	Polyphase factorizations and lifting
	Transforms in general
	Perfect reconstruction systems
	Z-transform and frequency response

	Nomenclature
	Bibliography
	Index

