
Chapter 7

Constructing interesting
wavelets

In the previous chapter, from an MRA with corresponding scaling function
and mother wavelet, we defined what we called a forward filter bank transform.
We also defined a reverse filter bank transform, but we did not state an MRA
connected to this, or prove if any such association could be made. In this
chapter we will address this. We will also see, if we start with a forward and
reverse filter bank transform, how we can construct corresponding MRA’s, and
for which transforms we can make this construction. We will see that there
is a great deal of flexibility in the filter bank transforms we can construct (as
this is a discrete problem). Actually it is so flexible that we can construct
scaling functions/mother wavelets with any degree of regularity, and well suited
for approximation of functions. This will also explain our previous interest in
vanishing moments, and explain how we can find the simplest filters which give
rise to a given number of vanishing moments, or a given degree of di�erentiability..
Answers to these questions certainly transfer much more theory between wavelets
and filters. Several of these filters enjoy a widespread use in applications. We
will look at two of these. These are used for lossless and lossy compression in
JPEG2000, which is a much used standard. These wavelets all have symmetric
filters. We end the chapter by looking at a family of orthonormal wavelets with
di�erent number of vanishing moments.

7.1 From filters to scaling functions and mother
wavelets

Example 7.1. The alternative piecewise linear wavelet.
Let us return to the alternative piecewise linear wavelet. In Example 6.19 we

found the filters H
0

, H
1

for this wavelet, and these determine the dual scaling
function and the dual mother wavelet. We already know how the scaling function
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and the mother wavelet look, but how do the dual functions look? It turns
out that there is usually no way to find analytical expressions for these dual
functions (as is the case for the scaling function and the mother wavelet itself
in most cases), but that there still is an algorithm we can apply in order to see
how these functions look. This algorithm is called the cascade algorithm, and
works essentially by computing the coordinates of „, Â (or „̃, Ẫ) in �m (or �̃m).
By increasing m, we have previously argued that these coordinates are good
approximations to the samples of the functions.

To be more specific, we start with the following observation for the dual
functions (similar observations hold for the scaling function and the mother
wavelet also):

• the coordinates of „̃ in (�̃
0

,  ̃
0

,  ̃
1

. . .) is the vector with 1 first, followed
by only zeros,

• the coordinates of Ẫ in (�̃
0

,  ̃
0

,  ̃
1

. . .) is the vector with N zeros first,
then a 1, and then only zeros.

The length of these vectors is N2m. The coordinates in �̃m for „̃ and Ẫ can
be obtained by applying the m-level IDWT for the dual wavelet (i.e. the filters
(H

0

)T , (H
1

)T are used) to these vectors. In Exercise 7.1 we will study code which
uses this approach to approximate the scaling function and mother wavelet. In
Figure 7.1 we have plotted the resulting coordinates in �̃

10

, and thus a good
approximation to „̃ and Ẫ. We see that these functions look very irregular. Also,
they are very di�erent from the original scaling function and mother wavelet.
We will later argue that this is bad, it would be much better if „ ¥ „̃ and Â ¥ Ẫ.

Figure 7.1: Dual scaling function „̃ (left) and dual mother wavelet Ẫ (right) for
the alternative piecewise linear wavelet.

From Theorem 6.11 it follows that the support sizes of these dual functions
are are 4 and 3, respectively, so that their supports should be [≠2, 2] and [≠1, 2],
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respectively. This is the reason why we have plotted the functions over [≠2, 2].
The plots seem to confirm the support sizes we have computed.

Let us formalize the cascade algorithm from the previous example as follows.
Definition 7.2. The cascade algorithm.

The cascade algorithm applies a change of coordinates for the functions „̃, Ẫ
from (�̃

0

,  ̃
0

,  ̃
1

. . .) to �̃m, and uses the new coordinates as an an approximation
to the function values of these functions.

7.2 Turning things around: How to construct
useful wavelet bases from filters

In our first examples of wavelets in Chapter 5, we started with some bases og
functions �m, and deduced filters G

0

and G
1

from these. If we instead start
with the filters G

0

and G
1

, what properties must they fulfill in order for us to
make an association the opposite way? We should thus demand that there exist
functions „, Â so that

„(t) =
2N≠1ÿ

n=0

(G
0

)n,0„
1,n(t) (7.1)

Â(t) =
2N≠1ÿ

n=0

(G
1

)n,1„
1,n(t) (7.2)

Using Equation (7.1), the Fourier transform of „ is

„̂(Ê) = 1Ô
2fi

⁄ Œ

≠Œ
„(t)e≠iÊtdt = 1Ô

2fi

⁄ Œ

≠Œ

A
ÿ

n

(G
0

)n,0

Ô
2„(2t ≠ n)

B
e≠iÊtdt

= 1Ô
2
Ô

2fi

ÿ

n

⁄ Œ

≠Œ
(G

0

)n,0„(t)e≠iÊ(t+n)/2dt

= 1Ô
2

A
ÿ

n

(G
0

)n,0e≠iÊn/2

B
1Ô
2fi

⁄ Œ

≠Œ
„(t)e≠i(Ê/2)t)dt = ⁄G0(Ê/2)Ô

2
„̂(Ê/2).

(7.3)

Clearly this expression can be continued recursively. We can thus state the
following result.
Theorem 7.3. gN .

Define

gN (Ê) =
NŸ

s=1

⁄G0(Ê/2s)Ô
2

‰
[0,2fi]

(2≠N Ê). (7.4)
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Then on [0, 2fi2N ] we have that „̂(‹) = gN (‹)„̂(‹/2N ).

We can now prove the following.

Lemma 7.4. gN (‹) converges.
Assume that

q
n(G

0

)n =
Ô

2 (i.e. ⁄G0(0) =
Ô

2), and that G
0

is a FIR-
filter. Then gN (‹) converges pointwise as N æ Œ to an infinitely di�erentiable
function.

Proof. We need to verify that the infinite product
rŒ

s=1

⁄G0 (2fi‹/2

s
)Ô

2

converges.

Taking logarithms we get
q

s ln
1

⁄G0 (2fi‹/2

s
)Ô

2

2
. To see if this series converges,

we consider the ratio between two successive terms:

ln
1

⁄G0 (2fi‹/2

s+1
)Ô

2

2

ln
1

⁄G0 (2fi‹/2

s
)Ô

2

2 .

Since
q

n(G
0

)n =
Ô

2, we see that ⁄G0(0) =
Ô

2. Since lim‹æ0

⁄G0(‹) =
Ô

2,
both the numerator and the denominator above tends to 0 (to one inside the

logarithms), so that we can use L’hospital’s rule on
ln

1
⁄G0 (‹/2)

Ô
2

2

ln

1
⁄G0 (‹)

Ô
2

2 to obtain

⁄G0(‹)
⁄G0(‹/2)

q
n(G

0

)n(≠in)e≠in‹/2/2q
n(G

0

)n(≠in)e≠in‹
æ 1

2 < 1

as ‹ æ 0. It follows that the product converges for any ‹. Clearly the conver-
gence is absolute and uniform on compact sets, so that the limit is infinitely
di�erentiable.

It follows that „̂, when „ exists, must be an infinitely di�erentiable function
also. Similarly we get

Â̂(Ê) = 1Ô
2

A
ÿ

n

(G
1

)n≠1,0e≠iÊn/2

B
1Ô
2fi

⁄ Œ

≠Œ
„(t)e≠i(Ê/2)t)dt

= 1Ô
2

A
ÿ

n

(G
1

)n,0e≠iÊ(n+1)/2

B
„̂(Ê/2) = e≠iÊ/2

⁄G1(Ê/2)Ô
2

„̂(Ê/2).

It follows in the same way that Â̂ must be an infinitely di�erentiable function
also.

Now consider the dual filter bank transform,as defined in Chapter 6. Its
synthesis filter are (H

0

)T and (H
1

)T . If there exist a scaling function „̃ and a
mother wavelet Ẫ for the dual transform, they must in the same way be infinitely
di�erentiable. Moreover, „̂, Â̂, ˆ̃„, ˆ̃Â can be found as infinite products of the known
frequency responses. If these functions are in L2R, then we can find unique
functions „, Â, „̃, Ẫ with these as Fourier transforms.
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So, our goal is to find filters so that the derived infinite products of the
frequency responses lie in L2(R), and so that the constructed functions „, Â, „̃, Ẫ
give rise to “nice” wavelet bases. Some more technical requirements will be
needed in order for this. In order to state these we should be clear on what we
mean by a “nice” basis in this context. First of all, the bases should together
span all of L2(R). But our bases are not orthogonal, so we should have some
substitute for this. We will need the following definitions.

Definition 7.5. Frame.
Let H be a Hilbert space. A set of vectors {un}n is called a frame of H if

there exist constants A > 0 and B > 0 so that, for any f œ H,

AÎfÎ2 Æ
ÿ

n

|Èf, unÍ|2 Æ BÎfÎ2.

If A = B, the frame is said to be tight.

Note that, for a frame of H, any f œ H is uniquely characterized by the
inner products Èf, unÍ. Indeed, if both a, b œ H have the same inner products,
then a ≠ b œ H have inner products 0, which implies that a = b from the left
inequality.

For every frame one can find a dual frame {ũn}n which satisfies

1
B

ÎfÎ2 Æ
ÿ

n

|Èf, ũnÍ|2 Æ 1
A

ÎfÎ2,

and

f =
ÿ

n

Èf, unÍũn =
ÿ

n

Èf, ũnÍun. (7.5)

Thus, if the frame is tight, the dual frame is also tight.
A frame is called a Riesz basis if all its vectors also are linearly independent.

One can show that the vectors in the dual frame of a Riesz basis also are linearly
independent, so that the dual frame of a Riesz basis also is a Riesz basis. It is
also called the dual Riesz basis. We will also need the following definition.

Definition 7.6. Biorthogonal bases.
We say that two bases {fn}n, {gm}m are biorthogonal if Èfn, gmÍ = 0

whenever n ”= m, and 1 if n = m.

From Equation (7.5) and linear independence, it is clear that the vectors in
a Riesz basis and in its dual Riesz basis are biorthogonal. In the absence of
orthonormal bases for L2(R), the best we can hope for is dual Riesz bases for
L2(R). The following result explains how we can obtain this from the filters.

Proposition 7.7. Biorthogonality.
Assume that the frequency responses ⁄G0 and ⁄H0 can be written as.
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⁄G0(Ê)Ô
2

=
3

1 + e≠iÊ

2

4L

F(Ê) ⁄H0(Ê)Ô
2

=
3

1 + e≠iÊ

2

4˜L

F̃(Ê), (7.6)

where F and F̃ are trigonometric polynomials of finite degree. Assume also that,
for some k, k̃ > 0,

Bk = max
Ê

--F(Ê) · · · F(2k≠1Ê)
--1/k

< 2L≠1/2 (7.7)

B̃k = max
Ê

---F̃(Ê) · · · F̃(2˜k≠1Ê)
---
1/˜k

< 2˜L≠1/2 (7.8)

Then the following hold:

• „, „̃ œ L2(R), and the corresponding bases �
0

and �̃
0

are biorthogonal.

•  m,n is a Riesz basis of L2(R).

•  ̃m,n is the dual Riesz basis of  m,n. Thus,  m, n and  ̃m,n are biorthog-
onal bases, and for any f œ L2(R),

f =
ÿ

m,n

Èf, Ẫm,nÍÂm,n =
ÿ

m,n

Èf, Âm,nÍẪm,n. (7.9)

If also

Bk < 2L≠1≠m B̃k < 2˜L≠1≠m̃, (7.10)

then

• „, Â are m times di�erentiable and Ẫ has m + 1 vanishing moments,

• „̃, Ẫ are m̃ times di�erentiable and Â has m̃ + 1 vanishing moments.

The proof for Proposition 7.7 is long, technical, and split in many stages.
The entire proof can be found in [5], and we will not go through all of it, only
address some simple parts of it in the following subsections. After that we will
see how we can find G

0

, H
0

so that equations (7.6), (7.7), (7.8) are fulfilled.
Before we continue on this path, several comments are in order.

1. The paper [5] much more general conditions for when filters give rise to a
Riesz basis as stated here. The conditions (7.7), (7.8) are simply chosen because
they apply or the filters we consider.

2. From Equation (7.6) it follows that the flatness in the frequency responses
close to fi explains how good the bases are for approximations, since the number
of vanishing moments is infered from the multiplictity of the zero at fi for the
frequency response.
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3. From the result we obtain an MRA (with scaling function „), and a dual
MRA (with scaling function „̃), as well as mother wavelets (Â and Ẫ), and we
can define the resolution spaces Vm and the detail spaces Wm as before, as well
as the “dual resolution spaces” Ṽm, (the spaces spanned by �̃m = {„̃m,n}n) and
“dual detail spaces” W̃m (the spaces spanned by  ̃m = {Ẫm,n}n). In general
Vm is di�erent from Ṽm (except when „ = „̃), and Wm is in general di�erent
from the orthogonal complement of Vm≠1

in Vm (except when „ = „̃, when all
bases are orthonormal), although constructed so that Vm = Vm≠1

ü Wm≠1

. Our
construction thus involves two MRA’s

V
0

µ V
1

µ V
2

µ · · · µ Vm µ · · · Ṽ
0

µ Ṽ
1

µ Ṽ
2

µ · · · µ Ṽm µ · · ·

where there are di�erent scaling functions, satisfying a biorthogonality relation-
ship. This is also called a dual multiresolution analysis.

4. The DWT and IDWT are defined as before, so that the same change
of coordinates can be applied, as dictated by the filter coe�cients. As will
be seen below, while proving Proposition 7.7 it also follows that the bases
�

0

ü 
0

ü 
1

· · · m≠1

and �̃
0

ü  ̃
0

ü  ̃
1

· · ·  ̃m≠1

are biorthogonal (in addition
to that �m and „̃m are biorthogonal, as stated). For f œ Vm this means that

f(t) =
ÿ

n

Èf(t), „̃m,nÍ„m,n =
ÿ

n

Èf(t), „̃
0,nÍ„

0,n +
ÿ

mÕ<m,n

Èf(t), ẪmÕ,nÍÂmÕ,n,

since this relationship is fulfilled for any linear combination of the {„m,n}n, or
for any of the {„

0,n, ÂmÕ,n}mÕ<m,n, due to biorthogonality. Similarly, for f̃ œ Ṽm

f̃(t) =
ÿ

n

Èf̃(t), „m,nÍ„̃m,n =
ÿ

n

Èf̃(t), „
0,nÍ„̃

0,n +
ÿ

mÕ<m,n

Èf̃(t), ÂmÕ,nÍẪmÕ,n.

It follows that for f œ Vm and for f̃ œ Ṽm the DWT and the IDWT and their
duals can be expressed in terms of inner products as follows.

• The input to the DWT is cm,n = Èf, „̃m,nÍ. The output of the DWT is
c

0,n = Èf, „̃
0,nÍ and wmÕ,n = Èf, ẪmÕ,nÍ

• The input to the dual DWT is c̃m,n = Èf̃ , „m,nÍ. The output of the dual
DWT is c̃

0,n = Èf̃ , „
0,nÍ and w̃mÕ,n = Èf̃ , ÂmÕ,nÍ.

• in the DWT matrix, column k has entries È„
1,k, „̃

0,lÍ, and È„
1,k, Ẫ

0,lÍ (with
a similar expression for the dual DWT).

• in the IDWT matrix, column 2k has entries È„
0,k, „̃

1,lÍ, and column 2k + 1
has entries ÈÂ

0,k, „̃
1,lÍ (with a similar expression for the dual IDWT).

Equation (7.9) comes from eliminating the „m,n by letting m æ Œ.
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5. When „ = „̃ (orthonormal MRA’s), the approximations (finite sums)
above coincide with projections onto the spaces Vm, Ṽm, Wm, W̃m. When „ ”= „̃,
however, there are no reasons to believe that these approximations equal the best
approximations to f from Vm. In this case we have no procedure for computing
best approximations. When f is not in Vm, Ṽm we can, however, consider the
approximations

ÿ

n

Èf(t), „̃m,nÍ„m,n(t) œ Vm and
ÿ

n

Èf(t), „m,nÍ„̃m,n(t) œ Ṽm

(when the MRA is orthonormal, this coincides with the best approximation).
Now, we can choose m so large that f(t) =

q
n cn„m,n(t) + ‘(t), with ‘(t) a

small function. The first approximation can now be written

ÿ

n

È
ÿ

nÕ

cnÕ„m,nÕ(t) + ‘(t), „̃m,nÍ„m,n(t) =
ÿ

n

cn„m,n(t) +
ÿ

n

È‘(t), „̃m,nÍ„m,n(t)

= f(t) +
ÿ

n

È‘(t), „̃m,nÍ„m,n(t) ≠ ‘(t).

Clearly, the di�erence
q

nÈ‘(t), „̃m,nÍ„m,n(t) ≠ ‘(t) from f is small. It may.
however, be hard to compute the cn above, so that instead, as in Theorem 5.40,
one uses 2

≠ms N

0
„m,0(t)dt

f(n/2m)„m,n(t) as an approximation to f (i.e. use sample

values as cn) also in this more general setting.
6. Previously we were taught to think in a periodic or folded way, so that we

could restrict to an interval [0, N ], and to bases of finite dimensions ({„
0,n}N≠1

n=0

).
But the results above are only stated for wavelet bases of infinite dimension. Let
us therefore say something on how the results carry over to our finite dimensional
setting. If f œ L2(R) we can define the function

fper(t) =
ÿ

k

f(t + kN) ffold(t) =
ÿ

k

f(t + 2kN) +
ÿ

k

f(2kN ≠ t).

fper and ffold are seen to be periodic with periods N and 2N . It is easy to see
that the restriction of fper to [0, N ] is in L2([0, N ]), and that the restriction of
ffold to [0, 2N ] is in L2([0, 2N ]). In [4] it is shown that the result above extends
to a similar result for the periodized/folded basis (i.e. Âfold

m,n ), so that we obtain
dual Riesz bases for L2([0, N ]) and L2([0, 2N ]) instead of L2(R). The result on
the vanishing moments does not extend, however. One can, however, alter some
of the basis functions so that one achieves this. This simply changes some of the
columns in the DWT/IDWT matrices. Note that our extension strategy is not
optimal. The extension is usually not di�erentiable at the boundary, so that the
corresponding wavelet coe�cients may be large, even though the wavelet has
many vanishing moments. The only way to get around this would be to find an
extension strategy which gave a more regular extension. However, natural images
may not have high regularity, which would make such an extension strategy
useless.
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7.2.1 Sketch of proof for the biorthogonality in Proposi-
tion 7.7 (1)

We first show that �
0

and �̃
0

are biorthogonal. Recall that definition (7.4) said
that gN (Ê) =

rN
s=1

⁄G0 (Ê/2

s
)Ô

2

‰
[0,2fi]

(2≠N Ê). Let us similarly define hN (Ê) =
rN

s=1

⁄H0 (Ê/2

s
)Ô

2

‰
[0,2fi]

(2≠N Ê). Recall that gN æ „̂ and hN æ ˆ̃„ pointwise as
N æ Œ. We have that

gN+1

(Ê) = ⁄G0(Ê/2)Ô
2

gN (Ê/2) hN+1

(Ê) = ⁄H0(Ê/2)Ô
2

hN (Ê/2).

gN , hN are compactly supported, and equal to trigonometric polynomials on
their support, so that gN , hN œ L2(R). Since the Fourier transform also is an
isomorphism og L2(R) onto itself, there exist functions uN , vN œ L2(R) so that
gN = ûN , hN = v̂N . Since the above relationship equals that of Equation (7.3),
with „̂ replaced with gN , we must have that

uN+1

(t) =
ÿ

n

(G
0

)n,0

Ô
2uN (2t ≠ n) vN+1

(t) =
ÿ

n

(H
0

)
0,n

Ô
2vN (2t ≠ n).

Now, note that g
0

(Ê) = h
0

(Ê) = ‰
[0,1]

(Ê). Since Èu
0

, v
0

Í = Èg
0

, h
0

Í we get that

⁄ ≠Œ

Œ
u

0

(t)v
0

(t ≠ k)dt =
⁄ ≠Œ

Œ
g

0

(‹)h
0

(‹)e2fiik‹d‹ =
⁄

2fi

0

e≠2fiik‹d‹ = ”k,0.

Now assume that we have proved that ÈuN (t), vN (t ≠ k)Í = ”k,0. We then get
that

ÈuN+1

(t), vN+1

(t ≠ k)Í = 2
ÿ

n1,n2

(G
0

)n1,0(H
0

)
0,n2ÈuN (2t ≠ n

1

), vN (2(t ≠ k) ≠ n
2

)Í

= 2
ÿ

n1,n2

(G
0

)n1,0(H
0

)
0,n2ÈuN (t), vN (t + n

1

≠ n
2

≠ 2k)Í

=
ÿ

n1,n2|n1≠n2=2k

(G
0

)n1,0(H
0

)
0,n2 =

ÿ

n

(H
0

)
0,n≠2k(G

0

)n,0

=
ÿ

n

(H
0

)
2k,n(G

0

)n,0 =
ÿ

n

H
2k,nGn,0 = (HG)

2k,0 = I
2k,0 = ”k,0

where we did the change of variables u = 2t ≠ n
1

. There is an extra argument to
show that gN æL2 „̂ (stronger than pointwise convergence as was stated above),
so that also uN æL2 „ œ L2(R), since the Fourier transform is an isomorphism
of L2(R) onto itself. It follows that

È„m,k, „̃m,lÍ = lim
NæŒ

ÈuN (t ≠ k), vN (t ≠ l)Í = ”k,l.
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While proving this one also establishes that

|„̂(Ê)| Æ C(1 + |Ê|)≠1/2≠‘ | ˆ̃„(Ê)| Æ C(1 + |Ê|)≠1/2≠‘, (7.11)

where ‘ = L ≠ 1/2 ≠ log Bk/ log 2 > 0 due to Assumption (7.7). In the paper
it is proved that this condition implies that the bases constitute dual frames.
The biorthogonality is used to show that they also are dual Riesz bases (i.e. that
they also are linearly independent).

7.2.2 Sketch of proof for the biorthogonality of in Propo-
sition 7.7 (2)

The biorthogonality of  m,n and  ̃m,n can be deduced from the biorthogonality
of �

0

and �̃
0

as follows. We have that

ÈÂ
0,k, Ẫ

0,lÍ =
ÿ

n1,n2

(G
1

)n1,1(H
1

)
1,n2È„

1,n1+2k(t)„̃
1,n2+2l(t)Í

=
ÿ

n

(G
1

)n,1(H
1

)
1,n+2(k≠l) =

ÿ

n

(H
1

)
1+2(l≠k),n(G

1

)n,1 =
ÿ

n

H
1+2(l≠k),nGn,1

= (HG)
1+2(l≠k),1 = ”k,0.

Similarly,

ÈÂ
0,k„̃

0,lÍ =
ÿ

n1,n2

(G
1

)n1,1(H
0

)
0,n2È„

1,n1+2k(t)„̃
1,n2+2l(t)Í =

ÿ

n

(G
1

)n,1(H
0

)
0,n+2(k≠l)

=
ÿ

n

(H
0

)
2(l≠k),n(G

1

)n,1 =
ÿ

n

H
2(l≠k),nGn,1 = (HG)

2(l≠k),1 = 0

È„
0,kẪ

0,lÍ =
ÿ

n1,n2

(G
0

)n1,0(H
1

)
1,n2È„

1,n1+2k(t)„̃
1,n2+2l(t)Í =

ÿ

n

(G
0

)n,0(H
1

)
1,n+2(k≠l)

=
ÿ

n

(H
1

)
1+2(l≠k),n(G

0

)n,0 =
ÿ

n

H
1+2(l≠k),nGn,0 = (HG)

1+2(l≠k),0 = 0.

From this we also get with a simple change of coordinates that

ÈÂm,k, Ẫm,lÍ = ÈÂm,k, „̃m,lÍ = È„m,k, Ẫm,lÍ = 0.

Finally, if mÕ < m, „mÕ,kÕ , ÂmÕ,k can be written as a linear combination of „m,l,
so that È„mÕ,k, Ẫm,lÍ = ÈÂmÕ,k, Ẫm,lÍ = 0 due to what we showed above. Similarly,
È„̃mÕ,k, Âm,lÍ = ÈẪmÕ,k, Âm,lÍ = 0.

7.2.3 Regularity and vanishing moments
Now assume also that Bk < 2L≠1≠m, so that log Bk < L ≠ 1 ≠ m. We have
that ‘ = L ≠ 1/2 ≠ log Bk/ log 2 > L ≠ 1/2 ≠ L + 1 + m = m + 1/2, so that
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|„̂(Ê)| < C(1+ |Ê|)≠1/2≠‘ = C(1+ |Ê|)≠m≠1≠” for some ” > 0. This implies that
„̂(Ê)(1 + |Ê|)m < C(1 + |Ê|)≠1≠” œ L1. An important property of the Fourier
transform is that „̂(Ê)(1 + |Ê|)m œ L1 if and only if „ is m times di�erentiable.
This property implies that „, and thus Â is m times di�erentiable. Similarly, „̃,
Ẫ are m̃ times di�erentiable.

In [5] it is also proved that if

• Âm,n and Ẫm,n are biorthogonal bases,

• Â is m times di�erentiable with all derivatives Â(l)(t) of order l Æ m
bounded, and

• Ẫ(t) < C(1 + |t|)m+1,

then Ẫ has m + 1 vanisning moments. In our case we have that Â and Ẫ have
compact support, so that these conditions are satisfied. It follows that Ẫ has
m + 1 vanisning moments.

In the next section we will construct a wide range of forward and reverse
filter bank transforms which invert each other, and which give rise to wavelets.

In [5] one checks that many of these wavelets satisfy (7.7) and (7.8) (implying
that they give rise to dual Riesz bases for L2(R)), or the more general (7.10)
(implying a certain regularity and a certain number of vanishing moments).
Requirements on the filters lengths in order to obtain a given number of vanishing
moments are also stated.

Exercise 7.1: Implementation of the cascade algorithm
Let us consider the following code, which shows how the cascade algorithm can
be used to plot the scaling functions and the mother wavelet of a wavelet and
its dual wavelet with given kernels, over the interval [a, b].

function plotwaveletfunctions(invf,a,b)
% Plot scaling functions and mother wavelets (dual or not),...
% using the cascade algorithm.
nres = 10;
t=linspace(a,b,(b-a)*2^nres);

coordsvm = zeros((b-a)*2^nres, 1);
coordsvm(1) = 1;
coordsvm = 2^(nres/2)*IDWTImpl(coordsvm, nres, invf, 0, 0);
subplot(2, 2, 1);
plot(t,coordsvm([(b*2^nres+1):((b-a)*2^nres) 1:(b*2^nres)]))
title(’\phi’)

coordsvm = zeros((b-a)*2^nres, 1);
coordsvm(b - a + 1) = 1;
coordsvm = 2^(nres/2)*IDWTImpl(coordsvm, nres, invf, 0, 0);
subplot(2, 2, 2);
plot(t,coordsvm([(b*2^nres+1):((b-a)*2^nres) 1:(b*2^nres)]))
title(’\psi’)

coordsvm = zeros((b-a)*2^nres, 1);
coordsvm(1) = 1;
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coordsvm = 2^(nres/2)*IDWTImpl(coordsvm, nres, invf, 0, 1);
subplot(2, 2, 3);
plot(t,coordsvm([(b*2^nres+1):((b-a)*2^nres) 1:(b*2^nres)]))
title(’\phi~’)

coordsvm = zeros((b-a)*2^nres, 1);
coordsvm(b - a + 1) = 1;
coordsvm = 2^(nres/2)*IDWTImpl(coordsvm, nres, invf, 0, 1);
subplot(2, 2, 4);
plot(t,coordsvm([(b*2^nres+1):((b-a)*2^nres) 1:(b*2^nres)]))
title(’\psi~’)

a) Run the function plotwaveletfunctions with the three di�erent kernels
IDWTKernelHaar, IDWTKernelpwl0, and ‘IDWTKernelpwl2‘ to plot all scaling
functions and mother wavelets for the Haar wavelet and the two piecewise linear
wavelets we have encountered. This should verify the di�erent plots for these we
have seen previously in the book.

b) Explain that the input to IDWTImpl in the code above are the coordinates of
„

0,0, Â
0,0, „̃

0,0, and Ẫ
0,0 in the basis (�

0

, 
0

, 
1

, 
2

, · · · , m≠1

), respectively.

c) In the code above, we wanted the functions to be plotted on [a, b]. Explain
from this why the coordsvm-vector have been rearranged as on the line where
the plot-command is called.

d) In the code above, we turned o� symmetric extensions (the symm-argument is
0). Attempt to use symmetric extensions instead, and observe the new plots you
obtain. Can you explain why these new plots do not show the correct functions,
while the previous plots are correct?

e) In the code you see that all values are scaled with the factor 2m/2 before
they are plotted. Can you think out an explanation to why this is done?

Exercise 7.2: Using the cascade algorithm
In Exercise 6.10 we constructed a new mother wavelet Â̂ for piecewise linear
functions by finding constants –, —, “, ” so that

Â̂ = Â ≠ –„
0,0 ≠ —„

0,1 ≠ ”„
0,2 ≠ “„

0,N≠1

.

Use the cascade algorithm to plot Â̂. Do this by using the wavelet kernel for
the piecewise linear wavelet (do not use the code above, since we have not
implemented kernels for this wavelet yet).

Exercise 7.3: Implementing the traspose transforms
Since the dual of a wavelet is constructed by transposing filters, one may suspect
that taking the dual is the same as taking the transpose. However, show that
the DWT, the dual DWT, the transpose of the DWT, and the transpose of the
dual DWT, can be computed as follows:
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DWTImpl( x, m, DWTkernel, 1, 0); % DWT
DWTImpl( x, m, DWTkernel, 1, 1); % Dual DWT
IDWTImpl(x, m, IDWTkernel, 1, 1); % Transpose of the DWT
IDWTImpl(x, m, IDWTkernel, 1, 0); % Transpose of the dual DWT

Similar statements hold for the IDWT as well.

7.3 Vanishing moments
The scaling functions and mother wavelets we constructed in Chapter 5 were
very simple. They were however, enough to provide scaling functions which
were di�erentiable. This may clearly be important for signal approximation, at
least in cases where we know certain things about the regularity of the functions
we approximate. However, there seemed to be nothing which dictated how the
mother wavelet should be chosen in order to be useul. To see that this may pose
a problem, consider the mother wavelet we hose for piecewise linear functions.
Set N = 1 and consider the space V

10

, which has dimension 210. When we
apply a DWT, we start with a function g

10

œ V
10

. This may be a very good
representation of the underlying data. However, when we compute gm≠1

we
just pick every other coe�cient from gm. By the time we get to g

0

we are just
left with the first and last coe�cient from g

10

. In some situations this may be
adequate, but usually not.

Idea 7.8. Approximation.
We would like a wavelet basis to be able to represent f e�ciently. By this

we mean that the approximation f (m) =
q

n c
0,n„

0,n +
q

mÕ<m,n wmÕ,nÂmÕ,n to
f from Observation 7.11 should converge quickly for the f we work with, as
m increases. This means that, with relatively few Âm,n, we can create good
approximations of f .

In this section we will address a property which the mother wavelet must
fulfill in order to be useful in this respect. To motivate this property, let us first
use decompose f œ Vm as

f =
N≠1ÿ

n=0

Èf, „̃
0,nÍ„

0,n +
m≠1ÿ

r=0

2

rN≠1ÿ

n=0

Èf, Ẫr,nÍÂr,n. (7.12)

If f is s times di�erentiable, it can be represented as f = Ps(x) + Qs(x), where
Ps is a polynomial of degree s, and Qs is a function which is very small (Ps

could for instance be a Taylor series expansion of f). If in addition Ètk, ẪÍ = 0,
for k = 1, . . . , s, we have also that Ètk, Ẫr,tÍ = 0 for r Æ s, so that ÈPs, Ẫr,tÍ = 0
also. This means that Equation (7.12) can be written
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f =
N≠1ÿ

n=0

ÈPs + Qs, „̃
0,nÍ„

0,n +
m≠1ÿ

r=0

2

rN≠1ÿ

n=0

ÈPs + Qs, Ẫr,nÍÂr,n

=
N≠1ÿ

n=0

ÈPs + Qs, „̃
0,nÍ„

0,n +
m≠1ÿ

r=0

2

rN≠1ÿ

n=0

ÈPs, Ẫr,nÍÂr,n +
m≠1ÿ

r=0

2

rN≠1ÿ

n=0

ÈQs, Ẫr,nÍÂr,n

=
N≠1ÿ

n=0

Èf, „̃
0,nÍ„

0,n +
m≠1ÿ

r=0

2

rN≠1ÿ

n=0

ÈQs, Ẫr,nÍÂr,n.

Here the first sum lies in V
0

. We see that the wavelet coe�cients from Wr are
ÈQs, Ẫr,nÍ, which are very small since Qs is small. This means that the detail in
the di�erent spaces Wr is very small, which is exactly what we aimed for. Let
us summarize this as follows:

Theorem 7.9. Vanishing moments.
If a function f œ Vm is r times di�erentiable, and Ẫ has r vanishing mo-

ments, then f can be approximated well from V
0

. Moreover, the quality of this
approximation improves when r increases.

Having many vanishing moments is thus very good for compression, since
the corresponding wavelet basis is very e�cient for compression. In particular,
if f is a polynomial of degree less than or equal to k ≠ 1 and Ẫ has k vanishing
moments, then the detail coe�cients wm,n are exactly 0. Since („, Â) and („̃,
Ẫ) both are wavelet bases, it is equally important for both to have vanishing
moments. We will in the following concentrate on the number of vanishing
moments of Â.

The Haar wavelet has one vanishing moment, since Ẫ = Â and
s N

0

Â(t)dt = 0
as we noted in Observation 5.14. It is an exercise to see that the Haar wavelet
has only one vanishing moment, i.e.

s N

0

tÂ(t)dt ”= 0.

Theorem 7.10. Vanishing moments.
Assume that the filters are chosen so that the scaling functions exist. Then

the following hold

• The number of vanishing moments of Ẫ equals the multiplicity of a zero at
Ê = fi for ⁄G0(Ê).

• The number of vanishing moments of Â equals the multiplicity of a zero at
Ê = fi for ⁄H0(Ê).

number of vanishing moments of Â, Ẫ equal the multiplicities of the zeros of the
frequency responses ⁄H0(Ê), ⁄G0(Ê), respectively, at Ê = fi.

In other words, the flatter the frequency responses ⁄H0(Ê) and ⁄G0(Ê) are near
high frequencies (Ê = fi), the better the wavelet functions are for approximation
of functions. This is analogous to the smoothing filters we constructed previously,
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where the use of values from Pascals triangle resulted in filters which behaved
like the constant function one at low frequencies. The frequency response for the
Haar wavelet had just a simple zero at fi, so that it cannot represent functions
e�ciently. The result also proves why we should consider G

0

, H
0

as lowpass
filters, G

1

, H
1

as highpass filters.

Proof. We have that

⁄s≠Ẫ(≠t)(‹) = ≠
⁄ Œ

≠Œ
Ẫ(≠t)e≠2fii‹tdt. (7.13)

By di�erentiating this expression k times w.r.t. ‹ (di�erentiate under the integral
sign) we get

(⁄s≠Ẫ(≠t))
(k)(‹) = ≠

⁄
(≠2fiit)kẪ(t)e≠2fii‹tdt. (7.14)

Evaluating this at ‹ = 0 gives

(⁄s≠Ẫ(≠t))
(k)(0) = ≠

⁄
(≠2fiit)kẪ(t)dt. (7.15)

From this expression it is clear that the number of vanishing moments of Ẫ
equals the multiplicity of a zero at ‹ = 0 for ⁄s≠Ẫ(≠t)(‹), which we have already
shown equals the multiplicity of a zero at Ê = 0 for ⁄H1(Ê). Similarly it follows
that the number of vanishing moments of Â equals the multiplicity of a zero at
Ê = 0 for ⁄G1(Ê). Since we know that ⁄G0(Ê) has the same number of zeros at
fi as ⁄H1(Ê) has at 0, and ⁄H0(Ê) has the same number of zeros at fi as ⁄G1(Ê)
has at 0, the result follows.

These results explain how we can construct „, Â, „̃, Ẫ from FIR-filters H
0

,
H

1

, G
0

, G
1

satisfying the perfect reconstruction condition. Also, the results
explain how we can obtain such functions with as much di�erentiability and
as many vanishing moments as we want. We will use these results in the next
section to construct interesting wavelets. There we will also cover how we can
construct the simplest possible such filters.

There are some details which have been left out in this section: We have not
addressed why the wavelet bases we have constructed are linearly independent,
and why they span L2(R). Dual Riesz bases. These details are quite technical,
and we refer to [5] for them. Let us also express what we have found in terms of
analog filters.

Observation 7.11. Analog filters.
Let

f(t) =
ÿ

n

cm,n„m,n =
ÿ

n

c
0,n„

0,n +
ÿ

mÕ<m,n

wmÕ,nÂmÕ,n œ Vm.

cm,n and wm,n can be computed by sampling the output of an analog filter. To
be more precise,
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cm,n = Èf, „̃m,nÍ =
⁄ N

0

f(t)„̃m,n(t)dt =
⁄ N

0

(≠„̃m,0(≠t))f(2≠mn ≠ t)dt

wm,n = Èf, Ẫm,nÍ =
⁄ N

0

f(t)Ẫm,n(t)dt =
⁄ N

0

(≠Ẫm,0(≠t))f(2≠mn ≠ t)dt.

In other words, cm,n can be obtained by sampling s≠ ˜„m,0(≠t)

(f(t)) at the points
2≠mn, wm,n by sampling s≠ ˜Âm,0(≠t)

(f(t)) at 2≠mn, where the analog filters
s≠ ˜„m,0(≠t)

, s≠ ˜Âm,0(≠t)

were defined in Theorem 1.39, i.e.

s≠ ˜„m,0(≠t)

(f(t)) =
⁄ N

0

(≠„̃m,0(≠s))f(t ≠ s)ds (7.16)

s≠ ˜Âm,0(≠t)

(f(t)) =
⁄ N

0

(≠Ẫm,0(≠s))f(t ≠ s)ds. (7.17)

A similar statement can be made for f̃ œ Ṽm. Here the convolution kernels
of the filters were as before, with the exception that „, Â were replaced by „̃, Ẫ.
Note also that, if the functions „̃, Ẫ are symmetric, we can increase the precision
in the DWT with the method of symmetric extension also in this more general
setting.

7.4 Characterization of wavelets w.r.t. number
of vanishing moments

We have seen that wavelets are particularly suitable for approximation of func-
tions when the mother wavelet or the dual mother wavelet have vanishing
moments. The more vanishing moments they have, the more attractive they
are. In this section we will attempt to characterize wavelets which have a given
number of vanishing moments. In particular we will characterize the simplest
such, those where the filters have few filters coe�cients.

There are two particular cases we will look at. First we will consider the case
when all filters are symmetric. Then we will look at the case of orthonormal
wavelets. It turns out that these two cases are mutually disjoint (except for
trivial examples), but that there is a common result which can be used to
characterize the solutions to both problems. We will state the results in terms
of the multiplicities of the zeros of ⁄H0 , ⁄G0 at fi, which we proved are the same
as the number of vanishing moments.

7.4.1 Symmetric filters
The main result when the filters are symmetric looks as follows.

Theorem 7.12. Wavelet crirteria.
Assume that H

0

, H
1

, G
0

, G
1

are the filters of a wavelet, and that
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• the filters are symmetric,

• ⁄H0 has a zero of multiplicity N
1

at fi,

• ⁄G0 has a zero of multiplicity N
2

at fi.

Then N
1

and N
2

are even, and there exist a polynomial Q which satisfies

u(N1+N2)/2Q(1 ≠ u) + (1 ≠ u)(N1+N2)/2Q(u) = 2. (7.18)

so that ⁄H0(Ê), ⁄G0(Ê) can be written on the form

⁄H0(Ê) =
3

1
2(1 + cos Ê)

4N1/2

Q
1

3
1
2(1 ≠ cos Ê)

4
(7.19)

⁄G0(Ê) =
3

1
2(1 + cos Ê)

4N2/2

Q
2

3
1
2(1 ≠ cos Ê)

4
, (7.20)

where Q = Q
1

Q
2

.

Proof. Since the filters are symmetric, ⁄H0(Ê) = ⁄H0(≠Ê) and ⁄G0(Ê) =
⁄G0(≠Ê). Since einÊ + e≠inÊ = 2 cos(nÊ), and since cos(nÊ) is the real part of
(cos Ê + i sin Ê)n, which is a polynomial in cosk Ê sinl Ê with l even, and since
sin2 Ê = 1≠ cos2 Ê, ⁄H0 and ⁄G0 can both be written on the form P (cos Ê), with
P a real polynomial.

Note that a zero at fi in ⁄H0 , ⁄G0 corresponds to a factor of the form 1+e≠iÊ,
so that we can write

⁄H0(Ê) =
3

1 + e≠iÊ

2

4N1

f(eiÊ) = e≠iN1Ê/2 cosN1(Ê/2)f(eiÊ),

where f is a polynomial. In order for this to be real, we must have that
f(eiÊ) = eiN1Ê/2g(eiÊ) where g is real-valued, and then we can write g(eiÊ) as a
real polynomial in cos Ê. This means that ⁄H0(Ê) = cosN1(Ê/2)P

1

(cos Ê), and
similarly for ⁄G0(Ê). Clearly this can be a polynomial in eiÊ only if N

1

is even.
Both N

1

and N
2

must then be even, and we can write

⁄H0(Ê) = cosN1(Ê/2)P
1

(cos Ê) = (cos2(Ê/2))N1/2P
1

(1 ≠ 2 sin2(Ê/2))
= (cos2(Ê/2))N1/2Q

1

(sin2(Ê/2)),

where we have used that cos Ê = 1 ≠ 2 sin2(Ê/2), and defined Q
1

by the relation
Q

1

(x) = P
1

(1≠2x). Similarly we can write ⁄G0(Ê) = (cos2(Ê/2))N2/2Q
2

(sin2(Ê/2))
for another polynomial Q

2

. Using the identities

cos2

Ê

2 = 1
2(1 + cos Ê) sin2

Ê

2 = 1
2(1 ≠ cos Ê),
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we see that ⁄H0 and ⁄G0 satisfy equations (7.19) and (7.20). With Q = Q
1

Q
2

,
Equation (6.20) can now be rewritten as

2 = ⁄G0(Ê)⁄H0(Ê) + ⁄G0(Ê + fi)⁄H0(Ê + fi)

=
!
cos2(Ê/2)

"
(N1+N2)/2

Q(sin2(Ê/2)) +
!
cos2((Ê + fi)/2)

"
(N1+N2)/2

Q(sin2((Ê + fi)/2))
= (cos2(Ê/2))(N1+N2)/2Q(sin2(Ê/2)) + (sin2(Ê/2))(N1+N2)/2Q(cos2(Ê/2))
= (cos2(Ê/2))(N1+N2)/2Q(1 ≠ cos2(Ê/2)) + (1 ≠ cos2(Ê/2))(N1+N2)/2Q(cos2(Ê/2))

Setting u = cos2(Ê/2) we see that Q must fulfill the equation

u(N1+N2)/2Q(1 ≠ u) + (1 ≠ u)(N1+N2)/2Q(u) = 2,

which is Equation (7.18). This completes the proof.

While this result characterizes all wavelets with a given number of vanishing
moments, it does not say which of these have fewest filter coe�cients. The
polynomial Q decides the length of the filters H

0

, G
0

, however, so that what we
need to do is to find the polynomial Q of smallest degree. In this direction, note
first that the polynomials uN1+N2 and (1 ≠ u)N1+N2 have no zeros in common.
Bezouts theorem, proved in Section 7.4.3, states that the equation

uN q
1

(u) + (1 ≠ u)N q
2

(u) = 1 (7.21)

has unique solutions q
1

, q
2

with deg(q
1

), deg(q
2

) < (N
1

+ N
2

)/2. To find these
solutions, substituting 1 ≠ u for u gives the following equations:

uN q
1

(u) + (1 ≠ u)N q
2

(u) = 1
uN q

2

(1 ≠ u) + (1 ≠ u)N q
1

(1 ≠ u) = 1,

and uniqueness in Bezouts theorem gives that q
1

(u) = q
2

(1 ≠ u), and q
2

(u) =
q

1

(1 ≠ u). Equation (7.21) can thus be stated as

uN q
2

(1 ≠ u) + (1 ≠ u)N q
2

(u) = 1,

and comparing with Equation (7.18) (set N = (N
1

+ N
2

)/2) we see that Q(u) =
2q

2

(u). uN q
1

(u) + (1 ≠ u)N q
2

(u) = 1 now gives

q
2

(u) = (1 ≠ u)≠N (1 ≠ uN q
1

(u)) = (1 ≠ u)≠N (1 ≠ uN q
2

(1 ≠ u))

=
A

N≠1ÿ

k=0

3
N + k ≠ 1

k

4
uk + O(uN )

B
(1 ≠ uN q

2

(1 ≠ u))

=
N≠1ÿ

k=0

3
N + k ≠ 1

k

4
uk + O(uN ),
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where we have used the first N terms in the Taylor series expansion of (1 ≠ u)≠N

around 0. Since q
2

is a polynomial of degree N ≠ 1, we must have that

Q(u) = 2q
2

(u) = 2
N≠1ÿ

k=0

3
N + k ≠ 1

k

4
uk. (7.22)

Define Q(N)(u) = 2
qN≠1

k=0

!
N+k≠1

k

"
uk. The first Q(N) are

Q(1)(u) = 2 Q(2)(u) = 2 + 4u

Q(3)(u) = 2 + 6u + 12u2 Q(4)(u) = 2 + 8u + 20u2 + 40u3,

for which we compute

Q(1)

3
1
2(1 ≠ cos Ê)

4
= 2

Q(2)

3
1
2(1 ≠ cos Ê)

4
= ≠e≠iÊ + 4 ≠ eiÊ

Q(3)

3
1
2(1 ≠ cos Ê)

4
= 3

4e≠2iÊ ≠ 9
2e≠iÊ + 19

2 ≠ 9
2eiÊ + 3

4e2iÊ

Q(4)

3
1
2(1 ≠ cos Ê)

4
= ≠5

8e≠3iÊ + 5e≠2iÊ ≠ 131
8 e≠iÊ + 26 ≠ 131

8 eiÊ + 5e2iÊ ≠ 5
8e3iÊ,

Thus in order to construct wavelets where ⁄H0 , ⁄G0 have as many zeros at fi as
possible, and where there are as few filter coe�cients as possible, we need to
compute the polynomials above, factorize them into polynomials Q

1

and Q
2

,
and distribute these among ⁄H0 and ⁄G0 . Since we need real factorizations, we
must in any case pair complex roots. If we do this we obtain the factorizations

Q(1)

3
1
2(1 ≠ cos Ê)

4
= 2

Q(2)

3
1
2(1 ≠ cos Ê)

4
= 1

3.7321(eiÊ ≠ 3.7321)(e≠iÊ ≠ 3.7321)

Q(3)

3
1
2(1 ≠ cos Ê)

4
= 3

4
1

9.4438(e2iÊ ≠ 5.4255eiÊ + 9.4438)

◊ (e≠2iÊ ≠ 5.4255e≠iÊ + 9.4438)

Q(4)

3
1
2(1 ≠ cos Ê)

4
= 5

8
1

3.0407
1

7.1495(eiÊ ≠ 3.0407)(e2iÊ ≠ 4.0623eiÊ + 7.1495)

◊ (e≠iÊ ≠ 3.0407)(e≠2iÊ ≠ 4.0623e≠iÊ + 7.1495), (7.23)

The factors in these factorizations can be distributed as factors in the frequency
responses of ⁄H0(Ê), and ⁄G0(Ê). One possibility is to let one of these frequency
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responses absorb all the factors, another possibility is to split the factors as evenly
as possible across the two. When a frequency response absorbs more factors, the
corresponding filter gets more filter coe�cients. In the following examples, both
factor distribution strategies will be encountered. Note that it is straightforward
to use your computer to factor Q into a product of polynomials Q

1

and Q
2

.
First the roots function can be used to find the roots in the polynomials. Then
the conv function can be used to multiply together factors corresponding to
di�erent roots, to obtain the coe�cients in the polynomials Q

1

and Q
2

.

7.4.2 Orthonormal wavelets
Now we turn to the case of orthonormal wavelets, i.e. where G

0

= (H
0

)T ,
G

1

= (H
1

)T . For simplicity we will assume d = 0, – = ≠1 in conditions
(6.18) and (6.19) (this corresponded to requiring ⁄H1(Ê) = ≠⁄H0(Ê + fi) in the
definition of alternative QMF filter banks). We will also assume for simplicity
that G

0

is causal, meaning that t≠1

, t≠2

, . . . all are zero (the other solutions can
be derived from this). We saw that the Haar wavelet was such an orthonormal
wavelet. We have the following result:

Theorem 7.13. Criteria for perfect reconstruction.
Assume that H

0

, H
1

, G
0

, G
1

are the filters of an orthonormal wavelet (i.e. H
0

=
(G

0

)T and H
1

= (G
1

)T ) which also is an alternative QMF filter bank (i.e. ⁄H1(Ê) =
≠⁄H0(Ê + fi)). Assume also that ⁄G0(Ê) has a zero of multiplicity N at fi and
that G

0

is causal. Then there exists a polynomial Q which satisfies

uN Q(1 ≠ u) + (1 ≠ u)N Q(u) = 2, (7.24)
so that if f is another polynomial which satisfies f(eiÊ)f(e≠iÊ) = Q

!
1

2

(1 ≠ cos Ê)
"
,

⁄G0(Ê) can be written on the form

⁄G0(Ê) =
3

1 + e≠iÊ

2

4N

f(e≠iÊ), (7.25)

We avoided stating ⁄H0(Ê) in this result, since the relation H
0

= (G
0

)T gives
that ⁄H0(Ê) = ⁄G0(Ê). In particular, ⁄H0(Ê) also has a zero of multiplicity N
at fi. That G

0

is causal is included to simplify the expression further.

Proof. The proof is very similar to the proof of Theorem 7.12. N vanishing
moments and that G

0

is causal means that we can write

⁄G0(Ê) =
3

1 + e≠iÊ

2

4N

f(e≠iÊ) = (cos(Ê/2))N e≠iNÊ/2f(e≠iÊ),

where f is a real polynomial. Also

⁄H0(Ê) = ⁄G0(Ê) = (cos(Ê/2))N eiNÊ/2f(eiÊ).
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Condition (6.20) now says that

2 = ⁄G0(Ê)⁄H0(Ê) + ⁄G0(Ê + fi)⁄H0(Ê + fi)
= (cos2(Ê/2))N f(eiÊ)f(e≠iÊ) + (sin2(Ê/2))N f(ei(Ê+fi))f(e≠i(Ê+fi)).

Now, the function f(eiÊ)f(e≠iÊ) is symmetric around 0, so that it can be written
on the form P (cos Ê) with P a polynomial, so that

2 = (cos2(Ê/2))N P (cos Ê) + (sin2(Ê/2))N P (cos(Ê + fi))
= (cos2(Ê/2))N P (1 ≠ 2 sin2(Ê/2)) + (sin2(Ê/2))N P (1 ≠ 2 cos2(Ê/2)).

If we as in the proof of Theorem 7.12 define Q by Q(x) = P (1 ≠ 2x), we can
write this as

(cos2(Ê/2))N Q(sin2(Ê/2)) + (sin2(Ê/2))N Q(cos2(Ê/2)) = 2,

which again gives Equation (7.18) for finding Q. What we thus need to do
is to compute the polynomial Q

!
1

2

(1 ≠ cos Ê)
"

as before, and consider the
di�erent factorizations of this on the form f(eiÊ)f(e≠iÊ). Since this polynomial
is symmetric, a is a root if and only 1/a is, and if and only if ā is. If the real
roots are

b
1

, . . . ., bm, 1/b
1

, . . . , 1/bm,

and the complex roots are

a
1

, . . . , an, a
1

, . . . , an and 1/a
1

, . . . , 1/an, 1/a
1

, . . . , 1/an,

we can write

Q

3
1
2(1 ≠ cos Ê)

4

= K(e≠iÊ ≠ b
1

) . . . (e≠iÊ ≠ bm)
◊ (e≠iÊ ≠ a

1

)(e≠iÊ ≠ a
1

)(e≠iÊ ≠ a
2

)(e≠iÊ ≠ a
2

) · · · (e≠iÊ ≠ an)(e≠iÊ ≠ an)
◊ (eiÊ ≠ b

1

) . . . (eiÊ ≠ bm)
◊ (eiÊ ≠ a

1

)(eiÊ ≠ a
1

)(eiÊ ≠ a
2

)(eiÊ ≠ a
2

) · · · (eiÊ ≠ an)(eiÊ ≠ an)

where K is a constant. We now can define the polynomial f by

f(eiÊ) =
Ô

K(eiÊ ≠ b
1

) . . . (eiÊ ≠ bm)
◊ (eiÊ ≠ a

1

)(eiÊ ≠ a
1

)(eiÊ ≠ a
2

)(eiÊ ≠ a
2

) · · · (eiÊ ≠ an)(eiÊ ≠ an)

in order to obtain a factorization Q
!

1

2

(1 ≠ cos Ê)
"

= f(eiÊ)f(e≠iÊ). This con-
cludes the proof.
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In the previous proof we note that the polynomial f is not unique - we could
pair the roots in many di�erent ways. The new algorithm is thus as follows:

• As before, write Q
!

1

2

(1 ≠ cos Ê)
"

as a polynomial in eiÊ, and find the
roots.

• Split the roots into the two classes

{b
1

, . . . ., bm, a
1

, . . . , an, a
1

, . . . , an}
and

{1/b
1

, . . . , 1/bm, 1/a
1

, . . . , 1/an, 1/a
1

, . . . , 1/an},

and form the polynomial f as above.

• Compute ⁄G0(Ê) =
1

1+e≠iÊ

2

2N

f(e≠iÊ).

Clearly the filters obtained with this strategy are not symmetric since f is not
symmetric. In Section 7.7 we will take a closer look at wavelets constructed in
this way.

7.4.3 The proof of Bezouts theorem
Theorem 7.14. Existence of polynomials.

If p
1

and p
2

are two polynomials, of degrees n
1

and n
2

respectively, with no
common zeros, then there exist unique polynomials q

1

, q
2

, of degree less than
n

2

, n
1

, respectively, so that

p
1

(x)q
1

(x) + p
2

(x)q
2

(x) = 1. (7.26)

Proof. We first establish the existence of q
1

, q
2

satisfying Equation (7.26). Denote
by deg(P ) the degree of the polynomial P . Renumber the polynomials if necessary,
so that n

1

Ø n
2

. By polynomial division, we can now write

p
1

(x) = a
2

(x)p
2

(x) + b
2

(x),

where deg(a
2

) = deg(p
1

) ≠ deg(p
2

), deg(b
2

) < deg(p
2

). Similarly, we can write

p
2

(x) = a
3

(x)b
2

(x) + b
3

(x),

where deg(a
3

) = deg(p
2

) ≠ deg(b
2

), deg(b
3

) < deg(b
2

). We can repeat this
procedure, so that we obtain a sequence of polynomials an(x), bn(x) so that

bn≠1

(x) = an+1

(x)bn(x) + bn+1

(x), (7.27)

where deg an+1

= deg(bn≠1

) ≠ deg(bn), deg(bn+1

< deg(bn). Since deg(bn) is
strictly decreasing, we must have that bN+1

= 0 and bN ”= 0 for some N ,
i.e. bN≠1

(x) = aN+1

(x)bN (x). Since bN≠2

= aN bN≠1

+ bN , it follows that bN≠2
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can be divided by bN , and by induction that all bn can be divided by bN , in
particlar p

1

and p
2

can be divided by bN . Since p
1

and p
2

have no common
zeros, bN must be a nonzero constant.

Using Equation (7.27), we can write recursively

bN = bN≠2

≠ aN bN≠1

= bN≠2

≠ aN (bN≠3

≠ aN≠1

bN≠2

)
= (1 + aN aN≠1

)bN≠2

≠ aN bN≠3

.

By induction we can write

bN = a(1)

N,kbN≠k + a(2)

N,kbN≠k≠1

.

We see that the leading order term for a(1)

N,k is aN · · · aN≠k+1

, which has degree

(deg(bN≠2

)≠deg(bN≠1

)+· · ·+(deg(bN≠k≠1

)≠deg(bN≠k) = deg(bN≠k≠1

)≠deg(bN≠1

),

while the leading order term for a(2)

N,k is aN · · · aN≠k+2

, which similarly has order
deg(bN≠k) ≠ deg(bN≠1

). For k = N ≠ 1 we find

bN = a(1)

N,N≠1

b
1

+ a(2)

N,N≠1

b
0

= a(1)

N,N≠1

p
2

+ a(2)

N,N≠1

p
1

, (7.28)

with deg(a(1)

N,N≠1

) = deg(p
1

) ≠ deg(bN≠1

) < deg(p
1

) (since by construction
deg(bN≠1

) > 0), and deg(a(2)

N,N≠1

) = deg(p
2

) ≠ deg(bN≠1

) < deg(p
2

). From
Equation (7.28) it follows that q

1

= a(2)

N,N≠1

/bN and q
2

a(1)

N,N≠1

/bN satisfies
Equation (7.26), and that they satisfy the required degree constraints.

Now we turn to uniquness of solutions q
1

, q
2

. Assume that r
1

, r
2

are two
other solutions to Equation (7.26). Then

p
1

(q
1

≠ r
1

) + p
2

(q
2

≠ r
2

) = 0.

Since p
1

and p
2

have no zeros in common this means that every zero of p
2

is a
zero of q

1

≠ r
1

, with at least the same multiplicity. If q
1

”= r
1

, this means that
deg(q

1

≠ r
1

) Ø deg(p
2

), which is impossible since deg(q
1

) < deg(p
2

), deg(r
1

) <
deg(p

2

). Hence q
1

= r
1

. Similarly q
2

= r
2

, establishing uniqueness.

Exercise 7.4: Compute filters
Compute the filters H

0

, G
0

in Theorem 7.12 when N = N
1

= N
2

= 4, and
Q

1

= Q(4), Q
2

= 1. Compute also filters H
1

, G
1

so that we have perfect
reconstruction (note that these are not unique).
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7.5 A design strategy suitable for lossless com-
pression

We choose Q
1

= Q, Q
2

= 1. In this case there is no need to find factors in Q.
The frequency responses of the filters in the filter factorization are

⁄H0(Ê) =
3

1
2(1 + cos Ê)

4N1/2

Q(N)

3
1
2 (1 ≠ cos Ê)

4

⁄G0(Ê) =
3

1
2(1 + cos Ê)

4N2/2

, (7.29)

where N = (N
1

+N
2

)/2. Since Q(N) has degree N ≠1, ⁄H0 has degree N
1

+N
1

+
N

2

≠ 2 = 2N
1

+ N
2

≠ 2, and ⁄G0 has degree N
2

. These are both even numbers,
so that the filters have odd length. The names of these filters are indexed by
the filter lengths, and are called Spline wavelets, since, as we now now will show,
the scaling function for this design strategy is the B-spline of order N

2

: we have
that

⁄G0(Ê) = 1
2N2/2

(1 + cos Ê)N2/2 = cos(Ê/2)N2 .

Letting s be the analog filter with convolution kernel „ we can as in Equation
(7.3) write

⁄s(f) = ⁄s(f/2k)
kŸ

i=1

⁄G0(2fif/2i)
2 = ⁄s(f/2k)

kŸ

i=1

cosN2(fif/2i)
2

= ⁄s(f/2k)
kŸ

i=1

3
sin(2fif/2i)
2 sin(fif/2i)

4N2

= ⁄s(f/2k)
3

sin(fif)
2k sin fif/2k

4N2

,

where we have used the identity cos Ê = sin(2Ê)

2 sin Ê . If we here let k æ Œ, and use
the identity limfæ0

sin f
f = 1, we get that

⁄s(f) = ⁄s(0)
3

sin(fif)
fif

4N2

.

On the other hand, the frequency response of ‰
[≠1/2,1/2)

(t)

=
⁄

1/2

≠1/2

e≠2fiiftdt =
5

1
≠2fiif

e≠2fiift

6
1/2

≠1/2

= 1
≠2fiif

(e≠fiif ≠ efiif ) = 1
≠2fiif

2i sin(≠fif) = sin(fif)
fif

.
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Due to this
1

sin(fif)

fif

2N2
is the frequency response of úN2

k=1

‰
[≠1/2,1/2)

(t). By the
uniqueness of the frequency response we have that „(t) = „̂(0)úN2

k=1

‰
[≠1/2,1/2)

(t).
In Exercise 7.6 you will be asked to show that this scaling function gives rise to
the multiresolution analysis of functions which are piecewise polynomials which
are di�erentiable at the borders, also called splines. This explains why this type
of wavelet is called a spline wavelet. To be more precise, the resolution spaces
are as follows.

Definition 7.15. Resolution spaces of piecewise polynomials.
We define Vm as the subspace of functions which are r ≠ 1 times continuously

di�erentiable and equal to a polynomial of degree r on any interval of the form
[n2≠m, (n + 1)2≠m].

Note that the piecewise linear wavelet can be considered as the first Spline
wavelet. This is further considered in the following example.

Example 7.16. The Spline 5/3 wavelet.
For the case of N

1

= N
2

= 2 when the first design strategy is used, equations
(7.19) and (7.20) take the form

⁄G0(Ê) = 1
2(1 + cos Ê) = 1

4eiÊ + 1
2 + 1

4e≠iÊ

⁄H0(Ê) = 1
2(1 + cos Ê)Q(1)

3
1
2(1 ≠ cos Ê)

4
= 1

4(2 + eiÊ + e≠iÊ)(4 ≠ eiÊ ≠ e≠iÊ)

= ≠1
4e2iÊ + 1

2eiÊ + 3
2 + 1

2e≠iÊ ≠ 1
4e≠2iÊ.

The filters G
0

, H
0

are thus

G
0

=
;

1
4 ,

1
2 ,

1
4

<
H

0

=
;

≠1
4 ,

1
2 ,

3
2 ,

1
2 , ≠1

4

<

The length of the filters are 3 and 5 in this case, so that this wavelet is called
the Spline 5/3 wavelet. Up to a constant, the filters are seen to be the same as
those of the alternative piecewise linear wavelet, see Example 6.19. Now, how
do we find the filters (G

1

, H
1

)? Previously we saw how to find the constant – in
Theorem 6.17 when we knew one of the two pairs (G

0

, G
1

), (H
0

, H
1

). This was
the last part of information we needed in order to construct the other two filters.
Here we know (G

0

, H
0

) instead. In this case it is even easier to find (G
1

, H
1

)
since we can set – = 1. This means that (G

1

, H
1

) can be obtained simply by
adding alternating signs to (G

0

, H
0

), i.e. they are the corresponding highpass
filters. We thus can set

G
1

=
;

≠1
4 , ≠1

2 ,
3
2 , ≠1

2 , ≠1
4

<
H

1

=
;

≠1
4 ,

1
2 , ≠1

4

<
.
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We have now found all the filters. It is clear that the forward and reverse filter
bank transforms here di�er only by multiplication with a constant from those of
the the alternative piecewise linear wavelet, so that this gives the same scaling
function and mother wavelet as that wavelet.

The coe�cients for the Spline wavelets are always dyadic fractions, and are
therefore suitable for lossless compression, as they can be computed using low
precision arithmetic and bitshift operations. The particular Spline wavelet from
Example 7.16 is used for lossless compression in the JPEG2000 standard.

Exercise 7.5: Viewing the frequency response
In this exercise we will see how we can view the frequency responses, scaling
functions and mother wavelets for any spline wavelet.

a) Write a function which takes N
1

and N
2

as input, computes the filter coef-
ficients of H

0

and G
0

using equation (7.29) in the compendium, and plots the
frequency responses of G

0

and H
0

. Recall that the frequency response can be
obtained from the filter coe�cients by taking a DFT. You will have use for the
conv function here, and that the frequency response (1 + cos Ê)/2 corresponds
to the filter with coe�cients {1/4, 1/2, 1/4}.

b) Recall that in Exercise 6.12 we implemented DWT and IDWT kernels, which
worked for any set of symmetric filters. Combine these kernels with your computa-
tion of the filter coe�cients from a), and use the function plotwaveletfunctions
to plot the corresponding scaling functions and mother wavelets for di�erent N

1

and N
2

.

Exercise 7.6: Wavelets based on higher degree polynomials
Show that Br(t) = úr

k=1

‰
[≠1/2,1/2)

(t) is r ≠ 2 times di�erentiable, and equals a
polynomial of degree r ≠ 1 on subintervals of the form [n, n + 1]. Explain why
these functions can be used as basis for the spaces Vj of functions which are
piecewise polynomials of degree r ≠1 on intervals of the form [n2≠m, (n+1)2≠m],
and r ≠ 2 times di�erentiable. Br is also called the B-spline of order r.

7.6 A design strategy suitable for lossy compres-
sion

The factors of Q are split evenly among Q
1

and Q
2

. In this case we need to
factorize Q into a product of real polynomials. This can be done by finding
all roots, and pairing the complex conjugate roots into real second degree
polynomials (if Q is real, its roots come in conjugate pairs), and then distribute
these as evenly as possible among Q

1

and Q
2

. These filters are called the
CDF-wavelets, after Cohen, Daubechies, and Feauveau, who discovered them.



CHAPTER 7. CONSTRUCTING INTERESTING WAVELETS 278

Example 7.17. The CDF 9/7 wavelet.
We choose N

1

= N
2

= 4. In Equation (7.23) we pair inverse terms to obtain

Q(3)

3
1
2(1 ≠ cos Ê)

4
= 5

8
1

3.0407
1

7.1495(eiÊ ≠ 3.0407)(e≠iÊ ≠ 3.0407)

◊ (e2iÊ ≠ 4.0623eiÊ + 7.1495)(e≠2iÊ ≠ 4.0623e≠iÊ + 7.1495)

= 5
8

1
3.0407

1
7.1495(≠3.0407eiÊ + 10.2456 ≠ 3.0407e≠iÊ)

◊ (7.1495e2iÊ ≠ 33.1053eiÊ + 68.6168 ≠ 33.1053e≠iÊ + 7.1495e≠2iÊ).

We can write this as Q
1

Q
2

with Q
1

(0) = Q
2

(0) when

Q
1

(Ê) = ≠1.0326eiÊ + 3.4795 ≠ 1.0326e≠iÊ

Q
2

(Ê) = 0.6053e2iÊ ≠ 2.8026eiÊ + 5.8089 ≠ 2.8026e≠iÊ + 0.6053e≠2iÊ,

from which we obtain

⁄G0(Ê) =
3

1
2(1 + cos Ê)

4
2

Q
1

(Ê)

= ≠0.0645e3iÊ ≠ 0.0407e2iÊ + 0.4181eiÊ + 0.7885
+ 0.4181e≠iÊ ≠ 0.0407e≠2iÊ ≠ 0.0645e≠3iÊ

⁄H0(Ê) =
3

1
2(1 + cos Ê)

4
2

40Q
2

(Ê)

= 0.0378e4iÊ ≠ 0.0238e3iÊ ≠ 0.1106e2iÊ + 0.3774eiÊ + 0.8527
+ 0.3774e≠iÊ ≠ 0.1106e≠2iÊ ≠ 0.0238e≠3iÊ + 0.0378e≠4iÊ.

The filters G
0

, H
0

are thus

G
0

= {0.0645, 0.0407, ≠0.4181, ≠0.7885, ≠0.4181, 0.0407, 0.0645}
H

0

= {≠0.0378, 0.0238, 0.1106, ≠0.3774, ≠0.8527, ≠0.3774, 0.1106, 0.0238, ≠0.0378}.

The corresponding frequency responses are plotted in Figure 7.2.
It is seen that both filters are lowpass filters also here, and that the are closer

to an ideal bandpass filter. Here, the frequency response acts even more like the
constant zero function close to fi, proving that our construction has worked. We
also get

G
1

= {≠0.0378, ≠0.0238, 0.1106, 0.3774, ≠0.8527, 0.3774, 0.1106, ≠0.0238, ≠0.0378}
H

1

= {≠0.0645, 0.0407, 0.4181, ≠0.7885, 0.4181, 0.0407, ≠0.0645}.
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Figure 7.2: The frequency responses ⁄H0(Ê) (left) and ⁄G0(Ê) (right) for the
CDF 9/7 wavelet.

The length of the filters are 9 and 7 in this case, so that this wavelet is called
the CDF 9/7 wavelet. This wavelet is for instance used for lossy compression with
JPEG2000 since it gives a good tradeo� between complexity and compression.

In Example 6.19 we saw that we had analytical expressions for the scaling
functions and the mother wavelet, but that we could not obtain this for the dual
functions. For the CDF 9/7 wavelet it turns out that none of the four functions
have analytical expressions. Let us therefore use the cascade algorithm, as we
did in Example 7.1 to plot these functions. Note first that since G

0

has 7 filter
coe�cients, and G

1

has 9 filter coe�cients, it follows from Theorem 6.11 that
supp(„) = [≠3, 3], supp(Â) = [≠3, 4], supp(„̃) = [≠4, 4], and supp(Ẫ) = [≠3, 4].
Plotting the scaling functions and mother wavelets over these supports using
the cascade algorithm gives the plots in Figure 7.3. Again they have irregular
shapes, but now at least the functions and dual functions more resemble each
other.

In the above example there was a unique way of factoring Q into a product
of real polynomials. For higher degree polynomials there is no unique way to
form to distribute the factors, and we will not go into what strategy can be used
for this. In general, the steps we must go through are as follows:

• Compute the polynomial Q, and find its roots.

• Pair complex conjugate roots into real second degree polynomials, and
form polynomials Q

1

, Q
2

.

• Compute the coe�cients in equations (7.19) and (7.20).

Exercise 7.7: Generate plots
Generate the plots from Figure 7.3 using the cascade algorithm. Reuse the code
from Exercise 7.1 in order to achieve this.
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Figure 7.3: Scaling functions and mother wavelets for the CDF 9/7 wavelet.

7.7 Orthonormal wavelets
Since the filters here are not symmetric, the method of symmetric extension does
not work in the same simple way as before. This partially explains why symmetric
filters are used more often: They may not be as e�cient in representing functions,
since the corresponding basis is not orthogonal, but their simple implementation
still makes them attractive.

In Theorem 7.13 we characterized orthonormal wavelets where G
0

was causal.
All our filters have an even number, say 2L, of filter coe�cients. We can also
find an orthonormal wavelet where H

0

has a minimum possible overweight of
filter coe�cients with negative indices, H

1

a minimum possible overweight of
positive indices, i.e. that the filters can be written with the following compact
notation:

H
0

= {t≠L, . . . , t≠1

, t
0

, t
1

, . . . , tL≠1

} H
1

= {s≠L+1

, . . . , s≠1

, s
0

, s
1

, . . . , sL}.
(7.30)

To see why, Theorem 6.17 says that we first can shift the filter coe�cients of
H

0

so that it has this form (we then need to shift G
0

in the opposite direction).
H

1

, G
1

then can be defined by – = 1 and d = 0. We will follow this convention
for the orthonormal wavelets we look at.
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The polynomials Q(0), Q(1), and Q(2) require no further action to obtain
the factorization f(eiÊ)f(e≠iÊ) = Q

!
1

2

(1 ≠ cos Ê)
"
. The polynomial Q(3) in

Equation (7.23) can be factored further as

Q(3)

3
1
2(1 ≠ cos Ê)

4
= 5

8
1

3.0407
1

7.1495(e≠3iÊ ≠ 7.1029e≠2iÊ + 19.5014≠iÊ ≠ 21.7391)

◊ (e3iÊ ≠ 7.1029e2iÊ + 19.5014iÊ ≠ 21.7391),

which gives that f(eiÊ) =
Ò

5

8

1

3.0407

1

7.1495

(e3iÊ≠7.1029e2iÊ+19.5014iÊ≠21.7391).
This factorization is not unique, however. This gives the frequency response
⁄G0(Ê) =

1
1+e≠iÊ

2

2N

f(e≠iÊ) as

1
2(e≠iÊ + 1)

Ô
2

1
4(e≠iÊ + 1)2

Ú
1

3.7321(e≠iÊ ≠ 3.7321)

1
8(e≠iÊ + 1)3

Ú
3
4

1
9.4438(e≠2iÊ ≠ 5.4255e≠iÊ + 9.4438)

1
16(e≠iÊ + 1)4

Ú
5
8

1
3.0407

1
7.1495(e≠3iÊ ≠ 7.1029e≠2iÊ + 19.5014≠iÊ ≠ 21.7391),

which gives the filters

G
0

= (H
0

)T =(
Ô

2/2,
Ô

2/2)
G

0

= (H
0

)T =(≠0.4830, ≠0.8365, ≠0.2241, 0.1294)
G

0

= (H
0

)T =(0.3327, 0.8069, 0.4599, ≠0.1350, ≠0.0854, 0.0352)
G

0

= (H
0

)T =(≠0.2304, ≠0.7148, ≠0.6309, 0.0280, 0.1870, ≠0.0308, ≠0.0329, 0.0106)

so that we get 2, 4, 6 and 8 filter coe�cients in G
0

= (H
0

)T . We see that the
filter coe�cients when N = 1 are those of the Haar wavelet. The three next
filters we have not seen before. The filter G

1

= (H
1

)T can be obtained from the
relation ⁄G1(Ê) = ≠⁄G0(Ê + fi), i.e. by reversing the elements and adding an
alternating sign, plus an extra minus sign, so that

G
1

= (H
1

)T =(
Ô

2/2, ≠
Ô

2/2)
G

1

= (H
1

)T =(0.1294, 0.2241, ≠0.8365, 0.4830)
G

1

= (H
1

)T =(0.0352, 0.0854, ≠0.1350, ≠0.4599, 0.8069, ≠0.3327)
G

1

= (H
1

)T =(0.0106, 0.0329, ≠0.0308, ≠0.1870, 0.0280, 0.6309, ≠0.7148, 0.2304).



CHAPTER 7. CONSTRUCTING INTERESTING WAVELETS 282

Figure 7.4: The magnitudes |⁄G0(Ê)| = |⁄H0(Ê)| for the first orthonormal
wavelets.

Frequency responses are shown in Figure 7.4 for N = 1 to N = 6. It is seen that
the frequency responses get increasingly flatter as N increases. The frequency
responses are now complex, so their magnitudes are plotted.

Clearly these filters have lowpass characteristic. We also see that the high-
pass characteristics resemble the lowpass characteristics. We also see that the
frequency response gets flatter near the high and low frequencies, as N increases.
One can verify that this is the case also when N is increased further. The shapes
for higher N are very similar to the frequency responses of those filters used in
the MP3 standard (see Figure 3.12). One di�erence is that the support of the
latter is concentrated on a smaller set of frequencies.

The way we have defined the filters, one can show in the same way as in
the proof of Theorem 6.11 that, when all filters have 2N coe�cients, „ = „̃ has
support [≠N + 1, N ], Â = Ẫ has support [≠N + 1/2, N ≠ 1/2] (i.e. the support
of Â is symmetric about the origin). In particular we have that

• for N = 2: supp(„) = [≠1, 2], supp(Â) = [≠3/2, 3/2],

• for N = 3: supp(„) = [≠2, 3], supp(Â) = [≠5/2, 5/2],

• for N = 4: supp(„) = [≠3, 4], supp(Â) = [≠7/2, 7/2].

The scaling functions and mother wavelets are shown in Figure 7.5. All functions
have been plotted over [≠4, 4], so that all these support sizes can be verified.
Also here we have used the cascade algorithm to approximate the functions.
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Figure 7.5: The scaling functions and mother wavelets for orthonormal wavelets
with N vanishing moments, for di�erent values of N .

7.8 Summary
We started the section by showing how filters from filter bank matrices can give
rise to scaling functions and mother wavelets. We saw that we obtained dual
function pairs in this way, which satisfied a mutual property called biorthogonal-
ity. We then saw how di�erentiable scaling functions or mother wavelets with
vanishing moments could be constructed, and we saw how we could construct
the simplest such. These could be found in terms of the frequency responses
of the involved filters. Finally we studied some examples with applications to
image compression.

For the wavelets we constructed in this chapter, we also plotted the corre-
sponding scaling functions and mother wavelets (see figures 7.1, 7.3, 7.5). The
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importance of these functions are that they are particularly suited for approxi-
mation of regular functions, and providing a compact representation of these
functions which is localized in time. It seems di�cult to guess that these strange
shapes are connected to such approximation. Moreover, it may seem strange
that, although these functions are useful, we can’t write down exact expressions
for them, and they are only approximated in terms of the Cascade Algorithm.

In the literature, the orthonormal wavelets with compact support we have
constructed were first constructed in [8]. Biorthogonal wavelets were first con-
structed in [5].



Chapter 8

The polyphase
representation and wavelets

In Chapter 6 we saw that we could express wavelet transformations and more
general transformations in terms of filters. Through this we obtained intuition
for what information the di�erent parts of a wavelet transformation represent,
in terms of lowpass and highpass filters. We also obtained some insight into the
filters used in the transformation used in the MP3 standard. We expressed the
DWT and IDWT implementations in terms of what we called kernel transforma-
tions, and these were directly obtained from the filters of the wavelet.

We have looked at many wavelets, however, but have only stated the kernel
transformation for the Haar wavelet. In order to use these wavelets in sound
and image processing, or in order to use the cascade algorithm to plot the
corresponding scaling functions and mother wavelets, we need to make these
kernel transformations. This will be one of the goals in this chapter. This will
be connected to what we will call the polyphase representation of the wavelet.
This representation will turn out to be useful for di�erent reasons than the
filter representation as well. First of all, with the polyphase representation,
transformations can be viewed as block matrices where the blocks are filters.
This allows us to prove results in a di�erent way than for filter bank transforms,
since we can prove results through block matrix manipulation. There will be
two major results we will prove in this way.

First, in Section 8.1 we obtain a factorization of a wavelet transformation
into sparse matrices, called elementary lifting matrices. We will show that this
factorization reduces the number of arithmetic operations, and also enables
us to compute the DWT in-place, in a similar way to how the FFT could
be computed in-place after a bit-reversal. This is important: recall that we
previously factored a filter into a product of smaller filters which is useful for
e�cient hardware implementations. But this did not address the fact that
only every second component of the filters needs to be evaluated in the DWT,
something any e�cient implementation of the DWT should take into account.

285
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The factorization into sparse matrices will be called the lifting factorization, and
it will be clear from this factorization how the wavelet kernels and their duals can
be implemented. We will also see how we can use the polyphase representation
to prove the remaining parts of Theorem 6.17.

Secondly, in Section 8.3 we will use the polyphase representation to analyze
how the forward and reverse filter bank transforms from the MP3 standard can
be chosen in order for us to have perfect or near perfect reconstruction. Actually,
we will obtain a factorization of the polyphase representation into block matrices
also here, and the conditions we need to put on the prototype filters will be clear
from this.

8.1 The polyphase representation and the lifting
factorization

Let us start by defining the basic concepts in the polyphase representation.

Definition 8.1. Polyphase components and representation.
Assume that S is a matrix, and that M is a number. By the polyphase

components of S we mean the matrices S(i,j) defined by S(i,j)

r1,r2 = Si+r1M,j+r2M ,
i.e. the matrices obtained by taking every M ’th component of S. By the polyphase
representation of S we mean the block matrix with entries S(i,j).

The polyphase representation applies in particular for vectors. Since a vector
x only has one column, we write x

(p) for its polyphase components.

Example 8.2. A 6 ◊ 6 MRA-matrix.
Consider the 6 ◊ 6 MRA-matrix

S =

Q

cccccca

2 3 0 0 0 1
4 5 6 0 0 0
0 1 2 3 0 0
0 0 4 5 6 0
0 0 0 1 2 3
6 0 0 0 4 5

R

ddddddb
. (8.1)

The polyphase components of S are

S(0,0) =

Q

a
2 0 0
0 2 0
0 0 2

R

b S(0,1) =

Q

a
3 0 1
1 3 0
0 1 3

R

b

S(1,0) =

Q

a
4 6 0
0 4 6
6 0 4

R

b S(1,1) =

Q

a
5 0 0
0 5 0
0 0 5

R

b

We will mainly be concerned with polyphase representations of MRA matrices.
For such matrices we have the following result (this result can be stated more
generally for any filter bank transform).
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Theorem 8.3. Similarity.
When S is an MRA-matrix, the polyphase components S(i,j) are filters (in

general di�erent from the filters considered in Chapter 6), i.e. the polyphase
representation is a 2 ◊ 2-block matrix where all blocks are filters. Also, S is
similar to its polyphase representation, through a permutation matrix P which
places the even-indexed elements first.

To see why, note that when P is the permutation matrix defined above,
then PS consists of S with the even-indexed rows grouped first, and since
also SP T = (PST )T , SP T groups the even-indexed columns first. From these
observations it is clear that PSP T is the polyphase representation of S, so that
S is similar to its polyphase representation.

We also have the following result on the polyphase representation. This result
is easily proved from manipulation with block matrices, and is therefore left to
the reader.

Theorem 8.4. Products and transpose.
Let A and B be (forward or reverse) filter bank transforms, and denote the

corresponding polyphase components by A(i,j), B(i,j). The following hold

• C = AB is also a filter bank transform, with polyphase components
C(i,j) =

q
k A(i,k)B(k,j).

• AT is also a filter bank transform, with polyphase components ((AT )(i,j))k,l =
(A(j,i))l,k.

Also, the polyphase components of the identity matrix is the M ◊ M -block
matrix with the identity matrix on the diagonal, and 0 elsewhere.

To see an application of the polyphase representation, let us prove the final
ingredient of Theorem 6.17. We need to prove the following:

Theorem 8.5. Criteria for perfect reconstruction.
For any set of FIR filters H

0

, H
1

, G
0

, G
1

which give perfect reconstruction,
there exist – œ R and d œ Z so that

⁄H1(Ê) = –≠1e≠2idÊ⁄G0(Ê + fi) (8.2)
⁄G1(Ê) = –e2idÊ⁄H0(Ê + fi). (8.3)

Proof. Let H(i,j) be the polyphase components of H, G(i,j) the polyphase
components of G. GH = I means that

3
G(0,0) G(0,1)

G(1,0) G(1,1)

4 3
H(0,0) H(0,1)

H(1,0) H(1,1)

4
=

3
I 0
0 I

4
.

If we here multiply with
3

G(1,1) ≠G(0,1)

≠G(1,0) G(0,0)

4
on both sides to the left, or with

3
H(1,1) ≠H(0,1)

≠H(1,0) H(0,0)

4
on both sides to the right, we get
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3
G(1,1) ≠G(0,1)

≠G(1,0) G(0,0)

4
=

3
(G(0,0)G(1,1) ≠ G(1,0)G(0,1))H(0,0) (G(0,0)G(1,1) ≠ G(1,0)G(0,1))H(0,1)

(G(0,0)G(1,1) ≠ G(1,0)G(0,1))H(1,0) (G(0,0)G(1,1) ≠ G(1,0)G(0,1))H(1,1)

4

3
H(1,1) ≠H(0,1)

≠H(1,0) H(0,0)

4
=

3
(H(0,0)H(1,1) ≠ H(1,0)H(0,1))G(0,0) (H(0,0)H(1,1) ≠ H(1,0)H(0,1))G(0,1)

(H(0,0)H(1,1) ≠ H(1,0)H(0,1))G(1,0) (H(0,0)H(1,1) ≠ H(1,0)H(0,1))G(1,1)

4

Now since G(0,0)G(1,1) ≠ G(1,0)G(0,1) and H(0,0)H(1,1) ≠ H(1,0)H(0,1) also are
circulant Toeplitz matrices, the expressions above give that

l(H(0,0)) Æ l(G(1,1)) Æ l(H(0,0))
l(H(0,1)) Æ l(G(0,1)) Æ l(H(0,1))
l(H(1,0)) Æ l(G(1,0)) Æ l(H(1,0))

so that we must have equality here, and with both

G(0,0)G(1,1) ≠ G(1,0)G(0,1) and H(0,0)H(1,1) ≠ H(1,0)H(0,1)

having only one nonzero diagonal. In particular we can define the diagonal
matrix D = H(0,0)H(1,1) ≠ H(0,1)H(1,0) = –≠1Ed (for some –, d), and we have
that

3
G(0,0) G(0,1)

G(1,0) G(1,1)

4
=

3
–E≠dH(1,1) ≠–E≠dH(0,1)

≠–E≠dH(1,0) –E≠dH(0,0)

4
.

The first columns here state a relation between G
0

and H
1

, while the second
columns state a relation between G

1

and H
0

. It is straightforward to show that
these relations imply equation (8.2)-(8.3). The details for this can be found in
Exercise 8.1.

In the following we will find factorizations of 2 ◊ 2-block matrices where the
blocks are filters, into simpler such matrices. The importance of Theorem 8.3 is
then that MRA-matrices can be written as a product of simpler MRA matrices.
These simpler MRA matrices will be called elementary lifting matrices, and will
be of the following type.
Definition 8.6. Elementary lifting matrices.

A matrix on the form
3

I S
0 I

4

where S is a filter is called an elementary lifting matrix of even type. A matrix
on the form

3
I 0
S I

4

is called an elementary lifting matrix of odd type.
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The following are the most useful properties of elementary lifting matrices:

Lemma 8.7. Lifting lemma.
The following hold:

3
I S
0 I

4T

=
3

I 0
ST I

4
, and

3
I 0
S I

4T

=
3

I ST

0 I

4
,

3
I S

1

0 I

4 3
I S

2

0 I

4
=

3
I S

1

+ S
2

0 I

4
, and

3
I 0
S

1

I

4 3
I 0
S

2

I

4
=

3
I 0

S
1

+ S
2

I

4
,

3
I S
0 I

4≠1

=
3

I ≠S
0 I

4
, and

3
I 0
S I

4≠1

=
3

I 0
≠S I

4

These statements follow directly from Theorem 8.4. Due to Property 2, one
can assume that odd and even types of lifting matrices appear in alternating
order, since matrices of the same type can be grouped together. The following
result states why elementary lifting matrices can be used to factorize general
MRA-matrices:

Theorem 8.8. Multiplying.

Any invertible matrix on the form S =
3

S(0,0) S(0,1)

S(1,0) S(1,1)

4
, where the S(i,j) are

filters with a finite numer of filter coe�cients, can be written on the form

�
1

· · · �n

3
–

0

Ep 0
0 –

1

Eq

4
, (8.4)

where �i are elementary lifting matrices, p, q are integers, –
0

, –
1

are nonzero
scalars, and Ep, Eq are time delay filters. The inverse is given by

3
–≠1

0

E≠p 0
0 –≠1

1

E≠q

4
(�n)≠1 · · · (�

1

)≠1. (8.5)

Note that (�i)≠1 can be computed with the help of Property 3 of Lemma 8.7.

Proof. The proof will use the concept of the length of a filter, as defined in

Definition 3.5. Let S =
3

S(0,0) S(0,1)

S(1,0) S(1,1)

4
be an arbitrary invertible matrix.

We will incrementally find an elementary lifting matrix �i with filter Si in the
lower left or upper right corner so that �iS has filters of lower length in the
first column. Assume first that l(S(0,0)) Ø l(S(1,0)), where l(S) is the length of
a filter as given by Definition 3.5. If �i is of even type, then the first column in
�iS is

3
I Si

0 I

4 3
S(0,0)

S(1,0)

4
=

3
S(0,0) + SiS(1,0)

S(1,0)

4
. (8.6)
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Si can now be chosen so that l(S(0,0) + SiS(1,0)) < l(S(1,0)). To see how,
recall that we in Section 3.1 stated that multiplying filters corresponds to
multiplying polynomials. Si can thus be found from polynomial division with
remainder: when we divide S(0,0) by S(1,0), we actually find polynomials Si

and P with l(P ) < l(S(1,0)) so that S(0,0) = SiS(1,0) + P , so that the length of
P = S(0,0) ≠ SiS(1,0) is less than l(S(1,0)). The same can be said if �i is of odd
type, in which case the first and second components are simply swapped. This
procedure can be continued until we arrive at a product

�n · · · �
1

S

where either the first or the second component in the first column is 0. If the
first component in the first column is 0, the identity

3
I 0

≠I I

4 3
I I
0 I

4 3
0 X
Y Z

4
=

3
Y X + Z
0 ≠X

4

explains that we can bring the matrix to a form where the second element in
the first column is zero instead, with the help of the additional lifting matrices
�n+1

=
3

I&I
0&I

4
, and �n+2

=
3

I&0
≠I&I

4
, so that we always can assume that

the second element in the first column is 0, i.e.

�n · · · �
1

S =
3

P Q
0 R

4
,

for some matrices P, Q, R. From the proof of Theorem 6.17 we will see that
in order for S to be invertible, we must have that S(0,0)S(1,1) ≠ S(0,1)S(1,0) =
≠–≠1Ed for some nonzero scalar – and integer d. Since

3
P Q
0 R

4

is also invertible, we must thus have that PR must be on the form –En. When
the filters have a finite number of filter coe�cients, the only possibility for this
to happen is when P = –

0

Ep and R = –
1

Eq for some p, q, –
0

, –
1

. Using this,
and also isolating S on one side, we obtain that

S = (�
1

)≠1 · · · (�n)≠1

3
–

0

Ep Q
0 –

1

Eq

4
, (8.7)

Noting that
3

–
0

Ep Q
0 –

1

Eq

4
=

3
1 1

–1
E≠qQ

0 1

4 3
–

0

Ep 0
0 –

1

Eq

4
,

we can rewrite Equation (8.7) as

S = (�
1

)≠1 · · · (�n)≠1

3
1 1

–1
E≠qQ

0 1

4 3
–

0

Ep 0
0 –

1

Eq

4
,
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which is a lifting factorization of the form we wanted to arrive at. The last matrix
in the lifting factorization is not really a lifting matrix, but it too can easily be
inverted, so that we arrive at Equation (8.5). This completes the proof.

Factorizations on the form given by Equation (8.4) will be called lifting
factorizations. Assume that we have applied Theorem 8.8 in order to get a
factorization of the polyphase representation of the DWT kernel of the form

�n · · · �
2

�
1

H =
3

– 0
0 —

4
. (8.8)

Theorem 8.7 then immediately gives us the following factorizations.

H = (�
1

)≠1(�
2

)≠1 · · · (�n)≠1

3
– 0
0 —

4
(8.9)

G =
3

1/– 0
0 1/—

4
�n · · · �

2

�
1

(8.10)

HT =
3

– 0
0 —

4
((�n)≠1)T ((�n≠1

)≠1)T · · · ((�
1

)≠1)T (8.11)

GT = (�
1

)T (�
2

)T · · · (�n)T

3
1/– 0
0 1/—

4
. (8.12)

Since HT and GT are the kernel transformations of the dual IDWT and the
dual DWT, respectively, these formulas give us recipes for computing the DWT,
IDWT, dual IDWT, and the dual DWT, respectively. All in all, everything can
be computed by combining elementary lifting steps.

In practice, one starts with a given wavelet with certain proved properties
such as the ones from Chapter 7, and applies an algorithm to obtain a lifting
factorization of the polyphase representation of the kernels. The algorihtm can
easily be written down from the proof of Theorem 8.8. The lifting factorization
is far from unique, and the algorithm only gives one of them.

It is desirable for an implementation to obtain a lifting factorization where the
lifting steps are as simple as possible. Let us restrict to the case of wavelets with
symmetric filters, since the wavelets used in most applications are symmetric.
In particular this means that S(0,0) is a symmetric matrix, and that S(1,0) is
symmetric about ≠1/2 (see Exercise 8.7).

Assume that we in the proof of Theorem 8.8 add an elementary lifting of
even type. At this step we then compute S(0,0) + SiS(1,0) in the first entry of
the first column. Since S(0,0) is now assumed symmetric, SiS(1,0) must also be
symmetric in order for the length to be reduced. And since the filter coe�cients
of S(1,0) are assumed symmetric about ≠1/2, Si must be chosen with symmetry
around 1/2.

For most of our wavelets we will consider in the following examples it will
turn out the filters in the first column di�er in the number of filter coe�cients
by 1 at all steps. When this is the case, we can choose a filter of length 2 to
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reduce the length by 2, so that the Si in an even lifting step can be chosen on
the form Si = ⁄i{1, 1}. Similarly, for an odd lifting step, Si can be chosen on
the form Si = ⁄i{1, 1}. Let us summarize this as follows:

Theorem 8.9. Di�ering by 1.
When the filters in a wavelet are symmetric and the lengths of the filters in

the first column di�er by 1 at all steps in the lifting factorization, the lifting
steps of even and odd type take the simplified form

3
I ⁄i{1, 1}
0 I

4
and

3
I 0

⁄i{1, 1} I

4
,

respectively.

The lifting steps mentioned in this theorem are quickly computed due to
their simple structure. The corresponding MRA matrices are

Q

ccccccca

1 ⁄ 0 0 · · · 0 0 ⁄
0 1 0 0 · · · 0 0 0
0 ⁄ 1 ⁄ · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · ⁄ 1 ⁄
0 0 0 0 · · · 0 0 1

R

dddddddb

and

Q

ccccccca

1 0 0 0 · · · 0 0 0
⁄ 1 ⁄ 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 0 1 0
⁄ 0 0 0 · · · 0 ⁄ 1

R

dddddddb

,

respectively, or

Q

ccccccca

1 2⁄ 0 0 · · · 0 0 0
0 1 0 0 · · · 0 0 0
0 ⁄ 1 ⁄ · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · ⁄ 1 ⁄
0 0 0 0 · · · 0 0 1

R

dddddddb

and

Q

ccccccca

1 0 0 0 · · · 0 0 0
⁄ 1 ⁄ 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 0 1 0
0 0 0 0 · · · 0 2⁄ 1

R

dddddddb

(8.13)

if we use symmetric extensions as defined by Definition 5.42 (we have used
Theorem 5.43). Each lifting step leaves every second element unchanged, while
for the remaining elements, we simply add the two neighbours. Clearly these
computations can be computed in-place, without the need for extra memory
allocations. From this it is also clear how we can compute the entire DWT/IDWT
in-place. We simply avoid the reorganizing into the (�m≠1

, m≠1

)-basis until
after all the lifting steps. After the application of the matrices above, we have
coordinates in the Cm-basis. Here only the coordinates with indices (0, 2, 4, . . .)
need to be further transformed, so the next step in the algorithm should work
directly on these. After the next step only the coordinates with indices (0, 4, 8, . . .)
need to be further transformed, and so on. From this it is clear that
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• the  m≠k coordinates are found at indices 2k≠1 + r2k, i.e. the last k bits
are 1 followed by k ≠ 1 zeros.

• the �
0

coordinates are found at indices r2m, i.e. the last m bits are 0.

If we place the last k bits of the  m≠k-coordinates in front in reverse order, and
the the last m bits of the �

0

-coordinates in front, the coordinates have the same
order as in the (�m≠1

, m≠1

)-basis. This is also called a partial bit-reverse, and
is related to the bit-reversal performed in the FFT algorithm.

Clearly, these lifting steps are also MRA-matrices with symmetric filters, so
that our procedure factorizes an MRA-matrix with symmetric filters into simpler
MRA-matrices which also have symmetric filters.

8.1.1 Reduction in the number of arithmetic operations
with the lifting factorization

The number of arithmetic operations needed to apply matrices on the form
stated in Equation (8.13) is easily computed. The number of multiplications
is N/2 if symmetry is exploited as in Observation 4.21 (N if symmetry is not
exploited). Similarly, the number of additions is N . Let K be the total number
of filter coe�cients in H

0

, H
1

. In the following we will see that each lifting step
can be chosen to reduce the number of filter coe�cients in the MRA matrix by 4,
so that a total number of K/4 lifting steps are required. Thus, a total number of
KN/8 (KN/4) multiplications, and KN/4 additions are required when a lifting
factorization is used. In comparison, a direct implementation would require
KN/4 (KN/2) multiplications, and KN/2 additions. For the examples we will
consider, we therefore have the following result.

Theorem 8.10. Reducing arithmetic operations.
The lifting factorization approximately halves the number of additions and

multiplications needed, when compared with a direct implementation (regardless
of whether symmetry is exploited or not).

Exercise 8.1: The frequency responses of the polyphase
components
Let H and G be MRA-matrices for a DWT/IDWT, with corresponding filters
H

0

, H
1

, G
0

, G
1

, and polyphase components H(i,j), G(i,j).

a) Show that

⁄H0(Ê) = ⁄H(0,0)(2Ê) + eiÊ⁄H(0,1)(2Ê)
⁄H1(Ê) = ⁄H(1,1)(2Ê) + e≠iÊ⁄H(1,0)(2Ê)
⁄G0(Ê) = ⁄G(0,0)(2Ê) + e≠iÊ⁄G(1,0)(2Ê)
⁄G1(Ê) = ⁄G(1,1)(2Ê) + eiÊ⁄G(0,1)(2Ê).
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b) In the proof of the last part of Theorem 6.17, we defered the last part, namely
that equations (7.29) in the compendium-(8.3) in the compendium follow from

3
G(0,0) G(0,1)

G(1,0) G(1,1)

4
=

3
–E≠dH(1,1) ≠–E≠dH(0,1)

≠–E≠dH(1,0) –E≠dH(0,0)

4
.

Prove this based on the result from a).

Exercise 8.2: Finding new filters
Let S be a filter. Show that

a)

G

3
I 0
S I

4

is an MRA matrix with filters G̃
0

, G
1

, where

⁄
˜G0

(Ê) = ⁄G0(Ê) + ⁄S(2Ê)e≠iÊ⁄G1(Ê),

b)

G

3
I S
0 I

4

is an MRA matrix with filters G
0

, G̃
1

, where

⁄
˜G1

(Ê) = ⁄G1(Ê) + ⁄S(2Ê)eiÊ⁄G0(Ê),

c) 3
I 0
S I

4
H

is an MRA-matrix with filters H
0

, H̃
1

, where

⁄
˜H1

(Ê) = ⁄H1(Ê) + ⁄S(2Ê)e≠iÊ⁄H0(Ê).

d) 3
I S
0 I

4
H

is an MRA-matrix with filters H̃
0

, H
1

, where

⁄
˜H0

(Ê) = ⁄H0(Ê) + ⁄S(2Ê)eiÊ⁄H1(Ê).

In summary, this exercise shows that one can think of the steps in the lifting
factorization as altering one of the filters of an MRA-matrix in alternating order.
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Exercise 8.3: Relating to the polyphase components
Show that S is a filter of length kM if and only if the entries {Si,j}M≠1

i,j=0

in the
polyphase representation of S satisfy S(i+r) mod M,(j+r) mod M = Si,j . In other
words, S is a filter if and only if the polyphase representation of S is a “block-
circulant Toeplitz matrix”. This implies a fact that we will use: GH is a filter
(and thus provides alias cancellation) if blocks in the polyphase representations
repeat cyclically as in a Toeplitz matrix (in particular when the matrix is
block-diagonal with the same block repeating on the diagonal).

Exercise 8.4: QMF filter banks
Recall from Definition 6.20 that we defined a classical QMF filter bank as one
where M = 2, G

0

= H
0

, G
1

= H
1

, and ⁄H1(Ê) = ⁄H0(Ê + fi). Show that the
forward and reverse filter bank transforms of a classical QMF filter bank take
the form

H = G =
3

A ≠B
B A

4

Exercise 8.5: Alternative QMF filter banks
Recall from Definition 6.21 that we defined an alternative QMF filter bank as
one where M = 2, G

0

= (H
0

)T , G
1

= (H
1

)T , and ⁄H1(Ê) = ⁄H0(Ê + fi). Show
that the forward and reverse filter bank transforms of an alternative QMF filter
bank take the form.

H =
3

AT BT

≠B A

4
G =

3
A ≠BT

B AT

4
=

3
AT BT

≠B A

4T

.

Exercise 8.6: Alternative QMF filter banks with additional
sign
Consider alternative QMF filter banks where we take in an additional sign, so
that ⁄H1(Ê) = ≠⁄H0(Ê + fi) (the Haar wavelet was an example of such a filter
bank). Show that the forward and reverse filter bank transforms now take the
form

H =
3

AT BT

B ≠A

4
G =

3
A BT

B ≠AT

4
=

3
AT BT

B ≠A

4T

.

It is straightforward to check that also these satisfy the alias cancellation con-
dition, and that the perfect reconstruction condition also here takes the form
|⁄H0(Ê)|2 + |⁄H0(Ê + fi)|2 = 2.
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8.2 Examples of lifting factorizations
We have seen that the polyphase representations of wavelet kernels can be
factored into a product of elementary lifting matrices. In this section we will
compute the exact factorizations for the wavelets we have considered. In the
exercises we will then complete the implementations, so that we can make actual
experiments, such as listening to the low-resolution approximations in sound, or
using the cascade algorithm to plot scaling functions and mother wavelets. We
will omit the Haar wavelet. One can easily write down a lifting factorization for
this as well, but there is little to save in this factorization when compared to the
direct form of this we already have considered.

First we will consider the two piecewise linear wavelets we have looked at.
It turns out that their lifting factorizations can be obtained in a direct way by
considering the polyphase representations as a change of coordinates. To see
how, we first define

Dm = {„m,0, „m,2, „m,4 . . . , „m,1, „m,3, „m,5, . . .}, (8.14)
PDmΩ�m is clearly the permutation matrix P used in the similarity between
a matrix and its polyphase representation. Let now H and G be the kernel
transformations of a wavelet. The polyphase representation of H is

PHP T = PDmΩ�m
PCmΩ�m

P�mΩDm
= P

(�1, 1)Ω�m
P�mΩDm

= P
(�1, 1)ΩDm

.

Taking inverses here we obtain that PGP T = PDmΩ(�1, 1)

. We therefore have
the following result:

Theorem 8.11. The polyphase representation.
The polyphase representation of H equals the change of coordinates ma-

trix P
(�1, 1)ΩDm

, and the polyphase representation of G equals the change of
coordinates matrix PDmΩ(�1, 1)

.

Example 8.12. Lifting factorization of the piecewise linear wavelet.
Let us consider the piecewise linear wavelet from Section 5.4, for which we

found that the change of coordinate matrix G was given by Equation (6.1). In
the four di�erent polyphase components of G, let us underline the corresponding
elements:

1Ô
2

Q

ccccccca

1 0
1/2 1
0 0
...

...
0 0

1/2 0

R

dddddddb

,
1Ô
2

Q

ccccccca

1 0
1/2 1
0 0
...

...
0 0

1/2 0

R

dddddddb

,
1Ô
2

Q

ccccccca

1 0
1/2 1
0 0
...

...
0 0

1/2 0

R

dddddddb

,
1Ô
2

Q

ccccccca

1 0
1/2 1
0 0
...

...
0 0

1/2 0

R

dddddddb

. (8.15)

we get the following:
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• The upper left polyphase component G(0,0) is 1Ô
2

I.

• The upper right polyphase component G(0,1) is 0.

• The lower left polyphase component G(1,0) is 1Ô
2

S
1

, where S
1

is the filter
{1/2, 1/2}.

• The lower right polyphase component G(1,1) is 1Ô
2

I.

In other words, the polyphase representation of G is 1Ô
2

3
I 0

1

2

{1, 1} I

4
. Due to

Theorem 8.7, the polyphase representation of H is
Ô

2
3

I 0
≠ 1

2

{1, 1} I

4
We can

summarize that the polyphase representations of the kernels H and G for the
piecewise linear wavelet are

Ô
2

3
I 0

≠ 1

2

{1, 1} I

4
and 1Ô

2

3
I 0

1

2

{1, 1} I

4
, (8.16)

respectively.

Example 8.13. Lifting factorization of the alternative piecewise linear wavelet.
Let us now consider the alternative piecewise linear wavelet. In this case,

Equation (6.3) shows that PD1Ω(�1, ˆ 1)

(the polyphase representation of H) is
not on the form

3
I 0
S

1

I

4

for some filter S
1

, since there is more than one element in every column. Recall,
however, that the alternative piecewise linear wavelet was obtained by construct-
ing a new mother wavelet Â̂ from the old Â. Â̂ is defined in Section 5.5 by
Equation (5.38), which said that

Â̂(t) = Â(t) ≠ 1
4

!
„

0,0(t) + „
0,1(t)

"
.

From this equation it is clear that

P
(�1, 1)Ω(�1, ˆ 1)

=
3

I S
2

0 I

4
,

where S
2

= ≠ 1

4

{1, 1}. We can now write the polyphase representation of G as

PD1Ω(�1, ˆ 1)

= PD1Ω(�1, 1)

P
(�1, 1)Ω(�1, ˆ 1)

. = 1Ô
2

3
I 0

1

2

{1, 1} I

4 3
I ≠ 1

4

{1, 1}
0 I

4
.

In other words, also here the same type of matrix could be used to express the
change of coordinates. This matrix is also easily invertible, so that the polyphase
representation of H is
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Ô
2

3
I 1

4

{1, 1}
0 I

4 3
I 0

≠ 1

2

{1, 1} I

4
.

In this case we required one additional lifting step. We can thus conclude that the
polyphase representations of the kernels H and G for the alternative piecewise
linear wavelet are

Ô
2

3
I 1

4

{1, 1}
0 I

4 3
I 0

≠ 1

2

{1, 1} I

4
and 1Ô

2

3
I 0

1

2

{1, 1} I

4 3
I ≠ 1

4

{1, 1}
0 I

4
,

(8.17)
respectively.

Example 8.14. Lifting factorization of the Spline 5/3 wavelet.
Let us consider the Spline 5/3 wavelet, which we defined in Example 7.16.

Let us start by looking at, and we recall that

H
0

=
;

≠1
4 ,

1
2 ,

3
2 ,

1
2 , ≠1

4

<
H

1

=
;

≠1
4 ,

1
2 , ≠1

4

<
.

from which we see that the polyphase components of H are
3

H(0,0) H(0,1)

H(1,0) H(1,1)

4
=

3{≠ 1

4

, 3

2

, ≠ 1

4

} 1

2

{1, 1}
≠ 1

4

{1, 1} 1

2

I

4

We see here that the upper filter has most filter coe�cients in the first column,
so that we must start with an elementary lifting of even type. We need to find a
filter S

1

so that S
1

{≠1/4, ≠1/4} + {≠1/4, 3/2, ≠1/4} has fewer filter coe�cients
than {≠1/4, 3/2, ≠1/4}. It is clear that we can choose S

1

= {≠1, ≠1}, and that

�
1

H =
3

I {≠1, ≠1}
0 I

4 3{≠ 1

4

, 3

2

, ≠ 1

4

} 1

2

{1, 1}
≠ 1

4

{1, 1} 1

2

I

4
=

3
2I 0

≠ 1

4

{1, 1} 1

2

I

4

Now we need to apply an elementary lifting of odd type, and we need to find a
filter S

2

so that S
2

I ≠ 1

4

{1, 1} = 0. Clearly we can choose S
2

= {1/8, 1/8}, and
we get

�
2

�
1

H =
3

I 0
1

8

{1, 1} I

4 3
2I 0

≠ 1

4

{1, 1} 1

2

I

4
=

3
2I 0
0 1

2

I

4
.

Multiplying with inverses of elementary lifting steps, we now obtain that the
polyphase representations of the kernels for the Spline 5/3 wavelet are

H =
3

I {1, 1}
0 I

4 3
I 0

≠ 1

8

{1, 1} I

4 3
2I 0
0 1

2

I

4
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and

G =
3

1

2

I 0
0 2I

4 3
I 0

1

8

{1, 1} I

4 3
I {≠1, ≠1}
0 I

4
,

respectively. Two lifting steps are thus required. We also see that the lifting
steps involve only dyadic fractions, just as the filter coe�cients did. This means
that the lifting factorization also can be used for lossless operations.

Example 8.15. Lifting factorization of the CDF 9/7 wavelet.
For the wavelet we considered in Example 7.17, it is more cumbersome to

compute the lifting factorization by hand. It is however, straightforward to write
an algorithm which computes the lifting steps, as these are performed in the
proof of Theorem 8.8. You will be spared the details of this algorithm. Also,
when we use these wavelets in implementations later they will use precomputed
values of these lifting steps, and you can take these implementations for granted
too. If we run the algorithm for computing the lifting factorization we obtain
that the polyphase representations of the kernels H and G for the CDF 9/7
wavelet are

3
I 0.5861{1, 1}
0 I

4 3
I 0

0.6681{1, 1} I

4 3
I ≠0.0700{1, 1}
0 I

4

◊
3

I 0
≠1.2002{1, 1} I

4 3≠1.1496 0
0 ≠0.8699

4
and

3≠0.8699 0
0 ≠1.1496

4 3
I 0

1.2002{1, 1} I

4 3
I 0.0700{1, 1}
0 I

4

◊
3

I 0
≠0.6681{1, 1} I

4 3
I ≠0.5861{1, 1}
0 I

4
,

respectively. In this case four lifting steps were required.

Perhaps more important than the reduction in the number of arithmetic
operations is the fact that the lifting factorization splits the DWT and IDWT
into simpler components, each very attractive for hardware implementations
since a lifting step only requires the additional value ⁄i from Theorem 8.9. Lifting
actually provides us with a complete implementation strategy for the DWT and
IDWT, in which the ⁄i are used as precomputed values.

Finally we will find a lifting factorization for orthonormal wavelets. Note
that here the filters H

0

and H
1

are not symmetric, and each of them has an
even number of filter coe�cients. There are thus a di�erent number of filter
coe�cients with positive and negative indices, and in Section 7.7 we defined the
filters so that the filter coe�cients were as symmetric as possible when it came
to the number of nonzero filter coe�cients with positive and negative indices.

Example 8.16. Lifting of orthonormal wavelets.
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We will attempt to construct a lifting factorization where the following
property is preserved after each lifting step:

P1: H(0,0), H(1,0) have a minimum possible overweight of filter coe�cients
with negative indices.

This property stems from the assumption in Section 7.7 that H
0

is assumed
to have a minimum possible overweight of filter coe�cients with negative indices.
To see that this holds at the start, assume as before that all the filters have 2L
nonzero filter coe�cients, so that H0 and H

1

are on the form given by Equation
(7.30). Assume first that L is even. It is clear that

H(0,0) = {t≠L, . . . , t≠2

, t
0

, t
2

, . . . , tL≠2

}
H(0,1) = {t≠L+1

, . . . , t≠3

, t≠1

, t
1

, . . . , tL≠1

}
H(1,0) = {s≠L+1

, . . . , s≠1

, s
1

, s
3

, . . . , sL≠1

}
H(1,1) = {s≠L+2

, . . . , s≠2

, s
0

, s
2

, . . . , sL}.

Clearly P1 holds. Assume now that L is odd. It is now clear that

H(0,0) = {t≠L+1

, . . . , t≠2

, t
0

, t
2

, . . . , tL≠1

}
H(0,1) = {t≠L, . . . , t≠3

, t≠1

, t
1

, . . . , tL≠2

}
H(1,0) = {s≠L+2

, . . . , s≠1

, s
1

, s
3

, . . . , sL}
H(1,1) = {s≠L+1

, . . . , s≠2

, s
0

, s
2

, . . . , sL≠1

}.

In this case it is seen that all filters have equally many filter coe�cients with
positive and negative indices, so that P1 holds also here.

Now let us turn to the first lifting step. We will choose it so that the number
of filter coe�cients in the first column is reduced with 1, and so that H(0,0) has
an odd number of coe�cients. If L is even, we saw that H(0,0) and H(1,0) had
an even number of coe�cients, so that the first lifting step must be even. To
preserve P1, we must cancel t≠L, so that the first lifting step is

�
1

=
3

I ≠t≠L/s≠L+1

0 I

4
.

If L is odd, we saw that H(0,0) and H(1,0) had an odd number of coe�cients, so
that the first lifting step must be odd. To preserve P1, we must cancel sL, so
that the first lifting step is

�
1

=
3

I 0
≠sL/tL≠1

I

4
.

Now that we have a di�erence of one filter coe�cent in the first column, we
will reduce the entry with the most filter coe�cients with two with a lifting step,
until we have H(0,0) = {K}, H(1,0) = 0 in the first column.
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Assume first that H(0,0) has the most filter coe�cients. We then need to
apply an even lifting step. Before an even step, the first column has the form

3 {t≠k, . . . , t≠1

, t
0

, t
1

, . . . , tk}
{s≠k, . . . , s≠1

, s
0

, s
1

, . . . , sk≠1

}
4

.

We can then choose �i =
3

I {≠t≠k/s≠k, ≠tk/sk≠1

}
0 I

4
as a lifting step.

Assume then that H(1,0) has the most filter coe�cients. We then need to
apply an odd lifting step. Before an odd step, the first column has the form

3 {t≠k, . . . , t≠1

, t
0

, t
1

, . . . , tk}
{s≠k≠1

, . . . , s≠1

, s
0

, s
1

, . . . , sk}
4

.

We can then choose �i =
3

I 0
{≠s≠k≠1

/t≠k, ≠sk/tk} I

4
as a lifting step.

If L is even we end up with a matrix on the form
3

– {0, K}
0 —

4
, and we can

choose the final lifting step as �n =
3

I {0, ≠K/—}
0 I

4
.

If L is odd we end up with a matrix on the form
3

– K
0 —

4
,

and we can choose the final lifting step as �n =
3

I ≠K/—
0 I

4
. Again using

equations (8.9)-(8.10), this gives us the lifting factorizations.
In summary we see that all even and odd lifting steps take the form3

I {⁄
1

, ⁄
2

}
0 I

4
and

3
I 0

⁄
1

, ⁄
2

} I

4
. We see that symmetric lifting steps cor-

respond to the special case when ⁄
1

= ⁄
2

. The even and odd lifting matrices
now used are

Q

ccccccca

1 ⁄
1

0 0 · · · 0 0 ⁄
2

0 1 0 0 · · · 0 0 0
0 ⁄

2

1 ⁄
1

· · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · ⁄

2

1 ⁄
1

0 0 0 0 · · · 0 0 1

R

dddddddb

and

Q

ccccccca

1 0 0 0 · · · 0 0 0
⁄

2

1 ⁄
1

0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 0 1 0
⁄

1

0 0 0 · · · 0 ⁄
2

1

R

dddddddb

,

(8.18)

respectively. We note that when we reduce elements to the left and right in
the upper and lower part of the first column, the same type of reductions must
occur in the second column, since the determinant H(0,0)H(1,1) ≠ H(0, 1)H(1,0)

is a constant after any number of lifting steps.
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This example explains the procedure for finding the lifting factorization
into steps of the form given in Equation (8.18). You will be spared the details
of writing an implementation which applies this procedure. In order to use
orthornormal wavelets in implementations, we have implemented a function
liftingfactortho, which takes N as input, and sets global variables lambdas,
alpha, and beta, so that the factorization (8.8) holds. lambdas is an n◊2-matrix
so that the filter coe�cients {⁄

1

, ⁄
2

} or {⁄
1

, ⁄
2

} in the i’th lifting step is found
in row i of lambdas. In the exercises, you will be asked to implement both
these nonsymmetric elementary lifting steps, as well as kernel transformations
for orthonormal wavelets, which assume that these global variables have been
set, and describe the lifting steps of the wavelet (Exercise 8.10).

Exercise 8.7: Polyphase components for symetric filters
Assume that the filters H

0

, H
1

of a wavelet are symmetric, and denote by S(i,j)

the polyphase components of the corresponding MRA-matrix H. Show that
S(0,0) and S(1,1) are symmetric filters, that the filter coe�cients of S(1,0) has
symmetry about ≠1/2, and that S(0,1) has symmetry about 1/2. Also show a
similar statement for the MRA-matrix G of the inverse DWT.

Exercise 8.8: Implement elementary lifting steps
Write functions liftingstepevensymm and liftingstepoddsymm which take ⁄,
a vector x, and symm as input, and apply the elementary lifting matrices as in
Equation (8.13) in the compendium, respectively, to x. The parameter symm
should indicate whether symmetric extensions shall be applied. Your code should
handle both when N is odd, and when N is even (as noted previously, when
symmetric extensions are not applied, we assume that N is even). The function
should not perform matrix multiplication, and apply as few multiplications as
possible.

Exercise 8.9: Implementing kernels transformations using
lifting
Up to now in this chapter we have obtained lifting factorizations for four di�erent
wavelets where the filters are symmetric. Let us now implement the kernel
transformations for these wavelets. Your functions should call the functions
from Exercise 8.8 in order to compute the individual lifting steps. Recall that
the kernel transformations should take the input vector x, symm (i.e. whether
symmetric extension should be applied), and dual (i.e. whether the dual wavelet
transform should be applied) as input. You will need equations (8.13) in the
compendium-(8.12) in the compendium here, in order to complete the kernels
for bot the transformations and the dual transformations.
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a) Write the DWT and IDWT kernel transformations for the piecewise linear
wavelet. Your functions should use the lifting factorizations in (8.16) in the
compendium. Call your functions DWTKernelpwl0 and IDWTKernelpwl0.

b) Write the DWT and IDWT kernel transformations for the alternative piece-
wise linear wavelet. The lifting factorizations are now given by (8.17) in the
compendium instead. Call your functions DWTKernelpwl2 and IDWTKernelpwl2.

c) Write the DWT and IDWT kernel transformations for the Spline 5/3 wavelet,
using the lifting factorization obtained in Example 8.14. Call your functions
DWTKernel53 and IDWTKernel53.

d) Write the DWT and IDWT kernel transformations for the CDF 9/7 wavelet,
using the lifting factorization obtained in Example 8.15. Call your functions
DWTKernel97 and IDWTKernel97.

e) In Chapter 5, we listened to the low-resolution approximations and detail
components in sound for three di�erent wavelets, using the function playDWT.
Repeat these experiments with the Spline 5/3 and the CDF 9/7 wavelet, using
the new kernels we have implemented in this exercise.

f) Use the function plotwaveletfunctions from Exercise 7.1 to plot all scaling
functions and mother wavelets for the Spline 5/3 and the CDF 9/7 wavelets,
using the kernels you have implemented.

Exercise 8.10: Lifting orthonormal wavelets
In this exercise we will implement the kernel transformations for orthonormal
wavelets.

a) Write functions liftingstepeven and liftingstepodd which take ⁄
1

, ⁄
2

and a vector x as input, and apply the elementary lifting matrices (8.18) in the
compendium, respectively, to x. Assume that N is even.

b) Write functions DWTKernelOrtho and IDWTKernelOrtho which take a vec-
tor x as input, and apply the DWT and IDWT kernel transformations for
orthonormal wavelets to x. You should call the functions liftingstepeven and
liftingstepodd. As mentioned, assume that global variables lambdas, alpha,
and beta have been set, so that the lifting factorization (8.8) in the compendium
holds, where lambdas is a n ◊ 2-matrix so that the filter coe�cients {⁄

1

, ⁄
2

} or
{⁄

1

, ⁄
2

} in the i’th lifting step is found in row i of lambdas. Recall that the last
lifting step was even.

c) Listen to the low-resolution approximations and detail components in sound
for orthonormal wavelets for N = 1, 2, 3, 4, again using the function playDWT.
You need to call the function liftingfactortho in order to set the kernel for
the di�erent values of N .
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d) Use the function plotwaveletfunctions from Exercise 7.1 to plot all scaling
functions and mother wavelets for orthonormal wavelets for N = 1, 2, 3, 4. Since
the wavelets are orthonormal, we should have that „ = „̃, and Â = Ẫ. In other
words, you should see that the bottom plots equal the upper plots.

Exercise 8.11: 4 vanishing moments
In Exercise 5.31 we found constants –, —, “, ” which give the coordinates of Â̂ in
(�

1

,  ̂
1

), where Â̂ had four vanishing moments, and where we worked with the
multiresolution analysis of piecewise constant functions.

a) Show that the polyphase representation of G when Â̂ is used as mother
wavelet can be factored as

1Ô
2

3
I 0

{1/2, 1/2} I

4 3
I {≠“, ≠–, ≠—, ≠”}
0 I

4
. (8.19)

You here need to reconstruct what you did in the lifting factorization for the
alternative piecewise linear wavelet, i.e. write

PD1Ω(�1, ˆ 1)

= PD1Ω(�1, 1)

P
(�1, 1)Ω(�1, ˆ 1)

.

By inversion, find also a lifting factorization of H.

Exercise 8.12: Wavelet based on piecewise quadratic scaling
function
In Exercise 7.4 you should have found the filters

H
0

= 1
128{≠5, 20, ≠1, ≠96, 70, 280, 70, ≠96, ≠1, 20, ≠5}

H
1

= 1
16{1, ≠4, 6, ≠4, 1}

G
0

= 1
16{1, 4, 6, 4, 1}

G
1

= 1
128{5, 20, 1, ≠96, ≠70, 280, ≠70, ≠96, 1, 20, 5}.

a) Show that

3
I ≠ 1

128

{5, ≠29, ≠29, 5}
0 I

4 3
I 0

≠{1, 1} I

4 3
I ≠ 1

4

{1, 1}
0 I

4
G =

3
1

4

0
0 4

4
.

From this we can easily derive the lifting factorization of G.

b) Implement the kernels of the wavelet of this exercise using what you did in
Exercise 6.12.
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c) Listen to the low-resolution approximations and detail components in sound
for this wavelet.

d) Use the function plotwaveletfunctions from Exercise 7.1 to plot all scaling
functions and mother wavelets for this wavelet.

8.3 Cosine-modulated filter banks and the MP3
standard

Previously we saw that the MP3 standard used a certain filter bank, called a
cosine-modulated filter bank. We also illustrated that, surprisingly for a much
used international standard, the synthesis system did not exactly invert the
analysis system, i.e. we do not have perfect reconstruction, only “near-perfect
reconstruction”. In this section we will first explain how this filter bank can be
constructed, and why it can not give perfect reconstruction. In particular it will
be clear how the prototype filter can be constructed. We will then construct a
very similar filter bank, which actually can give perfect reconstruction. It may
seem very surprising that the MP3 standard does not use this filter bank instead
due to this. The explanation may lie in that the MP3 standard was established
at about the same time as these filter banks were developed, so that the standard
did not capture this very similar filter bank with perfect reconstruction.

8.3.1 Polyphase representations of the filter bank trans-
forms of the MP3 standard

The main idea is to find the polyphase representations of the forward and reverse
filter bank transforms of the MP3 standard. We start with the expression

z
32(s≠1)+n =

511ÿ

k=0

cos((n + 1/2)(k ≠ 16)fi/32)hkx
32s≠k≠1

, (8.20)

which lead to the expression of the forward filter bank transform (Theorem 6.26).
Using that any k < 512 can be written uniquely on the form k = m + 64r, where
0 Æ m < 64, and 0 Æ r < 8, we can rewrite this as

=
63ÿ

m=0

7ÿ

r=0

(≠1)r cos (2fi(n + 1/2)(m ≠ 16)/64) hm+64rx
32s≠(m+64r)≠1

=
63ÿ

m=0

cos (2fi(n + 1/2)(m ≠ 16)/64)
7ÿ

r=0

(≠1)rhm+32·2rx
32(s≠2r)≠m≠1

.

Here we also used Property (6.31). If we write

V (m) = {(≠1)0hm, 0, (≠1)1hm+64

, 0, (≠1)2hm+128

, . . . , (≠1)7hm+7·64

, 0},
(8.21)
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for 0 Æ m Æ 63, and we can write the expression above as

63ÿ

m=0

cos (2fi(n + 1/2)(m ≠ 16)/64)
15ÿ

r=0

V (m)

r x
32(s≠r)≠m≠1

=
63ÿ

m=0

cos (2fi(n + 1/2)(m ≠ 16)/64)
15ÿ

r=0

V (m)

r x

(32≠m≠1)

s≠1≠r

=
63ÿ

m=0

cos (2fi(n + 1/2)(m ≠ 16)/64) (V (m)

x

(32≠m≠1))s≠1

,

where we recognized x
32(s≠r)≠m≠1

in terms of the polyphase components of
x, and the inner sum as a convolution. We remark that the inner terms
{(V (m)

x

(32≠m≠1))s≠1

}63

m=0

here are what the standard calls partial calculations
(windowing refers to multiplication with the combined set of filter coe�cients of
the V (m)), and that matrixing here represents the multiplication with the cosine
entries. Since z

(n) = {z
32(s≠1)+n}Œ

s=0

is the n’th polyphase component of z, this
can be written as

z

(n) =
63ÿ

m=0

cos (2fi(n + 1/2)(m ≠ 16)/64) IV (m)

x

(32≠m≠1).

In terms of matrices this can be written as

z =

Q

ca
cos (2fi(0 + 1/2) · (≠16)/64) I · · · cos (2fi(0 + 1/2) · (47)/64) I

... . . . ...
cos (2fi(31 + 1/2) · (≠16)/64) I · · · cos (2fi(31 + 1/2) · (47)/64) I

R

db

◊

Q

ccccca

V (0) 0 · · · 0 0
0 V (1) · · · 0 0
...

...
...

...
...

0 0 · · · V (62) 0
0 0 · · · 0 V (63)

R

dddddb

Q

ccca

x

(31)

x

(30)

...
x

(≠32)

R

dddb
.

If we place the 15 first columns in the cosine matrix last using Property (6.31)
(we must then also place the 15 first rows last in the second matrix), we obtain
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z =

Q

ca
cos (2fi(0 + 1/2) · (0)/64) I · · · cos (2fi(0 + 1/2) · (63)/64) I

... . . . ...
cos (2fi(31 + 1/2) · (0)/64) I · · · cos (2fi(31 + 1/2) · (63)/64) I

R

db

◊

Q

cccccccca

0 · · · 0 V (16) · · · 0
...

...
...

... . . . ...
0 · · · 0 0 · · · V (63)

≠V (0) · · · · · · 0 · · · 0
... . . . ...

...
... 0

0 · · · ≠V (15) 0 · · · 0

R

ddddddddb

Q

ccca

x

(31)

x

(30)

...
x

(≠32)

R

dddb
.

Using Equation (6.32) to combine column k and 64 ≠ k in the cosine matrix (as
well as row k and 64 ≠ k in the second matrix), we can write this as

Q

ca
cos (2fi(0 + 1/2) · (0)/64) I · · · cos (2fi(0 + 1/2) · (31)/64) I

... . . . ...
cos (2fi(31 + 1/2) · (0)/64) I · · · cos (2fi(31 + 1/2) · (31)/64) I

R

db
!
AÕ BÕ"

Q

ccca

x

(31)

x

(30)

...
x

(≠32)

R

dddb
.

where

AÕ =

Q

cccccccccccca

0 0 · · · 0 V (16) 0 · · · 0
0 0 · · · V (15) 0 V (17) · · · 0
...

... . . . ...
...

... . . . 0
0 V (1) · · · 0 0 0 · · · V (31)

V (0) 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 · · · 0

R

ddddddddddddb

BÕ =

Q

cccccccca

0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
V

(32)

0 · · · 0 0 0 · · · 0
0 V (33) · · · 0 0 0 · · · ≠V (63)

...
... . . . ...

...
... . . . ...

0 0 · · · V (47) 0 ≠V (49) · · · 0

R

ddddddddb

.

Using Equation (4.3), the cosine matrix here can be written as
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Ú
M

2 (DM )T

Q

ccca

Ô
2 0 · · · 0

0 1 · · · 0
...

...
...

...
0 0 · · · 1

R

dddb
.

The above can thus be written as

4(D
32

)T
!
A B

"

Q

ccca

x

(31)

x

(30)

...
x

(≠32)

R

dddb
,

where A and B are the matrices AÕ, BÕ with the first row multiplied by
Ô

2
(i.e. replace V (16) with

Ô
2V (16) in the matrix AÕ). Using that x

(≠i) = E
1

xi for
1 Æ i Æ 32, we can write this as

4(D
32

)T
!
A B

"

Q

cccccccca

x

(31)

...
x

(0)

E
1

x

(31)

...
E

1

x

(0)

R

ddddddddb

= 4(D
32

)T

Q

caA

Q

ca
x

(31)

...
x

(0)

R

db + B

Q

ca
E

1

x

(31)

...
E

1

x

(0)

R

db

R

db ,

which can be written as

4(D
32

)T

Q

cccccccccccca

0 0 · · · 0
Ô

2V (16) 0 · · · 0
0 0 · · · V (15) 0 V (17) · · · 0
...

... . . . ... . . . ...
...

0 V (1) · · · 0 0 0 · · · V (31)

V (0) + E
1

V (32) 0 · · · 0 0 0 · · · 0
0 E

1

V (33) · · · 0 0 0 · · · ≠E
1

V (63)

...
... . . . ...

...
... . . . ...

0 0 · · · E
1

V (47) 0 ≠E
1

V (49) · · · 0

R

ddddddddddddb

Q

ca
x

(31)

...
x

(0)

R

db ,

which also can be written as
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4(D
32

)T

Q

cccccccccccca

0 · · · 0
Ô

2V (16) 0 · · · 0 0
0 · · · V (17) 0 V (15) · · · 0 0
... . . . ... . . . ...

...
...

...
V (31) · · · 0 0 0 · · · V (1) 0
0 · · · 0 0 0 · · · 0 V (0) + E

1

V (32)

≠E
1

V (63) · · · 0 0 0 · · · E
1

V (33) 0
... . . . ...

...
... . . . ...

...
0 · · · ≠E

1

V (49) 0 E
1

V (47) · · · 0 0

R

ddddddddddddb

Q

ca
x

(0)

...
x

(31)

R

db .

We have therefore proved the following result.

Theorem 8.17. Polyphase factorization of a forward filter bank transform based
on a prototype filter.

The polyphase form of a forward filter bank transform based on a prototype
filter can be factored as

4(D
32

)T

Q

cccccccccccca

0 · · · 0
Ô

2V (16) 0 · · · 0 0
0 · · · V (17) 0 V (15) · · · 0 0
... . . . ... . . . ...

...
...

...
V (31) · · · 0 0 0 · · · V (1) 0
0 · · · 0 0 0 · · · 0 V (0) + E

1

V (32)

≠E
1

V (63) · · · 0 0 0 · · · E
1

V (33) 0
... . . . ...

...
... . . . ...

...
0 · · · ≠E

1

V (49) 0 E
1

V (47) · · · 0 0

R

ddddddddddddb

(8.22)

Due to Theorem 6.28, it is also very simple to write down the polyphase
factorization of the reverse filter bank transform as well. Since E

481

GT is a
forward filter bank transform where the prototype filter has been reversed,
E

481

GT can be factored as above, with V (m) replaced by W (m), with W (m)

being the filters derived from the synthesis prototype filter in reverse order. This
means that the polyphase form of G can be factored as
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4

Q

cccccccccccca

0 0 · · · (W (31))T 0 ≠E≠1

(W (63))T · · · 0
...

... . . . ... . . . ...
...

...
0 (W (17))T · · · 0 0 0 · · · ≠E≠1

(W (49))TÔ
2(W (16))T 0 · · · 0 0 0 · · · 0

0 (W (15))T · · · 0 0 0 · · · E≠1

(W (47))T

...
... . . . ...

...
... . . . ...

0 0 · · · (W (1))T 0 E≠1

(W (33))T · · · 0
0 0 · · · 0 (W (0))T + E≠1

(W (32))T 0 · · · 0

R

ddddddddddddb

◊ D
32

E
481

. (8.23)

Now, if we define U (m) as the filters derived from the synthesis prototype filter
itself, we have that

(W (k))T = ≠E≠14

V (64≠k), 1 Æ k Æ 15 (W (0))T = E≠16

V (0).

Inserting this in Equation (8.23) we get the following result:

Theorem 8.18. Polyphase factorization of a reverse filter bank transform based
on a prototype filter.

Assume that G is a reverse filter filter bank transform based on a prototype
filter, and that U (m) are the filters derived from this prototype filter. Then the
polyphase form of G can be factored as

4

Q

cccccccccccca

0 0 · · · ≠U (33) 0 E≠1

U (1) · · · 0
...

... . . . ... . . . ...
...

...
0 ≠U (47) · · · 0 0 0 · · · E≠1

U (15)

≠Ô
2U (48) 0 · · · 0 0 0 · · · 0
0 ≠U (49) · · · 0 0 0 · · · ≠E≠1

U (17)

...
... . . . ...

...
... . . . ...

0 0 · · · ≠U (63) 0 ≠E≠1

U (31) · · · 0
0 0 · · · 0 E≠2

U (0) ≠ E≠1

U (32) 0 · · · 0

R

ddddddddddddb

◊ D
32

E
33

. (8.24)

Now, consider the matrices

3
V (32≠i) V (i)

≠E
1

V (64≠i) E
1

V (32+i)

4
and

3≠U (32+i) E≠1

U (i)

≠U (64≠i) ≠E≠1

U (32≠i)

4
. (8.25)

for 1 Æ i Æ 15. These make out submatrices in the matrices in equations (8.22)
and (8.24). Clearly, only the product of these matrices influence the result. Since
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3≠U (32+i) E≠1

U (i)

≠U (64≠i) ≠E≠1

U (32≠i)

4 3
V (32≠i) V (i)

≠E
1

V (64≠i) E
1

V (32+i)

4

=
3≠U (32+i) U (i)

≠U (64≠i) ≠U (32≠i)

4 3
V (32≠i) V (i)

≠V (64≠i) V (32+i)

4
(8.26)

we have the following result.
Theorem 8.19. Filter bank transforms.

Let H, G be forward and reverse filter bank transforms defined from analysis
and synthesis prototype filters. Let also V (k) be the prototype filter of H, and
U (k) the reverse of the prototype filter of G. If

3≠U (32+i) U (i)

≠U (64≠i) ≠U (32≠i)

4 3
V (32≠i) V (i)

≠V (64≠i) V (32+i)

4
= c

3
Ed 0
0 Ed

4

(
Ô

2V (16))(≠
Ô

2U (48)) = cEd

(V (0) + E
1

V (32))(E≠2

U (0) ≠ E≠1

U (32)) = cEd (8.27)

for 1 Æ i Æ 15, then GH = 16cE
33+32d.

This result is the key ingredient we need in order to construct forward and
reverse systems which together give perfect reconstuction. In Exercise 8.15 we
go through how we can use lifting in order to express a wide range of possible
(U, V ) matrix pairs which satisfy Equation (8.27). This turns the problem of
constructing cosine-modulated filter banks which are useful for audio coding
into an optimization problem: the optimization variables are values ⁄i which
characterize lifting steps, and the objective function is the deviation of the
corresponding prototype filter from an ideal bandpass filter. This optimization
problem has been subject to a lot of research, and we will not go into details on
this.

8.3.2 The prototype filters chosen in the MP3 standard
Now, let us return to the MP3 standard. We previously observed that in this
standard the coe�cients in the synthesis prototype filter seemed to equal 32
times the analysis prototype filter. This indicates that U (k) = 32V (k). A closer
inspection also yields that there is a symmetry in the values of the prototype
filter: We see that Ci = ≠C

512≠i (i.e. antisymmetry) for most values of i. The
only exception is for i = 64, 128, . . . , 448, for which Ci = C

512≠i (i.e. symmetry).
The antisymmetry can be translated to that the filter coe�cients of V (k) equal
those of V (64≠k) in reverse order, with a minus sign. The symmetry can be
translated to that V (0) is symmetric. These observations can be rewritten as

V (64≠k) = ≠E
14

(V (k))T , 1 Æ k Æ 15. (8.28)
V (0) = E

16

(V (0))T . (8.29)



CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS312

Inserting first that U (k) = 32V (k) in Equation (8.26) gives

3≠U (32+i) U (i)

≠U (64≠i) ≠U (32≠i)

4 3
V (32≠i) V (i)

≠V (64≠i) V (32+i)

4

=32
3≠V (32+i) V (i)

≠V (64≠i) ≠V (32≠i)

4 3
V (32≠i) V (i)

≠V (64≠i) V (32+i)

4
.

Substituting for V (32+i) and V (64≠i) after what we found by inspection now
gives

32
3

E
14

(V (32≠i))T V (i)

E
14

(V (i))T ≠V (32≠i)

4 3
V (32≠i) V (i)

E
14

(V (i))T ≠E
14

(V (32≠i))T

4

=32
3

E
14

0
0 E

14

4 3
(V (32≠i))T V (i)

(V (i))T ≠V (32≠i)

4 3
V (32≠i) V (i)

(V (i))T ≠(V (32≠i))T

4

=32
3

E
14

0
0 E

14

4 3
V (32≠i) V (i)

(V (i))T ≠(V (32≠i))T

4T 3
V (32≠i) V (i)

(V (i))T ≠(V (32≠i))T

4

=32
3

E
14

0
0 E

14

4 3
V (i)(V (i))T + V (32≠i)(V (32≠i))T 0

0 V (i)(V (i))T + V (32≠i)(V (32≠i))T

4
.

(8.30)

Due to Exercise 8.6 (set A = (V (32≠i))T , B = (V (i))T ), with

H =
3

V (32≠i) V (i)

(V (i))T ≠(V (32≠i))T

4
G =

3
(V (32≠i))T V (i)

(V (i))T ≠V (32≠i)

4

we recognize an alternative QMF filter bank. We thus have alias cancellation,
with perfect reconstruction only if |⁄H0(Ê)|2 + |⁄H0(Ê + fi)|2. For the two
remaining filters we compute

(
Ô

2V (16))(≠
Ô

2U (48))
= ≠64V (16)V (48) = 64E

14

V (16)(V (16))T = 32E
14

(V (16)(V (16))T + V (16)(V (16))T )
(8.31)

and

(V (0) + E
1

V (32))(E≠2

U (0) ≠ E≠1

U (32))
= 32(V (0) + E

1

V (32))(E≠2

V (0) ≠ E≠1

V (32)) = 32E≠2

(V (0) + E
1

V (32))(V (0) ≠ E
1

V (32))
= 32E≠2

(V (0))2 ≠ (V (32))2) = 32E
14

((V (0)(V (0))T + V (32)(V (32))T )). (8.32)

We see that the filters from equations (8.30)-(8.32) are similar, and that we thus
can combine them into



CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS313

{V (i)(V (i))T + V (32≠i)(V (32≠i))T }16

i=0

. (8.33)
All of these can be the identity, expect for 1024V (16)(V (16))T , since we know
that the product of two FIR filters is never the identity, except when both are
delays (And all V (m) are FIR, since the prototype filters defined by the MP3
standard are FIR). This single filter is thus what spoils for perfect reconstruction,
so that we can only hope for alias cancellation, and this happens when the filters
from Equation (8.33) all are equal. Ideally this is close to cI for some scalar c,
and we then have that

GH = 16 · 32cE
33+448

= 512cE
481

I.

This explains the observation from the MP3 standard that GH seems to be close
to E

481

. Since all the filters V (i)(V (i))T + V (32≠i)(V (32≠i))T are symmetric, GH
is also a symmetric filter due to Theorem 8.4, so that its frequency response is
real, so that we have no phase distortion. We can thus summarize our findings
as follows.

Observation 8.20. MP3 standard.
The prototype filters from the MP3 standard do not give perfect reconstruc-

tion. They are found by choosing 17 filters {V (k)}16

k=0

so that the filters from
Equation (8.33) are equal, and so that their combination into a prototype filter
using equations (8.21) and (8.28) is as close to an ideal bandpass filter as possible.
When we have equality the alias cancellation condition is satisfied, and we also
have no phase distortion. When the common value is close to 1

512

I, GH is close
to E

481

, so that we have near-perfect reconstruction.

This states clearly the optimization problem which the values stated in the
MP3 standard solves.

8.3.3 How can we obtain perfect reconstruction?
How can we overcome the problem that 1024V (16)(V (16))T ”= I, which spoiled
for perfect reconstruction in the MP3 standard? It turns out that we can address
this a simple change in our procedure. In Equation (8.20) we replace with

z
32(s≠1)+n =

511ÿ

k=0

cos((n + 1/2)(k + 1/2 ≠ 16)fi/32)hkx
32s≠k≠1

, (8.34)

i.e. 1/2 is added inside the cosine. We now have the properties

cos (2fi(n + 1/2)(k + 64r + 1/2)/(2N)) = (≠1)r cos (2fi(n + 1/2)(k + 1/2)/(2N))
(8.35)

cos (2fi(n + 1/2)(2N ≠ k ≠ 1 + 1/2)/(2N)) = ≠ cos (2fi(n + 1/2)(k + 1/2)/(2N)) .
(8.36)
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Due to the first property, we can deduce as before that

z

(n) =
63ÿ

m=0

cos (2fi(n + 1/2)(m + 1/2 ≠ 16)/64) IV (m)

x

(32≠m≠1),

where the filters V (m) are defined as before. As before placing the 15 first
columns of the cosine-matrix last, but instead using Property (8.36) to combine
columns k and 64 ≠ k ≠ 1 of the cosine-matrix, we can write this as

Q

ca
cos (2fi(0 + 1/2) · (0 + 1/2)/64) I · · · cos (2fi(0 + 1/2) · (31 + 1/2)/64) I

... . . . ...
cos (2fi(31 + 1/2) · (0 + 1/2)/64) I · · · cos (2fi(31 + 1/2) · (31 + 1/2)/64) I

R

db
!
A B

"
Q

ca
x

(31)

...
x

(≠32)

R

db

where

A =

Q

cccccccccca

0 0 · · · V (15) V (16) · · · · · · 0
...

... . . . ...
... . . . ...

...
0 V (1) · · · 0 0 · · · V (30) 0

V (0) 0 · · · 0 0 · · · · · · V (31)

0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 · · · 0

R

ddddddddddb

B =

Q

cccccccca

0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
V

(32)

0 · · · 0 0 0 · · · ≠V (63)

0 V (33) · · · 0 0 · · · ≠V (62) 0
...

... . . . ...
... . . . ...

...
0 0 · · · V (47) ≠V (48) · · · · · · 0

R

ddddddddb

.

Since the cosine matrix can be written as
Ò

M
2

D(iv)

M , the above can be written as

4D(iv)

M

!
A B

"
Q

ca
x

(31)

...
x

(≠32)

R

db .

As before we can rewrite this as
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4D(iv)

M

!
A B

"

Q

cccccccca

x

(31)

...
x

(0)

E
1

x

(31)

...
E

1

x

(0)

R

ddddddddb

= 4D(iv)

M

Q

caA

Q

ca
x

(31)

...
x

(0)

R

db + B

Q

ca
E

1

x

(31)

...
E

1

x

(0)

R

db

R

db ,

which can be written as

4D(iv)

M

Q

cccccccccccca

0 0 · · · V (15) V (16) · · · · · · 0
...

... . . . ...
... . . . ...

...
0 V (1) · · · 0 0 · · · V (30) 0

V (0) 0 · · · 0 0 · · · · · · V (31)

E
1

V
(32)

0 · · · 0 0 · · · · · · ≠E
1

V (63)

0 E
1

V (33) · · · 0 0 · · · ≠E
1

V (62) 0
...

... . . . ...
... . . . ...

...
0 0 · · · E

1

V (47) ≠E
1

V (48) · · · · · · 0

R

ddddddddddddb

Q

ca
x

(31)

...
x

(0)

R

db ,

which also can be written as

4D(iv)

M

Q

cccccccccccca

0 0 · · · V (16) V (15) · · · · · · 0
...

... . . . ...
... . . . ...

...
0 V (30) · · · 0 0 · · · V (1) 0

V (31) 0 · · · 0 0 · · · · · · V (0)

≠E
1

V
(63)

0 · · · 0 0 · · · · · · E
1

V (32)

0 ≠E
1

V (62) · · · 0 0 · · · E
1

V (33) 0
...

... . . . ...
... . . . ...

...
0 0 · · · ≠E

1

V (48) E
1

V (47) · · · · · · 0

R

ddddddddddddb

Q

ca
x

(0)

...
x

(31)

R

db .

We therefore have the following result

Theorem 8.21. Polyphase factorization of a forward filter bank transform based
on a prototype filter, modified version.

The modified version of the polyphase form of a forward filter bank transform
based on a prototype filter can be factored as
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4D(iv)

M

Q

cccccccccccca

0 0 · · · V (16) V (15) · · · · · · 0
...

... . . . ...
... . . . ...

...
0 V (30) · · · 0 0 · · · V (1) 0

V (31) 0 · · · 0 0 · · · · · · V (0)

≠E
1

V
(63)

0 · · · 0 0 · · · · · · E
1

V (32)

0 ≠E
1

V (62) · · · 0 0 · · · E
1

V (33) 0
...

... . . . ...
... . . . ...

...
0 0 · · · ≠E

1

V (48) E
1

V (47) · · · · · · 0

R

ddddddddddddb

(8.37)

Clearly this factorization avoids having two blocks of filters: There are now
16 2 ◊ 2-polyphase matrices, and as we know, each of them can be invertible, so
that the full matrix can be inverted in a similar fashion as before. It is therefore
now possible to obtain perfect reconstruction. Although we do not state recipes
for implementing this, one has just as e�cient implementations as in the MP3
standard.

Since we ended up with the 2 ◊ 2 polyphase matrices Mk, we can apply the
lifting factorization in order to halve the number of multiplications/additions.
This is not done in practice, since a lifting factorization requires that we compute
all outputs at once. In audio coding it is required that we compute the output
progressively, due to the large size of the input vector. The procedure above is
therefore mostly useful for providing the requirements for the filters, while the
preceding comments can be used for the implementation.

Exercise 8.13: Run forward and reverse transform
Run the forward and then the reverse transform from Exercise 6.16 on the vector
(1, 2, 3, . . . , 8192). Verify that there seems to be a delay on 481 elements, as
promised by Therorem 8.20. Do you get the exact same result back?

Exercise 8.14: Verify statement of filters
Use your computer to verify the symmetries we have stated for the symmetries
in the prototype filters, i.e. that

Ci =
I

≠C
512≠i i ”= 64, 128, . . . , 448

C
512≠i i = 64, 128, . . . , 448.

Explain also that this implies that hi = h
512≠i for i = 1, . . . , 511. In other words,

the prototype filter has symmetry around (511 + 1)/2 = 256, so that it has linear
phase.
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Exercise 8.15: Lifting
We mentioned that we could use the lifting factorization to construct filters on
the form stated in Equation (8.21) in the compendium, so that the matrices on
the form given by Equation (8.25) in the compendium, i.e.

3
V (32≠i) V (i)

≠V (64≠i) V (32+i)

4
,

are invertible. Let us see what kind of lifting steps produce such matrices.

a) Show that the lifting steps
3

I ⁄E
2

0 I

4
and

3
I 0

⁄I I

4

applied in alternating order to a matrix on the form given by Equation (8.25)
in the compendium, where the filters are on the from given by Equation (8.21)
in the compendium, again produces matrices and filters on these forms. This
explains how we can parametrize a larger number of such matrices with the help
of lifting steps.It also explain why the inverse matrix is on the form stated in
Equation (8.25) in the compendium with filters on the same form, since the
inverse lifting steps are of the same type.

b) Explain that 16 numbers {⁄i}16

i=1

are needed (together with what we start
with on the diagonal in the lifting construction), in order to construct filters so
that the prototype filter has 512 coe�cients. Since there are 15 submatrices,
this gives 240 optimization variables.

Lifting gives the following strategy for finding a corresponding synthesis
prototype filter which gives perfect reconstruction: First compute matrices V, W
which are inverses of oneanother using lifting (using the lifting steps of this
exercise ensures that all filters will be on the form stated in Equation (8.21) in
the compendium), and write

V W =
3

V (1) V (2)

≠V (3) V (4)

4 3
W (1) ≠W (3)

W (2) W (4)

4
=

3
V (1) V (2)

≠V (3) V (4)

4 3
(W (1))T (W (2))T

≠(W (3))T (W (4))T

4T

=
3

V (1) V (2)

≠V (3) V (4)

4 3
E

15

(W (1))T E
15

(W (2))T

≠E
15

(W (3))T E
15

(W (4))T

4T 3
E

15

0
0 E

15

4
= I.

Now, the matrices U (i) = E
15

(W (i))T are on the form stated in Equation (8.21)
in the compendium, and we have that

3
V (1) V (2)

≠V (3) V (4)

4 3
U (1) U (2)

≠U (3) U (4)

4
=

3
E≠15

0
0 E≠15

4

We can now conclude from Theorem 8.19 that if we define the synthesis prototype
filter as therein, and set c = 1, d = ≠15, we have that GH = 16E

481≠32·15

=
16E

1

.
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8.4 Summary
We defined the polyphase representation of a matrix, and proved some useful
properties. For filter bank transforms, the polyphase representation was a block
matrix where the blocks are filters, and these blocks/filters were called polyphase
components. In particular, the filter bank transforms of wavelets were 2◊2-block
matrices of filters. We saw that, for wavelets, the polyphase representation could
be realized through a rearrangement of the wavelet bases, and thus paralleled
the development in Chapter 6 for expressing the DWT in terms of filters, where
we instead rearranged the target base of the DWT.

We showed with two examples that factoring the polyphase representation
into simpler matrices (also refered to as a polyphase factorization) could be
a useful technique. First, for wavelets (M = 2), we established the lifting
factorization. This is useful not only since it factorizes the DWT and the IDWT
into simpler operations, but also since it reduces the number of arithmetic
operations in these. The lifting factorization is therefore also used in practical
implementations, and we applied it to some of the wavelets we constructed in
Chapter 7. The JPEG2000 standard document [17] explains a procedure for
implementing some of these wavelet transforms using lifting, and the values of
the lifting steps used in the standard thus also appear here.

The polyphase representation was also useful for proving the characterization
of wavelets we encountered in Chapter 7, which we used to find expressions for
many useful wavelets.

The polyphase representation was also useful to explain how the prototype
filters of the MP3 standard should be chosen, in order for the reverse filter bank
transform to invert the forward filter bank transform. Again this was attacked
by factoring the polyphase representation of the forward and reverse filter bank
transforms. The parts of the factorization which represented the prototype
filters were represented by a sparse matrix, and it was clear from this matrix
what properties we needed to put on the prototype filter, in order to have alias
cancellation, and no phase distortion. In fact, we proved that the MP3 standard
could not possible give perfect reconstruction, but it was very clear from our
construction how the filter bank could be modified in order for the overall system
to provide perfect reconstruction.

The lifting scheme as introduced here was first proposed by Sweldens [35].
How to use lifting for in-place calculation for the DWT was also suggested by
Sweldens [34].

This development concludes the one-dimensional aspect of wavelets in this
book. In the following we will extend our theory to also apply for images. Images
will be presented in Chapter 9. After that we will define the tensor product
concept, which will be the key ingredient to apply wavelets to two-dimensional
objects such as images.



Chapter 9

Digital images

Upto now we have presented wavelets in a one-dimensional setting. Images,
however, are two-dimensional by nature. This poses another challenge, which we
did not encounter in the case of sound signals. In this chapter we will establish
the mathematics to handle this, but first we will present some basics on images,
as well as how they can be represented and manipulated with simple mathematics.
Images are a very important type of digital media, and this material is thus useful,
general knowledge for anyone with a digital camera and a computer. For many
scientists this material is also an essential tool. As an example, in astrophysics
data from both satellites and distant stars and galaxies is collected in the form
of images, and information is extracted from the images with advanced image
processing techniques. As another example, medical imaging makes it possible
to gather di�erent kinds of information in the form of images, even from the
inside of the body. By analysing these images it is possible to discover tumours
and other disorders.

We will see how filter-based operations extend naturally to the two-dimensional
setting of images. Smoothing and edge detections are the two main examples
of filter-based operations we will concider for images. The key mathematical
concept in this extension is the tensor product, which can be thought of as
a general tool for constructing two-dimensional objects from one-dimensional
counterparts. We will also see that the tensor product allows us to establish an
e�cient implementation of filtering for images, e�cient meaning a complexity
substantially less than what is required by general linear transformations.

We will finally consider useful coordinate changes for images. Recall that
the DFT, the DCT, and the wavelet transform were all defined as changes of
coordinates for vectors or functions of one variable, and therefore cannot be
directly applied to two-dimensional data like images. It turns out that the tensor
product can also be used to extend changes of coordinates to a two-dimensional
setting.

319
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9.1 What is an image?
Before we do computations with images, it is helpful to be clear about what an
image really is. Images cannot be perceived unless there is some light present,
so we first review superficially what light is.

9.1.1 Light
Fact 9.1. Light.

Light is electromagnetic radiation with wavelengths in the range 400–700 nm
(1 nm is 10≠9 m): Violet has wavelength 400 nm and red has wavelength 700
nm. White light contains roughly equal amounts of all wave lengths.

Other examples of electromagnetic radiation are gamma radiation, ultraviolet
and infrared radiation and radio waves, and all electromagnetic radiation travel
at the speed of light (¥ 3 ◊ 108 m/s). Electromagnetic radiation consists of
waves and may be reflected and refracted, just like sound waves (but sound
waves are not electromagnetic waves).

We can only see objects that emit light, and there are two ways that this
can happen. The object can emit light itself, like a lamp or a computer monitor,
or it reflects light that falls on it. An object that reflects light usually absorbs
light as well. If we perceive the object as red it means that the object absorbs
all light except red, which is reflected. An object that emits light is di�erent; if
it is to be perceived as being red it must emit only red light.

9.1.2 Digital output media
Our focus will be on objects that emit light, for example a computer display. A
computer monitor consists of a matrix of small dots which emit light. In most
technologies, each dot is really three smaller dots, and each of these smaller
dots emit red, green and blue light. If the amounts of red, green and blue is
varied, our brain merges the light from the three small light sources and perceives
light of di�erent colors. In this way the color at each set of three dots can be
controlled, and a color image can be built from the total number of dots.

It is important to realise that it is possible to generate most, but not all,
colors by mixing red, green and blue. In addition, di�erent computer monitors
use slightly di�erent red, green and blue colors, and unless this is taken into
consideration, colors will look di�erent on the two monitors. This also means
that some colors that can be displayed on one monitor may not be displayable
on a di�erent monitor.

Printers use the same principle of building an image from small dots. On
most printers however, the small dots do not consist of smaller dots of di�erent
colors. Instead as many as 7–8 di�erent inks (or similar substances) are mixed
to the right color. This makes it possible to produce a wide range of colors, but
not all, and the problem of matching a color from another device like a monitor
is at least as di�cult as matching di�erent colors across di�erent monitors.
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Video projectors builds an image that is projected onto a wall. The final
image is therefore a reflected image and it is important that the surface is white
so that it reflects all colors equally.

The quality of a device is closely linked to the density of the dots.

Fact 9.2. Resolution.
The resolution of a medium is the number of dots per inch (dpi). The number

of dots per inch for monitors is usually in the range 70–120, while for printers it is
in the range 150–4800 dpi. The horizontal and vertical densities may be di�erent.
On a monitor the dots are usually referred to as pixels (picture elements).

9.1.3 Digital input media
The two most common ways to acquire digital images is with a digital camera
or a scanner. A scanner essentially takes a photo of a document in the form of
a matrix of (possibly colored) dots. As for printers, an important measure of
quality is the number of dots per inch.

Fact 9.3. Printers.
The resolution of a scanner usually varies in the range 75 dpi to 9600 dpi,

and the color is represented with up to 48 bits per dot.

For digital cameras it does not make sense to measure the resolution in dots
per inch, as this depends on how the image is printed (its size). Instead the
resolution is measured in the number of dots recorded.

Fact 9.4. Pixels.
The number of pixels recorded by a digital camera usually varies in the range

320 ◊ 240 to 6000 ◊ 4000 with 24 bits of color information per pixel. The total
number of pixels varies in the range 76 800 to 24 000 000 (0.077 megapixels to
24 megapixels).

For scanners and cameras it is easy to think that the more dots (pixels), the
better the quality. Although there is some truth to this, there are many other
factors that influence the quality. The main problem is that the measured color
information is very easily polluted by noise. And of course high resolution also
means that the resulting files become very big; an uncompressed 6000 ◊ 4000
image produces a 72 MB file. The advantage of high resolution is that you can
magnify the image considerably and still maintain reasonable quality.

9.1.4 Definition of digital image
We have already talked about digital images, but we have not yet been precise
about what they are. From a mathematical point of view, an image is quite
simple.

Fact 9.5. Digital image.
A digital image P is a matrix of intensity values {pi,j}M,N

i,j=1

. For grey-level
images, the value pi,j is a single number, while for color images each pi,j is a
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vector of three or more values. If the image is recorded in the rgb-model, each
pi,j is a vector of three values,

pi,j = (ri,j , gi,j , bi,j),

that denote the amount of red, green and blue at the point (i, j).

Note that, when referring to the coordinates (i, j) in an image, i will refer to
row index, j to column index, in the same was as for matrices. In particular,
the top row in the image have coordinates {(0, j)}N≠1

j=0

, while the left column in
the image has coordinates {(i, 0)}M≠1

i=0

. With this notation, the dimension of the
image is M ◊ N . The value pi,j gives the color information at the point (i, j).
It is important to remember that there are many formats for this. The simplest
case is plain black and white images in which case pi,j is either 0 or 1. For
grey-level images the intensities are usually integers in the range 0–255. However,
we will assume that the intensities vary in the interval [0, 1], as this sometimes
simplifies the form of some mathematical functions. For color images there are
many di�erent formats, but we will just consider the rgb-format mentioned in
the fact box. Usually the three components are given as integers in the range
0–255, but as for grey-level images, we will assume that they are real numbers
in the interval [0, 1] (the conversion between the two ranges is straightforward,
see Example 9.10 below).

Figure 9.1: Our test image.

In Figure 9.1 we have shown the test image we will work with, called the
Lena image. It is named after the girl in the image. This image is also used as a
test image in many textbooks on image processing.

In Figure 9.2 we have shown the corresponding black and white, and grey-level
versions of the test image.

Fact 9.6. Intensity.
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Figure 9.2: Black and white (left), and grey-level (right) versions of the image
in Figure 9.1.

In these notes the intensity values pi,j are assumed to be real numbers in the
interval [0, 1]. For color images, each of the red, green, and blue intensity values
are assumed to be real numbers in [0, 1].

Figure 9.3: 18 ◊ 18 pixels excerpt of the color image in Figure 9.1. The grid
indicates the borders between the pixels.

If we magnify the part of the color image in Figure 9.1 around one of the
eyes, we obtain the images in figures 9.3-9.4. As we can see, the pixels have
been magnified to big squares. This is a standard representation used by many
programs — the actual shape of the pixels will depend on the output medium.
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Figure 9.4: 50 ◊ 50 pixels excerpt of the color image in Figure 9.1.

Nevertheless, we will consider the pixels to be square, with integer coordinates
at their centers, as indicated by the grids in figures 9.3-9.4.

Fact 9.7. Shape of pixel.
The pixels of an image are assumed to be square with sides of length one,

with the pixel with value pi,j centered at the point (i, j).

9.2 Some simple operations on images
Images are two-dimensional matrices of numbers, contrary to the sound signals
we considered in the previous section. In this respect it is quite obvious that we
can manipulate an image by performing mathematical operations on the numbers.
In this section we will consider some of the simpler operations. In later sections
we will go through more advanced operations, and explain how the theory for
these can be generalized from the corresponding theory for one-dimensional
(sound) signals (which we wil go through first).

In order to perform these operations, we need to be able to use images with
a programming environment.

9.2.1 Images and Matlab
An image can also be thought of as a matrix, by associating each pixel with an
element in a matrix. The matrix indices thus correspond to positions in the pixel
grid. Black and white images correspond to matrices where the elements are
natural numbers between 0 and 255. To store a color image, we need 3 matrices,
one for each color component. We will also view this as a 3-dimensional matrix.
In the following, operations on images will be implemented in such a way that
they are applied to each color component simultaneously. This is similar to the
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FFT and the DWT, where the operations were applied to each sound channel
simultaneously.

Since images are viewed as 2-dimensional or 3-dimensional matrices, we can
use any linear algebra software in order to work with images. After we now have
made the connection with matrices, we can create images from mathematical
formulas, just as we could with sound in the previuos sections. But what we also
need before we go through operations on images, is, as in the sections on sound,
means of reading an image from a file so that its contents are accessible as a
matrix, and write images represented by a matrix which we have constructed
ourself to file. Reading a function from file can be done with help of the function
imread. If we write

X = double(imread(’filename.fmt’, ’fmt’))

the image with the given path and format is read, and stored in the matrix
which we call X. ’fmt’ can be ’jpg’,’tif’, ’gif’, ’png’, and so on. This parameter is
optional: If it is not present, the program will attempt to determine the format
from the first bytes in the file, and from the filename. After the call to imread,
we have a matrix where the entries represent the pixel values, and of integer
data type (more precisely, the data type uint8). To perform operations on the
image, we must first convert the entries to the data type double, as shown above.
Similarly, the function imwrite

can be used to write the image represented by a matrix to file. If we write

imwrite(uint8(X), ’filename.fmt’, ’fmt’)

the image represented by the matrix X is written to the given path, in the given
format. Before the image is written to file, you see that we have converted the
matrix values back to the integer data type. In other words: imread and imwrite
both assume integer matrix entries, while operations on matrices assume double
matrix entries. If you want to print images you have created yourself, you can
use this function first to write the image to a file, and then send that file to
the printer using another program. Finally, we need an alternative to playing a
sound, namely displaying an image. The function imshow(uint8(X)) displays
the matrix X as an image in a separate window. Also here we needed to convert
the samples using the function uint8.

The following examples go through some much used operations on images.

Example 9.8. Normalising the intensities.
We have assumed that the intensities all lie in the interval [0, 1], but as we

noted, many formats in fact use integer values in the range [0,255]. And as we
perform computations with the intensities, we quickly end up with intensities
outside [0, 1] even if we start out with intensities within this interval. We
therefore need to be able to normalise the intensities. This we can do with the
simple linear function

g(x) = x ≠ a

b ≠ a
, a < b,
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which maps the interval [a, b] to [0, 1]. A simple case is mapping [0, 255] to [0, 1]
which we accomplish with the scaling g(x) = x/255. More generally, we typically
perform computations that result in intensities outside the interval [0, 1]. We
can then compute the minimum and maximum intensities p

min

and p
max

and
map the interval [p

min

, p
max

] back to [0, 1]. Below we have shown a function
mapto01 which achieves this task.

function Z=mapto01(X)
minval = min(min(min(X)));
maxval = max(max(max(X)));
Z = (X - minval)/(maxval-minval);

Several examples of using this function will be shown below. A good question
here is why the functions min and max are called three times in succession. The
reason is that there is a third “dimension” in play, besides the spatial x- and
y-directions. This dimension describes the coulor components in each pixel,
which are usually the red-, green-, and blue color components.

Example 9.9. Extracting the di�erent colors.
If we have a color image

P = (ri,j , gi,j , bi,j)m,n
i,j=1

,

it is often useful to manipulate the three color components separately as the
three images

Pr = (ri,j)m,n
i,j=1

, Pr = (gi,j)m,n
i,j=1

, Pr = (bi,j)m,n
i,j=1

.

As an example, let us first see how we can produce three separate images, showing
the R,G, and B color components, respectively. Let us take the image lena.png
used in Figure 9.1. When the image is read (first line below), the returned
object has three dimensions. The first two dimensions represent the spatial
directions (the row-index and column-index). The third dimension represents
the color component. One can therefore view images representing the di�erent
color components with the help of the following code:

X1 = zeros(size(img));
X1(:,:,1) = X1(:,:,1);

X2 = zeros(size(img));
X2(:,:,2) = X2(:,:,2);

X3=zeros(size(img));
X3(:,:,3) = X3(:,:,3);

The resulting images are shown in Figure 9.5.

Example 9.10. Converting from color to grey-level.
If we have a color image we can convert it to a grey-level image. This means

that at each point in the image we have to replace the three color values (r, g, b)
by a single value p that will represent the grey level. If we want the grey-level
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Figure 9.5: The red, green, and blue components of the color image in Figure 9.1.

image to be a reasonable representation of the color image, the value p should
somehow reflect the intensity of the image at the point. There are several ways
to do this.

It is not unreasonable to use the largest of the three color components as a
measure of the intensity, i.e, to set p = max(r, g, b). The result of this can be
seen in the left image of Figure 9.6.

An alternative is to use the sum of the three values as a measure of the total
intensity at the point. This corresponds to setting p = r + g + b. Here we have
to be a bit careful with a subtle point. We have required each of the r, g and b
values to lie in the range [0, 1], but their sum may of course become as large as
3. We also require our grey-level values to lie in the range [0, 1] so after having
computed all the sums we must normalise as explained above. The result can be
seen in the middle images of Figure 9.6.

A third possibility is to think of the intensity of (r, g, b) as the length of the
color vector, in analogy with points in space, and set p =


r2 + g2 + b2. Again,

we may end up with values in the range [0,
Ô

3] so we have to normalise like we
did in the second case. The result is shown in the right image of Figure 9.6.

Let us sum this up as follows: A color image P = (ri,j , gi,j , bi,j)m,n
i,j=1

can be
converted to a grey level image Q = (qi,j)m,n

i,j=1

by one of the following three
operations:

• Set qi,j = max(ri,j , gi,j , bi,j) for all i and j.

• Compute q̂i,j = ri,j + gi,j + bi,j for all i and j.

• Transform all the values to the interval [0, 1] by setting

qi,j = q̂i,j

maxk,l q̂k,l
.

• Compute q̂i,j =
Ò

r2

i,j + g2

i,j + b2

i,j for all i and j.
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• Transform all the values to the interval [0, 1] by setting

qi,j = q̂i,j

maxk,l q̂k,l
.

If img is an M ◊ N image, this can be implemented by using most of the code
from the previous example, and replacing with the lines

X1 = max(img, [], 3);

X2 = img(:, :, 1) + img(:, :, 2) + img(:, :, 3);
X2 = 255*mapto01(X2);

X3 = sqrt(img(:,:,1).^2 + img(:,:,2).^2 + img(:,:,3).^2);
X3 = 255*mapto01(X3);

respectively. In practice one of the last two methods are usually preferred,
perhaps with a preference for the last method, but the actual choice depends on
the application.

Figure 9.6: Alternative ways to convert the color image in Figure 9.1 to a grey
level image. The result is mapped to (0, 1).

Example 9.11. Computing the negative image.
In film-based photography a negative image was obtained when the film was

developed, and then a positive image was created from the negative. We can
easily simulate this and compute a negative digital image.

Suppose we have a grey-level image P = (pi,j)m,n
i,j=1

with intensity values in
the interval [0, 1]. Here intensity value 0 corresponds to black and 1 corresponds
to white. To obtain the negative image we just have to replace an intensity p
by its ’mirror value’ 1 ≠ p. This is also easily translated to code as above. The
resulting image is shown in Figure 9.7.

Example 9.12. Increasing the contrast.
A common problem with images is that the contrast often is not good enough.

This typically means that a large proportion of the grey values are concentrated
in a rather small subinterval of [0, 1]. The obvious solution to this problem is
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Figure 9.7: The negative versions of the corresponding images in Figure 9.6.

Figure 9.8: Some functions that can be used to improve the contrast of an
image.

Figure 9.9: The middle functions in Figure 9.8 have been applied to a grey-level
version of the test image.

to somehow spread out the values. This can be accomplished by applying a
function f to the intensity values, i.e., new intensity values are computed by the
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formula
p̂i,j = f(pi,j)

for all i and j. If we choose f so that its derivative is large in the area where
many intensity values are concentrated, we obtain the desired e�ect.

Figure 9.8 shows some examples. The functions in the left plot have quite
large derivatives near x = 0.5 and will therefore increase the contrast in images
with a concentration of intensities with value around 0.5. The functions are all
on the form

fn(x) =
arctan

!
n(x ≠ 1/2)

"

2 arctan(n/2) + 1
2 . (9.1)

For any n ”= 0 these functions satisfy the conditions fn(0) = 0 and fn(1) = 1.
The three functions in the left plot in Figure 9.8 correspond to n = 4, 10, and
100. In the left plot in Figure 9.9 the middle function has been applied to the
image in Figure 9.6(c). Since the image was quite well balanced, this has made
the dark areas too dark and the bright areas too bright.

Functions of the kind shown in the right plot have a large derivative near
x = 0 and will therefore increase the contrast in an image with a large proportion
of small intensity values, i.e., very dark images. These functions are given by

g‘(x) = ln(x + ‘) ≠ ln ‘

ln(1 + ‘) ≠ ln ‘
, (9.2)

and the ones shown in the plot correspond to ‘ = 0.1, 0.01, and 0.001. In the
right plot in Figure 9.9 the middle function has been applied to the same image.
This has made the image as a whole too bright, but has brought out the details
of the road which was very dark in the original.

Increasing the contrast is easy to implement. The following function uses the
contrast adjusting function from Equation (9.2), with ‘ as in that equation as
parameter

function Z=contrastadjust(X,epsilon)
Z = X/255; % Maps the pixel values to [0,1]
Z = (log(Z+epsilon) - log(epsilon))/...

(log(1+epsilon)-log(epsilon));
Z = Z*255; % Maps the values back to [0,255]

This has been used to generate the right image in Figure 9.9.

What you should have learned in this section.

• How to read, write, and show images on your computer.

• How to extract di�erent color components.

• How to convert from color to grey-level images.

• How to use functions for adjusting the contrast.
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Exercise 9.1: Generate black and white images
Black and white images can be generated from greyscale images (with values
between 0 and 255) by replacing each pixel value with the one of 0 and 255
which is closest. Use this strategy to generate the black and white image shown
in Figure 9.2(b).

Exercise 9.2: Adjust contrast in images 1
Generate the right image in Figure 9.9 on your own by writing code which uses
the function contrastadjust.

Exercise 9.3: Adjust contrast in images 2
Let us also consider the second way we mentioned for increasing the contrast.

a) Write a function contrastadjust0 which instead uses the function from
Equation (9.1) in the compendium to increase the contrast. n should be a
parameter to the function.

b) Generate the left image in Figure 9.9 on your own by using your code from
Exercise 9.2, and instead calling the function contrastadjust0.

Exercise 9.4: Adjust contrast in images 3
In this exercise we will look at another function for increasing the contrast of a
picture.

a) Show that the function f : R æ R given by

fn(x) = xn,

for all n maps the interval [0, 1] æ [0, 1], and that f Õ(1) æ Œ as n æ Œ.

b) The color image secret.jpg,shown in Figure 9.10, contains some informa-
tion that is nearly invisible to the naked eye on most computer monitors. Use
the function f(x), to reveal the secret message.

Hint. You will first need to convert the image to a greyscale image. You can
then use the function contrastadjust as a starting point for your own program.
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Figure 9.10: Secret message.

9.3 Filter-based operations on images
The next examples of operations on images we consider will use filters. These
examples define what it means to apply a filter to two-dimensional data. We
start with the following definition of a computational molecule. This term stems
from image processing, and seems at the outset to be unrelated to filters.

Definition 9.13. Computational molecules.
We say that an operation S on an image X is given by the computational

molecule

A =

Q

cccccca

...
...

...
...

...
· · · a≠1,≠1

a≠1,0 a≠1,1 · · ·
· · · a

0,≠1

a
0,0 a

0,1 · · ·
· · · a

1,≠1

a
1,0 a

1,1 · · ·
...

...
...

...
...

R

ddddddb

if we have that

(SX)i,j =
ÿ

k1,k2

ak1,k2Xi≠k1,j≠k2 . (9.3)

In the molecule, indices are allowed to be both positive and negative, we underline
the element with index (0, 0) (the center of the molecule), and assume that ai,j

with indices falling outside those listed in the molecule are zero (as for compact
filter notation).

In Equation (9.3), it is possible for the indices i ≠ k
1

and j ≠ k
2

to fall
outside the legal range for X. We will solve this case in the same way as we
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did for filters, namely that we assume that X is extended (either periodically
or symmetrically) in both directions. The interpretation of a computational
molecule is that we place the center of the molecule on a pixel, multiply the
pixel and its neighbors by the corresponding weights ai,j in reverse order, and
finally sum up in order to produce the resulting value. This type of operation
will turn out to be particularly useful for images. The following result expresses
how computational molecules and filters are related. It states that, if we apply
one filter to all the columns, and then another filter to all the rows, the end
result can be expressed with the help of a computational molecule.

Theorem 9.14. Filtering and computational molecules.
Let S

1

and S
2

be filters with compact filter notation t

1

and t

2

, respectively,
and consider the operation S where S

1

is first applied to the columns in the
image, and then S

2

is applied to the rows in the image. Then S is an operation
which can be expressed in terms of the computational molecule ai,j = (t

1

)i(t2

)j .

Proof. Let Xi,j be the pixels in the image. When we apply S
1

to the columns
of X we get the image Y defined by

Yi,j =
ÿ

k1

ÿ
(t

1

)k1Xi≠k1,j .

When we apply S
2

to the rows of Y we get the image Z defined by

Zi,j =
ÿ

k2

(t
2

)k2Yi,j≠k2 =
ÿ

k2

(t
2

)k2

ÿ

k1

(t
1

)k1Xi≠k1,j≠k2

=
ÿ

k1

ÿ

k2

(t
1

)k1(t
2

)k2Xi≠k1,j≠k2 .

Comparing with Equation (9.3) we see that S is given by the computational
molecule with entries ai,j = (t

1

)i(t2

)j .

Note that, when we filter an image with S
1

and S
2

in this way, the order
does not matter: since computing S

1

X is the same as applying S
1

to all columns
of X, and computing Y (S

2

)T is the same as applying S
2

to all rows of Y , the
combined filtering operation, denoted S, takes the form

S(X) = S
1

X(S
2

)T , (9.4)

and the fact that the order does not matter simply boils down to the fact that
it does not matter which of the left or right multiplications we perform first.
Applying S

1

to the columns of X is what we call a vertical filtering operation,
while applying S

2

to the rows of X is what we call a horizontal filtering operation.
We can thus state the following.

Observation 9.15. Order of vertical and horizontal filtering.
The order of vertical and horizontal filtering of an image does not matter.
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Most computational molecules we will consider in the following can be
expressed in terms of filters as in this theorem, but clearly there exist also
computational molecules which are not on this form, since the matrix A with
entries ai,j = (t

1

)i(t2

)j has rank one, and a general computational molecule can
have any rank. In most of the examples the filters are symmetric.

Assume that the image is stored as the matrix X. In Exercise 9.5 you will be
asked to implement a function tensor_impl which computes the transformation
S(X) = S

1

X(S
2

)T , where X, S1, and S2 are input. If the computational molecule
is obtained by applying the filter S

1

to the columns, and the filter S
2

to the
rows, we can compute it with the following code: (we have assumed that the
filter lengths are odd, and that the middle filter coe�cient has index 0):

function y = S1(x):
y = filterS(S1, x, 1)

function y = S2(x):
y = filterS(S2, x, 1)

Y = tensor_impl(X, S1, S2)

We have here used the function filterS to implement the filtering, so that we
assume that the image is periodically or symmetrically extended. The above
code uses symmetric extension, and can thus be used for symmetric filters. If
the filter is non-symmetric, we should use a periodic extension instead, for which
the last parameter to filterS should be changed.

9.3.1 Tensor product notation for operations on images
Filter-based operations on images can be written compactly using what we
will call tensor product notation. This is part of a very general tensor product
framework, and we will review parts of this framework for the sake of completeness.
Let us first define the tensor product of vectors.

Definition 9.16. Tensor product of vectors.
If x,y are vectors of length M and N , respectively, their tensor product

x ¢ y is defined as the M ◊ N -matrix defined by (x ¢ y)i,j = xiyj . In other
words, x ¢ y = xy

T .

The tensor product xyT is also called the outer product of x and y (contrary
to the inner product Èx,yÍ = x

T
y). In particular x ¢ y is a matrix of rank 1,

which means that most matrices cannot be written as a tensor product of two
vectors. The special case ei ¢ej is the matrix which is 1 at (i, j) and 0 elsewhere,
and the set of all such matrices forms a basis for the set of M ◊ N -matrices.

Observation 9.17. Standard basis for LM,N (R).
Let EM = {ei}M≠1

i=0

EN = {ei}N≠1

i=0

be the standard bases for RM and RN .
Then

EM,N = {ei ¢ ej}(M≠1,N≠1)

(i,j)=(0,0)
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is a basis for LM,N (R), the set of M ◊ N -matrices. This basis is often referred
to as the standard basis for LM,N (R).

The standard basis thus consists of rank 1-matrices. An image can simply be
thought of as a matrix in LM,N (R), and a computational molecule is simply a
special type of linear transformation from LM,N (R) to itself. Let us also define
the tensor product of matrices.

Definition 9.18. Tensor product of matrices.
If S

1

: RM æ RM and S
2

: RN æ RN are matrices, we define the linear
mapping S

1

¢ S
2

: LM,N (R) æ LM,N (R) by linear extension of (S
1

¢ S
2

)(ei ¢
ej) = (S

1

ei) ¢ (S
2

ej). The linear mapping S
1

¢ S
2

is called the tensor product
of the matrices S

1

and S
2

.

A couple of remarks are in order. First, from linear algebra we know that,
when S is linear mapping from V and S(vi) is known for a basis {vi}i of V , S is
uniquely determined. In particular, since the {ei¢ej}i,j form a basis, there exists
a unique linear transformation S

1

¢S
2

so that (S
1

¢S
2

)(ei¢ej) = (S
1

ei)¢(S
2

ej).
This unique linear transformation is what we call the linear extension from
the values in the given basis. Clearly, by linearity, also (S

1

¢ S
2

)(x ¢ y) =
(S

1

x) ¢ (S
2

y), since

(S
1

¢ S
2

)(x ¢ y) = (S
1

¢ S
2

)((
ÿ

i

xiei) ¢ (
ÿ

j

yjej)) = (S
1

¢ S
2

)(
ÿ

i,j

xiyj(ei ¢ ej))

=
ÿ

i,j

xiyj(S
1

¢ S
2

)(ei ¢ ej) =
ÿ

i,j

xiyj(S
1

ei) ¢ (S
2

ej)

=
ÿ

i,j

xiyjS
1

ei((S2

ej))T = S
1

(
ÿ

i

xiei)(S2

(
ÿ

j

yjej))T

= S
1

x(S
2

y)T = (S
1

x) ¢ (S
2

y).

Here we used the result from Exercise 9.9. We can now prove the following.

Theorem 9.19. Comact filter notationa and computational molecules.
If S

1

: RM æ RM and S
2

: RN æ RN are matrices of linear transformations,
then (S

1

¢ S
2

)X = S
1

X(S
2

)T for any X œ LM,N (R). In particular S
1

¢ S
2

is
the operation which applies S

1

to the columns of X, and S
2

to the resulting rows.
In other words, if S

1

, S
2

have compact filter notations t

1

and t

2

, respectively,
then S

1

¢ S
2

has computational molecule t

1

¢ t

2

.

We have not formally defined the tensor product of compact filter notations.
This is a straightforward extension of the usual tensor product of vectors, where
we additionally mark the element at index (0, 0).

Proof. We have that
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(S
1

¢ S
2

)(ei ¢ ej) = (S
1

ei) ¢ (S
2

ej)
= (coli(S1

)) ¢ (colj(S
2

)) = coli(S1

)(colj(S
2

))T

= coli(S1

)rowj((S
2

)T ) = S
1

(ei ¢ ej)(S
2

)T .

This means that (S
1

¢ S
2

)X = S
1

X(S
2

)T for any X œ LM,N (R) also, since
equality holds on the basis vectors ei ¢ ej . Since the matrix A with entries
ai,j = (t

1

)i(t2

)j also can be written as t

1

¢ t

2

, the result follows.

We have thus shown that we alternatively can write S
1

¢S
2

for the operations
we have considered. This notation also makes it easy to combine several two-
dimensional filtering operations:

Corollary 9.20. Composing tensor products.
We have that (S

1

¢ T
1

)(S
2

¢ T
2

) = (S
1

S
2

) ¢ (T
1

T
2

).

Proof. By Theorem 9.19 we have that

(S
1

¢T
1

)(S
2

¢T
2

)X = S
1

(S
2

XT T
2

)T T
1

= (S
1

S
2

)X(T
1

T
2

)T = ((S
1

S
2

)¢(T
1

T
2

))X.

for any X œ LM,N (R). This proves the result.

Suppose that we want to apply the operation S
1

¢ S
2

to an image. We can
factorize S

1

¢ S
2

as

S
1

¢ S
2

= (S
1

¢ I)(I ¢ S
2

) = (I ¢ S
2

)(S
1

¢ I). (9.5)
Moreover, since

(S
1

¢ I)X = S
1

X (I ¢ S
2

)X = X(S
2

)T = (S
2

XT )T ,

S
1

¢ I is a vertical filtering operation, and I ¢ S
2

is a horizontal filtering
operation in this factorization. For filters we have an even stronger result: If
S

1

, S
2

, S
3

, S
4

all are filters, we have from Corollary 9.20 that (S
1

¢S
2

)(S
3

¢S
4

) =
(S

3

¢ S
4

)(S
1

¢ S
2

), since all filters commute. This does not hold in general since
general matrices do not commute.

We will now consider two important examples of filtering operations on
images: smoothing and edge detection/computing partical derivatives. For all
examples we will use the tensor product notation for these operations.

Example 9.21. Smoothing an image.
When we considered filtering of digital sound, we observed that replacing

each sample of a sound by an average of the sample and its neighbours dampened
the high frequencies of the sound. Let us consider the computational molecules
where such a filter is applied to both the rows and the columns. For the one-
dimensional case on sound, we argued that filter coe�cients taken from Pascal’s
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triangle give good smoothing e�ects. The same can be argued for images. If we
use the filter S = 1

4

{1, 2, 1} (row 2 from Pascal’s triangle), Theorem 9.14 says
that we obtain the computational molecule

A = 1
16

Q

a
1 2 1
2 4 2
1 2 1

R

b . (9.6)

This means that we compute the new pixels by

p̂i,j = 1
16

!
4pi,j + 2(pi,j≠1

+ pi≠1,j + pi+1,j + pi,j+1

)

+ pi≠1,j≠1

+ pi+1,j≠1

+ pi≠1,j+1

+ pi+1,j+1

"
.

If we instead use the filter S = 1

64

{1, 6, 15, 20, 15, 6, 1} (row 6 from Pascal’s
triangle), we get the computational molecule

1
4096

Q

cccccccca

1 6 15 20 15 6 1
6 36 90 120 90 36 6
15 90 225 300 225 90 15
20 120 300 400 300 120 20
15 90 225 300 225 90 15
6 36 90 120 90 36 6
1 6 15 20 15 6 1

R

ddddddddb

. (9.7)

For both molecules the weights sum to one, so that the new intensity values p̂i,j

are weighted averages of the intensity values on the right. We anticipate that
both molecules give a smoothing e�ect, but that the second molecules provides
more smoothing. The result of applying the two molecules in (9.6) and (9.7) to
our greyscale-image is shown in the two right images in Figure 9.11. With the
help of the function tensor_impl, smoothing with the first molecule (9.6) above
can be obtained by writing

function y = S(x)
y = filterS([1 2 1]/4, x, 1);

Y = tensor_impl(X, @S, @S);

To make the smoothing e�ect visible, we have zoomed in on the face in the
image. The smoothing e�ect is clarly best visible in the second image.

Smoothing e�ects are perhaps more visible if we use a simple image, as the
one in the left part of Figure 9.12.

Again we have used the filter S = 1

4

{1, 2, 1}. Here we also have shown what
happens if we only smooth the image in one of the directions. The smoothing
e�ects are then only seen in one of the vertical or horizontal directions. In the
right image we have smoothed in both directions. We clearly see the union of
the two one-dimensional smoothing operations then.
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Figure 9.11: The two right images show the e�ect of smoothing the left image.

Figure 9.12: The results of smoothing the simple image to the left with the
filter 1

4

{1, 2, 1} horizontally, vertically, and both, respectively.

Let us summarize from this example as follows.

Observation 9.22. Smoothing an image.
An image P can be smoothed by applying a smoothing filter to the rows,

and then to the columns.

Another operation on images which can be expressed in terms of compu-
tational molecules is edge detection. An edge in an image is characterised by
a large change in intensity values over a small distance in the image. For a
continuous function this corresponds to a large derivative. An image is only
defined at isolated points, so we cannot compute derivatives, but we have a
perfect situation for applying numerical di�erentiation. Since a grey-level image
is a scalar function of two variables, numerical di�erentiation techniques can be
applied.

Partial derivative in x-direction. Let us first consider computation of
the partial derivative ˆP/ˆx at all points in the image. Note first that it is
the second coordinate in an image which refers to the x-direction used when
plotting functions. This means that the familiar symmetric Newton quotient
approximation for the partial derivative [23] takes the form

ˆP

ˆx
(i, j) ¥ pi,j+1

≠ pi,j≠1

2 , (9.8)
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where we have used the convention h = 1 which means that the derivative is
measured in terms of ’intensity per pixel’. This corresponds to applying the
bass-reducing filter S = 1

2

{1, 0, ≠1} to all the rows (alternatively, applying the
tensor product I ¢ S to the image). We can thus express this in terms of
computational molecules as follows.

Observation 9.23. The partial derivative ˆP/ˆx.
Let P = (pi,j)m,n

i,j=1

be a given image. The partial derivative ˆP/ˆx of the
image can be computed with the computational molecule

1
2

Q

a
0 0 0
1 0 ≠1
0 0 0

R

b . (9.9)

We have included the two rows of 0s just to make it clear how the computa-
tional molecule is to be interpreted when we place it over the pixels. If we apply
the smooth-function to the same excerpt of the Lena image with this molecule,
we obtain the left image in Figure 9.13. It shows many artefacts since the pixel
values lie outside the legal range: many of the intensities are in fact negative.
More specifically, the intensities turn out to vary in the interval [≠0.424, 0.418].
We therefore normalise and map all intensities to [0, 1]. The result of this is
shown in the middle image. The predominant color of this image is an average
grey, i.e, an intensity of about 0.5. To get more detail in the image we therefore
try to increase the contrast by applying the function f

50

in equation (9.1) to
each intensity value. The result is shown in the right image in Figure 9.13 which
does indeed show more detail.

Figure 9.13: Experimenting with the partial derivative in the x-direction for
the image in 9.6. The left image has artefacts, since the pixel values are outside
the legal range. We therefore normalize the intensities to lie in [0, 25] (middle),
before we increase the contrast (right).

It is important to understand the colors in these images. We have computed
the derivative in the x-direction, and we recall that the computed values varied
in the interval [≠0.424, 0.418]. The negative value corresponds to the largest
average decrease in intensity from a pixel pi≠1,j to a pixel pi+1,j . The positive
value on the other hand corresponds to the largest average increase in intensity.
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A value of 0 in the left image in Figure 9.13 corresponds to no change in intensity
between the two pixels.

When the values are mapped to the interval [0, 1] in the middle image in
Figure 9.13, the small values are mapped to something close to 0 (almost black),
the maximal values are mapped to something close to 1 (almost white), and the
values near 0 are mapped to something close to 0.5 (grey). In the right image in
Figure 9.13 these values have just been emphasised even more.

The right image in Figure 9.13 tells us that in large parts of the image there
is very little variation in the intensity. However, there are some small areas
where the intensity changes quite abruptly, and if you look carefully you will
notice that in these areas there is typically both black and white pixels close
together, like down the vertical front corner of the bus. This will happen when
there is a stripe of bright or dark pixels that cut through an area of otherwise
quite uniform intensity.

Partial derivative in y-direction. The partial derivative ˆP/ˆy can be
computed analogously to ˆP/ˆx, i.e. we apply the filter ≠S = 1

2

{≠1, 0, 1} to
all columns of the image (alternatively, apply the tensor product ≠S ¢ I to the
image), where S is the filter which we used for edge detection in the x-direction.
Note that the positive direction of this axis in an image is opposite to the
direction of the y-axis we use when plotting functions.

Observation 9.24. The partial derivative ˆP/ˆy.
Let P = (pi,j)m,n

i,j=1

be a given image. The partial derivative ˆP/ˆy of the
image can be computed with the computational molecule

1
2

Q

a
0 1 0
0 0 0
0 ≠1 0

R

b . (9.10)

The result is shown in Figure 9.15(b). The intensities have been normalised
and the contrast enhanced by the function f

50

from Equation (9.1).

The gradient. The gradient of a scalar function is often used as a measure of
the size of the first derivative. The gradient is defined by the vector

ÒP =
A

ˆP

ˆx
,

ˆP

ˆy

B
,

so its length is given by

|ÒP | =
ı̂ıÙ

A
ˆP

ˆx

B
2

+
A

ˆP

ˆy

B
2

.

When the two first derivatives have been computed it is a simple matter to
compute the gradient vector and its length; the resulting is shown as an image
in Figure 9.14c.
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Figure 9.14: The computed gradient (left). In the middle the intensities have
been normalised to the [0, 255], and to the right the contrast has been increased.

The image of the gradient looks quite di�erent from the images of the two
partial derivatives. The reason is that the numbers that represent the length of
the gradient are (square roots of) sums of squares of numbers. This means that
the parts of the image that have virtually constant intensity (partial derivatives
close to 0) are colored black. In the images of the partial derivatives these values
ended up in the middle of the range of intensity values, with a final color of grey,
since there were both positive and negative values.

The left image in Figure 9.14 shows the computed values of the gradient.
Note that it is possible that the length of the gradient could be outside the legal
range of values. This would have been seen as artefacts in this image. In the
middle image the intensities have been mapped to the legal range. To enhance
the contrast further we have to do something di�erent from what was done in
the other images since we now have a large number of intensities near 0. The
solution is to apply a function like the ones shown in the right plot in Figure 9.8
to the intensities. If we use the function g

0.01

defined in equation(9.2) we obtain
the right image in Figure 9.14.

9.3.2 Comparing the first derivatives
Figure 9.15 shows the two first-order partial derivatives and the gradient. If
we compare the two partial derivatives we see that the x-derivative seems to
emphasise vertical edges while the y-derivative seems to emphasise horizontal
edges. This is precisely what we must expect. The x-derivative is large when
the di�erence between neighbouring pixels in the x-direction is large, which is
the case across a vertical edge. The y-derivative enhances horizontal edges for a
similar reason.

The gradient contains information about both derivatives and therefore
emphasises edges in all directions. It also gives a simpler image since the sign of
the derivatives has been removed.
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Figure 9.15: The first-order partial derivatives in the x- and y-direction,
respectively. In both images, the computed numbers have been normalised and
the contrast enhanced.

9.3.3 Second-order derivatives
To compute the three second order derivatives we can combine the two com-
putational molecules which we already have described. For the mixed second
order derivative we get (I ¢ S)((≠S) ¢ I) = ≠S ¢ S. For the last two second
order derivative ˆ2P

ˆx2 , ˆ2P
ˆy2 , we can also use the three point approximation to the

second derivative [23]

ˆP

ˆx2

(i, j) ¥ pi,j+1

≠ 2pi,j + pi,j≠1

(9.11)

to the second derivative (again we have set h = 1). This gives a smaller
molecule than if we combine the two molecules for order one di�erentiation
(i.e. (I ¢ S)(I ¢ S) = (I ¢ S2) and ((≠S) ¢ I)((≠S) ¢ I) = (S2 ¢ I)), since
S2 = 1

2

{1, 0, ≠1} 1

2

{1, 0, ≠1} = 1

4

{1, 0, ≠2, 0, 1}.

Observation 9.25. Second order derivatives of an image.
The second order derivatives of an image P can be computed by applying

the computational molecules
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ˆ2P

ˆx2

:

Q

a
0 0 0
1 ≠2 1
0 0 0

R

b , (9.12)

ˆ2P

ˆyˆx
: 1

4

Q

a
≠1 0 1
0 0 0
1 0 ≠1

R

b , (9.13)

ˆ2P

ˆy2

:

Q

a
0 1 0
0 ≠2 0
0 1 0

R

b . (9.14)

Figure 9.16: The second-order partial derivatives in the xx-, xy-, and yy-
directions, respectively. In all images, the computed numbers have been nor-
malised and the contrast enhanced.

With the information in Observation 9.25 it is quite easy to compute the
second-order derivatives, and the results are shown in Figure 9.16. The computed
derivatives were first normalised and then the contrast enhanced with the function
f

100

in each image, see equation (9.1).
As for the first derivatives, the xx-derivative seems to emphasise vertical

edges and the yy-derivative horizontal edges. However, we also see that the
second derivatives are more sensitive to noise in the image (the areas of grey are
less uniform). The mixed derivative behaves a bit di�erently from the other two,
and not surprisingly it seems to pick up both horizontal and vertical edges.

This procedure can be generalized to higher order derivatives also. To apply
ˆk+lP
ˆxkˆyl to an image we can compute Sl ¢ Sk where Sr corresponds to any point
method for computing the r’th order derivative. We can also compute (Sl)¢(Sk),
where we iterate the filter S = 1

2

{1, 0, ≠1} for the first derivative, but this gives
longer filters.

Let us also apply the molecules for di�erentiation to a chess pattern test
image. In Figure 9.17 we have applied S ¢ I, I ¢ S, and S ¢ S, I ¢ S2, and
S2 ¢ I to the example image shown in the upper left.

These images make it is clear that S ¢ I detects all horizontal edges, that
I ¢ S detects all vertical edges, and that S ¢ S detects all points where abrupt
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Figure 9.17: Di�erent tensor products representing partial derivatives applied
to a simple chess pattern example image (upper left). The tensor products are
S ¢ I, I ¢ S, S ¢ S, I ¢ S2, and S2 ¢ I.

changes appear in both directions. We also see that the second order partial
derivative detects exactly the same edges which the first order partial derivative
found. Note that the edges detected with I ¢S2 are wider than the ones detected
with I ¢ S. The reason is that the filter S2 has more filter coe�cients than
S. Also, edges are detected with di�erent colors. This reflects whether the
di�erence between the neighbouring pixels is positive or negative. The values
after we have applied the tensor product may thus not lie in the legal range
of pixel values (since they may be negative). The figures have taken this into
account by mapping the values back to a legal range of values, as we did in
Chapter 9. Finally, we also see additional edges at the first and last rows/edges
in the images. The reason is that the filter S is defined by assuming that the
pixels repeat periodically (i.e. it is a circulant Toeplitz matrix). Due to this, we
have additional edges at the first/last rows/edges. This e�ect can also be seen in
Chapter 9, although there we did not assume that the pixels repeat periodically.

Defining a two-dimensional filter by filtering columns and then rows is not
the only way we can define a two-dimensional filter. Another possible way is
to let the MN ◊ MN -matrix itself be a filter. Unfortunately, this is a bad way
to define filtering of an image, since there are some undesirable e�ects near the
boundaries between rows: in the vector we form, the last element of one row
is followed by the first element of the next row. These boundary e�ects are
unfortunate when a filter is applied.
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What you should have learned in this section.

• The operation X æ S
1

X(S
2

)T can be used to define operations on images,
based on one-dimensional operations S

1

and S
2

. This amounts to applying
S

1

to all columns in the image, and then S
2

to all rows in the result. You
should know how this operation can be conveniently expressed with tensor
product notation, and that in the typical case when S

1

and S
2

are filters,
this can equivalently be expressed in terms of computational molecules.

• The case when the Si are smoothing filters gives rise to smoothing opera-
tions on images.

• A simple highpass filter, corresponding to taking the derivative, gives rise
to edge-detection operations on images.

Exercise 9.5: Implement a tensor product
Implement a function tensor_impl which takes a matrix X, and functions S1
and S2 as parameters, and applies S1 to the columns of X, and S2 to the rows of
X.

Exercise 9.6: Generate images
Write code which calls the function tensor_impl with appropriate filters and
which generate the following images:

a) The right image in Figure 9.11.

b) The right image in Figure 9.13.

c) The images in figures 9.14.

d) The images in Figure 9.15.

e) The images in Figure 9.16.

Exercise 9.7: Interpret tensor products
Let the filter S be defined by S = {≠1, 1}.

a) Let X be a matrix which represents the pixel values in an image. What can
you say about how the new images (S ¢ I)X og (I ¢ S)X look? What are the
interpretations of these operations?

b) Write down the 4 ¢ 4-matrix X = (1, 1, 1, 1) ¢ (0, 0, 1, 1). Compute (S ¢ I)X
by applying the filters to the corresponding rows/columns of X as we have learnt,
and interpret the result. Do the same for (I ¢ S)X.
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Exercise 9.8: Computational molecule of moving average
filter
Let S be the moving average filter of length 2L+1, i.e. T = 1

L {1, · · · , 1, 1, 1, · · · , 1¸ ˚˙ ˝
2L+1 times

}.

What is the computational molecule of S ¢ S?

Exercise 9.9: Bilinearity of the tensor product
Show that the mapping F (x,y) = x¢y is bi-linear, i.e. that F (–x

1

+ —x
2

,y) =
–F (x

1

,y) + —F (x
2

,y), and F (x, –y
1

+ —y
2

) = –F (x,y
1

) + —F (x,y
2

).

Exercise 9.10: Attempt to write as tensor product
Attempt to find matrices S

1

: RM æ RM and S
2

: RN æ RN so that the
following mappings from LM,N (R) to LM,N (R) can be written on the form
X æ S

1

X(S
2

)T = (S
1

¢ S
2

)X. In all the cases, it may be that no such S
1

, S
2

can be found. If this is the case, prove it.

a) The mapping which reverses the order of the rows in a matrix.

b) The mapping which reverses the order of the columns in a matrix.

c) The mapping which transposes a matrix.

Exercise 9.11: Computational molecules
Let the filter S be defined by S = {1, 2, 1}.

a) Write down the computational molecule of S ¢ S.

b) Let us define x = (1, 2, 3), y = (3, 2, 1), z = (2, 2, 2), and w = (1, 4, 2).
Compute the matrix A = x ¢ y + z ¢ w.

c) Compute (S ¢ S)A by applying the filter S to every row and column in the
matrix the way we have learnt. If the matrix A was more generally an image,
what can you say about how the new image will look?

Exercise 9.12: Computational molecules
Let S = 1

4

{1, 2, 1} be a filter.

a) What is the e�ect of applying the tensor products S ¢ I, I ¢ S, and S ¢ S
on an image represented by the matrix X?

b) Compute (S ¢ S)(x ¢ y), where x = (4, 8, 8, 4), y = (8, 4, 8, 4) (i.e. both x

and y are column vectors).
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Exercise 9.13: Comment on code
Suppose that we have an image given by the M ◊ N -matrix X, and consider the
following code:

for n=1:N
X(1, n) = 0.25*X(N, n) + 0.5*X(1, n) + 0.25*X(2, n);
X(2:(N-1), n) = 0.25*X(1:(N-2), n) + 0.5*X(2:(N-1), n) ...

+ 0.25*X(3:N, n);
X(N, n) = 0.25*X(N-1, n) + 0.5*X(N, n) + 0.25*X(1, n);

end
for m=1:M

X(m, 1) = 0.25*X(m, M) + 0.5*X(m, 1) + 0.25*X(m, 2);
X(m, 2:(M-1)) = 0.25*X(m, 1:(M-2)) + 0.5*X(m, 2:(M-1),) ...

+ 0.25*X(m, 3:M);
X(m, M) = 0.25*X(m, M-1) + 0.5*X(m, M) + 0.25*X(m, 1);

end

Which tensor product is applied to the image? Comment what the code does, in
particular the first and third line in the inner for-loop. What e�ect does the
code have on the image?

Exercise 9.14: Eigenvectors of tensor products
Let vA be an eigenvector of A with eigenvalue ⁄A, and vB an eigenvector of
B with eigenvalue ⁄B. Show that vA ¢ vB is an eigenvector of A ¢ B with
eigenvalue ⁄A⁄B . Explain from this why ÎA¢BÎ = ÎAÎÎBÎ, where Î ·Î denotes
the operator norm of a matrix.

Exercise 9.15: The Kronecker product
The Kronecker tensor product of two matrices A and B, written A ¢k B, is
defined as

A ¢k B =

Q

ccca

a
1,1B a

1,2B · · · a
1,M B

a
2,1B a

2,2B · · · a
2,M B

...
... . . . ...

ap,1B ap,2B · · · ap,M B

R

dddb
,

where the entries of A are ai,j . The tensor product of a p ◊ M -matrix, and a
q ◊ N -matrix is thus a (pq) ◊ (MN)-matrix. Note that this tensor product in
particular gives meaning for vectors: if x œ RM , y œ RN are column vectors,
then x ¢k

y œ RMN is also a column vector. In this exercise we will investigate
how the Kronecker tensor product is related to tensor products as we have
defined them in this section.

a) Explain that, if x œ RM , y œ RN are column vectors, then x ¢k
y is the

column vector where the rows of x ¢ y have first been stacked into one large
row vector, and this vector transposed. The linear extension of the operation
defined by
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x ¢ y œ RM,N æ x ¢k
y œ RMN

thus stacks the rows of the input matrix into one large row vector, and transposes
the result.

b) Show that (A ¢k B)(x ¢k
y) = (Ax) ¢k (By). We can thus use any of

the defined tensor products ¢, ¢k to produce the same result, i.e. we have the
commutative diagram shown in Figure 9.18, where the vertical arrows represent
stacking the rows in the matrix, and transposing, and the horizontal arrows
represent the two tensor product linear transformations we have defined. In
particular, we can compute the tensor product in terms of vectors, or in terms
of matrices, and it is clear that the Kronecker tensor product gives the matrix
of tensor product operations.

x⌦ y

A⌦B//

✏✏

(Ax)⌦ (By)

✏✏
x⌦k

y

A⌦kB// (Ax)⌦k (By),

Figure 9.18: Tensor products

c) Using the Euclidean inner product on L(M, N) = RMN , i.e.

ÈX, Y Í =
M≠1ÿ

i=0

N≠1ÿ

j=0

Xi,jYi,j .

and the correspondence in a) we can define the inner product of x
1

¢ y

1

and
x

2

¢ y

2

by

Èx
1

¢ y

1

,x
2

¢ y

2

Í = Èx
1

¢k
y

1

,x
2

¢k
y

2

Í.
Show that

Èx
1

¢ y

1

,x
2

¢ y

2

Í = Èx
1

,x
2

ÍÈy
1

,y
2

Í.
Clearly this extends linearly to an inner product on LM,N .

d) Show that the FFT factorization can be written as
3

FN/2

DN/2

FN/2

FN/2

≠DN/2

FN/2

4
=

3
IN/2

DN/2

IN/2

≠DN/2

4
(I

2

¢k FN/2

).

Also rewrite the sparse matrix factorization for the FFT from Equation (2.18)
in the compendium in terms of tensor products.
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9.4 Change of coordinates in tensor products
Filter-based operations were not the only operations we considered for sound.
We also considered the DFT, the DCT, and the wavelet transform, which
were changes of coordinates which gave us useful frequency- or time-frequency
information. We would like to define similar changes of coordinates for images,
which also give useful such information. Tensor product notation will also be
useful in this respect, and we start with the following result.
Theorem 9.26. The basis B

1

¢ B
2

.
If B

1

= {vi}M≠1

i=0

is a basis for RM , and B
2

= {wj}N≠1

j=0

is a basis for RN , then
{vi ¢ wj}(M≠1,N≠1)

(i,j)=(0,0)

is a basis for LM,N (R). We denote this basis by B
1

¢ B
2

.

Proof. Suppose that
q

(M≠1,N≠1)

(i,j)=(0,0)

–i,j(vi ¢wj) = 0. Setting hi =
qN≠1

j=0

–i,jwj

we get

N≠1ÿ

j=0

–i,j(vi ¢ wj) = vi ¢ (
N≠1ÿ

j=0

–i,jwj) = vi ¢ hi.

where we have used the bi-linearity of the tensor product mapping (x,y) æ x¢y

(Exercise 9.9). This means that

0 =
(M≠1,N≠1)ÿ

(i,j)=(0,0)

–i,j(vi ¢ wj) =
M≠1ÿ

i=0

vi ¢ hi =
M≠1ÿ

i=0

vih
T
i .

Column k in this matrix equation says 0 =
qM≠1

i=0

hi,kvi, where hi,k are the
components in hi. By linear independence of the vi we must have that h

0,k =
h

1,k = · · · = hM≠1,k = 0. Since this applies for all k, we must have that all
hi = 0. This means that

qN≠1

j=0

–i,jwj = 0 for all i, from which it follows by
linear independence of the wj that –i,j = 0 for all j, and for all i. This means
that B

1

¢ B
2

is a basis.

In particular, as we have already seen, the standard basis for LM,N (R) can be
written EM,N = EM ¢ EN . This is the basis for a useful convention: For a tensor
product the bases are most naturally indexed in two dimensions, rather than
the usual sequential indexing. This di�erence translates also to the meaning
of coordinate vectors, which now are more naturally thought of as coordinate
matrices:
Definition 9.27. Coordinate matrix.

Let B = {bi}M≠1

i=0

, C = {cj}N≠1

j=0

be bases for RM and RN , and let A œ
LM,N (R). By the coordinate matrix of A in B ¢ C we mean the M ◊ N -matrix
X (with components Xkl) such that A =

q
k,l Xk,l(bk ¢ cl).

We will have use for the following theorem, which shows how change of
coordinates in RM and RN translate to a change of coordinates in the tensor
product:
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Theorem 9.28. Change of coordinates in tensor products.
Assume that

• B
1

, C
1

are bases for RM , and that S
1

is the change of coordinates matrix
from B

1

to C
1

,

• B
2

, C
2

are bases for RN , and that S
2

is the change of coordinates matrix
from B

2

to C
2

.

Both B
1

¢ B
2

and C
1

¢ C
2

are bases for LM,N (R), and if X is the coordinate
matrix in B

1

¢ B
2

, and Y the coordinate matrix in C
1

¢ C
2

, then the change of
coordinates from B

1

¢ B
2

to C
1

¢ C
2

can be computed as

Y = S
1

X(S
2

)T . (9.15)

Proof. Let cki be the i’th basis vector in Ck, bki the i’th basis vector in Bk,
k = 1, 2. Since any change of coordinates is linear, it is enough to show that it
coincides with X æ S

1

X(S
2

)T for any basis vector in B
1

¢ B
2

. The basis vector
b

1i ¢ b

2j has coordinate vector X = ei ¢ ej in B
1

¢ B
2

. With the mapping
X æ S

1

X(S
2

)T this is sent to

S
1

X(S
2

)T = S
1

(ei¢ej)(S
2

)T = S
1

ei(ej)T (S
2

)T = S
1

ei(S2

ej)T = coli(S1

)(colj(S
2

))T .

On the other hand, since column i in S
1

is the coordinates of b
1i in the basis C

1

,
and column j in S

2

is the coordinates of b
2j in the basis C

2

, we can write

b

1i ¢ b

2j =
A

ÿ

k

(S
1

)k,ic1k

B
¢

A
ÿ

l

(S
2

)l,jc2l

B
=

ÿ

k,l

(S
1

)k,i(S2

)l,j(c
1k ¢ c

2l)

=
ÿ

k,l

(coli(S1

))k(colj(S
2

))l(c1k ¢ c

2l)

=
ÿ

k,l

(coli(S1

)(colj(S
2

))T )k,l(c1k ¢ c

2l).

This shows that the coordinate matrix of b
1i¢b

2j in C
1

¢C
2

is coli(S1

)(colj(S
2

))T .
This means that the change of coordinates coincides with the mapping X æ
S

1

X(S
2

)T for any vector in B
1

¢ B
2

, so that the change of coordinates is given
by X æ S

1

X(S
2

)T for all vectors also.

In both cases of filtering and change of coordinates in tensor products, we
see that we need to compute the mapping X æ S

1

X(S
2

)T . As we have seen,
this amounts to a row/column-wise operation, which we restate as follows:

Observation 9.29. Change of coordinates in tensor products.
The change of coordinates from B

1

¢ B
2

to C
1

¢ C
2

can be implemented as
follows:
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• For every column in the coordinate matrix in B
1

¢ B
2

, perform a change
of coordinates from B

1

to C
1

.

• For every row in the resulting matrix, perform a change of coordinates
from B

2

to C
2

.

We can again use the funtion tensor_impl in order to implement change of
coordinates for a tensor product. We just need to replace the filters with the
functions S1 and S2 for computing the corresponding changes of coordinates:

Y = tensor_impl(X, S1, S2)

The operation X æ (S
1

)X(S
2

)T , which we now have encountered in two di�erent
ways, is one particular type of linear transformation from RN2 to itself (see
Exercise 9.15 for how the matrix of this linear transformation can be constructed).
While a general such linear transformation requires N4 multiplications (i.e. when
we perform a full matrix multiplication), X æ (S

1

)X(S
2

)T can be implemented
generally with only 2N3 multiplications (since multiplication of two N ◊ N -
matrices require N3 multiplications in general). The operation X æ (S

1

)X(S
2

)T

is thus computationally simpler than linear transformations in general. In
practice the operations S

1

and S
2

are also computationally simpler, since they
can be filters, FFT’s, or wavelet transformations, so that the complexity in
X æ (S

1

)X(S
2

)T can be even lower.
In the following examples, we will interpret the pixel values in an image as

coordinates in the standard basis, and perform a change of coordinates.

Example 9.30. Change of coordinates with the DFT.
The DFT is one particular change of coordinates which we have considered.

It was the change of coordinates from the standard basis to the Fourier basis.
A corresponding change of coordinates in a tensor product is obtained by
substituting the DFT as the functions S

1

, S
2

for implementing the changes
of coordinates above. The change of coordinates in the opposite direction is
obtained by using the IDFT instead of the DFT.

Modern image standards do typically not apply a change of coordinates to
the entire image. Rather the image is split into smaller squares of appropriate
size, called blocks, and a change of coordinates is performed independently for
each block. In this example we have split the image into blocks of size 8 ◊ 8.

Recall that the DFT values express frequency components. The same applies
for the two-dimensional DFT and thus for images, but frequencies are now
represented in two di�erent directions. Let us introduce a neglection threshold
in the same way as in Example 2.28, to view the image after we set certain
frequencies to zero. As for sound, this has little e�ect on the human perception
of the image, if we use a suitable neglection threshold. After we have performed
the two-dimensional DFT on an image, we can neglect DFT-coe�cients below a
threshold on the resulting matrix X with the following code:
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X = X.*(abs(X) >= threshold);

abs(X)>=threshold now instead returns a threshold matrix with 1 and 0 of the
same size as X.

In Figure 9.19 we have applied the two-dimensional DFT to our test image.
We have then neglected DFT coe�cients which are below certain thresholds,
and transformed the samples back to reconstruct the image. When increasing
the threshold, the image becomes more and more unclear, but the image is quite
clear in the first case, where as much as more than 76.6% of the samples have
been zeroed out. A blocking e�ect at the block boundaries is clearly visible.

Figure 9.19: The e�ect on an image when it is transformed with the DFT, and
the DFT-coe�cients below a certain threshold are zeroed out. The threshold
has been increased from left to right, from 100, to 200, and 400. The percentage
of pixel values that were zeroed out are 76.6, 89.3, and 95.3, respectively.

Example 9.31. Change of coordinates with the DCT.
Similarly to the DFT, the DCT was the change of coordinates from the

standard basis to what we called the DCT basis. Change of coordinates in
tensor products between the standard basis and the DCT basis is obtained by
substituting with the DCT and the IDCT for the changes of coordinates S

1

, S
2

above.
The DCT is used more than the DFT in image processing. In particular, the

JPEG standard applies a two-dimensional DCT, rather than a two-dimensional
DFT. With the JPEG standard, the blocks are always 8 ◊ 8, as in the previous
example. It is of course not a coincidence that a power of 2 is chosen here: the
DCT, as the DFT, has an e�cient implementation for powers of 2.

If we follow the same strategy for the DCT as for the DFT example, so that
we zero out DCT-coe�cients which are below a given threshold 1, and use the
same block sizes, we get the images shown in Figure 9.20. We see similar e�ects
as with the DFT.

It is also interesting to compare with what happens when we drop splitting
the image into blocks. Of course, when we neglect many of the DCT-coe�cients,

1
The JPEG standard does not do exactly the kind of thresholding described here. Rather

it performs what is called a quantization.
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Figure 9.20: The e�ect on an image when it is transformed with the DCT, and
the DCT-coe�cients below a certain threshold are zeroed out. The threshold
has been increased from left to right, from 30, to 50, and 100. The percentage of
pixel values that were zeroed out are 93.2, 95.8, and 97.7, respectively.

we should see some artifacts, but there is no reason to believe that these should
be at the old block boundaries. The new artifacts can be seen in Figure 9.21,
where the same thresholds as before have been used. Clearly, the new artifacts
take a completely di�erent shape.

Figure 9.21: The e�ect on an image when it is transformed with the DCT, and
the DCT-coe�cients below a certain threshold are zeroed out. The image has
not been split into blocks here, and the same thresholds as in Figure 9.20 were
used. The percentage of pixel values that were zeroed out are 93.2, 96.6, and
98.8, respectively.

In the exercises you will be asked to implement functions which generate the
images shown in these examples.

What you should have learned in this section.

• The operation X æ S
1

X(S
2

)T can also be used to facilitate change of
coordinates in images, in addition to filtering images. In other words,
change of coordinates is done first column by column, then row by row.
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The DCT and the DFT are particular changes of coordinates used for
images.

Exercise 9.16: Implement DFT and DCT on blocks
In this section we have used functions which apply the DCT and the DFT either
to subblocks of size 8◊8, or to the full image. Implement functions which applies
the DFT, IDFT, DCT, and IDCT, to consecutive segments of length 8.

Exercise 9.17: Implement two-dimensional FFT and DCT
Write down code for running FFT2, IFFT2, DCT2, and IDCT2 on an image,
using the function tensor_impl.

Exercise 9.18: Zeroing out DCT coe�cients
The following function showDCThigher applies the DCT to an image in the same
way as the JPEG standard does. The function takes a threshold parameter, and
sets DCT coe�cients below this value to zero:

function showDCThigher(threshold)
img = double(imread(’images/lena.png’, ’png’));
zeroedout = 0;
img = tensor_impl(img, @DCTImpl8, @DCTImpl8);
thresholdmatr = (abs(img) >= threshold);
zeroedout = zeroedout + prod(size(img)) ...

- sum(sum(sum(thresholdmatr)));
img = tensor_impl(img.*thresholdmatr, @IDCTImpl8, @IDCTImpl8);
imshow(uint8(255*mapto01(img)));
fprintf(’%i percent of samples zeroed out\n’, ...

100*zeroedout/prod(size(img)));

function x = DCTImpl8(x)
N = size(x, 1);
for n = 1:8:N

x(n:(n+7), :) = DCTImpl(x(n:(n+7), :));
end

function x = IDCTImpl8(x)
N = size(x, 1);
for n = 1:8:N

x(n:(n+7), :) = IDCTImpl(x(n:(n+7), :));
end

a) Explain this code line by line.

b) Run showDCThigher for di�erent threshold parameters, and check that this
reproduces the test images of this section, and prints the correct numbers of
values which have been neglected (i.e. which are below the threshold) on screen.
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Exercise 9.19: Comment code
Suppose that we have given an image by the matrix X. Consider the following
code:

threshold = 30;
[M, N] = size(X);
for n = 1:N

X(:, n) = FFTImpl(X(:, n), @FFTKernelStandard);
end
for m = 1:M

X(m, :) = FFTImpl((X(m, :))’, @FFTKernelStandard);
end

X = X.*(abs(X) >= threshold);

for n = 1:N
X(:, n) = FFTImpl(X(:, n), @FFTKernelStandard, 0);

end
for m = 1:M

X(m, :) = FFTImpl((X(m, :))’, @FFTKernelStandard, 0);
end

Comment what the code does. Comment in particular on the meaning of the
parameter threshold, and what e�ect this has on the image.

9.5 Summary
We started by discussing the basic question what an image is, and took a closer
look at digital images. We then went through several operations which give
meaning for digital images. Many of these operations could be described in
terms of a row/column-wise application of filters, and more generally in term
of what we called computational molecules. We defined the tensor product,
and saw how our operations could be expressed within this framework. The
tensor product framework could also be used to state change of coordinates for
images, so that we could consider changes of coordinates such as the DFT and
the DCT also for images. The algorithm for computing filtering operations or
changes of coordinates for images turned out to be similar, in the sense that the
one-dimensional counterparts were simply assplied to the rows and the columns
in the image.

In introductory image processing textbooks, many other image processing
methods are presented. We have limited to the techniques presented here, since
our interest in images is mainly for transformation operations which are useful
for compression. An excellent textbook on image processing which uses Matlab is
[15]. This contains important topics such as image restoration and reconstruction,
geometric transformations, morphology, and object recognition. None of these
are considered in this book.

In much literature, one only mentions that filtering can be extended to images
by performing one-dimensional filtering for the rows, followed by one-dimensional
filtering for the columns, without properly explaining why this is the natural
thing to do. The tensor product may be the most natural concept to explain this,
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and a concept which is firmly established in mathematical literature. Tensor
products are usually not part of beginning courses in linear algebra. We have
limited the focus here to an introduction to tensor products, and the theory
needed to explain filtering an image, and computing the two-dimensional wavelet
transform. Some linear algebra books (such as [22]) present tensor products in
exercise form only, and often only mentions the Kronecker tensor product, as we
defined it.

Many international standards exist for compression of images, and we will
take a closer look at two of them in this book. The JPEG standard, perhaps the
most popular format for images on the Internet, applies a change of coordinates
with a two-dimensional DCT, as described in this chapter. The compression
level in JPEG images is selected by the user and may result in conspicuous
artefacts if set too high. JPEG is especially prone to artefacts in areas where
the intensity changes quickly from pixel to pixel. JPEG is usually lossy, but may
also be lossless and has become. The standard defines both the algorithms for
encoding and decoding and the storage format. The extension of a JPEG-file is
.jpg or .jpeg. JPEG is short for Joint Photographic Experts Group, and was
approved as an international standard in 1994. A more detailed description of
the standard can be found in [27].

The second standard we will consider is JPEG2000. It was developed to
address some of the shortcomings of JPEG, and is based on wavelets. The
standard document for this [17] does not focus on explaining the theory behind
the standard. As the MP3 standard document, it rather states step-by-step
procedures for implementing the standard.

The theory we present related to these image standards concentrate on
transforming the image (either with a DWT or a DCT) to obtain something
which is more suitable for (lossless or lossy) compression. However, many other
steps are also needed in order to obtain a full image compression system. One of
these is quantization. In the simplest form of quantization, every resulting sample
from the transformation is rounded to a fixed number of bits. Quantization can
also be done in more advanced ways than this: We have already mentioned that
the MP3 standard may use di�erent number of bits for values in the di�erent
subbands, depending on the importance of the samples for the human perception.
The JPEG2000 standard quantizes in such a way that there is bigger interval
around 0 which is quantized to 0, i.e. the rounding error is allowed to be bigger
in an interval around 0. Standards which are lossless do not apply quantization,
since this always leads to loss.

Somewhere in the image processing or sound processing pipeline, we also
need a step which actually achieves compression of the data. Di�erent standards
use di�erent lossless coding techniques for this. JPEG2000 uses an advances
type of arithmetic coding for this. JPEG can also use arithmetic coding, but
also Hu�man coding.

Besides transformation, quantization, and coding, many other steps are
used, which have di�erent tasks. Many standards preprocess the pixel values
before a transform is applied. Preprocessing may mean to center the pixel
values around a certain value (JPEG2000 does this), or extracting the di�erent
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image components before they are processed separately. Also, the image is often
split into smaller parts (often called tiles), which are processed separately. For
big images this is very important, since it allows users to zoom in on a small
part of the image, without processing larger uninteresting parts of the image.
Independent processing of the separate tiles makes the image compression what
we call error-resilient, to errors such as transmission errors, since errors in one
tile does not propagate to errors in the other tiles. It is also much more memory-
friendly to process the image in several smaller parts, since it is not required
to have the entire image in memory at any time. It also gives possibilities for
parallel computing. For standards such as JPEG and JPEG2000, tiles are split
into even smaller parts, called blocks, where parts of the processing within each
block also is performed independently. This makes the possibilities for parallel
computing even bigger.

An image standard also defines how to store metadata about an image, and
what metadata is accepted, like resolution, time when the image was taken,
where the image was taken (such as GPS coordinates), and similar information.
Metadata can also tell us how the color in the image are represented. As we have
already seen, in most color images the color of a pixel is represented in terms of
the amount of red, green and blue or (r, g, b). But there are other possibilities
as well: Instead of storing all 24 bits of color information in cases where each of
the three color components needs 8 bits, it is common to create a table of up to
256 colors with which a given image could be represented quite well. Instead of
storing the 24 bits, one then just stores a color table in the metadata, and at
each pixel, the eight bits corresponding to the correct entry in the table. This is
usually referred to as eight-bit color, and the table is called a look-up table or
palette. For large photographs, however, 256 colors is far from su�cient to obtain
reasonable colour reproduction. Metadata is usually stored in the beginning of
the file, formatted in a very specific way.



Chapter 10

Using tensor products to
apply wavelets to images

Previously we have used the theory of wavelets to analyze sound. We would also
like to use wavelets in a similar way to analyze images. Since the tensor product
concept constructs two dimensional objects (matrices) from one-dimensional
objects (vectors), we are lead to believe that tensor products can also be used to
apply wavelets to images. In this chapter we will see that this can indeed be
done. The vector spaces we Vm encountered for wavelets were function spaces,
however. What we therefore need first is to establish a general definition of
tensor products of function spaces. This will be done in the first section of this
chapter. In the second section we will then specialize the function spaces to the
spaces Vm we use for wavelets, and interpret the tensor product of these and the
wavelet transform applied to images more carefully. Finally we will look at some
examples on this theory applied to some example images.

The examples in this chapter can be run from the notebook applinalgnbchap10.m.

10.1 Tensor product of function spaces
In the setting of functions, it will turn out that the tensor product of two
univariate functions can be most intiutively defined as a function in two variables.
This seems somewhat di�erent from the strategy of Chapter 9, but we will see
that the results we obtain will be very similar.

Definition 10.1. Tensor product of function spaces.
Let U

1

and U
2

be vector spaces of functions, defined on the intervals [0, M)
and [0, N), respectively, and suppose that f

1

œ U
1

and f
2

œ U
2

. The tensor
product of f

1

and f
2

, denoted f
1

¢ f
2

, is the function in two variables defined
on [0, M) ◊ [0, N) by

(f
1

¢ f
2

)(t
1

, t
2

) = f
1

(t
1

)f
2

(t
2

).

358
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f
1

¢ f
2

is also called the separable extension of f
1

and f
2

to two variables.
The tensor product of the spaces U

1

¢ U
2

is the vector space spanned by the
two-variable functions {f

1

¢ f
2

}f1œU1,f2œU2 .

We will always assume that the spaces U
1

and U
2

consist of functions which
are at least integrable. In this case U

1

¢ U
2

is also an inner product space, with
the inner product given by a double integral,

Èf, gÍ =
⁄ N

0

⁄ M

0

f(t
1

, t
2

)g(t
1

, t
2

)dt
1

dt
2

. (10.1)

In particular, this says that

Èf
1

¢ f
2

, g
1

¢ g
2

Í =
⁄ N

0

⁄ M

0

f
1

(t
1

)f
2

(t
2

)g
1

(t
1

)g
2

(t
2

)dt
1

dt
2

=
⁄ M

0

f
1

(t
1

)g
1

(t
1

)dt
1

⁄ N

0

f
2

(t
2

)g
2

(t
2

)dt
2

= Èf
1

, g
1

ÍÈf
2

, g
2

Í.
(10.2)

This means that for tensor products, a double integral can be computed as the
product of two one-dimensional integrals. This formula also ensures that inner
products of tensor products of functions obey the same rule as we found for
tensor products of vectors in Exercise 9.15.

The tensor product space defined in Definition 10.1 is useful for approximation
of functions of two variables if each of the two spaces of univariate functions
have good approximation properties.

Idea 10.2. Using tensor products for approximation.
If the spaces U

1

and U
2

can be used to approximate functions in one variable,
then U

1

¢ U
2

can be used to approximate functions in two variables.

We will not state this precisely, but just consider some important examples.

Example 10.3. Tensor products of polynomials.
Let U

1

= U
2

be the space of all polynomials of finite degree. We know that
U

1

can be used for approximating many kinds of functions, such as continuous
functions, for example by Taylor series. The tensor product U

1

¢ U
1

consists of
all functions on the form

q
i,j –i,jti

1

tj
2

. It turns out that polynomials in several
variables have approximation properties analogous to univariate polynomials.

Example 10.4. Tensor products of Fourier spaces.
Let U

1

= U
2

= VN,T be the Nth order Fourier space which is spanned by the
functions

e≠2fiiNt/T , . . . , e≠2fiit/T , 1, e2fiit/T , . . . , e2fiiNt/T

The tensor product space U
1

¢ U
1

now consists of all functions on the form
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Nÿ

k,l=≠N

–k,le
2fiikt1/T e2fiilt2/T .

One can show that this space has approximation properties similar to VN,T for
functions in two variables. This is the basis for the theory of Fourier series in
two variables.

In the following we think of U
1

¢ U
2

as a space which can be used for
approximating a general class of functions. By associating a function with the
vector of coordinates relative to some basis, and a matrix with a function in two
variables, we have the following parallel to Theorem 9.26:

Theorem 10.5. Bases for tensor products of function spaces.
If {fi}M≠1

i=0

is a basis for U
1

and {gj}N≠1

j=0

is a basis for U
2

, then {fi ¢
gj}(M≠1,N≠1)

(i,j)=(0,0)

is a basis for U
1

¢ U
2

. Moreover, if the bases for U
1

and U
2

are
orthogonal/orthonormal, then the basis for U

1

¢ U
2

is orthogonal/orthonormal.

Proof. The proof is similar to that of Theorem 9.26: if

(M≠1,N≠1)ÿ

(i,j)=(0,0)

–i,j(fi ¢ gj) = 0,

we define hi(t2

) =
qN≠1

j=0

–i,jgj(t
2

). It follows as before that
qM≠1

i=0

hi(t2

)fi = 0
for any t

2

, so that hi(t2

) = 0 for any t
2

due to linear independence of the fi. But
then –i,j = 0 also, due to linear independene of the gj . The statement about
orthogonality follows from Equation (10.2).

We can now define the tensor product of two bases of functions as before,
and coordinate matrices as before:

Definition 10.6. Coordinate matrix.
if B = {fi}M≠1

i=0

and C = {gj}N≠1

j=0

, we define B ¢ C as the basis {fi ¢
gj}(M≠1,N≠1)

(i,j)=(0,0)

for U
1

¢ U
2

. We say that X is the coordinate matrix of f if
f(t

1

, t
2

) =
q

i,j Xi,j(fi ¢ gj)(t
1

, t
2

), where Xi,j are the elements of X.

Theorem 9.28 can also be proved in the same way in the context of function
spaces. We state this as follows:

Theorem 10.7. Change of coordinates in tensor products of function spaces.
Assume that U

1

and U
2

are function spaces, and that

• B
1

, C
1

are bases for U
1

, and that S
1

is the change of coordinates matrix
from B

1

to C
1

,

• B
2

, C
2

are bases for U
2

, and that S
2

is the change of coordinates matrix
from B

2

to C
2

.
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Both B
1

¢B
2

and C
1

¢C
2

are bases for U
1

¢U
2

, and if X is the coordinate matrix
in B

1

¢ B
2

, Y the coordinate matrix in C
1

¢ C
2

, then the change of coordinates
from B

1

¢ B
2

to C
1

¢ C
2

can be computed as

Y = S
1

X(S
2

)T . (10.3)

10.2 Tensor product of function spaces in a wavelet
setting

We will now specialize the spaces U
1

, U
2

from Definition 10.1 to the resolution
spaces Vm and the detail spaces Wm, arising from a given wavelet. We can in
particular form the tensor products „

0,n1 ¢ „
0,n2 . We will assume that

• the first component „
0,n1 has period M (so that {„

0,n1}M≠1

n1=0

is a basis for
the first component space),

• the second component „
0,n2 has period N (so that {„

0,n2}N≠1

n2=0

is a basis
for the second component space).

When we speak of V
0

¢ V
0

we thus mean an MN -dimensional space with basis
{„

0,n1 ¢ „
0,n2}(M≠1,N≠1)

(n1,n2)=(0,0)

, where the coordinate matrices are M ◊ N . This
di�erence in the dimension of the two components is done to allow for images
where the number of rows and columns may be di�erent. In the following we
will implicitly assume that the component spaces have dimension M and N , to
ease notation. If we use that (�m≠1

, m≠1

) also is a basis for Vm, we get the
following corollary to Theorem 10.5:

Corollary 10.8. Bases for tensor products.
Let „, Â be a scaling function and a mother wavelet. Then the two sets of

tensor products given by

�m ¢ �m = {„m,n1 ¢ „m,n2}n1,n2

and

(�m≠1

, m≠1

) ¢ (�m≠1

, m≠1

)
= {„m≠1,n1 ¢ „m≠1,n2 ,

„m≠1,n1 ¢ Âm≠1,n2 ,

Âm≠1,n1 ¢ „m≠1,n2 ,

Âm≠1,n1 ¢ Âm≠1,n2}n1,n2

are both bases for Vm ¢ Vm. This second basis is orthogonal/orthonormal
whenever the first basis is.
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From this we observe that, while the one-dimensional wavelet decomposition
splits Vm into a direct sum of the two vector spaces Vm≠1

and Wm≠1

, the
corresponding two-dimensional decomposition splits Vm ¢ Vm into a direct sum
of four tensor product vector spaces. These vector spaces deserve individual
names:

Definition 10.9. Tensor product spaces.
We define the following tensor product spaces:

• The space W (0,1)

m spanned by {„m,n1 ¢ Âm,n2}n1,n2 ,

• The space W (1,0)

m spanned by {Âm,n1 ¢ „m,n2}n1,n2 ,

• The space W (1,1)

m spanned by {Âm,n1 ¢ Âm,n2}n1,n2 .

Since these spaces are linearly independent, we can write

Vm ¢ Vm = (Vm≠1

¢ Vm≠1

) ü W (0,1)

m≠1

ü W (1,0)

m≠1

ü W (1,1)

m≠1

. (10.4)
Also in the setting of tensor products we refer to Vm≠1

¢ Vm≠1

as the space of
low-resolution approximations. The remaining parts, W (0,1)

m≠1

, W (1,0)

m≠1

, and W (1,1)

m≠1

,
are refered to as detail spaces. The coordinate matrix of

2

m≠1Nÿ

n1,n2=0

(cm≠1,n1,n2(„m≠1,n1 ¢ „m≠1,n2) + w(0,1)

m≠1,n1,n2(„m≠1,n1 ¢ Âm≠1,n2)+

w(1,0)

m≠1,n1,n2(Âm≠1,n1 ¢ „m≠1,n2) + w(1,1)

m≠1,n1,n2(Âm≠1,n1 ¢ Âm≠1,n2))
(10.5)

in the basis (�m≠1

, m≠1

) ¢ (�m≠1

, m≠1

) is
Q

ccccca

cm≠1,0,0 · · · w(0,1)

m≠1,0,0 · · ·
...

...
...

...
w(1,0)

m≠1,0,0 · · · w(1,1)

m≠1,0,0 · · ·
...

...
...

...

R

dddddb
. (10.6)

The coordinate matrix is thus split into four submatrices:

• The cm≠1

-values, i.e. the coordinates for Vm≠1

ü Vm≠1

. This is the upper
left corner in Equation (10.6).

• The w(0,1)

m≠1

-values, i.e. the coordinates for W (0,1)

m≠1

. This is the upper right
corner in Equation (10.6).

• The w(1,0)

m≠1

-values, i.e. the coordinates for W (1,0)

m≠1

. This is the lower left
corner in Equation (10.6).
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• The w(1,1)

m≠1

-values, i.e. the coordinates for W (1,1)

m≠1

. This is the lower right
corner in Equation (10.6).

The w(i,j)

m≠1

-values are as in the one-dimensional situation often refered to as
wavelet coe�cients. Let us consider the Haar wavelet as an example.
Example 10.10. Piecewise constant functions.

If Vm is the vector space of piecewise constant functions on any interval of
the form [k2≠m, (k + 1)2≠m) (as in the piecewise constant wavelet), Vm ¢ Vm is
the vector space of functions in two variables which are constant on any square
of the form [k

1

2≠m, (k
1

+ 1)2≠m) ◊ [k
2

2≠m, (k
2

+ 1)2≠m). Clearly „m,k1 ¢ „m,k2

is constant on such a square and 0 elsewhere, and these functions are a basis for
Vm ¢ Vm.

Let us compute the orthogonal projection of „
1,k1 ¢ „

1,k2 onto V
0

¢ V
0

. Since
the Haar wavelet is orthonormal, the basis functions in (10.4) are orthonormal,
and we can thus use the orthogonal decomposition formula to find this projection.
Clearly „

1,k1 ¢ „
1,k2 has di�erent support from all except one of „

0,n1 ¢ „
0,n2 .

Since

È„
1,k1 ¢ „

1,k2 , „
0,n1 ¢ „

0,n2Í = È„
1,k1 , „

0,n1ÍÈ„
1,k2 , „

0,n2Í =
Ô

2
2

Ô
2

2 = 1
2

when the supports intersect, we obtain

projV0¢V0(„
1,k1¢„

1,k2) =

Y
___]

___[

1

2

(„
0,k1/2

¢ „
0,k2/2

) when k
1

, k
2

are even
1

2

(„
0,k1/2

¢ „
0,(k2≠1)/2

) when k
1

is even, k
2

is odd
1

2

(„
0,(k1≠1)/2

¢ „
0,k2/2

) when k
1

is odd, k
2

is even
1

2

(„
0,(k1≠1)/2

¢ „
0,(k2≠1)/2

) when k
1

, k
2

are odd
So, in this case there were 4 di�erent formulas, since there were 4 di�erent
combinations of even/odd. Let us also compute the projection onto the orthogonal
complement of V

0

¢V
0

in V
1

¢V
1

, and let us express this in terms of the „
0,n, Â

0,n,
like we did in the one-variable case. Also here there are 4 di�erent formulas.
When k

1

, k
2

are both even we obtain

„
1,k1 ¢ „

1,k2 ≠ projV0¢V0(„
1,k1 ¢ „

1,k2)

= „
1,k1 ¢ „

1,k2 ≠ 1
2(„

0,k1/2

¢ „
0,k2/2

)

=
3

1Ô
2

(„
0,k1/2

+ Â
0,k1/2

)
4

¢
3

1Ô
2

(„
0,k2/2

+ Â
0,k2/2

)
4

≠ 1
2(„

0,k1/2

¢ „
0,k2/2

)

= 1
2(„

0,k1/2

¢ „
0,k2/2

) + 1
2(„

0,k1/2

¢ Â
0,k2/2

)

+ 1
2(Â

0,k1/2

¢ „
0,k2/2

) + 1
2(Â

0,k1/2

¢ Â
0,k2/2

) ≠ 1
2(„

0,k1/2

¢ „
0,k2/2

)

= 1
2(„

0,k1/2

¢ Â
0,k2/2

) + 1
2(Â

0,k1/2

¢ „
0,k2/2

) + 1
2(Â

0,k1/2

¢ Â
0,k2/2

).
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Here we have used the relation „
1,ki = 1Ô

2

(„
0,ki/2

+ Â
0,ki/2

), which we have from
our first analysis of the Haar wavelet. Checking the other possibilities we find
similar formulas for the projection onto the orthogonal complement of V

0

¢ V
0

in V
1

¢ V
1

when either k
1

or k
2

is odd. In all cases, the formulas use the basis
functions for W (0,1)

0

, W (1,0)

0

, W (1,1)

0

. These functions are shown in Figure 10.1,
together with the function „ ¢ „ œ V

0

¢ V
0

.

Figure 10.1: The functions „ ¢ „, „ ¢ Â, Â ¢ „, Â ¢ Â, which are bases for
(V

0

¢ V
0

) ü W (0,1)

0

ü W (1,0)

0

ü W (1,1)

0

for the Haar wavelet.

Example 10.11. Piecewise linear functions.
If we instead use any of the wavelets for piecewise linear functions, the wavelet

basis functions are not orthogonal anymore, just as in the one-dimensional case.
The new basis functions are shown in Figure 10.2 for the alternative piecewise
linear wavelet.

An immediate corollary of Theorem 10.7 is the following:

Corollary 10.12. Implementing tensor product.
Let

Am = P
(�m≠1, m≠1)Ω�m

Bm = P�mΩ(�m≠1, m≠1)
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Figure 10.2: The functions „ ¢ „, „ ¢ Â, Â ¢ „, Â ¢ Â, which are bases for
(V

0

¢ V
0

) ü W (0,1)

0

ü W (1,0)

0

ü W (1,1)

0

for the alternative piecewise linear wavelet.

be the stages in the DWT and the IDWT, and let

X = (cm,i,j)i,j Y =
A

(cm≠1,i,j)i,j (w(0,1)

m≠1,i,j)i,j

(w(1,0)

m≠1,i,j)i,j (w(1,1)

m≠1,i,j)i,j

B
(10.7)

be the coordinate matrices in �m ¢ �m, and (�m≠1

, m≠1

) ¢ (�m≠1

, m≠1

),
respectively. Then

Y = AmXAT
m (10.8)

X = BmY BT
m (10.9)

By the m-level two-dimensional DWT/IDWT (or DWT2/IDWT2) we mean the
change of coordinates where this is repeated m times as in a DWT/IDWT.

It is straightforward to make implementations of DWT2 and IDWT2, in the
same way we implemented DWTImpl and IDWTImpl. In Exercise 10.1 you will
be asked to program functions DW2TImpl and IDW2TImpl for this. Each stage
in DWT2 and IDWT2 can now be implemented by substituting the matrices
Am, Bm above into the code following Theorem 9.28. When using many levels
of the DWT2, the next stage is applied only to the upper left corner of the
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matrix, just as the DWT at the next stage only is applied to the first part of
the coordinates. At each stage, the upper left corner of the coordinate matrix
(which gets smaller at each iteration), is split into four equally big parts. This is
illustrated in Figure 10.3, where the di�erent types of coordinates which appear
in the first two stages in a DWT2 are indicated.

Figure 10.3: Illustration of the di�erent coordinates in a two level DWT2 before
the first stage is performed (left), after the first stage (middle), and after the
second stage (right).

It is instructive to see what information the di�erent types of coordinates
in an image represent. In the following examples we will discard some types of
coordinates, and view the resulting image. Discarding a type of coordinates will
be illustrated by coloring the corresponding regions from Figure 10.3 black. As
an example, if we perform a two-level DWT2 (i.e. we start with a coordinate
matrix in the basis �

2

¢ �

2

), Figure 10.4 illustrates first the collection of all
coordinates, and then the resulting collection of coordinates after removing
subbands at the first level successively.

Figure 10.4: Graphical representation of neglecting the wavelet coe�cients
at the first level. After applying DWT2, the wavelet coe�cients are split into
four parts, as shown in the left figure. In the following figures we have removed
coe�cients from W (1,1)

1

, W (1,0)

1

, and W (0,1)

1

, in that order.

Figure 10.5 illustrates in the same way incremental removal of the subbands
at the second level.
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Figure 10.5: Graphical representation of neglecting the wavelet coe�cients
at the second level. After applying the second stage in DWT2, the wavelet
coe�cients from the upper left corner are also split into four parts, as shown in
the left figure. In the following figures we have removed coe�cients from W (1,1)

2

,
W (1,0)

2

, and W (0,1)

2

, in that order.

Before we turn to experiments on images using wavelets, we would like to make
another interpretation on the corners in the matrices after the DWT2, which cor-
respond to the di�erent coordinates (cm≠1,i,j)i,j , (w(0,1))m≠1,i,j , (w(1,0))m≠1,i,j ,
and (w(1,1))m≠1,i,j . It turns out that these corners have natural interpretations
in terms of the filter characterization of wavelets, as given in Chapter 6. Recall
again that in a DWT2, the DWT is first applied to the columns in the image,
then to the rows in the image. Recall first that the DWT2 applies first the DWT
to all columns, and then to all rows in the resulting matrix.

First the DWT is applied to all columns in the image. Since the first half of
the coordinates in a DWT are outputs from a lowpass filter H

0

(Theorem 6.3),
the upper half after the DWT has now been subject to a lowpass filter to the
columns. Similarly, the second half of the coordinates in a DWT are outputs
from a highpass filter H

1

(Theorem 6.3 again), so that the bottom half after the
DWT has been subject to a highpass filter to the columns.

Then the DWT is applied to all rows in the image. Similarly as when we
applied the DWT to the columns, the left half after the DWT has been subject
to the same lowpass filter to the rows, and the right half after the DWT has
been subject to the same highpass filter to the rows.

These observations split the resulting matrix after DWT2 into four blocks,
with each block corresponding to a combination of lowpass and highpass filters.
The following names are thus given to these blocks:

• The upper left corner is called the LL-subband,

• The upper right corner is called the LH-subband,

• The lower left corner is called the HL-subband,

• The lower right corner is called the HH-subband.

The two letters indicate the type of filters which have been applied (L=lowpass,
H=highpass). The first letter indicates the type of filter which is applied to the
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columns, the second indicates which is applied to the rows. The order is therefore
important. The name subband comes from the interpretation of these filters as
being selective on a certain frequency band. In conclusion, a block in the matrix
after the DWT2 corresponds to applying a combination of lowpass/higpass filters
to the rows of the columns of the image. Due to this, and since lowpass filters
extract slow variations, highpass filters abrupt changes, the following holds:

Observation 10.13. Visual interpretation of the DWT2.
After the DWT2 has been applied to an image, we expect to see the following:

• In the upper left corner, slow variations in both the vertical and horizontal
directions are captured, i.e. this is a low-resolution version of the image.

• In the upper right corner, slow variations in the vertical direction are
captured, together with abrupt changes in the horizontal direction.

• In the lower left corner, slow variations in the horizontal direction are
captured, together with abrupt changes in the vertical direction.

• In the lower right corner, abrupt changes in both directions appear are
captured.

These e�ects will be studied through examples in the next section.

What you should have learned in this section.

• The special interpretation of DWT2 applied to an image as splitting into
four types of coordinates (each being one corner of the image), which rep-
resent lowpass/highpass combinations in the horizontal/vertical directions.

10.3 Experiments with images using wavelets
In this section we will make some experiments with images using the wavelets we
have considered .( CHECK: footnote at end of sentence placed in parenthesis)
(Note also that Matlab has a wavelet toolbox which could be used for these
purposes. We will however not go into the usage of this, since we implement the
DWT from scratch.) The wavelet theory is applied to images in the following way:
We first visualize the pixels in the image as coordinates in the basis �m ¢ �m

(so that the image has size (2mM) ◊ (2mN)). As in the case for sound, this will
represent a good approximation wehn m is large. We then perform a change
of coordinates with the DWT2. As we did for sound, we can then either set
the detail components from the W (i,j)

k -spaces to zero, or the low-resolution
approximation from V

0

¢ V
0

to zero, depending on whether we want to inspect
the detail components or the low-resolution approximation. Finally we apply
the IDWT2 to end up with coordinates in �m ¢ �m again, and display the new
image with pixel values equal to these coordinates.
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Example 10.14. Applying the Haar wavelet to a very simple example image.
Let us apply the Haar wavelet to the sample chess pattern example image

from Figure 9.17. The lowpass filter of the Haar wavelet was essentially a
smoothing filter with two elements. Also, as we have seen, the highpass filter
essentially computes an approximation to the partial derivative. Clearly, abrupt
changes in the vertical and horizontal directions appear here only at the edges
in the chess pattern, and abrupt changes in both directions appear only at the
grid points in the chess pattern. Due to Observation 10.13, after a DWT2 we
expect to see the following:

• In the upper left corner, we should see a low-resolution version of the
image.

• In the upper right corner, only the vertical edges in the chess pattern
should be visible.

• In the lower left corner, only the horizontal edges in the chess pattern
should be visible.

• In the lower right corner, only the grid points in the chess pattern should
be visible.

In Figure 10.6 we have applied one level of the DWT2 to the chess pattern
example image, and all these e�ects are seen clearly here.

Figure 10.6: The chess pattern example image after application of the DWT2.
The Haar wavelet was used.

Example 10.15. Creating thumbnail images.
Let us apply the Haar wavelet to our sample image. After the DWT2,

the upper left submatrices represent the low-resolution approximations from
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Vm≠1

¢ Vm≠1

, Vm≠2

¢ Vm≠2

, and so on. We can now use the following code to
store the low-resolution approximation for m = 1:

X = DWT2Impl(X, 1, @DWTKernelHaar);
X = X(1:(size(X,1)/2), 1:(size(X,2)/2),:);
X = mapto01(X); X = X*255;

Note that here it is necessary to map the result back to [0, 255].

Figure 10.7: The corresponding thumbnail images for the Image of Lena,
obtained with a DWT of 1, 2, 3, and 4 levels.

In Figure 10.7 the results are shown up to 4 resolutions. In Figure 10.8 we
have also shown the entire result after a 1- and 2-stage DWT2 on the image.
The first two thumbnail images can be seen as the the upper left corners of the
first two images. The other corners represent detail.

Figure 10.8: The corresponding image resulting from a wavelet transform with
the Haar-wavelet for m = 1 and m = 2.

Example 10.16. Detail and low-resolution approximations with the Haar
wavelet.

In Exercise 10.4 you will be asked to implement a function showDWT which
displays the low-resolution approximations or the detail components for our test
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image for any wavelet, using functions we have previously implemented. Let
us take a closer look at the images generated when the Haar wavelet is used.
Above we viewed the low-resolution approximation as a smaller image. Let us
compare with the image resulting from setting the wavelet detail coe�cients to
zero, and viewing the result as an image of the same size. In particular, let us
neglect the wavelet coe�cients as pictured in Figure 10.4 and Figure 10.5. Since
the Haar wavelet has few vanishing moments, we should expect that the lower
order resolution approximations from V

0

are worse when m increase. Figure 10.9
confirms this for the lower order resolution approximations.

Figure 10.9: Image of Lena, with detail at the first 1, 2, 3, and 4 levels zeroed
out, respectively, for the Haar wavelet.

Alternatively, we should see that the higher order detail spaces contain
more information. The new images when showDWT is used to display the detail
components for the Haar wavelet are shown in Figure 10.10.
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Figure 10.10: The corresponding detail for the images in Figure 10.9, with the
Haar wavelet.

The black color indicates values which are close to 0. In other words, most of
the coe�cients are close to 0, which reflects one of the properties of the wavelet.

Example 10.17. Experimenting with di�erent wavelets.
Using the function showDWT, we can display the low-resolution approximations

at a given resolution of our image test file lena.png, for the Spline 5/3 and CDF
9/7 wavelets in addition to the Haar wavelet, with the following code:

showDWT(m, @DWTKernelHaar, @IDWTKernelHaar, 1);
showDWT(m, @DWTKernel53, @IDWTKernel53, 1);
showDWT(m, @DWTKernel97, @IDWTKernel97, 1);

The first call to showDWT displays the result using the Haar wavelet. The second
call to showDWT moves to the Spline 5/3 wavelet, and the third call uses the CDF
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9/7 wavelet. We can repeat this for various number of levels m, and compare
the di�erent images.

Example 10.18. The Spline 5/3 wavelet and removing bands in the detail
spaces.

Since the detail components now are split into three bands, another thing we
can try is to neglect only parts of the detail components (i.e.e some of W (1,1)

m ,
W (1,0)

m , W (0,1)

m ), contrary to the one-dimensional case. Let us use the Spline 5/3
wavelet. The resulting images when the bands on the first level indicated in
Figure 10.4 are removed are shown in Figure 10.11.

Figure 10.11: Image of Lena, with various bands of detail at the first level
zeroed out. From left to right, the detail at W (1,1)

1

, W (1,0)

1

, W (0,1)

1

, as illustrated
in Figure 10.4. The Spline 5/3 wavelet was used.

The resulting images when the bands on the second level indicated in Fig-
ure 10.5 are removed are shown in Figure 10.12.

Figure 10.12: Image of Lena, with various bands of detail at the second level
zeroed out. From left to right, the detail at W (1,1)

2

, W (1,0)

2

, W (0,1)

2

, as illustrated
in Figure 10.5. The Spline 5/3 wavelet was used.

The image is seen still to resemble the original one, even after two levels of
wavelets coe�cients have been neglected. This in itself is good for compression
purposes, since we may achieve compression simply by dropping the given
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coe�cients. However, if we continue to neglect more levels of coe�cients, the
result will look poorer. In Figure 10.13 we have also shown the resulting image
after the third and fourth level of detail have been neglected. Although we still
can see details in the image, the quality in the image is definitely poorer.

Figure 10.13: Image of Lena, with detail including level 3 and 4 zeroed out.
The Spline 5/3 wavelet was used.

Although the quality is poorer when we neglect levels of wavelet coe�cients,
all information is kept if we additionally include the detail/bands. In Figure 10.14,
we have shown the corresponding detail for the two right images in Figure 10.11,
and Figure 10.13. Clearly, more detail can be seen in the image when more of
the detail is included.

Example 10.19. the CDF 9/7 wavelet.
Let us repeat the previous example for the CDF 9/7 wavelet, using the

function showDWT you implemented in Exercise 10.4. We should now see improved
images when we discard the detail in the images. Figure 10.15 confirms this for
the lower resolution spaces,

while Figure 10.16 confirms this for the higher order detail spaces.

As mentioned, the procedure developed in this section for applying a wavelet
transform to an image with the help of the tensor product construction, is
adopted in the JPEG2000 standard. This lossy (can also be used as lossless)
image format was developed by the Joint Photographic Experts Group and
published in 2000. After significant processing of the wavelet coe�cients, the
final coding with JPEG2000 uses an advanced version of arithmetic coding.
At the cost of increased encoding and decoding times, JPEG2000 leads to as
much as 20 % improvement in compression ratios for medium compression rates,
possibly more for high or low compression rates. The artefacts are less visible
than in JPEG and appear at higher compression rates. Although a number of
components in JPEG2000 are patented, the patent holders have agreed that the
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Figure 10.14: The corresponding detail for the image of Lena. The Spline 5/3
wavelet was used.

core software should be available free of charge, and JPEG2000 is part of most
Linux distributions. However, there appear to be some further, rather obscure,
patents that have not been licensed, and this may be the reason why JPEG2000
is not used more. The extension of JPEG2000 files is .jp2.

What you should have learned in this section.

• How to call functions which perform di�erent wavelet transformations on
an image.

• Be able to interpret the detail components and low-resolution approxima-
tions in what you see.
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Figure 10.15: Image of Lena, with higher levels of detail neglected. The CDF
9/7 wavelet was used.

Exercise 10.1: Implement two-dimensional DWT
Implement functions DW2TImpl and IDW2TImpl which perform the m-level DWT2
and the IDWT2, respectively, on an image. The functions should take the
same input as DWTImpl and IDWTImpl, with the input vector replaced with a
two-dimensional object. The functions should at each stage call DWTImpl and
IDWTImpl with m = 1, and each call to these functions should alter the appropri-
ate upper left submatrix in the coordinate matrix. If the image has several color
components, the functions should be applied to each color component. There
are three color components in the test image ’lena.png’.
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Figure 10.16: The corresponding detail for the image of Lena. The CDF 9/7
wavelet was used.

Exercise 10.2: Comment code
Assume that we have an image represented by the M ◊N -matrix X, and consider
the following code:

for n = 1:N
c = (X(1:2:M, n) + X(2:2:M, n))/sqrt(2);
w = (X(1:2:M, n) - X(2:2:M, n))/sqrt(2);
X(:, n) = [c; w];

for m = 1:M
c = (X(m, 1:2:N) + X(m, 2:2:N))/sqrt(2);
w = (X(m, 1:2:N) - X(m, 2:2:N))/sqrt(2);
X(m, :) = [c w];
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a) Comment what the code does, and explain what you will see if you display X
as an image after the code has run.

b) The code above has an inverse transformation, which reproduce the original
image from the transformed values which we obtained. Assume that you zero
out the values in the lower left and the upper right corner of the matrix X after
the code above has run, and that you then reproduce the image by applying this
inverse transformation. What changes can you then expect in the image?

Exercise 10.3: Comment code
In this exercise we will use the filters G

0

= {1, 1}, G
1

= {1, ≠1}.

a) Let X be a matrix which represents the pixel values in an image. Define
x = (1, 0, 1, 0) and y = (0, 1, 0, 1). Compute (G

0

¢ G
0

)(x ¢ y).

b) For a general image X, describe how the images (G
0

¢ G
0

)X, (G
0

¢ G
1

)X,
(G

1

¢ G
0

)X, and (G
1

¢ G
1

)X may look.

c) Assume that we run the following code on an image represented by the matrix
X:

[M, N]=size(X);
for n=1:N

c = X(1:2:M, n) + X(2:2:M, n);
w = X(1:2:M, n) - X(2:2:M, n);
X(:, n) = [c; w];

end

for m=1:M
c = X(m, 1:2:N) + X(m, 2:2:N);
w = X(m, 1:2:N) - X(m, 2:2:N);
X(m, :) = [c w];

end

Comment the code. Describe what will be shown in the upper left corner of
X after the code has run. Do the same for the lower left corner of the matrix.
What is the connection with the images (G

0

¢ G
0

)X, (G
0

¢ G
1

)X, (G
1

¢ G
0

)X,
and (G

1

¢ G
1

)X?

Exercise 10.4: Zeroint out DWT coe�cients
In this exercise we will experiment with applying the m-level DWT2 to an image.

a) Write a function showDWT, which takes m, a DWT kernel f, an IDWT kernel
invf, and a variable lowres as input, and

• reads the image file lena.png,

• performs an m-level DWT2 on the image samples using the function
DW2TImpl, with DWT kernel f
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• sets all wavelet coe�cients representing detail to zero if lowres is true
(i.e. keep only the low-resolution coordinates from �

0

¢ �
0

),

• sets all low-resolution coordinates to zero if lowres is false (i.e. keep only
the detail coordinates),

• performs an IDWT2 on the resulting coe�cients using the function IDW2TImpl,
with IDWT kernel invf,

• displays the resulting image.

b) Do the image samples returned by showDWT lie in [0, 255]?

c) Run the function showDWT for di�erent values of m for the Haar wavelet, with
lowres set to true. Describe what you see for di�erent m. For which m can
you see that the image gets degraded? How does it get degraded? Compare
with what you saw with the function showDCThigher in Exercise 9.18, where
you performed a DCT on the image samples instead, and set DCT coe�cients
below a given threshold to zero.

d) Repeat what you did in c., but this time with lowres set to false instead.
What kind of image do you see now? Can you recognize the original image in
what you see? Try to explain why the images seem to get clearer when you
increase m.

e) In the code in Example 10.17, set lowres to false in the call to showDWT also
for the other wavelets. and repeat what you did in d..

Exercise 10.5: Experiments on a test image
In Figure 10.17 we have applied the DWT2 with the Haar wavelet to an image
very similar to the one you see in Figure 10.6. You see here, however, that there
seems to be no detail components, which is very di�erent from Figure 10.6, even
though the images are very similar. Attempt to explain what causes this to
happen.

Hint. Compare with Exercise 5.17.
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Figure 10.17: A simple image before and after one level of the DWT2. The
Haar wavelet was used.

10.4 An application to the FBI standard for com-
pression of fingerprint images

In the beginning of the 1990s, the FBI had a major problem when it came to their
archive of fingerprint images. With more than 200 million fingerprint records,
their digital storage exploded in size, so that some compression strategy needed
to be employed. Several strategies were tried, for instance the widely adopted
JPEG standard. The problem with JPEG had to do with the blocking artefacts,
which we saw in Section 9.4. Among other strategies, FBI chose a wavelet-based
strategy due to its nice properties. The particular way wavelets are applied in
this strategy is called Wavelet transform/scalar quantization (WSQ).

Fingerprint images are a very specific type of images, as seen in Figure 10.18.
They di�er from natural images by having a large number of abrupt changes.
One may ask whether other wavelets than the ones we have used up to now are
more suitable for compressing such images. After all, the technique of vanishing
moments we have used for constructing wavelets are most suitable when the
images display some regularity (as many natural images do). Extensive tests
were undertaken to compare di�erent wavelets, and the CDF 9/7 wavelet used
by JPEG2000 turned out to perform very well, also for fingerprint images. One
advantage with the choice of this wavelet for the FBI standard is that one then
can exploit existing wavelet transformations from the JPEG2000 standard.

Besides the choice of wavelet, one can also ask other questions in the quest to
compress fingerprint images: What number of levels is optimal in the application
of the DWT2? And, while the levels in a DWT2 (see Figure 10.3) have an
interpretation as change of coordinates, one can apply a DWT2 to the other
subbands as well. This can not be interpreted as a change of coordinates, but
if we assume that these subbands have the same characteristics as the original



CHAPTER 10. USING TENSOR PRODUCTS TO APPLY WAVELETS TO IMAGES381

Figure 10.18: A typical fingerprint image.

image, the DWT2 will also help us with compression when applied to them.
Let us illustrate how the FBI standard applies the DWT2 to the di�erent
subbands. We will split this process into five stages. The subband structures
and the resulting images after stage 1-4 are illustrated in Figure 10.19 and in
Figure 10.20, respectively.

1. First apply the first stage in a DWT2. This gives the upper left corners in
the two figures.

2. Then apply a DWT2 to all four resulting subbands. This is di�erent from
the DWT2, which only continues on the upper left corner. This gives the
upper right corners in the two figures.

3. Then apply a DWT2 in three of the four resulting subbands. This gives
the lower left corners.

4. In all remaining subbands, the DWT2 is again applied. This gives the
lower right corners.

Now for the last stage. A DWT2 is again applied, but this time only to the upper
left corner. The subbands are illustrated in Figure 10.21, and in Figure 10.22
the resulting image is shown.

When establishing the standard for compression of fingerprint images, the
FBI chose this subband decomposition. In Figure 10.23 we also show the
corresponding low resolution approximation and detail.

As can be seen from the subband decomposition, the low-resolution approxi-
mation is simply the approximation after a five stage DWT2.

The original JPEG2000 standard did not give the possibility for this type
of subband decomposition. This has been added to a later extension of the
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Figure 10.19: Subband structure after the di�erent stages of the wavelet
applications in the FBI fingerprint compression scheme.

standard, which makes the two standards more compatible. IN FBI’s system,
there are also other important parts besides the actual compression strategy,
such as fingerprint pattern matching: In order to match a fingerprint quickly
with the records in the database, several characteristics of the fingerprints are
stored, such as the number of lines in the fingerprint, and points where the lines
split or join. When the database is indexed with this information, one may not
need to decompress all images in the database to perform matching. We will
not go into details on this here.
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Figure 10.20: The fingerprint image after several DWT’s.

Exercise 10.6: Implement the fingerprint compression scheme
Write code which generates the images shown in figures 10.20, 10.22, and 10.23.
Use the functions DW2TImpl and IDW2TImpl with the CDF 9/7 wavelet kernel
functions as input.
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Figure 10.21: Subbands structure after all stages.

Figure 10.22: The resulting image obtained with the subband decomposition
employed by the FBI.
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Figure 10.23: The low-resolution approximation and the detail obtained by the
FBI standard for compression of fingerprint images, when applied to our sample
fingerprint image.
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10.5 Summary
We extended the tensor product construction to functions by defining the tensor
product of functions as a function in two variables. We explained with some
examples that this made the tensor product formalism useful for approximation
of functions in several variables. We extended the wavelet transform to the tensor
product setting, so that it too could be applied to images. We also performed
several experiments on our test image, such as creating low-resolution images and
neglecting wavelet coe�cients. We also used di�erent wavelets, such as the Haar
wavelet, the Spline 5/3 wavelet, and the CDF 9/7 wavelet. The experiments
confirmed what we previously have proved, that wavelets with many vanishing
moments are better suited for compression purposes.

The specification of the JPGE2000 standard can be found in [17]. In [36],
most details of this theory is covered, in particular details on how the wavelet
coe�cients are coded (which is not covered here).

One particular application of wavelets in image processing is the compression
of fingerprint images. The standard which describes how this should be performed
can be found in [11]. In [2], the theory is described. The book [13] uses the
application to compression of fingerprint images as an example of the usefulness
of recent developments in wavelet theory.



Appendix A

Basic Linear Algebra

This book assumes that the student has taken a beginning course in linear algebra
at university level. In this appendix we summarize the most important concepts
one needs to know from linear algebra. Note that what is listed here should not
be considered as a substitute for such a course: It is important for the student
to go through a full course in linear algebra, in order to get good intuition for
these concepts through extensive exercises. Such exercises are omitted here.

A.1 Matrices
An m◊n-matrix is simply a set of mn numbers, stored in m rows and n columns.
We write akn for the entry in row k and column n of the matrix A. The zero
matrix, denoted 0 is the matrix with all zeroes. A square matrix (i.e. where
m = n) is said to be diagonal if akn = 0 whenever k ”= n. The identity matrix,
denoted I, or In to make the dimension of the matrix clear, is the diagonal
matrix where the entries on the diagonal are 1, the rest zeroes. If A is a matrix
we will denote the transpose of A by AT . If A is invertible we denote its inverse
by A≠1. We say that a matrix A is orthogonal if AT A = AAT = I. A matrix is
called sparse if most of the entries in the matrix are zero.

A.2 Vector spaces
A set of vectors V is called a vector space if . . . We say that the vectors
{v

0

,v
1

, . . . ,vn≠1

} are linearly independent if, whenever
qn≠1

i=0

civi = 0, we must
have that all ci = 0. We will say that a set of vectors B = {v

0

,v
1

, . . . ,vn≠1

}
from V is a basis for V if the vectors are linearly independent, and span V .

Subspaces of RN , and function spaces.
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A.3 Inner products and orthogonality
Most vector spaces in this book are inner product spaces. A (real) inner product
on a vector space is a binary operation, written as (u,v) æ Èu,vÍ, which fulfills
the following properties for any vectors u, v, and w:

• Èu,vÍ = Èv,uÍ
• Èu + v,wÍ = Èu,wÍ + Èv,wÍ
• Ècu,vÍ = cÈu,vÍ for any scalar c

• Èu,uÍ Ø 0, and Èu,uÍ = 0 if and only if u = 0.

u and v are said to be orthogonal if Èu,vÍ = 0. In this book we have seen
two important examples of inner product spaces. First of all the Euclidean inner
product, which is defined by

Èu,vÍ =
n≠1ÿ

i=0

uivi (A.1)

for any u, v in Rn. For functions we have seen examples which are variants of
the following form:

Èf, gÍ =
⁄

f(t)g(t)dt. (A.2)

Any set of mutually orthogonal elements are also linearly independent. A basis
where all basis vectors are mutually orthogonal is called an orthogonal basis. If
additionally the vectors all have length 1, we say that the basis is orthonormal.
If x is in a vector space with an orthogonal basis B = {vk}n≠1

k=0

, we can express
x as

Èx,v
0

Í
Èv

0

,v
0

Ív0

+ Èx,v
1

Í
Èv

1

,v
1

Ív1

+ · · · + Èx,vn≠1

Í
Èvn≠1

,vn≠1

Ívn≠1

. (A.3)

In other words, the weights in linear combinations are easily found when the
basis is orthogonal. This is also called the orthogonal decomposition theorem.

By the projection of a vector x onto a subspace U we mean the vector
y = projUx which minimizes the distance Îy ≠ xÎ. If vi is an orthogonal basis
for U , we have that projUx can be written by Equation (A.3).

A.4 Coordinates and change of coordinates
If B = {v

0

,v
1

, . . . ,vn≠1

} is a basis for a vector space, and x =
qn≠1

i=0

xivi, we
say that (x

0

, x
1

, . . . , xn≠1

) is the coordinate vector of x w.r.t. the basis B. We
also write [x]B for this coordinate vector.
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If B and C are two di�erent bases for the same vector space, we can write
down the two coordinate vectors [x]B and [x]C . A useful operation is to transform
the coordinates in B to those in C, i.e. apply the transformation which sends [x]B
to [x]C . This is a linear transformation, and we will denote the n ◊ n-matrix
of this linear transformation by PCΩB, and call this the change of coordinate
matrix from B to C In other words, the change of coordinate matrix is defined
by requiring that

PCΩB[x]B = [x]C . (A.4)

It is straightforward to show that PCΩB = (PBΩC)≠1, so that matrix inversion
can be used to compute the change of coordinate matrix the opposite way. It
is also straightforward to show that the columns in the change of coordinate
matrix can be obtained by expressing the old basis in terms of the new basis,
i.e. finding the vectors [PBΩC(vi)]C .

If L is a linear transformation between the spaces V and W , and B is a
basis for V , C a basis for W , we can consider the operation which sends the
coordinates of v œ V in the basis B to the coordinates of Lv œ W in the basis C.
This is represented by a matrix, called the matrix of L relative to the bases B
and C. Similarly to change of coordinate matrices, the columns of the matrix of
L relative to the bases B and C are given by [L(vi)]C .

A.5 Eigenvectors and eigenvalues
If A is a linear transformation from a vector space to itself, a vector v is called
an eigenvector if there exists a scalar ⁄ so that Av = ⁄v. ⁄ is called the
corresponding eigenvalue.

If the matrix A is symmetric, the following hold:

• The eigenvalues of A are real,

• the eigenspaces of A are orthonormal,

• any vector can be decomposed as a sum of eigenvectors from A.

Fo non-symmetric matrices, these results do not hold in general. But for filters,
clearly the second and third property always hold, regardless of whether the
filter is symmetric or not.

A.6 Diagonalization
One can show that, for a symmetric matrix, A = PDP T where D is a digonal
matrix and the eigenvalues of A are the values on the diagonal of D, and P
is a matrix where the columns are the eigenvectors of A, with corresponding
eigenvalue appearing in the same column in D.



Appendix B

Signal processing and linear
algebra: a translation guide

This book should not be considered as a standard signal processing textbook.
There are several reasons for this. First of all, much signal processing literature
is written for people with an engineering background. This book is written for
people with a basic linear algebra background. Secondly, the book does not
give a comprehensive treatment of all basic signal processing concepts. Signal
processing concepts are introduced whenever they are needed to encompass
the mathematical exposition. In order to learn more about the di�erent signal
processing concepts, the reader can consult many excellent textbooks, such
as [28, 1, 25, 32]. The translation guide of this chapter may be of some help
in this respect, when one tries to unify material presented here with material
from these signal processing textbooks. The translation guide handles both
di�erences in notation between this book and signal processing literature, and
topical di�erences. Most topical di�erences are also elaborated further in the
summaries of the di�erent chapters. The book has adopted most of its notation
and concepts from mathematical literature.

B.1 Complex numbers
There are several di�erences between engineering literature and mathematics.
In mathematics literature, i is used for the imaginary complex number which
satisfies i2 = ≠1. In engineering literature, the name j is used instead.

B.2 Functions
What in signal processing are refered to as continuous-time signals, are here
refered to as functions. Usually we refer to a function by the letter f , according

390
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to the mathematical tradition. The variable is mostly time, represented by the
symbol t.

In signal processing, one often uses capital letters to denote a function which
is the Fourier transform of another function, so that the Fourier ransform of
x would be denoted by X. Here we simply denote a periodic function by its
Fourier coe�cients yn, and we avoid the CTFT. We use analog filters, however,
which also work in continuous time. Analog filters preserve frequencies, and we
have used ‹ to denote frequency (variations per second), and not used angular
frequency Ê. In signal processing literature it is common to junp between the
two.

B.3 Vectors
Discrete-time signals, as they are used in signal processing, are here mostly
refered to as vectors. To as big extent as possible, we have attempted to keep
vectors finite-dimensional. Vectors are in boldface (i.e. x), but its elements are
not in boldface, and with subscripts (i.e. xn). Superscripts are also used to
di�er between vectors with the same base name (i.e. x(1), x(2) etc.), so that
this does not interfer with the vector indices. In signal processing literature the
corresponding notation would be x for the signal, and x[n] for its elements, and
signals with equal base names could be named like x

1

[n], x
2

[n].
We have sometimes denoted the Fourier transform of x by ‚

x, according to
the mathematical tradition. More often we have distuinguished between a vector
and its Discrete Fourier transform by using x for the first, and y for the latter.
This also makes us distuinguish between the input and output to a filter, where
we instead use z for the latter. Much signal processing literature write (capital)
X for the DFT of the vector x.

B.4 Inner products and orthogonality
Throughout the book we have defined inner products for functions (for Fourier
analysis and wavelets), and we have also used the standard inner product of
RN . from this we have deduced the orthogonality of several basis functions used
in signal processing theory. That the functions are orthogonal, as well as the
inner product itself are, however, often not commented on in signal processing
literature. As an unfortunate consequence, one has to explain the expression for
the Fourier series using other means than the orthogonal decomposition formula
and the least squares method. Also, one does not mention that the DFT is a
unitary transformation.

B.5 Matrices and filters
Boldface notation is not used for matrices, according to the mathematical
tradition. In signal processing, it is not common to formulate matrix equations,
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such as for the DFT and DCT, or matrix factorizations. Instead one typically
writes down each equation, one equation for each row in y = Ax, i.e. not
recognizing matrix/vector multiplication. We have sticked to the name filtering
operations, but made it clear that this is nothing but a linear transformation
with a Toeplitz matrix as its matrix. In particular, we alternately use the terms
filtering and multiplication with a Toeplitz matrix. The characterization of filters
as circulant Toeplitz matrices is usually not done in signal processing literature
(but see [13]). In this text we allow for matrices also to be of infinite dimensions,
expanding on the common use in linear algebra. When infinite dimensions are
assumed, infinite in both directions is assumed. Matrices are scaled if necessary
to make them unitary, in particular the DCT and the DFT. This scaling is
usually not done in signal processing literature.

Representing a filter in terms of a finite matrix and restriction of a filter to a
finite signal. This is usually omitted in signal processing literature.

One of the most important statements in signal processing is that convolution
in time is equivalent to multiplication in frequency. We have presented a
compelling interpretation of this in linear algebra terms. Since the frequency
response simply are eigenvalues of the filter, and convolution simply is matrix
factorization, multiplication in frequency simply means to multiply two diagonal
matrices to obtain the frequency response of the product. Moreover, the Fourier
basis vectors can be interpreted as eigenvectors.

B.6 Convolution
While we have defined the concept of convolution, readers familiar with signal
processing may have noticed that this concept has not been used much. The
reason is that we have wanted to present convolution as a matrix multiplication
(to adapt to mathematical tradition), and that we have used the concept of
filtering often instead. In signal processing literature one defines convolution in
terms of vectors of infinite length. We have avoided this, since in practice vectors
always need to be truncated to finite lengths. Due to this, we also have analyzed
how a finite vector may be turned into a periodic vector (periodic or symmetric
extension), and how this a�ects our analysis. Also we have concentrated on
FIR-filters, and this makes us avoid convergence issues. Note that we do not
present matrix multiplication as a method of implementing filtering, due to
the special structure of this operation. We do not suggest other methods for
implementation than applying the convolution formula in a brute-force way, or
factoring the filter in simpler components.

B.7 Polyphase factorizations and lifting
In signal processing literature, it is not common to associate polyphase com-
ponents with matrices, but rather with Laurent polynomials generated from
the corresponding filter. The Laurent polynomial is nothing else than the Z-
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transform of the associated filter. Associating polyphase components with blocks
in a block matrix makes this book fit with block matrix methods in linear algebra
textbooks.

The polyphase factorization serves two purposes in this book. Firstly, the
lifting factorization (as used for wavelets) is derived from it, and put in a linear
algebra framework as a factorization into sparse matrices, similarly to the FFT
factorization. Thereby it fits together with many of the matrix factorization
results from classical linear algebra, where also sparsity is what makes the
factorization good for computation.

Secondly, the polyphase factorization of the filter bank transforms in the
MP3 standard are derived (also as a sparse matrix factorization), and from this
it is apparent what properties to put on the prototype filters in order to obtain
useful transforms. In fact, from this factorization it became apparent that the
MP3 filter bank transforms could be expressed in terms of alternative QMF filter
banks (i.e. M = 2).

These two topics (lifting and the MP3 filter bank transform polyphase
factorization) are usually not presented in a unified way in textbooks. we see
here that there is a big advantage of doing this, since the second can build on
theory from the first.

B.8 Transforms in general
In signal processing, one often refers to the forward and reverse filter bank
transforms as analysis and synthesis, respectively, and for obvious reasons. In
mathematical literature, one instead often use the term change of coordinates in
a wavelet setting. These terms are not normally used in mathematical literature,
where the term basis vectors/change of coordinate matrices would be used instead.
Also, the output from a forward filter bank transform is often refered to as the
transformed vector, and the result we get when we apply the reverse filter bank
transform to this is called the reconstructed vector.

This exposition takes extra care in presenting how the DCT is derived
naturally from the DFT. In particular both the DFT and the DCT are derived as
matrices of eigenvectors for finite-dimensional filters. The DCT is derived from
the DFT in that one restricts to a certain subset of vectors. The orthogonality
of these matrices follows from the orthogonality of distinct eigenspaces.

B.9 Perfect reconstruction systems
The term biorthogonality is not used to describe a mutual property of the filters
of wavelets. Borthogonality corresponds simply to two matrices being inverses
of oneanother. For the same reason, the term perfect reconstruction is not used
much. Much wavelet theory refer to a property called delay normalization. This
terms has been avoided by mostly considering wavelets with symmetric filters,
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for which delay-normalization is automatic. There are, however, many examples
of wavelets where this term is important.

B.10 Z-transform and frequency response
The Z-transform and the frequency response are much used in signal processing
literaure, and are important concepts for filter design. We have deliberately
dropped the Z-transform. Due to this, much signal processing has of course
been left out, since placements of poles and zeroes are not performed outside or
inside the unit circle, since the frequency response only captures the values on
the unit circle. Placement of poles and circles is perhaps the most-used design
feature in filter design. The focus here is on implementing filters, not designing
them, however.

In signal processing literature, the DTFT and the Z-transform is used,
assuming that the inputs and outputs are vectors of infinite length. In practice
of course, some truncation is needed, since only finite-dimensional arithmetic is
performed by the computer. How this truncation is to be done without a�ecting
the computations is thus never mentioned in signal processing, although it is
always performed somehow. This exposition shows that this truncation can be
taken as part of the theory, without seriously a�ecting the results.



Nomenclature

symbol definition
T Period of a function
‹ Frequency
fN Nth order Fourier series of f
VN,T Nth order Fourier space
DN,T Order N real Fourier basis for VN,T

FN,T Order N complex Fourier basis for VN,T

f̆ Symmetric extension of the function f
⁄s(‹) Frequency response of an analog filter
fs Sampling frequency
Ts Sampling period
N Number of points in a DFT/DCT
FN = {�

0

,�
1

, · · · ,�N≠1

} Fourier basis for RN

FN NimesN -Fourier matrix
x̂ DFT of the vector x

A Conjugate of a matrix
AH Conjugate transpose of a matrix
x

(e) Vector of even samples
x

(o) Vector of odd samples
O(N) Order of an algorithm
l(S) Length of a filter
x ú y Convolution of vectors
⁄S,n Vector frequency response of a digital filter
Ed Filter which delays with d samples
Ê Angular frequency
⁄S(Ê) Continuous frequency response of a digital filter
x̆ Symmetric extension of a vector
Sr Symmetric restriction of S
Sf Matrix with the columns reversed
DN = {d

0

,d
1

, · · · ,dN≠1

} N -point DCT basis for RN

DCTN N ◊ N -DCT matrix
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symbol definition
„ Scaling function
Vm Resolution space
r�m Basis for Vm

cm,n Coordinates in �m

Wm Detail space
rU ü V Direct sum of vector spaces
 m Basis for Wm

wm,n Coordinates in  m

Cm Reordering of (�m≠1

, m≠1

)
„̃ Dual scaling function
Ẫ Dual mother wavelet
Ṽm Dual resolution space
W̃m Dual detail space
Dm Reordering of �m

EN = {e
0

, e
1

, · · · , eN≠1

} Standard basis for RN

¢ Tensor product
W (0,1)

m Resolution m Complementary wavelet space, LH
W (1,0)

m Resolution m Complementary wavelet space, HL
W (1,1)

m Resolution m Complementary wavelet space, HH
AT Transpose of a matrix
A≠1 Inverse of a matrix
Èu,vÍ Inner product
[x]B Coordinate vector of x relative to the basis B
PCΩB Change of coordinate matrix from B to C
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AD conversion, 41
algebra, 97
Alias cancellation, 231
Alias cancellation condition, 233
Aliasing, 231
analysis, 12

equations, 12
Analysis filter components of a forward

filter bank transform, 240
Angular frequency, 105
Arithmetic operation count

DCT, 156
FFT, 76
revised DCT, 159
revised FFT, 159
symmetric filters, 151
with tensor products, 351

audioplayer, 43
audiowrite, 43

Bandpass filter, 116
Basis

C, 176
D, 296
�m, 167
 m, 171
DCT, 142
for VN,T , 12, 20
Fourier, 49

basis, 387
Biorthogonal

bases, 256
Biorthogonality, 256
bit rate, 41
Bit-reversal

DWT, 293
FFT, 73

block diagonal matrices, 176
block matrix, 71
Blocks, 356

Cascade algorithm, 254
Causal filter, 271
Change of coordinate matrix, 388
Change of coordinates, 388

in tensor product, 349
Channel, 240
Compact support, 36
Complex Fourier coe�cients, 22
Computational molecule, 332

Partial derivative in x-direction,
338

Partial derivative in y-direction,
340

Second order derivatives, 342
smoothing, 337

Conjugate transpose, 51
continuous sound, 1
Continuous-time Fourier transform, 39
conv, 92
Convolution

analog, 36
kernel, 36
vectors, 91

coordinate matrix, 349
Coordinate vector, 388
Coordinates in �m, 168
Coordinates in  m, 171
Cosine matrices, 143
Cosine matrix inverse
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type I, 213
type II, 143
type III, 143, 147

critical sampling, 218
CTFT, 39

DCT
I, 212

dct, 144
DCT basis, 142
DCT coe�cients, 142
DCT matrix, 142
DCT-I factorization, 212
DCT-II factorization, 143
DCT-III factorization, 143
DCT-IV factorization, 147
Detail space, 170
DFT coe�cients, 50
DFT matrix factorization, 72
Diagonalization

with FN , 96
digital

sound, 39, 41
digital filter, 96
Direct sum

linear transformations, 186
vector spaces, 170

Dirichlet conditions, 13
Discrete Cosine transform, 142
Discrete Fourier transform, 50
Discrete Wavelet Transform, 174
downsampling, 218
Dual

detail space, 257
mother wavelet, 255
multiresolution analysis, 258
resolution space, 257
scaling function, 255
wavelet transforms, 220

DWT kernel parameter dual, 221

eigenvalue, 389
eigenvector, 389
elementary lifting matrix

even type, 288
odd type, 288

used for non-symmetric filters, 301
used for symmetric filters, 292

error-resilient, 356

FFT, 69
twiddle factors, 79

�t, 74
FFT algorithm

Non-recursive, 81
Radix, 82
Split-radix, 82

Filter
bandpass, 116
highpass, 116
ideal highpass, 116
ideal lowpass, 116
length, 91
linear phase, 139
lowpass, 116
moving average, 114
MP3 standard, 118
time delay, 112

Filter bank, 240
Cosine-modulated, 244

Filter bank transform, 240
Filter coe�cients, 88
Filter echo, 113
FIR filters, 128
flop count, 85
Forward filter bank transform, 240

in a wavelet setting, 220
Fourier analysis, 20
Fourier coe�cients, 11
Fourier domain, 12
Fourier matrix, 50
Fourier series, 10

square wave, 13
triangle wave, 15

Fourier space, 10
Frequency domain, 12
Frequency response

analog filter, 35
continuous, 105
vector, 96

Haar wavelet, 181
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Highpass filter, 116

idct, 144
Ideal highpass filter, 116
Ideal lowpass filter, 116
IDFT, 52
IDFT matrix factorization, 72
i�t, 74
IMDCT, 148
Implementation

Cascade algorithm to plot wavelet
functions, 262

DCT, 154
DCT2, 354
DFT, 54
FFT

Nonrecursive, 81
revised, 158
Split-radix, 82

FFT2, 354
Generic DWT2, 375
Generic IDWT2, 375
IDCT, 156
IDCT2, 354
IFFT2, 354
lifting step

elementary, 302
non-symmetric, 303

listening to detail part in sound,
189

listening to high-frequency part in
sound, 64

listening to low-frequency part in
sound, 64

listening to low-resolution part in
sound, 189

Tensor product, 345
viewing detail part in images, 379
viewing low-resolution part in im-

ages, 379
Wavelet kernel

alternative piecewise linear wavelet,
303

alternative piecewise linear wavelet
with 4 vanishing moments, 304

CDF 9/7 wavelet, 303

orthonormal wavelets, 303
piecewise linear wavelet, 302
piecewise quadratic wavelet, 304
Spline 5/3 wavelet, 303

impulse response, 98
imread, 325
imshow, 325
imwrite, 325
In-place

bit-reversal implementation, 73
DWT implementation, 179
FFT implementation, 73
lifting implementation, 292

In-place implementation
DWT, 293

Inner product
of functions in a Fourier setting,

10
of functions in a tensor product

setting, 359
of functions in a wavelet setting,

165
of vectors, 49

interpolating polynomial, 61
interpolation formula, 63

ideal
periodic functions, 63

Inverse Discrete Wavelet Transform, 175

JPEG
standard, 356

JPEG2000
lossless compression, 277
lossy compression, 279
standard, 277

Kernel transformations, 176
Kronecker tensor product, 347

least square error, 10
length of a filter, 91
Lifting factorization, 291

alternative piecewise linear wavelet,
298

alternative piecewise linear wavelet
with 4 vanishing moments, 304



INDEX 403

CDF 9/7 wavelet, 299
orthonormal wavelets, 301
piecewise linear wavelet, 297
piecewise quadratic wavelet, 304
Spline 5/3 wavelet, 298

Linear phase filter, 139
linearly independent, 387
loglog, 80
Lowpass filter, 116
LTI filters, 97

matrix of a linear transformation rela-
tive to bases, 389

MDCT, 147
mother wavelets, 174
MP3

and the DCT, 160
FFT, 66
filters, 118
standard, 37
window, 110

MP3 standard
matrixing, 242
partial calculation, 242
windowing, 242

MRA-matrix, 217
multiresolution analysis, 206
multiresolution model, 164

Near-perfect reconstruction, 231

Order N complex Fourier basis for VN,T ,
21

Order of an algorithm, 75
Orthogonal

basis, 388
matrix, 387
vectors, 388

Orthogonal decomposition theorem, 388
Orthonormal

basis, 388
MRA, 206

Orthonormal wavelets, 239
Outer product, 334

Parallel computing

with the DCT, 157
with the DWT, 356
with the FFT, 77

Perfect reconstruction, 231
perfect reconstruction condition, 233
Perfect reconstruction filter bank, 241
Phase distortion, 231
play, 42
playblocking, 42
Polyphase

component of a vector, 77
Polyphase components, 286
Polyphase representation, 286
projection, 388
psycho-acoustic model, 37
pure digital tone, 49
pure tone, 5

QMF filter banks, 238
Alternative definition, 239
Classical definition, 238

Resolution space, 166
Reverse filter bank transform

in a wavelet setting, 220
Reverse filter bank transforms, 241
roots, 270

samples, 41
sampling, 41

frequency, 41
period, 41
rate, 41

scaling function, 168, 206
separable extension, 358
sound channel, 43
Sparse matrix, 387
square wave, 7
Standard

JPEG, 356
JPEG2000, 277
MP3, 39

subband
HH, 367
HL, 367
LH, 367
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LL, 367
Subband coding, 240
Subband samples of a filter bank trans-

form, 240
Support, 36
Symmetric

vector, 134
Symmetric extension

of function, 32
used by the DCT, 134
used by wavelets, 209

Symmetric restriction of a symmetric
filter, 139

synthesis, 12
equation, 12
vectors, 51

Synthesis filter components of a reverse
filter bank transform, 241

tensor product, 319
of function spaces, 358
of functions, 358
of matrices, 335
of vectors, 334

Tiles, 356
time domain, 12
time-invariant, 97
toc, 79
Toeplitz matrix, 88

circulant, 88
triangle wave, 7

Unitary matrix, 51
upsampling, 219

Vector space
of symmetric vectors, 134

Wavelets
Alternative piecewise linear, 200
CDF 9/7, 277
Orthonormal, 280
Piecewise linear, 194
Spline, 275
Spline 5/3, 276

wavread, 43

window, 108
Hamming, 109
Hanning, 112
in the MP3 standard, 110
rectangular, 109


