Linear algebra, signal processing, and
wavelets. A unified approach.

Python version

Oyvind Ryan

Feb 19, 2016

Preface

The starting point for this book was a new course developed at the University of
Oslo, called “Applications of Linear Algebra”. This was given for the first time
in 2012. At the university we had recognized that students who just had their
first course in linear algebra already have the right background to learn about
several important and interesting topics in signal processing and wavelet theory.
Unfortunately, most textbooks on these subjects are written in a language which
does not favor a basic background in linear algebra. This makes much literature
unavailable to a large class of students, and only available to engineering- and
signal processing students. Moreover, it is not a common textbook strategy to
introduce signal processing and wavelets together from scratch, even though the
two can very much motivate each other. Why not write such a self-contained
textbook, where linear algebra is the main fundament? This question is the
motivation behind this book.

Some examples on where many signal processing textbooks fail in refering to
linear algebra are:

e Matrix notation is often absent. Instead, linear operations are often
expressed by component formulas, and matrix multiplication is instead
refered to as convolution (when filters are used).

e Many operations, which really represent change of coordinates, such as
the DFT, the DCT, and the DWT, are not represented as such. These
operations are thus considered outside a linear algebra framework, so that
one does not use tools, notation, and results from linear algebra for them.

e Figenvalues and eigenvectors are not mentioned, even if these often are at
play behind the scene: It is often not mentioned that the Fourier basis
vectors are eigenvectors for filters, with the frequency response being the
corresponding eigenvalues. Also, the property for filters that convolution
in time corresponds to multiplication in frequency can in linear algebra
terms be summarized by that the frequency representation is obtained
from diagonalization, so that multiplication in frequency corresponds to
multiplying diagonal matrices where the frequency responses are on the
diagonal.

e Function spaces are often not put into a vector space/inner product context,
even if Fourier series can be seen as a least squares approximation on the

ii

iii

Fourier spaces, and the Fourier integrals for the Fourier coefficients can
be seen as the inner product coefficients of the orthogonal decomposition
formula.

Several other books have also seen the need for writing new textbooks which
exploit linear algebra. One example is [33], which goes further in using matrix
notation than many signal processing textbooks. Still, the author feels that this
book and others should do even more (such as addressing the issues above) to
integrate a linear algebra framework, so that students feel more at home when
they have a basic linear algebra background. As an example, it seems that many
textbooks refer to matrices with polynomial entries, something which stems from
signal processing and the Z-transform. We will see that this is unnecessary,
as one can identify the polynomial entries with Toeplitz matrices, and such
“non-standard matrices” confuse students.

This book is an introduction to Fourier analysis and signal processing (first
part of the book) and wavelets (second part of the book), assuming only a
beginning course in linear algebra. Without such a course, the value in this
book is limited. An appendix has been included so that students can repeat
the linear algebra background they need, but a full course on these topics is
preferred in order to follow the contents of the book. This book is fitting for
use in one or two university level undergraduate courses, and is perhaps best
directly after a beginning linear algebra course. Also, some of the theory from a
beginning course in linear algebra is further developed: Complex vector spaces
and inner products are considered (many introductory linear algebra textbooks
concentrate only on real vector spaces and inner product spaces). Also, while
many introductory linear algebra textbooks consider inner product spaces which
are function spaces, they often do not go very far in training the student on
these spaces. This book goes longer in this respect, in that both Fourier and
wavelet function spaces are heavily used, both in theory and exercises. The book
also builds more intuition on changes of coordinates, such as the DFT, the DCT,
and the DWT, and the basic properties of these operations. The book itself can
thus be seen as an extension to a linear algebra textbook. In the future, the
author hopes that this material can become additional chapters in a new linear
algebra textbook, or as part of a general learning package comprising of different
theory integrated together.

Since a linear algebra background is assumed, and this is the common denom-
inator between the presented topics, some with signal processing background
may feel excluded. In particular, signal processing nomenclature is not used.
To also make this book accessible for these students, we have included several
comments in the various chapters, which may help to unify the understanding
from a signal processing and a linear algebra perspective. We have also included
another appendix which can serve as a general translation guide between linear
algebra and signal processing.

This book has been written with a clear computational perspective. The
theory motivates algorithms and code, for which many programming issues need
to be addressed. A central idea is thus to elaborate on the interplay between

iv

theory, numerical methods, and applications: We not only want to explain
the theoretical foundations of the selected topics, but also to go from there to
numerical methods, and finally motivate these by their applications in diverse
fields. The book goes a long way in integrating important applications, such
as modern standards for compression of sound (MPEG) and images (JPEG,
JPEG2000). In some respects we go longer than other books with the name
“applications” in their title: many books on linear algebra sneak in words like
“applied” or “applications” in their title. The main contents in most of these
books may still be theory, and particular applications where the presented theory
is used are perhaps only mentioned superficially, without digging deep enough to
explain how these applications can be implemented using the presented theory.

Implementations and important algorithms related to the presented theory
are presented throughout the book, and not only as isolated exercises without
corresponding examples. There is a focus on implementation and good coding
practice, algorithms and the number of arithmetic operations they need, memory
usage, and opportunities for parallel computing. We unveil how we can turn
the theory into practical implementations of the applications, in order to make
the student operational. By “Practical implementation” we do not mean a “full
implementation”, which typically involves many other components, unrelated or
only weakly related to the theory we present. This focus on the computational
perspective has been inspired by the project “Computing in science education” at
the University of Oslo, which is an initiative to integrate computations into the
basic science curriculum from the very first semester at the university. Wavelet
theory in particular has a large amount of detail incorporated into it. Much
literature skip some of these details, in order to make a simpler presentation. In
this book we have attempted not to skip details for the sake of completeness,
but attempted to isolate tricky details from the ideas. We attempt to point
out which details can be skipped for the introductory reader, but the interested
reader still has the opportunity to go through all details by following all aspects
of the book. There are many more topics which could have been included in this
book, but much of these would require more detail. We have therefore chosen a
stopping point which seems to be a good compromise with the level of detail
one needs to go into.

Programming. It is assumed that the student already has been introduced
to some programming language or computational tool. It is to prefer that the
student has taken a full course in programming first, since the book does not
give an introduction to primitives such as for-loops, conditional statements,
lists, function definitions, file handling, and plotting. At the University of Oslo,
most students take such a Python-based course the first semester where such
primitives are gone through.

This book comes in two versions: One where Matlab programming is used
throughout, and one where Python programming is used throughout. The
version of the book you are reading uses Python. If you search the internet for
recommendations about what programming language to use in a basic course in

a linear algebra, you may find comments such as “python is too advanced for
such a beginning course”, or “Matlab is much quicker to get started with”. The
author believes that such comments would not have been posted if all students
received the same training in Python programming the first semester as they
do at the university of Oslo: Once educational institutions agree on a common
framework for programming for the students, we believe that the programming
you see in this book will not feel too advanced, irrespective of which version of
this book you have.

A code repository accompanies the book, where all Matlab and Python code
in the book can be found. The code repository can be found on the webpage for
the book, and contains the following:

e [Python notebooks and Matlab publish files which list the examples in the
book in such a way that they can be run sequentially. The example code
within the book may not run on its own, as it may rely on importing certain
packages, or defining certain variables. These imports and definitions will
in any way be part of the notebook. Each chapter lists the notebooks the
examples can be found in, and there is typically one notebook per chapter.
The notebooks also contains a lot of solution code to the exercises. This
code is also found in the solution manual.

e Function libraries which are developed throughout the book. The most
notable of these are the FFT and DWT libraries. The book may list
simplified versions of these which the students are asked to extend to more
general implementations in the exercises, so that for instance the code is
valid for sound with any number of channels, or images with any number
of color components. The solution manual may then list the full versions
of these functions, as they appear in the code repository. In the book, we
always list what modules the referred functionality can be found in.

e Documentation for all functions. As the student often is asked to implement
much of the functionality himself, this documentation is a good source to
ensure that he interprets input and output parameters and return values
correctly.

e Test code for the functions we develop.

e [Python notebooks and Matlab publish files which generate all the figures
in the book. Some exercises in the book also aim at generating these
figures. The solution manual refers to these notebooks in this case. The
figures in the printed version of the book have been generated with Python
and Matplotlib.

If you compare the code in the Matlab and Python versions of the book, you will
see that the programming style is such that much of the code in the two languages
is very similar: Function signatures are almost the same. Code indentation
follows the Python standard, where indentation is an important part of the
syntax. Classes could have been used several places in the Python code, but

vi

this has been avoided, since they are not supported in Matlab. Much of the
programming syntax is also similar.

There are also some differences in the Matlab and Python versions, however.
The python code is structured into modules, a very important structuring concept
in Python. In Matlab the concept of a module does not exist. Instead functions
are placed in different files, rather than in modules, and this leads to a high
number of files in the Matlab part of the code repository. For the Python version,
each chapter states what modules the accompanying functionality are part of. In
Python, it is customary to place test code in the same module as the functions
being tested. This can’t be done with Matlab, so the compromise made is to
create a separate file with the test code, and where there is a main function
which calls different test functions in the same file, with these test functions
following the Python naming conventions for test functions.

Another difference has to do with that Matlab copies input and return
parameters whenever they are accessed. This is not the case in Python, where
input and return parameters are passed by reference. This means that we can
perform in-place computation in Python code, i.e. we can write the result directly
into the input buffer, rather than copying it. As this can lead to much more
efficent code, the Python code attempts to perform in-place operations wherever
possible, contrary to the Matlab code where this approach is not possible. This
affects the signatures of many functions: Several Python functions have no return
values since the result is written directly into an input buffer, contrary to the
Matlab counterparts which use return parameters for the result.

Matlab has built-in functionality for reading and writing sound and images,
as well as built-in functionality for playing sound and displaying images. To
make the Python code similar to the Matlab code, the code repository includes
the modules sound and images, with functions with similar signatures to the
Matlab counterparts. These functions simply call Python counterparts, in such
a way that the interface is the same.

Although the code repository contains everything developed in the book, it
is recommended that the student follows the code development procedure of the
book, and establishes as much code as possible on his own. In this way he is
guided through the development of a full library, which is general in purpose.
The student is encouraged to create his own files where the functions have the
same signatures as the fully developed functions in the code repository. To
ensure that the student’s functions are run, rather than the functions in the
code repository, it is important that the student’s files are listed first in the
path. With Python the student can also place his code in separate modules, and
override code in the modules in the code repository.

This book has been typeset in a sophisticated language called doconce. Due
to this tool we have been able to use a single source text to contain both Matlab
and Python versions, with a minimum of duplication. Another consequence of
the doconce tool is that we also can generate this book also comes in HTML and
sphinx versions. The doconce tool has also been used to generate the ipython
notebooks and matlab publish source.

vii

Structure of the book. Part 1 of the book (chapter 1-4) starts with a general
discussion on what sound is. Chapter 1 also introduces Fourier series as a finite-
dimensional model for sound, and establishes the mathematics for computing
and analyzing Fourier series. While the first chapter models sound as continuous
functions, the chapter 2 moves on to digital sound. Now sound is modeled
as finite-dimensional vectors, and this establishes a parallel theory, where the
computation of Fourier series is replaced with a linear transformation called
the Discrete Fourier Transform. Two important topics are gone through in
connection with this: Fast computation of the Discrete Fourier Transform, and
the sampling theorem, which establishes a connection between Fourier series
and the Discrete Fourier Transform. In chapter 3 we look at a general type of
operations on sound called filters. When applied to digital sound, it turns out
that filters are exactly those operations which are diagonalized by the Discrete
Fourier Transform. Finally, the chapter 4 ends the first part of the book by
looking at the Discrete Cosine Transform, which can be thought of as a useful
variant of the Discrete Fourier Transform.

Part 2 of the book of the book starts with a motivation for introducing what
is called wavelets. While the first part of the book works on representations
of sound in terms of frequency only, wavelets take into account that such a
representation may change with time. After motivating the first wavelets and
setting up a general framework in chapter 5, chapter 6 establishes the connection
between wavelets and filters, so that the theory from the first part of the book
can be applied. In chapter 7 we establish theory which is used to construct useful
wavelets which are used in practice, while chapter 8 goes through implementation
aspects of wavelets, and establishes their implementations. Chapter 9 takes a
small step to the side to look at how we can experiment with images, before
we end the book in chapter 10 with setting up the theory for wavelets in a
two-dimensional framework, so that we can can use them to experiment with
images.

Assumptions. This book makes some assumptions, which are not common
in the literature, in order to adapt the exposition to linear algebra. The most
important one is that most spaces are considered finite-dimensional, and filters
are considered as finite-dimensional operations. In signal processing literature,
filters are usually considered as infinite-dimensional operations. In generality
this is true, but in practice one rarely encounters an infinite set of numbers,
which justifies our assumptions. Since Fourier analysis implicitly assumes some
kind of periodicity, we are left with the challenge of extending a finite signal
to a periodic signal. This can be done in several ways, and we go through the
two most important ways, something which is often left out in signal processing
literature.

New contributions. It would be wrong to say that this book provides new
results. But it certainly provides some new proofs for existing results, in order

viii

to make the results more accessible for a linear algebra point of view. Let us
mention some examples.

e The sampling theorem, which is proved in more generality with more
advanced Fourier methods than is presented here (i.e. with Continuous-
time and Discrete-time Fourier transforms), has been restricted to periodic
functions, for which a much simpler proof can be found, fitting our context.

e The DCT and its orthogonality is found in a constructive way.

e The quadrature formula for perfect reconstruction is reproved in simple
linear algebra terms.

What has been omitted. In the book, analytical function-theoretical proofs
have been avoided. We do not define the Continuous-time and Discrete-time
Fourier transforms. We do give a short introduction into analog filters, however,
as they are useful in explaining properties for their digital counterparts. We
do not define the Z-transform, and we do not make filter design based on the
placement of poles and zeros, as is common in signal processing literature.

Notation. We will follow linear algebra notation as you know it from classical
linear algebra textbooks. In particular, vectors will be in boldface (x, y, etc.),
while matrices will be in uppercase (4, B, etc.). The zero vector, or the zero
matrix, is denoted by 0. All vectors stated will be assumed to be column vectors.
A row vector will always be written as 7, where « is a (column) vector. We
will also write column vectors as @ = (xq, z1,..., %), i.6. as a comma-separated
list of values.

How to use this book. Note that this is a curricular book, not an ency-
clopaedia for researchers. Besides the theory, the focus is on drilling the theory
with exercises. Each chapter also has a list of minimum requirements, which
may be helpful in preparation for exams.

There are many important topics in the exercises in this book, which are
not gone through in the text of the book. A detailed solution manual for many
of these exercises can be found on the web page of the book. These solutions
represents important material which is theoretical material in many other books.
It is recommended that these solutions be used with care. Much of the learning
outcome depends on that the students try and fail for some time in solving
exercises. They should therefore not take the shortcut directly to the solutions:
Although they may understand the solution to an exercise in this way, they may
not learn the thinking process on how to arrive at that solution, and how to
solve it logically and understandably.

The entire book is too much for a one-semester course. Two semesters should
suffice to go through everything. There are several different ways material can be
chosen so that the amount fits a one-semester course. Most material in chapters 2

ix

and 3 can be gone through independently of Chapter 1, in that one sacrifices
the motivation of this material in ternms of analog filters. Chapter 4 can be
skipped. Chapter 5 can be read independently from the first part of the book.
The same applies for Chapter 9. Chapters 9, and 10 can be omitted if time is
scarce, since they are the only chapters which concentrate on images and the
two-dimensional perspective.

Acknowledgment. Thanks to Professor Knut Mgrken for input to early ver-
sions of this book, and suggesting for me to use my special background to write
literature which binds linear algebra together with these interesting topics. A
special thanks also to thank Andreas Vavang Solbréa for his valuable contributions
to the notes, both in reading early and later versions of them, and for teaching
and following the course. Thanks also to students who have taken the course,
who have provided valuable feedback on how to present the topics so that they
understand them. I would also like to thank all participants in the CSE project
at the University of Oslo, for their continuous inspiration.

@yvind Ryan

Oslo, January 2014.

Contents

Preface

1

Sound and Fourier series
1.1 Characteristics of sound: Loudness and frequency
1.1.1 The frequency of asound
1.2 Fourier series: Basic concepts
1.2.1 Fourier series for symmetric and antisymmetric functions
1.3 Complex Fourier series
1.4 Some properties of Fourier series
1.4.1 Rate of convergence for Fourier series
1.5 Operations on sound: filters
1.6 The MP3 standard
1.7 Summary

Digital sound and Discrete Fourier analysis

2.1 Digital sound and simple operations on digital sound
2.1.1 Playingasound

2.2 Discrete Fourier analysis and the discrete Fourier transform . . .

2.3 Connection between the DFT and Fourier series. Sampling and
the sampling theorem

2.4 The Fast Fourier Transform (FFT)
2.4.1 Reduction in the number of multiplications with the FFT
2.4.2 The FFT when N=N{Ny

25 Summary e e

Operations on digital sound: digital filters

3.1 Matrix representations of filters
3.1.1 Convolution

3.2 Formal definition of filters and the vector frequency response
3.2.1 Using digital filters to approximate analog filters

3.3 The continuous frequency response and properties
3.3.1 Windowing operations

3.4 Some examples of filters L.

3.5 More general filters Lo

40
41
42
48

o8
69
74
76
84

CONTENTS xi

3.6 Implementation of filters 129
3.6.1 Implementation of filters using the DFT 129
3.6.2 Factoring a filter into several filters 130

3.7 Summary e 131

4 Symmetric filters and the DCT 132

4.1 Symmetric vectors and the DCT 133

4.2 Improvements from using the DCT to interpolate functions and
approximate analog filters Lo 148
4.2.1 Implementations of symmetric filters 150

4.3 Efficient implementations of the DCT 152
4.3.1 Efficient implementations of the IDCT 154
4.3.2 Reduction in the number of multiplications with the DCT 155

4.4 Summary . .o .o e e 159

5 Motivation for wavelets and some simple examples 161

5.1 Why wavelets? L 162

5.2 A wavelet based on piecewise constant functions 163
5.2.1 Function approximation property 167
5.2.2 Detail spaces and wavelets 168

5.3 Implementation of the DWT and examples 178

5.4 A wavelet based on piecewise linear functions 188
5.4.1 Detail spaces and wavelets 191

5.5 Alternative wavelet based on piecewise linear functions 197

5.6 Multiresolution analysis: A generalization 204
5.6.1 Working with the samples of f instead of f 206
5.6.2 Increasing the precision of the DWT 207

5.7 Summary 211

6 The filter representation of wavelets 213

6.1 The filters of a wavelet transformation 214
6.1.1 The support of the scaling function and the mother wavelet223
6.1.2 Wavelets and symmetric extensions 224

6.2 Properties of the filter bank transforms of a wavelet 229

6.3 A generalization of the filter representation, and its use in audio
coding L 238
6.3.1 Forward filter bank transform used for encoding in the

MP3 standard L Lo 240
6.3.2 Reverse filter bank transform used for decoding in the
MP3 standardo Lo 243
6.4 Summary e e e 247
7 Constructing interesting wavelets 250
7.1 From filters to scaling functions and mother wavelets 250
7.2 Turning things around: How to construct useful wavelet bases

from filters 252

CONTENTS xii

7.2.1 Sketch of proof for the biorthogonality in Proposition 7.7 (1)258
7.2.2 Sketch of proof for the biorthogonality of in Proposition 7.7

(2) .« 259

7.2.3 Regularity and vanishing moments 259

7.3 Vanishing moments L. 262

7.4 Characterization of wavelets w.r.t. number of vanishing moments 265

7.4.1 Symmetric filters L 266

7.4.2 Orthonormal wavelets 269

7.4.3 The proof of Bezouts theorem 272

7.5 A design strategy suitable for lossless compression 273

7.6 A design strategy suitable for lossy compression 276

7.7 Orthonormal wavelets 279

7.8 Summary e 282

8 The polyphase representation and wavelets 284

8.1 The polyphase representation and the lifting factorization 285
8.1.1 Reduction in the number of arithmetic operations with

the lifting factorization 292

8.2 Examples of lifting factorizations 295

8.3 Cosine-modulated filter banks and the MP3 standard 304
8.3.1 Polyphase representations of the filter bank transforms of

the MP3 standard 304

8.3.2 The prototype filters chosen in the MP3 standard 310

8.3.3 How can we obtain perfect reconstruction? 312

8.4 Summary 317

9 Digital images 318

9.1 What is an image? L Lo 319

9.1.1 Light. 319

9.1.2 Digital output media 319

9.1.3 Digital input media 320

9.1.4 Definition of digital image 320

9.2 Some simple operations on images 323

9.2.1 Images and Python. 323

9.3 Filter-based operations on images 332

9.3.1 Tensor product notation for operations on images 334

9.3.2 Comparing the first derivatives 341

9.3.3 Second-order derivatives 342

9.4 Change of coordinates in tensor products 348

9.5 Summary e e 354

10 Using tensor products to apply wavelets to images 357

10.1 Tensor product of function spaces 357

10.2 Tensor product of function spaces in a wavelet setting 360

10.3 Experiments with images using wavelets 367

CONTENTS xiii

10.4 An application to the FBI standard for compression of fingerprint

IMageso 379

10.5 Summaryo 385

A Basic Linear Algebra 386
Al Matrices 386
A2 Vector spaces 386
A.3 Inner products and orthogonality 387
A.4 Coordinates and change of coordinates 387
A.5 Eigenvectors and eigenvalues 388
A.6 Diagonalization 388

B Signal processing and linear algebra: a translation guide 389
B.1 Complex numbers 389
B.2 Functions 389
B.3 Vectors 390
B.4 Inner products and orthogonality 390
B.5 Matrices and filters L oo 390
B.6 Convolution 391
B.7 Polyphase factorizations and lifting 391
B.8 Transforms in general 392
B.9 Perfect reconstruction systemso L 392
B.10 Z-transform and frequency response 393
Nomenclature 394
Bibliography 396

Index 399

List of Exercises

Exercise 1.1:
Exercise 1.2:
Exercise 1.3:
Exercise 1.4:
Exercise 1.5:
Exercise 1.6:
Exercise 1.7:
Exercise 1.8:
Exercise 1.9:

Exercise 1.10:
Exercise 1.11:
Exercise 1.12:
Exercise 1.13:
Exercise 1.14:
Exercise 1.15:
Exercise 1.16:

Exercise 1.17:
Exercise 1.18:
Exercise 1.19:

Exercise 2.1:
Exercise 2.2:
Exercise 2.3:
Exercise 2.4:
Exercise 2.5:
Exercise 2.6:
Exercise 2.7:
Exercise 2.8:
Exercise 2.9:

Exercise 2.10:
Exercise 2.11:
Exercise 2.12:
Exercise 2.13:
Exercise 2.14:

The Krakatoa explosion
Sum of two pure tones
Riemann-integrable functions which are not square-integrable 19

When are Fourier spaces included in each other? 19
antisymmetric functions are sine-series 19
Fourier series for low-degree polynomials 20
Fourier series for polynomials 20
Fourier series of a given polynomial 20
Orthonormality of Complex Fourier basis 25
Complex Fourier series of f(t) = sin?(27t/T) 25
Complex Fourier series of polynomials 25
Complex Fourier series and Pascals triangle 25
Complex Fourier coefficients of the square wave 26
Complex Fourier coefficients of the triangle wave 26
Complex Fourier coefficients of low-degree polynomials 26
Complex Fourier coefficients for symmetric and antisym-
metric functionso oo 26
Fourier series of a delayed square wave 34
Find function from its Fourier series 34
Relation between complex Fourier coefficients of f and
cosine-coefficients of f 34
Sound with increasing loudness, 46
Sum of two pure tones 46
Playing general pure tones. 46
Playing the square- and triangle waves 47
Playing Fourier series of the square- and triangle waves . . . 47
Playing with different sample rates 47
Playing the reverse sound 47
Play sound with added noise 47
Computing the DFT by hand 56
Exact form of low-order DFT matrix 56
DFT of a delayed vector 56
Using symmetry property 56
DFT of cos?(2nk/N) oo 56
DFT of cFx. 56

Xiv

List of Exercises

Exercise 2.15:
Exercise 2.16:
Exercise 2.17:
Exercise 2.18:
Exercise 2.19:
Exercise 2.20:
Exercise 2.21:
Exercise 2.22:
Exercise 2.23:
Exercise 2.24:
Exercise 2.25:
Exercise 2.26:
Exercise 2.27:
Exercise 2.28:
Exercise 2.29:
Exercise 2.30:

Exercise 3.1:
Exercise 3.2:
Exercise 3.3:
Exercise 3.4:
Exercise 3.5:

Exercise 3.6:
Exercise 3.7:
Exercise 3.8:
Exercise 3.9:

Exercise 3.10:
Exercise 3.11:
Exercise 3.12:
Exercise 3.13:
Exercise 3.14:
Exercise 3.15:
Exercise 3.16:
Exercise 3.17:
Exercise 3.18:
Exercise 3.19:
Exercise 3.20:
Exercise 3.21:
Exercise 3.22:
Exercise 3.23:
Exercise 3.24:
Exercise 3.25:
Exercise 3.26:
Exercise 3.27:
Exercise 3.28:
Exercise 3.29:

XV
Rewrite a complex DFT as real DFT’s 56
DFT implementation 57
Symmetry oL 57
DFT on complex and real data 57
Comment code 68
Which frequency is changed? 68
Implement interpolant 68
Extend implementation 79
Compare execution time 79
Combine two FFT’s 79
Composite FFT oo 80
FFT operation count 80
Adapting the FFT algorithm to real data 80
Non-recursive FFT algorithm 81
The Split-radix FFT algorithm 81
Bit-reversal o 83

Finding the filter coefficients and the matrix 94

Finding the filter coefficients from the matrix 94

Convolution and polynomials 94

Implementation of convolution 94

Filters with a different number of coefficients with positive
and negative indiceso Lo 94

Implementing filtering with convolution 95

Time reversal is not a filter 102

When is a filter symmetric? 102

Eigenvectors and eigenvalues L. 102
Composing filterso 103
Keeping every second component 103
Plotting a simple frequency response 109
Low-pass and high-pass filters 110
Circulant matrices oL 110
Composite filterso oL 110
Maximum and minimumo 110
Plotting a simple frequency response 111
Continuous- and vector frequency responses 111
Starting with circulant matrices 111
When the filter coefficients are powers 111
The Hanning window 111
Composing time delay filters 123
Addingecho o 123
Adding echo filters 124
Reducing bass and treble 124
Constructing a highpass filter 124
Combining lowpass and highpass filters 125
Composing filters Lo 0oL 125
Composing filters oo 125

List of Exercises

Exercise 3.30:
Exercise 3.31:
Exercise 3.32:
Exercise 3.33:
Exercise 3.34:

Exercise 4.1:
Exercise 4.2:
Exercise 4.3:
Exercise 4.4:
Exercise 4.5:
Exercise 4.6:
Exercise 4.7:
Exercise 4.8:
Exercise 4.9:
Exercise 5.1:
Exercise 5.2:
Exercise 5.3:
Exercise 5.4:
Exercise 5.5:
Exercise 5.6:
Exercise 5.7:
Exercise 5.8:
Exercise 5.9:

Exercise 5.10:
Exercise 5.11:
Exercise 5.12:
Exercise 5.13:
Exercise 5.14:
Exercise 5.15:
Exercise 5.16:
Exercise 5.17:
Exercise 5.18:
Exercise 5.19:
Exercise 5.20:
Exercise 5.21:
Exercise 5.22:
Exercise 5.23:
Exercise 5.24:
Exercise 5.25:
Exercise 5.26:
Exercise 5.27:
Exercise 5.28:
Exercise 5.29:
Exercise 5.30:
Exercise 5.31:
Exercise 5.32:

xvi

Filters in the MP3 standard 126
Explaincode Lo o 126
A concrete IR filter 129
Implementing the factorization 131
Factoring concrete filter 131
Computing eigenvalues 145
Writing down lower order S,- 146
Writing down lower order DCTs 146
DCT-IV . . . 146
MDCT . . . 146
Component expressions for a symmetric filter 151

Trick for reducing the number of multiplications with the DCT156
An efficient joint implementation of the DCT and the FFT . 157

Implementation of the IFFT/IDCT 159
Samples are the coordinate vector 176
Proposition 5.12o oo 176
Computing projections L. 176
Computing projections 2 177
Computing projections 177
Finding the least squares error 177
Projectingon Wyo oo 177
When Nisodd 178
Implement IDWT for The Haar wavelet 185
Computing projections 185
Scaling a function Lo 185
Direct sums.o oo 185
Eigenvectors of direct sums 185
Invertibility of direct sums 186
Multiplying direct sums 186
Finding N 186
Different DWTs for similar vectors 186
Plotting the DWT onasound 187
Zeroing out DWT coefficients 187
Construct asound 187
Exact computation of wavelet coefficients 1 188
Exact compution of wavelet coefficients 2 188
Computing the DWT of a simple vector 188
The Haar wavelet when N isodd 188
in-place DWT oo 188
The sample values are coordinates 196
Computing projections 196
Non-orthogonality for the piecewise linear wavelet 197
Wavelets based on polynomials 197
Two vanishing moments 201
Implement finding ¢ with vanishing moments 202
1 for the Haar wavelet with two vanishing moments 203

List of Exercises

Exercise 5.33:
Exercise 5.34:
Exercise 5.35:
Exercise 5.36:
Exercise 5.37:

Exercise 6.1:
Exercise 6.2:
Exercise 6.3:
Exercise 6.4:
Exercise 6.5:
Exercise 6.6:
Exercise 6.7:
Exercise 6.8:
Exercise 6.9:

Exercise 6.10:
Exercise 6.11:
Exercise 6.12:
Exercise 6.13:
Exercise 6.14:
Exercise 6.15:
Exercise 6.16:

Exercise 7.1:
Exercise 7.2:
Exercise 7.3:
Exercise 7.4:
Exercise 7.5:
Exercise 7.6:
Exercise 7.7:
Exercise 8.1:
Exercise 8.2:
Exercise 8.3:
Exercise 8.4:
Exercise 8.5:
Exercise 8.6:
Exercise 8.7:
Exercise 8.8:
Exercise 8.9:

Exercise 8.10:
Exercise 8.11:
Exercise 8.12:
Exercise 8.13:
Exercise 8.14:
Exercise 8.15:
Exercise 9.1: Generate black and white images
Exercise 9.2: Adjust contrast in images 1
Exercise 9.3: Adjust contrast in images 2

More vanishing moments for the Haar wavelet
Listening experiments

Prove expression for S,
Orthonormal basis for the symmetric extensions
Diagonalizing S,

Compute filters and frequency responses 1

Symmetry of MRA matrices vs. symmetry of filters 1
Symmetry of MRA matrices vs. symmetry of filters 2

Finding Hy, H; from the H
Finding G, G1 from the G
Finding H from Hy, H,
Finding G from Gy, Gy
Computing by hand
Comment code
Computing filters and frequency responses 1
Computing filters and frequency responses 2
Implementing with symmetric extension

Implementation of the cascade algorithm

Finding FIR filters
The Haar wavelet as an alternative QMF filter bank
Plotting frequency responses
Implementing forward and reverse filter bank transforms

Using the cascade algorithm
Implementing the traspose transforms
Compute filters
Viewing the frequency response
Wavelets based on higher degree polynomials
Generate plots
The frequency responses of the polyphase components
Finding new filters
Relating to the polyphase components
QMF filter banks
Alternative QMF filter banks
Alternative QMF filter banks with additional sign
Polyphase components for symetric filters
Implement elementary lifting steps
Implementing kernels transformations using lifting

Lifting orthonormal wavelets

4 vanishing moments

Wavelet based on piecewise quadratic scaling function . . .
Run forward and reverse transform
Verify statement of filters
Lifting

List of Exerci

Exercise 9.4:

Exercise 9.5:

Exercise 9.6:

Exercise 9.7:

Exercise 9.8:

Exercise 9.9:

Exercise 9.10:
Exercise 9.11:
Exercise 9.12:
Exercise 9.13:
Exercise 9.14:
Exercise 9.15:
Exercise 9.16:
Exercise 9.17:
Exercise 9.18:
Exercise 9.19:
Exercise 10.1:
Exercise 10.2:
Exercise 10.3:
Exercise 10.4:
Exercise 10.5:
Exercise 10.6:

ses xviii
Adjust contrast in images 3 331
Implement a tensor product 344
Generate images oL o 344
Interpret tensor products 345
Computational molecule of moving average filter 345
Bilinearity of the tensor product 345
Attempt to write as tensor product 345
Computational molecules 345
Computational molecules 346
Comment oncode 346
Eigenvectors of tensor products 346
The Kronecker product 346
Implement DFT and DCT on blocks 353
Implement two-dimensional FFT and DCT 353
Zeroing out DCT coefficients 353
Comment code 354
Implement two-dimensional DWT 375
Comment code 376
Comment code 377
Zeroint out DWT coefficients 377
Experiments on a test image 378

Implement the fingerprint compression scheme 382

Chapter 1

Sound and Fourier series

A major part of the information we receive and perceive every day is in the
form of audio. Most sounds are transferred directly from the source to our ears,
like when we have a face to face conversation with someone or listen to the
sounds in a forest or a street. However, a considerable part of the sounds are
generated by loudspeakers in various kinds of audio machines like cell phones,
digital audio players, home cinemas, radios, television sets and so on. The
sounds produced by these machines are either generated from information stored
inside, or electromagnetic waves are picked up by an antenna, processed, and
then converted to sound. It is this kind of sound we are going to study in this
chapter. The sound that is stored inside the machines or picked up by the
antennas is usually represented as digital sound. This has certain limitations,
but at the same time makes it very easy to manipulate and process the sound
on a computer.

What we perceive as sound corresponds to the physical phenomenon of slight
variations in air pressure near our ears. Larger variations mean louder sounds,
while faster variations correspond to sounds with a higher pitch. The air pressure
varies continuously with time, but at a given point in time it has a precise value.
This means that sound can be considered to be a mathematical function.

Observation 1.1. Sound as mathematical objects.

A sound can be represented by a mathematical function, with time as the
free variable. When a function represents a sound, it is often referred to as a
continuous sound.

In the following we will briefly discuss the basic properties of sound: first the
significance of the size of the variations, and then how many variations there
are per second, the frequency of the sound. We also consider the important fact
that any reasonable sound may be considered to be built from very simple basis
sounds. Since a sound may be viewed as a function, the mathematical equivalent
of this is that any decent function may be constructed from very simple basis
functions. Fourier-analysis is the theoretical study of this, and in the last part

CHAPTER 1. SOUND AND FOURIER SERIES 2

of this chapter we establish the framework for this study, and analyze this on
some examples for sound.

1.1 Characteristics of sound: Loudness and fre-
quency

An example of a simple sound is shown in the left plot in Figure 1.1 where the
oscillations in air pressure are plotted against time. We observe that the initial
air pressure has the value 101 325 (we will shortly return to what unit is used
here), and then the pressure starts to vary more and more until it oscillates
regularly between the values 101 323 and 101 327. In the area where the air
pressure is constant, no sound will be heard, but as the variations increase in
size, the sound becomes louder and louder until about time ¢ = 0.6 where the
size of the oscillations becomes constant. The following summarizes some basic
facts about air pressure.

+1.01322e5

1.0f
0.5%

0.0

—-1.0+

6
5
4
3
2 —0.5}
1
Qo0 001 002 003 004 0.000 0.002 0.004 0.006 0.008 0.010

Figure 1.1: Two examples of audio signals. In terms of air pressure (left), and
in terms of the difference from the ambient air pressure (right).

Fact 1.2. Air pressure.

Air pressure is measured by the ST-unit Pa (Pascal) which is equivalent to
N/m? (force / area). In other words, 1 Pa corresponds to the force exerted on
an area of 1 m? by the air column above this area. The normal air pressure at
sea level is 101 325 Pa.

Fact 1.2 explains the values on the vertical axis in the left plot in Figure 1.1:
The sound was recorded at the normal air pressure of 101 325 Pa. Once the
sound started, the pressure started to vary both below and above this value, and
after a short transient phase the pressure varied steadily between 101 324 Pa
and 101 326 Pa, which corresponds to variations of size 1 Pa about the fixed
value. Everyday sounds typically correspond to variations in air pressure of
about 0.00002-2 Pa, while a jet engine may cause variations as large as 200 Pa.
Short exposure to variations of about 20 Pa may in fact lead to hearing damage.
The volcanic eruption at Krakatoa, Indonesia, in 1883, produced a sound wave

CHAPTER 1. SOUND AND FOURIER SERIES 3

with variations as large as almost 100 000 Pa, and the explosion could be heard
5000 km away.

When discussing sound, one is usually only interested in the variations in air
pressure, so the ambient air pressure is subtracted from the measurement. This
corresponds to subtracting 101 325 from the values on the vertical axis in the
left part of Figure 1.1. In the right plot in Figure 1.1 the subtraction has been
performed for another sound, and we see that the sound has a slow, cos-like,
variation in air pressure, with some smaller and faster variations imposed on
this. This combination of several kinds of systematic oscillations in air pressure
is typical for general sounds. The size of the oscillations is directly related to
the loudness of the sound. We have seen that for audible sounds the variations
may range from 0.00002 Pa all the way up to 100 000 Pa. This is such a wide
range that it is common to measure the loudness of a sound on a logarithmic
scale. Often air pressure is normalized so that it lies between —1 and 1: The
value 0 then represents the ambient air pressure, while —1 and 1 represent the
lowest and highest representable air pressure, respectively. The following fact
box summarizes the previous discussion of what a sound is, and introduces the
logarithmic decibel scale.

Fact 1.3. Sound pressure and decibels.

The physical origin of sound is variations in air pressure near the ear. The
sound pressure of a sound is obtained by subtracting the average air pressure
over a suitable time interval from the measured air pressure within the time
interval. A square of this difference is then averaged over time, and the sound
pressure is the square root of this average.

It is common to relate a given sound pressure to the smallest sound pressure
that can be perceived, as a level on a decibel scale,

2
p p
L,=101Io =] =20lo .
v &10 (p?ef> 810 <pref>

Here p is the measured sound pressure while p,er is the sound pressure of a just
perceivable sound, usually considered to be 0.00002 Pa.

The square of the sound pressure appears in the definition of L, since this
represents the power of the sound which is relevant for what we perceive as
loudness.

The sounds in Figure 1.1 are synthetic in that they were constructed from
mathematical formulas (see Exercises 2.1 and 2.2). The sounds in Figure 1.2 on
the other hand show the variation in air pressure when there is no mathematical
formula involved, such as is the case for a song. In the first half second there are
so many oscillations that it is impossible to see the details, but if we zoom in on
the first 0.002 seconds we can see that there is a continuous function behind all
the ink. In reality the air pressure varies more than this, even over this short
time period, but the measuring equipment may not be able to pick up those
variations, and it is also doubtful whether we would be able to perceive such
rapid variations.

CHAPTER 1. SOUND AND FOURIER SERIES 4

0.15 0.10
0.10
0.05¢
0.05
0.00 0.00H
-0.05
-0.05¢

-0.10

—0.60

03501 02 03 04 05 000 0.005 0.010 0.015 0.020

0.04
0.02
0.00
-0.02

-0.04
0.0000 0.0005 0.0010 0.0015 0.0020

Figure 1.2: Variations in air pressure during parts of a song. The first 0.5
seconds, the first 0.02 seconds, and the first 0.002 seconds.

1.1.1 The frequency of a sound

Besides the size of the variations in air pressure, a sound has another important
characteristic, namely the frequency (speed) of the variations. For most sounds
the frequency of the variations varies with time, but if we are to perceive
variations in air pressure as sound, they must fall within a certain range.

Fact 1.4. Human hearing.
For a human with good hearing to perceive variations in air pressure as sound,
the number of variations per second must be in the range 20-20 000.

To make these concepts more precise, we first recall what it means for a
function to be periodic.

Definition 1.5. Periodic functions.
A real function f is said to be periodic with period T if

fE+T) = f(t)
for all real numbers ¢.

Note that all the values of a periodic function f with period 7" are known if
f(¢) is known for all ¢ in the interval [0,7"). The prototypes of periodic functions
are the trigonometric ones, and particularly sint and cost are of interest to us.
Since sin(t + 27) = sint, we see that the period of sint is 27 and the same is
true for cost.

CHAPTER 1. SOUND AND FOURIER SERIES 5

There is a simple way to change the period of a periodic function, namely by
multiplying the argument by a constant.

Observation 1.6. Frequency.

If v is an integer, the function f(¢) = sin(27vt) is periodic with period
T = 1/v. When t varies in the interval [0, 1], this function covers a total of v
periods. This is expressed by saying that f has frequency v.

1.0 : 1.0 : :
sin(t) — sin(27t)
0.5} 0.5}
0.0/ 0.0
0.5} -0.50
-1.0 5 6 18602 04 06 08 10
1.0 1.0
in(272t)
0.5! 0.5
0.0f 0.0
0.5} -0.50

18002 04 o6 o8 10 80 02 04 06 08 Lo

Figure 1.3: Versions of sin with different frequencies.

Figure 1.3 illustrates Observation 1.6. The function in the upper left is
the plain sin¢ which covers one period when ¢ varies in the interval [0, 27].
By multiplying the argument by 2w, the period is squeezed into the interval
[0,1] so the function sin(2xt) has frequency v = 1. Then, by also multiplying
the argument by 2, we push two whole periods into the interval [0, 1], so the
function sin(272t) has frequency v = 2. In the lower right the argument has
been multiplied by 5 — hence the frequency is 5 and there are five whole periods
in the interval [0,1]. Note that any function on the form sin(27vt + a) has
frequency v, regardless of the value of a.

Since sound can be modeled by functions, it is reasonable to say that a sound
with frequency v is a trigonometric function with frequency v.

Definition 1.7. Pure tones.

The function sin(27vt) represents what we will call a pure tone with frequency
v. Frequency is measured in Hz (Herz) which is the same as s~! (the time ¢ is
measured in seconds).

CHAPTER 1. SOUND AND FOURIER SERIES 6

A pure tone with frequency 440 Hz sounds like this, and a pure tone with
frequency 1500 Hz sounds like this. In Section 2.1 we will explain how we
generated these sounds so that they could be played on a computer.

Any sound may be considered to be a function. In the next section we will
explain why any reasonable function may be written as a sum of simple sin- and
cos- functions with integer frequencies. When this is translated into properties
of sound, we obtain an important principle.

Observation 1.8. Decomposition of sound into pure tones.

Any sound f is a sum of pure tones at different frequencies. The amount of
each frequency required to form f is the frequency content of f. Any sound can
be reconstructed from its frequency content.

The most basic consequence of Observation 1.8 is that it gives us an under-
standing of how any sound can be built from the simple building blocks of pure
tones. This also means that we can store a sound f by storing its frequency
content, as an alternative to storing f itself. This also gives us a possibility
for lossy compression of digital sound: It turns out that, in a typical audio
signal, most information is found in the lower frequencies, and some frequencies
will be almost completely absent. This can be exploited for compression if we
change the frequencies with small contribution a little bit and set them to 0, and
then store the signal by only storing the nonzero part of the frequency content.
When the sound is to be played back, we first convert the adjusted values to the
adjusted frequency content back to a normal function representation with an
inverse mapping.

Idea 1.9. Audio compression.
Suppose an audio signal f is given. To compress f, perform the following
steps:

e Rewrite the signal f in a new format where frequency information becomes
accessible.

e Remove those frequencies that only contribute marginally to human per-
ception of the sound.

e Store the resulting sound by coding the adjusted frequency content with
some lossless coding method.

This lossy compression strategy is essentially what is used in practice by
commercial audio formats. The difference is that commercial software does
everything in a more sophisticated way and thereby gets better compression
rates. We will return to this in later chapters.

We will see that Observation 1.8 can be used as a basis for many operations
on sound. It also makes it possible to explain what it means that we only perceive
sounds with a frequency in the range 20-20000 Hz: This simply says that there
is a significant contribution from one of those frequencies in the decomposition.

http://folk.uio.no/oyvindry/matinf2360/sounds/puretone440.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/puretone1500.wav

CHAPTER 1. SOUND AND FOURIER SERIES 7

With appropriate software it is easy to generate a sound from a mathematical
function; we can ’play’ the function. If we play a function like sin(27440t),
we hear a pleasant sound with a very distinct frequency, as expected. There
are, however, many other ways in which a function can oscillate regularly. The
function in The right plot in Figure 1.1 for example, definitely oscillates 2 times
every second, but it does not have frequency 2 Hz since it is not a pure tone.
This sound is also not that pleasant to listen to. We will consider two more
important examples of this, which are very different from smooth, trigonometric
functions.

Example 1.10. The square wave.

We define the square wave of period T as the function which repeats with
period T', and is 1 on the first half of each period, and —1 on the second half.
This means that we can define it as the function

1, f0<t<T/2;
() = 1.1
£s@®) {—1, ifT/2<t<T. (1.1)

In the left plot in Figure 1.4 we have plotted the square wave when T = 1/440.
This period is chosen so that it corresponds to the pure tone we already have
listened to, and you can listen to this square wave here. In Exercise 2.4 you will
learn how to generate this sound. We hear a sound with the same frequency as
sin(27440t), but note that the square wave is less pleasant to listen to: There
seems to be some sharp corners in the sound, translating into a rather shrieking,
piercing sound. We will later explain this by the fact that the square wave can
be viewed as a sum of many frequencies, and that all the different frequencies
pollute the sound so that it is not pleasant to listen to.

L~ — = Lo
0.5 0.5}
0.0 0.0}
-0.5 -0.5

-1.0 L L L L L ~1.0
0.000 0.002 0.004 0.006 0.008 0.010 0.000 0.002 0.004 0.006 0.008 0.010

Figure 1.4: The first five periods of the square wave and the triangle wave,
two functions with regular oscillations, but which are not simple, trigonometric
functions.

Example 1.11. The triangle wave.
We define the triangle wave of period T as the function which repeats with
period T', and increases linearly from —1 to 1 on the first half of each period,

http://folk.uio.no/oyvindry/matinf2360/sounds/square440.wav

CHAPTER 1. SOUND AND FOURIER SERIES 8

and decreases linearly from 1 to —1 on the second half of each period. This
means that we can define it as the function
/T -1, if0<t<T/2;
ORI / (12
3—4t)T, HT/2<t<T.

In the right plot in Figure 1.4 we have plotted the triangle wave when T' = 1/440.
Again, this same choice of period gives us an audible sound, and you can listen
to the triangle wave here. Again you will note that the triangle wave has the
same frequency as sin(27440t), and is less pleasant to listen to than this pure
tone. However, one can argue that it is somewhat more pleasant to listen to
than a square wave. This will also be explained in terms of pollution with other
frequencies later.

In Section 1.2 we will begin to peek behind the curtains as to why these
waves sound so different, even though we recognize them as having the exact
same frequency.

Exercise 1.1: The Krakatoa explosion

Compute the loudness of the Krakatoa explosion on the decibel scale, assuming
that the variation in air pressure peaked at 100 000 Pa.

Exercise 1.2: Sum of two pure tones

Consider a sum of two pure tones, f(t) = Ajsin(2m4t) + Agsin(27vat). For
which values of A1, Ay, v1,vs is f periodic? What is the period of f when it is
periodic?

1.2 Fourier series: Basic concepts

In Section 1.1.1 we identified audio signals with functions and discussed informally
the idea of decomposing a sound into basis sounds (pure sounds) to make
its frequency content available. In this chapter we will make this kind of
decomposition more precise by discussing how a given function can be expressed
in terms of the basic trigonometric functions. This is similar to Taylor series
where functions are approximated by combinations of polynomials. But it is
also different from Taylor series because we use trigonometric series rather than
power series, and the approximations are computed in a very different way. The
theory of approximation of functions with trigonometric functions is generally
referred to as Fourier analysis. This is a central tool in practical fields like image-
and signal processing, but it is also an important field of research within pure
mathematics.

In the start of this chapter we had no constraints on the function f. Although
Fourier analysis can be performed for very general functions, it turns out that it
takes its simplest form when we assume that the function is periodic. Periodic

http://folk.uio.no/oyvindry/matinf2360/sounds/triangle440.wav

CHAPTER 1. SOUND AND FOURIER SERIES 9

functions are fully known when we know their values on a period [0,T]. In this
case we will see that we can carry out the Fourier analysis in finite dimensional
vector spaces of functions. This makes linear algebra a very useful tool in Fourier
analysis: Many of the tools from your linear algebra course will be useful, in a
situation that at first may seem far from matrices and vectors.

The basic idea of Fourier series is to approximate a given function by a
combination of simple cos and sin functions. This means that we have to address
at least three questions:

e How general do we allow the given function to be?

e What exactly are the combinations of cos and sin that we use for the
approximations?

e How do we determine the approximation?

Each of these questions will be answered in this section. Since we restrict to
periodic functions, we will without much loss of generality assume that the
functions are defined on [0,T], where T is some positive number. Mostly we
will also assume that f is continuous, but the theory can also be extended to
functions which are only Riemann-integrable, and more precisely, to square
integrable functions.

Definition 1.12. Continuous and square-integrable functions.

The set of continuous, real functions defined on an interval [0, 7] is denoted
o, 17.

A real function f defined on [0, 7] is said to be square integrable if f2 is
Riemann-integrable, i.e., if the Riemann integral of f2 on [0, 7] exists,

T
/ f(t)?dt < oo.
0

The set of all square integrable functions on [0, T is denoted L2[0, T].

The sets of continuous and square-integrable functions can be equipped with
an inner-product, a generalization of the so-called dot-product for vectors.

Theorem 1.13. Inner product spaces.

Both L?[0,T] and C[0,T] are vector spaces. Moreover, if the two functions f
and g lie in L2[0,T] (or in C[0,T]), then the product fg is Riemann-integrable
(or in C[0,T]). Moreover, both spaces are inner product spaces ! with inner
product ? defined by

T
o) =5 [et (13)

and associated norm

1See Section 6.1 in [20] for a review of inner products and orthogonality.
28ee Section 6.7 in [20] for a review of function spaces as inner product spaces.

CHAPTER 1. SOUND AND FOURIER SERIES 10

T
1=\ | sera (14)

The mysterious factor 1/T is included so that the constant function f(t) =1
has norm 1, i.e., its role is as a normalizing factor.

Definition 1.12 and Theorem 1.13 answer the first question above, namely
how general we allow our functions to be. Theorem 1.13 also gives an indication
of how we are going to determine approximations: we are going to use inner
products. We recall from linear algebra that the projection of a function f onto
a subspace W with respect to an inner product (-, -} is the function g € W which
minimizes || f — g||, also called the error in the approximation 3. This projection
is therefore also called a best approximation of f from W and is characterized
by the fact that the function f — g, also called the error function, should be
orthogonal to the subspace W, i.e. we should have

(f—g,h)=0, forallheW.

More precisely, if ¢ = {¢;}7, is an orthogonal basis for W, then the best
approximation g is given by

g=3 Mo, (15)

The error ||f — g|| is often referred to as the least square error.

We have now answered the second of our primary questions. What is left is a
description of the subspace W of trigonometric functions. This space is spanned
by the pure tones we discussed in Section 1.1.1.

Definition 1.14. Fourier series.
Let Vi r be the subspace of C[0,T] spanned by the set of functions given by

Dy, = {1,cos(2nt/T),cos(2n2t/T),-- - ,cos(2nNt/T),
sin(27t/T),sin(272t/T),- - ,sin(2rNt/T)}. (1.6)

The space Vi 1 is called the N ’th order Fourier space. The Nth-order Fourier
series approximation of f, denoted fy, is defined as the best approximation of f
from Vi o with respect to the inner product defined by (1.3).

The space V1 can be thought of as the space spanned by the pure tones
of frequencies 1/T, 2/T, ..., N/T, and the Fourier series can be thought of as
linear combination of all these pure tones. From our discussion in Section 1.1.1,
we should expect that if IV is sufficiently large, Vv 7 can be used to approximate
most sounds in real life. The approximation fy of a sound f from a space Vi r

3See Section 6.3 in [20] for a review of projections and least squares approximations.

CHAPTER 1. SOUND AND FOURIER SERIES 11

can also serve as a compressed version if many of the coefficients can be set to 0
without the error becoming too big.

Note that all the functions in the set Dy 1 are periodic with period T, but
most have an even shorter period. More precisely, cos(2mnt/T) has period T/n,
and frequency n/T. In general, the term fundamental frequency is used to denote
the lowest frequency of a given periodic function.

Definition 1.14 characterizes the Fourier series. The next lemma gives precise
expressions for the coefficients.

Theorem 1.15. Fourier coefficients.
The set Dy 7 is an orthogonal basis for Viy r. In particular, the dimension
of Vi is 2N + 1, and if f is a function in L?[0,T], we denote by aq,...,an

and by, ...,by the coordinates of fx in the basis Dy 7, i.e.
N
fn(t) =ao+) (ancos(2mnt/T) + by sin(2mnt/T)) . (1.7)
n=1
The ag,...,ay and by,...,by are called the (real) Fourier coefficients of f, and

they are given by

w=is0 =4 [10 (1)
= 2(f,cos(2mnt/T)) / f(t) cos(2mnt/T)dt forn >1, (1.9)
by, = 2(f,sin(27mnt/T)) / f(t)sin(2mnt/T)dt for n > 1. (1.10)

Proof. To prove orthogonality, assume first that m # n. We compute the inner
product

(cos(2mmt/T), cos(2mnt/T))

1 T
= T/ cos(2mrmt/T) cos(2mnt/T)dt
0

T

- L (cos(2rmt/T + 2mnt/T) + cos(2mmt/T — 2mnt/T))
2T J,
L [sin(2m(m 4+ n)t/T) + sin(2mw(m —n)t/T) '
2T | 2m(m + n) 2 (m —n) 0
=0.

Here we have added the two identities cos(x+y) = cos x cos yFsin x sin y together
to obtain an expression for cos(2rmt/T") cos(2mnt/T)dt in terms of cos(2rmt /T +
2mnt/T) and cos(2mmt/T — 2mnt/T). By testing all other combinations of sin

CHAPTER 1. SOUND AND FOURIER SERIES 12

and cos also, we obtain the orthogonality of all functions in Dy r in the same
way.

We find the expressions for the Fourier coefficients from the general formula
(1.5). We first need to compute the following inner products of the basis functions,

(cos(2mmt/T), cos(2rmt/T)) = %
(sin(2rmt/T), sin(2rmt/T)) = %
<1’ 1> =1,

which are easily derived in the same way as above. The orthogonal decomposition
theorem (1.5) now gives

<f’ 1 al (f,cos(2mnt/T))
Z (cos(2mnt/T), cos(2mnt/T)) cos(2mnt/T)

N
(f,sin(2mnt/T)))
* Z sin(2mnt/T), sin(2mnt/T)) sin(2mnt/T)

) cos(2mnt/T
mnt/T)dt cos(2mnt/T)

1 f f
:Tol ;To

2

14
sin(27nt/T)

T N 9 (T
= = f@)de + Z <T/ f(@) cos(27mt/T)dt> cos(2mnt/T)
- 0

2

+ Z (/ flt bln(Qﬂ'ﬂt/T)dt) sin(2mnt/T).

Equations (1.8)-(1.10) now follow by comparison with Equation (1.7). O

Since f is a function in time, and the a,,b, represent contributions from
different frequencies, the Fourier series can be thought of as a change of coordi-
nates, from what we vaguely can call the time domain, to what we can call the
frequency domain (or Fourier domain). We will call the basis Dy, r the N ’th
order Fourier basis for Viy 7. We note that Dy r is not an orthonormal basis; it
is only orthogonal.

In the signal processing literature, Equation (1.7) is known as the synthesis
equation, since the original function f is synthesized as a sum of trigonometric
functions. Similarly, equations (1.8)-(1.10) are called analysis equations.

A major topic in harmonic analysis is to state conditions on f which guaran-
tees the convergence of its Fourier series. We will not discuss this in detail here,

CHAPTER 1. SOUND AND FOURIER SERIES 13

since it turns out that, by choosing N large enough, any reasonable periodic
function can be approximated arbitrarily well by its Nth-order Fourier series
approximation. More precisely, we have the following result for the convergence
of the Fourier series, stated without proof.

Theorem 1.16. Convergence of Fourier series.
Suppose that f is periodic with period 7', and that

e f has a finite set of discontinuities in each period.

e f contains a finite set of maxima and minima in each period.

o [If(@)]dt < oo.

Then we have that limpy_ o fn(t) = f(¢) for all ¢, except at those points ¢ where
f is not continuous.

The conditions in Theorem 1.16 are called the Dirichlet conditions for the
convergence of the Fourier series. They are just one example of conditions that
ensure the convergence of the Fourier series. There also exist much more general
conditions that secure convergence. These can require deep mathematical theory
in order to prove, depending on the generality.

1.005 1.005
1.000 1.000¢+
0.995 0.995¢
0.990 0.990
0.985 0.985¢
0.980 0.980+1
097360z 04 o6 08 Lo 933 05 1.0 15 2.0
Figure 1.5: The cubic polynomial f(z) = —%x‘? + % 2_ 13—630 + 1 on the interval

[0,1], together with its Fourier series approximation from Vg ;. The function and
its Fourier series is shown left. The Fourier series on a larger interval is shown
right.

An illustration of Theorem 1.16 is shown in Figure 1.5 where the cubic
polynomial f(z) = —%x?’ + %xQ — %x + 1 is approximated by a 9th order
Fourier series. The trigonometric approximation is periodic with period 1 so
the approximation becomes poor at the ends of the interval since the cubic
polynomial is not periodic. The approximation is plotted on a larger interval in
the right plot in Figure 1.5, where its periodicity is clearly visible.

Let us compute the Fourier series of some interesting functions.

Example 1.17. Fourier coefficients of the square wave.
Let us compute the Fourier coefficients of the square wave, as defined by
Equation (1.1) in Example 1.10. If we first use Equation (1.8) we obtain

CHAPTER 1. SOUND AND FOURIER SERIES

1 [T 1 (T2 1 [T
— [pwdt== [at—= [dt=o.
a0 T/O £.(0) T/O 7l =0

Using Equation (1.9) we get

ap, = ;/OT fs(t) cos(2mnt/T)dt

2 T/2 9 T
= —/ cos(2mnt/T)dt — —/ cos(2mnt/T)dt
T Jo T Jr/2
. T2 ot p T
sin(2wnt/T) — 7 sin(2mnt/T)
0

2
T {27m
2
T 21n

2mn 7/2

((sin(nm) — sin 0) — (sin(2n7) — sin(nm)) = 0.

Finally, using Equation (1.10) we obtain

b7l

T
%/0 fs(t) sin(2mnt/T)dt

2 T/2 2 T
T/ sin(27nt/T)dt — T/ sin(27nt/T)dt
0

T/2
T/2 T
; [2:71 cos(?wnt/T)h + % {27{” cos(2mnt/T) -
2T
T%((_ cos(nm) 4 cos 0) + (cos(2nm) — cos(nm)))
~ 2(1 — cos(nm)
nmw
0, if n is even;
4/(nm), if n is odd.

14

In other words, only the b,-coefficients with n odd in the Fourier series are
nonzero. This means that the Fourier series of the square wave is

4 4 4 4
- sin(27rt/T)+37r sin(271'3t/T)-&-5*7r sin(27r5t/T)+ﬁ sin(277t/T)+- - -

. (1.11)

With N = 20, there are 10 trigonometric terms in this sum. The corresponding
Fourier series can be plotted on the same interval with the following code.

t
y
£

linspace(0, T, 100)
zeros (shape (t))
or n in range(1,20,2):

y =y + (4/(n*pi))*sin(2*pi*n*t/T)

plot(t,y)

CHAPTER 1. SOUND AND FOURIER SERIES 15

The left plot in Figure 1.6 shows the Fourier series of the square wave when
T = 1/440, and when N = 20. In the right plot the values of the first 100 Fourier
coefficients b,, are shown, to see that they actually converge to zero. This is
clearly necessary in order for the Fourier series to converge.

LOf[\ A~ AAAAAN] ‘ ‘ 1.0
0.8
0.5
0.6
0.0
0.4}
-0.5
0.2}
-1.0 ‘ VAR 0.0 .
0.0000 0.0005 0.0010 0.0015 0.0020 ' 20 40 60 80 100

Figure 1.6: The Fourier series with N = 20 for the square wave of Example 1.17,
and the values for the first 100 Fourier coefficients b,,.

Even though f oscillates regularly between —1 and 1 with period T, the
discontinuities mean that it is far from the simple sin(27¢/7T) which corresponds
to a pure tone of frequency 1/T. From Figure 1.6(b) we see that the dominant
coefficient in the Fourier series is by, which tells us how much there is of the pure
tone sin(27t/T') in the square wave. This is not surprising since the square wave
oscillates T times every second as well, but the additional nonzero coefficients
pollute the pure sound. As we include more and more of these coefficients, we
gradually approach the square wave, as shown for N = 20.

There is a connection between how fast the Fourier coefficients go to zero, and
how we perceive the sound. A pure sine sound has only one nonzero coefficient,
while the square wave Fourier coefficients decrease as 1/n, making the sound
less pleasant. This explains what we heard when we listened to the sound in
Example 1.10. Also, it explains why we heard the same pitch as the pure tone,
since the first frequency in the Fourier series has the same frequency as the pure
tone we listened to, and since this had the highest value.

Let us listen to the Fourier series approximations of the square wave. For
N =1 and with T = 1/440 as above, it sounds like this. This sounds exactly like
the pure sound with frequency 440Hz, as noted above. For N = 5 the Fourier
series approximation sounds like this, and for N = 9 it sounds like this. Indeed,
these sounds are more like the square wave itself, and as we increase N we can
hear how the introduction of more frequencies gradually pollutes the sound more
and more. In Exercise 2.5 you will be asked to write a program which verifies
this.

Example 1.18. Fourier coefficients of the triangle wave.
Let us also compute the Fourier coefficients of the triangle wave, as defined
by Equation (1.2) in Example 1.11. We now have

http://folk.uio.no/oyvindry/matinf2360/sounds/square440s1.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/square440s5.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/square440s9.wav

CHAPTER 1. SOUND AND FOURIER SERIES 16

L T ()

ag = = —|(t—= = = — - .

T) T 4 T Jr) T\ 4

Instead of computing this directly, it is quicker to see geometrically that the
graph of f; has as much area above as below the x-axis, so that this integral
must be zero. Similarly, since f; is symmetric about the midpoint 7'/2, and
sin(27nt/T) is antisymmetric about T'/2, we have that f;(t)sin(27nt/T) also is
antisymmetric about 7'/2, so that

T/2

T
F(t) sin(2mnt /Tt = — / Fu(t) sin(27nt T dt.
0 T/2

This means that, for n > 1,

o [T/2 o (T
by = = / fi(t) sin(2ant/T)dt + = fi(t) sin(2wnt/T)dt = 0.
T Jo T Jrso

For the final coefficients, since both f and cos(27nt¢/T) are symmetric about
T/2, we get for n > 1,

9 (T/2 9 T
a=7 [hlcosm/Tar+ 7 [| Ji0) costemnt/ Ty

4 T/2 4 T/2 4 T
=7 ; fe(t) cos(2mnt/T)dt = T/o T (t - 4) cos(2mnt/T)dt
16 [T/2 4 [T/2
= —2/ tcos(2mnt/T)dt — —/ cos(2mnt/T)dt
1 Jo T Jo
4
= (cos(nm) — 1)

n2m?2
0 if n is even;

- {—S/(n27r2), if n is odd.

where we have dropped the final tedious calculations (use integration by parts).
From this it is clear that the Fourier series of the triangle wave is

—% cos(2ﬂt/T)—% (:05(27r3t/T)—52—£;2 cos(27r5t/T)—% cos(2nTt/T)+-- - .
(1.12)
In Figure 1.7 we have repeated the plots used for the square wave, for the triangle
wave. As before, we have used T' = 1/440. The figure clearly shows that the
Fourier series coefficients decay much faster.
Let us also listen to different Fourier series approximations of the triangle
wave. For N = 1 and with T = 1/440 as above, it sounds like this. Again, this
sounds exactly like the pure sound with frequency 440Hz. For N = 5 the Fourier

http://folk.uio.no/oyvindry/matinf2360/sounds/triangle440s1.wav

CHAPTER 1. SOUND AND FOURIER SERIES 17

1.0 1.0
0.8
05
0.6
0.0
0.4
~0.5
0.2/
~1.0 0.0
0.0000 0.0005 0.0010 0.0015 0.0020 : 20 40 60 80 100

Figure 1.7: The Fourier series with N = 20 for the triangle wave of Example 1.18
and the values for the first 100 Fourier coefficients a,,.

series approximation sounds like this, and for N = 9 it sounds like this. Again
these sounds are more like the triangle wave itself, and as we increase N we
can hear that the introduction of more frequencies pollutes the sound. However,
since the triangle wave Fourier coefficients decrease as 1/n? instead of 1/n as for
the square wave, the sound is, although unpleasant due to pollution by many
frequencies, not as unpleasant as the square wave. Also, it converges faster to
the triangle wave itself, as also can be heard. In Exercise 2.5 you will be asked
to write a program which verifies this.

There is an important lesson to be learnt from the previous examples: Even
if the signal is nice and periodic, it may not have a nice representation in terms
of trigonometric functions. Thus, trigonometric functions may not be the best
bases to use for expressing other functions. Unfortunately, many more such cases
can be found, as the next example shows.

Example 1.19. Fourier coefficients of a simple function.

Let us consider a periodic function which is 1 on [0, Tp], but 0 is on [Tp, T.
This is a signal with short duration when 7j is small compared to T'. We compute
that yo = Top/T, and

sin(2mnTy/T)

2 [T 1
ap, = f/o cos(2mnt/T)dt = — [sin(27rnt/T)](:)F° = p—

for n > 1. Similar computations hold for b,. We see that |a,| is of the order
1/(7n), and that infinitely many n contribute, This function may be thought
of as a simple building block, corresponding to a small time segment. However,
we see that it is not a simple building block in terms of trigonometric functions.
This time segment building block may be useful for restricting a function to
smaller time segments, and later on we will see that it still can be useful.

http://folk.uio.no/oyvindry/matinf2360/sounds/triangle440s5.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/triangle440s9.wav

CHAPTER 1. SOUND AND FOURIER SERIES 18

1.2.1 Fourier series for symmetric and antisymmetric func-
tions

In Example 1.17 we saw that the Fourier coeflicients b,, vanished, resulting in a
sine-series for the Fourier series of the square wave. Similarly, in Example 1.18
we saw that a, vanished, resulting in a cosine-series for the triangle wave. This
is not a coincident, and is captured by the following result, since the square wave
was defined so that it was antisymmetric about 0, and the triangle wave so that
it was symmetric about 0.

Theorem 1.20. Symmetry and antisymmetry.

If f is antisymmetric about 0 (that is, if f(—t) = —f(¢) for all ¢), then a,, = 0,
so the Fourier series is actually a sine-series. If f is symmetric about 0 (which
means that f(—¢) = f(t) for all ¢), then b,, = 0, so the Fourier series is actually
a cosine-series.

Proof. Note first that we can write

T/2 T/2
= —/) cos(2mnt/T)dt = —/)sin(27nt/T)dt

T/2 T/2

i.e. we can change the integration bounds from [0,T] to [-T/2,7/2]. This
follows from the fact that all f(t), cos(2nnt/T) and sin(27nt/T) are periodic
with period T

Suppose first that f is symmetric. We obtain

T/2
= /)sin(27nt/T)dt

T/2
T/2

2 .) |
== /T/2 f(t)sin(2mnt/T)dt + T/ f(t)sin(2mnt/T)dt

2 [° . 9 -T/2
- T/T/2 f(t) s1n(27mt/T)dt—T/0 F(—t) sin(—27nt/T)dt

2 0 . 2 0 . -
=5 /T/2 f(t)sin(27nt/T)dt — ?/ f(t)sin(27nt/T)dt = 0.

-T/2
where we have made the substitution u = —t, and used that sin is antisymmetric.
The case when f is antisymmetric can be proved in the same way, and is left as
an exercise. O

In fact, the connection between symmetric and antisymmetric functions, and
sine- and cosine series can be made even stronger by observing the following:

. . N . . :
e Any cosine series ag + Y, _; ay cos(2nnt/T) is a symmetric function.

e Any sine series 25:1 by, sin(2wnt/T) is an antisymmetric function.

CHAPTER 1. SOUND AND FOURIER SERIES 19

e Any periodic function can be written as a sum of a symmetric - and an
antisymmetric function by writing f(t) = f(t)+2f(7t) + f(t)}f(*t).

o If fn(t) =ap + EnN:1(an cos(2mnt/T) + by, sin(2wnt/T)), then

N
M =ag + z::l ayp, cos(2mnt/T)
N
M = Z by, sin(2mnt/T).

n=1

What you should have learned in this section.
e The inner product which we use for function spaces.
e Definition of the Fourier spaces, and the orthogonality of the Fourier basis.
e Fourier series approximations as best approximations.
e Formulas for the Fourier coefficients.
e Using the computer to plot Fourier series.

e For symmetric/antisymmetric functions, Fourier series are actually co-
sine/sine series.

Exercise 1.3: Riemann-integrable functions which are not
square-integrable

Find a function f which is Riemann-integrable on [0, 7], and so that fOT f)%dt
is infinite.

Exercise 1.4: When are Fourier spaces included in each
other?

Given the two Fourier spaces Vi, 1y, Vn, 1,- Find necessary and sufficient
conditions in order for Vi, 7 C Vi, 1.

Exercise 1.5: antisymmetric functions are sine-series

Prove the second part of Theorem 1.20, i.e. show that if f is antisymmetric about
0 (i.e. f(—t) = —f(t) for all t), then a,, = 0, i.e. the Fourier series is actually a
sine-series.

CHAPTER 1. SOUND AND FOURIER SERIES 20

Exercise 1.6: Fourier series for low-degree polynomials

Find the Fourier series coefficients of the periodic functions with period T' defined
by being f(t) =t, f(t) = t?, and f(t) =3, on [0,T].

Exercise 1.7: Fourier series for polynomials

Write down difference equations for finding the Fourier coefficients of f(t) = t*+!
from those of f(t) = t*, and write a program which uses this recursion. Use the
program to verify what you computed in Exercise 1.6.

Exercise 1.8: Fourier series of a given polynomial

Use the previous exercise to find the Fourier series for f(z) = f%az3+ %xQ - %a:Jrl
on the interval [0,1]. Plot the 9th order Fourier series for this function. You
should obtain the plots from Figure 1.5.

1.3 Complex Fourier series

In Section 1.2 we saw how a function can be expanded in a series of sines and
cosines. These functions are related to the complex exponential function via
Eulers formula

e = cosx +isinx

where i is the imaginary unit with the property that > = —1. Because the
algebraic properties of the exponential function are much simpler than those
of cos and sin, it is often an advantage to work with complex numbers, even
though the given setting is real numbers. This is definitely the case in Fourier
analysis. More precisely, we will make the substitutions

1 X .
cos(2mnt/T) = B (eQmm/T + 6_2”””/T) (1.13)
1 . .
sin(2mnt/T) = % (eant/T - e_QWZ”t/T> (1.14)
i

in Definition 1.14. From these identities it is clear that the set of complex
exponential functions e2 /T also is a basis of periodic functions (with the same
period) for Vi . We may therefore reformulate Definition 1.14 as follows:

Definition 1.21. Complex Fourier basis.
We define the set of functions

Fnr = {e 2mNT o=2miN-DYT . —2mit/T (1.15)

s

1,e2mit/T . 2riN=DY/T eQWiN"//T}’ (1.16)

and call this the order N complex Fourier basis for Vi r.

CHAPTER 1. SOUND AND FOURIER SERIES 21

The function e27*/T is also called a pure tone with frequency n/T, just

as sines and cosines are. We would like to show that these functions also are
orthogonal. To show this, we need to say more on the inner product we have
defined by Equation (1.3). A weakness with this definition is that we have
assumed real functions f and g, so that this can not be used for the complex
exponential functions e27/T . For general complex functions we will extend
the definition of the inner product as follows:

(f.9) = %/O fgadt. (1.17)

The associated norm now becomes

T
1=\ [lroea. (118)

The motivation behind Equation (1.17), where we have conjugated the second
function, lies in the definition of an inner product for vector spaces over complex
numbers. From before we are used to vector spaces over real numbers, but vector
spaces over complex numbers are defined through the same set of axioms as
for real vector spaces, only replacing real numbers with complex numbers. For
complex vector spaces, the axioms defining an inner product are the same as for
real vector spaces, except for that the axiom

(f,9) =19, /) (1.19)
is replaced with the axiom

(f.9) =g, f), (1.20)

i.e. a conjugation occurs when we switch the order of the functions. This new
axiom can be used to prove the property (f, cg) = ¢(f, g), which is a somewhat
different property from what we know for real inner product spaces. This follows
by writing

<fan> = <Cgvf> :C<gaf> :E<gaf> :E<fag>'

Clearly the inner product given by (1.17) satisfies Axiom (1.20). With this
definition it is quite easy to see that the functions e2™"*/T are orthonormal.
Using the orthogonal decomposition theorem we can therefore write

(f, ezm‘nt/T> N

N
. 2mint /T __ 2mint/T\ 2mint/T
NOESSY (e2mint/T _c2rint/Ty = 3" (f,emm/Tyermint/
n=—N ’ n=—N

N

17 . ,
— Z T/ f(t)e—Qﬂ'znt/Tdt eQﬂznt/T.
0

n=—N

CHAPTER 1. SOUND AND FOURIER SERIES 22

We summarize this in the following theorem, which is a version of Theorem 1.15
which uses the complex Fourier basis:

Theorem 1.22. Complex Fourier coefficients.
We denote by y_n,...,%0,...,yn the coordinates of fx in the basis Fy r,
i.e.

N
In) =) yaetm T (1.21)
n=—N

The y,, are called the complex Fourier coefficients of f, and they are given by.

) 1 (T .
Yn = (f, 2Ty = T/ f(t)e 2 mt/T gy, (1.22)
0
Let us consider some examples where we compute complex Fourier series.

Example 1.23. Complex Fourier coefficients of a simple function.

Let us consider the pure sound f(t) = e2™it/T2 with period Th, but let us
consider it only on the interval [0, 7] instead, where T' < T. Note that this f
is not periodic, since we only consider the part [0,T] of the period [0,T%]. The
Fourier coefficients are

1 [T 1 T
Yo = = / o2t/ To g=2mint/T gy _ [627rit(1/T2—n/T)
o 2miT(1/Ts — n)T) 0

1 27riT/T2
= —1).
2mi(T /T2 — n) (e)

Here it is only the term 1/(T/T> —n) which depends on n, so that y, can only be
large when n is close T'/T5. In Figure 1.8 we have plotted |y, | for two different
combinations of T, T5.

1.0 , , , 1.0
0.8 0.8
06 06
0.4 0.4
0.2 0.2
0.0 0.0

0 5 10 15 20 0 5 10 15 20

"

Figure 1.8: Plot of |y,| when f(t) = e2™*/"2 and Ty > T. Left: T/Ty = 0.5.
Right: T/Ty = 0.9.

In both examples it is seen that many Fourier coefficients contribute, but
this is more visible when T'/T5 = 0.5. When T'/T> = 0.9, most conribution is

CHAPTER 1. SOUND AND FOURIER SERIES 23

seen to be in the y;-coefficient. This sounds reasonable, since f then is closest
to the pure tone f(t) = e?™*/T of frequency 1/T" (which in turn has y; = 1 and
all other y,, = 0).

Apart from computing complex Fourier series, there is an important lesson
to be learnt from the previous example: In order for a periodic function to be
approximated by other periodic functions, their period must somehow match.
Let us consider another example as well.

Example 1.24. Complex Fourier coefficients of composite function.

What often is the case is that a sound changes in content over time. Assume
that it is equal to a pure tone of frequency nq/T on [0,7/2), and equal to a pure
tone of frequency ns/T on [T/2,T), i.e.

627rin1t/T on [0’ TQ]
FO =19 onin t/T ‘
esmine on[T,,T)

When n # ny,ns we have that

T/2]) T])
/ eQTrznlt/Te—Qﬂ'mt/Tdt + / eQTrmgt/Te—Zﬂ'mt/Tdt
0 T/2

T/2 T
_ l T 627ri(nl—n)t/T + T e?ﬂ'i(ng—n)t/T
T\ [27i(n; — n) 0 2mi(ng — n) /2

Yn =

NI~

eﬂ'i(nlfn) -1 1— e’ﬂ'i(’ﬂg*’ﬂ)

~ 27i(ng —n) + 2mi(ng —n)

Let us restrict to the case when n; and ny are both even. We see that

1, 1 _
2 + mi(ne—mn1) n=mni,nz
Yn =10 n even ,m # ni,No
1 =n2 n odd

mi(n1—n)(n2—n)
Here we have computed the cases n = n; and n = ng as above. In Figure 1.9 we
have plotted |y, | for two different combinations of ny,ns.

We see from the figure that, when ni,ns are close, the Fourier coefficients
are close to those of a pure tone with n & ny,no, but that also other frequencies
contribute. When ni, ny are further apart, we see that the Fourier coefficients
are like the sum of the two base frequencies, but that other frequencies contribute
also here.

There is an important lesson to be learnt from this as well: We should
be aware of changes in a sound over time, and it may not be smart to use
a frequency representation over a large interval when we know that there are
simpler frequency representations on the smaller intervals. The following example
shows that, in some cases it is not necessary to compute the Fourier integrals at
all, in order to compute the Fourier series.

CHAPTER 1. SOUND AND FOURIER SERIES 24

1.0 1.0
0.8 0.8}
0.6 0.6}

0.4 0.4f

0.2 0.2+

00%—%5"10 15 20 25 30 35 0 5 10 15 20 25 30 35

m m

Figure 1.9: Plot of |y, | when we have two different pure tones at the different
parts of a period. Left: ny = 10, no = 12. Right: ny = 2, ny = 20.

Example 1.25. Complex Fourier coefficients of f(t) = cos®(2rt/T).
Let us compute the complex Fourier series of the function f(¢) = cos®(27t/T),
where T is the period of f. We can write

1 , _ 3
cos® (27t /T) = (2(e2mt/T + 627r1t/T))

_ 1(627r1'3t/T +3€27Tit/T + 36—27rit/T 4 e—27ri3t/T)

8
_ 1 2mi3t/T 3 2mit)T 3 —2mit)T 1 —2mi3t)T
= 86 + 86 + 86 + 86 .

From this we see that the complex Fourier series is given by y1 =y_1 = %, and
that ys =y_3 = %. In other words, it was not necessary to compute the Fourier
integrals in this case, and we see that the function lies in V5 7, i.e. there are
finitely many terms in the Fourier series. In general, if the function is some
trigonometric function, we can often use trigonometric identities to find an
expression for the Fourier series.

If we reorder the real and complex Fourier bases so that the two functions
{cos(2mnt/T),sin(2wnt/T)} and {e>™"t/T ¢=27nt/T} have the same index in
the bases, equations (1.13)-(1.14) give us that the change of coordinates matrix
4 from Dy, to Fy,r, denoted Pry .« Dy 1, is represented by repeating the

matrix
1 1 1/i
2\l —1/i

along the diagonal (with an additional 1 for the constant function 1). In other
words, since an,, b, are coefficients relative to the real basis and y,,y_, the
corresponding coefficients relative to the complex basis, we have for n > 0,

4See Section 4.7 in [20], to review the mathematics behind change of coordinates.

CHAPTER 1. SOUND AND FOURIER SERIES 25

yn \ _ 1 (1 1/ an
y—n) 2\1 —=1/i) \bs)~
This can be summarized by the following theorem:

Theorem 1.26. Change of coefficients between real and complex Fourier bases.
The complex Fourier coefficients y,, and the real Fourier coefficients a,, b,, of
a function f are related by

Yo = ao,
1

Yn = i(an _an)v

~(an +ib,)

—n = S \0n T 10n),
Y= =73

form=1,..., N.

Combining with Theorem 1.20, Theorem 1.26 can help us state properties of
complex Fourier coefficients for symmetric- and antisymmetric functions. We
look into this in Exercise 1.16.

Due to the somewhat nicer formulas for the complex Fourier coefficients when
compared to the real Fourier coefficients, we will write most Fourier series in
complex form in the following.

What you should have learned in this section.

e The complex Fourier basis and its orthonormality.

Exercise 1.9: Orthonormality of Complex Fourier basis

6271'2’77,t/T

Show that the complex functions are orthonormal.

Exercise 1.10: Complex Fourier series of f(t) = sin?(2nt/T)

Compute the complex Fourier series of the function f(t) = sin?(2nt/T).

Exercise 1.11: Complex Fourier series of polynomials

Repeat Exercise 1.6, computing the complex Fourier series instead of the real
Fourier series.

Exercise 1.12: Complex Fourier series and Pascals triangle

In this exercise we will find a connection with certain Fourier series and the rows
in Pascal’s triangle.

CHAPTER 1. SOUND AND FOURIER SERIES 26

a) Show that both cos™(t) and sin”(t) are in Vy 2, for 1 <n < N.

b) Write down the N’th order complex Fourier series for fi(t) = cost, fa(t) =
cos?t, og f3(t) = cos?t.

c) In (b) you should be able to see a connection between the Fourier coefficients
and the three first rows in Pascal’s triangle. Formulate and prove a general
relationship between row n in Pascal’s triangle and the Fourier coefficients of
fn(t) = cos™t.

Exercise 1.13: Complex Fourier coefficients of the square
wave

Compute the complex Fourier coefficients of the square wave using Equation
(1.22) in the compendium, i.e. repeat the calculations from Example 1.17 for the
complex case. Use Theorem 1.26 to verify your result.

Exercise 1.14: Complex Fourier coefficients of the triangle
wave

Repeat Exercise 1.13 for the triangle wave.

Exercise 1.15: Complex Fourier coefficients of low-degree
polynomials

Use Equation (1.22) in the compendium to compute the complex Fourier coeffi-
cients of the periodic functions with period T defined by, respectively, f(t) =t,
f(t) =% and f(t) =3, on [0,T]. Use Theorem 1.26 to verify your calculations
from Exercise 1.6.

Exercise 1.16: Complex Fourier coefficients for symmetric
and antisymmetric functions

In this exercise we will prove a version of Theorem 1.20 for complex Fourier
coefficients.

a) If f is symmetric about 0, show that y,, is real, and that y_,, = yp.

b) If f is antisymmetric about 0, show that the y,, are purely imaginary, yo = 0,
and that y_, = —yn.

c) Show that Zngzv yne2™t/T is symmetric when y_, = y, for all n, and
rewrite it as a cosine-series.

d) Show that Zi\]:—N yne%i”t/T is antisymmetric when yo =0 and y_,, = —yn
for all n, and rewrite it as a sine-series.

CHAPTER 1. SOUND AND FOURIER SERIES 27

1.4 Some properties of Fourier series

We continue by establishing some important properties of Fourier series, in
particular the Fourier coefficients for some important functions. In these lists,
we will use the notation f — y,, to indicate that y,, is the n’th (complex) Fourier
coefficient of f(t).

Theorem 1.27. Fourier series pairs.
The functions 1, e27/T and X—a,q have the Fourier coefficients

1_)30:(1,0,070'“’)
e2mnt/T e = (0,0,...,1,0,0,...)
sin(2mna/T)

X—a,a = — -
™

The 1 in e,, is at position n and the function x_, 4 is the characteristic function
of the interval [—a, a], defined by

1, ift € [—a,al;
X—a,a(t) = { []

0, otherwise.

The first two pairs are easily verified, so the proofs are omitted. The case for
X—a,q is very similar to the square wave, but easier to prove, and therefore also
omitted.

Theorem 1.28. Fourier series properties.
The mapping f — y, is linear: if f — z,, g = yn,, then

af +bg — ax, + by,

For all n. Moreover, if f is real and periodic with period T, the following
properties hold:

1. yn = Y_y, for all n.

2. If f(t) = f(—t) (i-e. f is symmetric), then all y, are real, so that b,, are
zero and the Fourier series is a cosine series.

3. If f(t) = —f(—t) (i.e. f is antisymmetric), then all y,, are purely imaginary,
so that the a,, are zero and the Fourier series is a sine series.

4. If g(t) = f(t — d) (i.e. g is the function f delayed by d) and f — y,,, then

—2min

g—e /Ty,
5. If g(t) = >™44/T f(t) with d an integer, and f — ¥, then g — ¥y, _4.

6. Let d be a number. If f — y,, then f(d+1t) = f(d—t) for all ¢ if and only
if the argument of y,, is —2wnd/T for all n.

CHAPTER 1. SOUND AND FOURIER SERIES 28

Proof. The proof of linearity is left to the reader. Property 1 follows immediately
by writing

1

1 T) T
Yn = 7 / f(t)e 2t/ T g = / f(t)e2mint/T gt
T 0 0

=l

1 T
— T/ f(t)e—Qﬂ'i(—n)t/Tdt =Y
0

Also, if g(t) = f(—t), we have that

1T . 1 /7 , L T '
7 / g(t)e—Zmnt/Tdt = f/ f(_t)e—ant/Tdt _ —7 / f(t)e%mnt/Tdt
0 0 0

I :
— T / f(t)627mnt/Tdt = TUn.
0

The first part of property 2 follows from this. The second part follows directly
by noting that

yn€2ﬂ'int/T + y,ne*%i”t/T _ yn(CQﬂint/T + 6727rint/T) =2y, COS(Qﬂ'TLt/T)7

or by invoking Theorem 1.20. Property 3 is proved in a similar way. To prove
property 4, we observe that the Fourier coefficients of g(t) = f(¢t — d) are

I 2mint /T I omint/T
— t)e T dt = — t—d)e ™" dt
7| e 7| ra-ae
1T 2min(t-+d)/T
— t)e2min dt
7| e
, 1 /7 . .
— e—27rznd/T7/ f(t)e—Qﬂ'znt/Tdt — e—27'rznd/Tyn.
T Jo
For property 5 we observe that the Fourier coefficients of g(t) = 2™/ f(t) are

1" : R :
T / g(t)6727mnt/Tdt _ f / 627”dt/Tf(t)6727”nt/Tdt
0 0

1 [T .
— T/ f(t)e—Zm(n—d)t/Tdt = Yn_d.
0

If f(d+1t) = f(d—t) for all t, we define the function g(¢) = f(t + d) which is
symmetric about 0, so that it has real Fourier coefficients. But then the Fourier
coefficients of f(t) = g(t — d) are e=2™"4/T times the (real) Fourier coefficients
of g by property 4. It follows that y,,, the Fourier coefficients of f, has argument
—2mnd/T. The proof in the other direction follows by noting that any function
where the Fourier coefficients are real must be symmetric about 0, once the
Fourier series is known to converge. This proves property 6. O

CHAPTER 1. SOUND AND FOURIER SERIES 29

Let us analyze these properties, to see that they match the notion we already
have for frequencies and sound. We will say that two sounds “essentially are
the same” if the absolute values of each Fourier coefficient are equal. Note that
this does not mean that the sounds sound the same, it merely says that the
contributions at different frequencies are comparable.

The first property says that the positive and negative frequencies in a (real)
sound essentially are the same. The second says that, when we play a sound
backwards, the frequency content is essentially the same. This is certainly the
case for all pure sounds. The third property says that, if we delay a sound, the
frequency content also is essentially the same. This also matches our intuition
on sound, since we think of the frequency representation as something which
is time-independent. The fourth property says that, if we multiply a sound
with a pure tone, the frequency representation is shifted (delayed), according
to the value of the frequency. This is something we see in early models for the
transmission of audio, where an audio signal is transmitted after having been
multiplied with what is called a ‘carrier wave‘. You can think of the carrier signal
as a pure tone. The result is a signal where the frequencies have been shifted
with the frequency of the carrier wave. The point of shifting the frequency of
the transmitted signal is to make it use a frequency range in which one knows
that other signals do not interfere. The last property looks a bit mysterious. We
will not have use for this property before the next chapter.

From Theorem 1.28 we also see that there exist several cases of duality
between a function and its Fourier series:

e Delaying a function corresponds to multiplying the Fourier coefficients
with a complex exponential. Vice versa, multiplying a function with a
complex exponential corresponds to delaying the Fourier coefficients.

e Symmetry/antisymmetry for a function corresponds to the Fourier coef-
ficients being real /purely imaginary. Vice versa, a function which is real
has Fourier coefficients which are conjugate symmetric.

Actually, one can show that these dualities are even stronger if we had considered
Fourier series of complex functions instead of real functions. We will not go into
this.

1.4.1 Rate of convergence for Fourier series

We have earlier mentioned criteria which guarantee that the Fourier series
converges. Another important topic is the rate of convergence, given that it
actually converges. If the series converges quickly, we may only need a few terms
in the Fourier series to obtain a reasonable approximation. We have already seen
examples which illustrate different convergence rates: The square wave seemed
to have very slow convergence rate near the discontinuities, while the triangle
wave did not seem to have the same problem.

Before discussing results concerning convergence rates we consider a simple
lemma which will turn out to be useful.

CHAPTER 1. SOUND AND FOURIER SERIES 30

Lemma 1.29. The order of computing Fourier series and differentiation does

not matter.
Assume that f is differentiable. Then (fn)'(t) = (f')n(t). In other words,
the derivative of the Fourier series equals the Fourier series of the derivative.

Proof. We first compute

<f’ 27rznt/T / f —27rznt/Tdt

_ l T —2mint/T g T /T 1 —2mint/T
T ([Smind e e (t)e dt

/ f 72mnt/Tdt T <f/, eQm’nt/T>.
2min

271'm T

gmnf(t)e_Q”i”t/T are periodic
(f,e>™mt/T) From this we

where we used integration by parts, and that —
with period T. Tt follows that (f,e?™"/T) =

27rin
get that
a , 2min
(fN)/(t) _ (Z <f; e27rint/T>e27rint/T> — Z <f, e27rint/T>e27rint/T
n=—N T n=—N
N . .
— Z <f/,e27mnt/T>€27mnt/T — (f/)N(t)-
n=—N

where we substituted the connection between the inner products we just found.
O

Example 1.30. Computing the Fourier series of the triangle wave through
differentiation of the square wave.

The connection between the Fourier series of the function and its derivative
can be used to simplify the computation of Fourier series for new functions.
Let us see how we can use this to compute the Fourier series of the triangle
wave, which was quite a tedious job in Example 1.18. However, the relationship
fi@) = % fs(t) is straightforward to see from the plots of the square wave f, and
the triangle wave f;. From this relationship and from Equation (1.11) for the
Fourier series of the square wave it follows that

()) (b) = % (i sin(27tT) + ?:iﬂ sin(273t/T) + % Sin (275t /T) + - -) .

If we integrate this we obtain

(fon() = —% (cos(27rt/T) + 3%005(27r3t/T) + 5% cos(2mwbt/T) + - -) +C.

CHAPTER 1. SOUND AND FOURIER SERIES 31

What remains is to find the integration constant C. This is simplest found if
we set t = T'/4, since then all cosine terms are 0. Clearly then C' = 0, and we
arrive at the same expression as in Equation (1.12) for the Fourier series of the
triangle wave. This approach clearly had less computations involved. There
is a minor point here which we have not addressed: the triangle wave is not
differentiable at two points, as required by Lemma 1.29. It is, however, not too
difficult to see that this result still holds in cases where we have a finite number
of nondifferentiable points only.

We get the following corollary to Lemma 1.29:

Corollary 1.31. Connection between the Fourier coefficients of f(t) and f’(t).

If the complex Fourier coefficients of f are y, and f is differentiable, then

the Fourier coefficients of f'(t) are 2Zi%y,,.

If we turn this around, we note that the Fourier coefficients of f(t) are
T/(2min) times those of f/(t). If f is s times differentiable, we can repeat this
argument to show that the Fourier coefficients of f(t) are (T'/ (2m‘n))8 times
those of f(*)(t). In other words, the Fourier coefficients of a function which is
many times differentiable decay to zero very fast.

Observation 1.32. Convergence speed of differentiable functions.
The Fourier series converges quickly when the function is many times differ-
entiable.

An illustration is found in examples 1.17 and 1.18, where we saw that the
Fourier series coefficients for the triangle wave converged more quickly to zero
than those of the square wave. This is explained by the fact that the square
wave is discontinuous, while the triangle wave is continuous with a discontinuous
first derivative. Also, the functions considered in examples 1.23 and 1.24 are not
continuous, which partially explain why we there saw contributions from many
frequencies.

The requirement of continuity in order to obtain quickly converging Fourier
series may seem like a small problem. However, often the function is not defined
on the whole real line: it is often only defined on the interval [0,T). If we
extend this to a periodic function on the whole real line, by repeating one
period as shown in the left plot in Figure 1.10, there is no reason why the
new function should be continuous at the boundaries 0,7, 2T etc., even though
the function we started with may be continuous on [0,7"). This would require
that f(0) = limy—7 f(¢). If this does not hold, the function may not be well
approximated with trigonometric functions, due to a slowly convergence Fourier
series.

We can therefore ask ourselves the following question:

Idea 1.33. Continuous Extension.

Assume that f is continuous on [0,7"). Can we construct another periodic
function which agrees with f on [0, T], and which is both continuous and periodic
(maybe with period different from T)?

CHAPTER 1. SOUND AND FOURIER SERIES 32

2.0— 2.0
1.5 ////// 1.5
1.0 1.0
0.5 0.5}
07 % 1 2 3 4 5 6 7 °%T o1 2z 3 4 5 6 7

Figure 1.10: Two different extensions of f to a periodic function on the whole
real line. Periodic extension (left) and symmetric extension (right).

If this is possible the Fourier series of the new function could produce better
approximations for f. It turns out that the following extension strategy does
the job:

Definition 1.34. Symmetric extension of a function.
Let f be a function defined on [0,7]. By the symmetric extension of f,
denoted f, we mean the function defined on [0, 27 by

<o) f@), ifo<t<T;
f(t){f(QT—t), if T <t<2T.

Clearly the following holds:

Theorem 1.35. Continuous Extension.

If f is continuous on [0, T, then f is continuous on [0, 277, and f(0) = f(2T).
If we extend f to a periodic function on the whole real line (which we also
will denote by f), this function is continuous, agrees with f on [0,7), and is a
symmetric function.

This also means that the Fourier series of f is a cosine series, so that it is
determined by the cosine-coefficients a,,. The symmetric extension of f is shown
in the right plot in Figure 1.10. f is symmetric since, for 0 <¢ < T,

v

f(=t) = T —t) = f2T — (2T — 1)) = f(t) = f(¢).

In summary, we now have two possibilities for approximating a function f defined
only on [0,T), where the latter addresses a shortcoming of the first:

e By the Fourier series of f

e By the Fourier series of f restricted to [0,T) (which actually is a cosine-
series)

CHAPTER 1. SOUND AND FOURIER SERIES 33

Example 1.36. Periodic extension.

Let f be the function with period T defined by f(¢t) = 2t/T—1for 0 <t < T.
In each period the function increases linearly from —1 to 1. Because f is
discontinuous at the boundaries, we would expect the Fourier series to converge
slowly. The Fourier series is a sine-series since f is antisymmetric, and we can
compute b, as

2 (T 9 T 4 (T T
b, = T/O - <t _ 2) sin(27nt/T)dt = 7 | (t — 2) sin(27nt/T)dt

2

4 T 2 T
= ﬁ/o tsin(2mnt/T)dt — T/o sin(2mnt/T)dt = -

so that

Y2
In(t) =— Z — sin(2mnt/T),
n=1

which indeed converges slowly to 0. Let us now instead consider the symmetric
extension of f. Clearly this is the triangle wave with period 27, and the Fourier
series of this was

Fn=— Y % cos(2mnt) (2T)).
n<N, n odd
The second series clearly converges faster than the first, since its Fourier coef-
ficients are a,, = —8/(n?r?) (with n odd), while the Fourier coefficients in the
first series are b, = —2/(nw).

If we use T' = 1/440, the symmetric extension has period 1/220, which gives
a triangle wave where the first term in the Fourier series has frequency 220Hz.
Listening to this we should hear something resembling a 220Hz pure tone, since
the first term in the Fourier series is the most dominating in the triangle wave.
Listening to the periodic extension we should hear a different sound. The first
term in the Fourier series has frequency 440Hz, but this drounds a bit in the
contribution of the other terms in the Fourier series, due to the slow convergence
of the Fourier series, just as for the square wave.

The Fourier series with N = 7 terms of both f itself and the symmetric
extensions of f are shown in Figure 1.11. It is clear from the plot that the
Fourier series for f itself is not a very good approximation, while we cannot
differentiate between the Fourier series and the function itself for the symmetric
extension.

What you should have learned in this section.

e Simple Fourier series pairs.

e Certain properties of Fourier series, for instance how delay of a function or
multiplication with a complex exponential affect the Fourier coefficients.

CHAPTER 1. SOUND AND FOURIER SERIES 34

1.0 1.0}
0.5 0.5
0.0 0.0
-0.5 -0.5}
-1.0 —1.0¢
0.000 0.002 0.004 0.006 0.008 0.000 0.002 0.004 0.006 0.008

Figure 1.11: The Fourier series with N = 7 terms of the periodic (left) and
symmetric (right) extensions of the function in Example 1.36.

e The convergence rate of a Fourier series depends on the regularity of the
function. How this motivates the symmetric extension of a function.

Exercise 1.17: Fourier series of a delayed square wave
Define the function f with period T on [-T/2,7T/2) by
£ = 1, if-T/4A<t<T/4;
-1, i T/A<|t < T)2.

f is just the square wave, delayed with d = —T/4. Compute the Fourier
coefficients of f directly, and use Property 4 in Theorem 1.28 to verify your
result.

Exercise 1.18: Find function from its Fourier series
Find a function f which has the complex Fourier series

Z 4 eQ‘n’int/T
4) '
n odd 7T(Tl T

Hint. Attempt to use one of the properties in Theorem 1.28 on the Fourier
series of the square wave.

Exercise 1.19: Relation between complex Fourier coeffi-
cients of f and cosine-coefficients of f

Show that the complex Fourier coefficients y,, of f, and the cosine-coefficients
an of f are related by ao, = y, + y—_»,. This result is not enough to obtain the
entire Fourier series of f, but at least it gives us half of it.

CHAPTER 1. SOUND AND FOURIER SERIES 35

1.5 Operations on sound: filters

It is easy to see how we can use Fourier coefficients to analyse or improve sound:
Noise in a sound often corresponds to the presence of some high frequencies with
large coefficients, and by removing these, we remove the noise. For example,
we could set all the coefficients except the first one to zero. This would change
the unpleasant square wave to the pure tone sin(27440t), which we started our
experiments with. Doing so is an example of an important operation on sound
called filtering:

Definition 1.37. Analog filters.

An operation on sound is called an analog filter if it preserves the different
frequencies in the sound. In other words, s is an analog filter if, for any sound
f =3, c(r)e*™™, the output s(f) is a sound which can be written on the form

s(f)=s <Z c(y)6277iut> _ ZC(V))\S(V)e%m‘ut’

v v

where A\;(v) is a function describing how s treats the different frequencies. A, (v)
uniquely determines s, and is also called the frequency response of s.

The following is clear:

Theorem 1.38. Properties of analog filters.
The following hold for an analog filter s:

e When f is periodic with period T, s(f) is also periodic with period 7.

e When s(f) we have that (s(f))n = s(fn), i.e. s maps the N’th order
Fourier series of f to the N’th order Fourier series of s(f).

e Any pure tone is an eigenvector of s.

The analog filters we will look at have the following form:

Theorem 1.39. Convolution kernels.
Assume that g € L*(R). The operation

o0

f(t) = h(t) = / g(s)f(t — s)ds. (1.23)

is an analog filter. Analog filters which can be expressed like this are also called
convolutions. Also

e When f € L*(R), then h € L?(R).
e The frequency response of the filter is As(v) = [g(s)e " "*ds

The function g is also called a convolution kernel. We also write s, for the analog
filter with convolution kernel g.

CHAPTER 1. SOUND AND FOURIER SERIES 36

The name convolution kernel comes from the fact that filtering operations
are also called convolution operations in the literature. In the analog filters we
will look at later, the convolution kernel will always have compact support. The
support of a function f defined on a subset I of R is given by the closure of the
set of points where the function is nonzero,

supp(f) ={t € I'| f(t) # 0}.

Compact support simply means that the support is contained in some interval
on the form [a, b] for some constants a,b. In this case the filter takes the form
ft) = h(t) = fab g(8)f(t—s)ds. Also note that the integral above may not exist,
so that one needs to put some restrictions on the functions, such that f € L*(R).
Note also that all analog filters may not be expressed as convolutions.

Proof. We compute

S(eQWiyt) — / g(s)e2ﬂ-iu(t—s)d8 — / g(s)e—Zmusdse%riut — /\S(f)62myt,

— 00

which shows that s is a filter with the stated frequency response. That h € L2(R),
when f € L?(R) follows from Minkowski’s inequality for integrals [12]. O

The function g is arbitrary, so that this strategy leads to a wide class of
analog filters. We may ask the question of whether the general analog filter
always has this form. We will not go further into this, although one can find
partially affirmative answers to this question.

We also need to say something about the connection between filters and
symmetric functions. We saw that the symmetric extension of a function took the
form of a cosine-series, and that this converged faster to the symmetric extension
than the Fourier series did to the function. If a filter preserves cosine-series it
will also preserve symmetric extensions, and therefore also map fast-converging
Fourier series to fast-converging Fourier series. The following result will be useful
in this respect:

Theorem 1.40. Properties of filters.
If the frequency response of a filter satisfies A\;(v) = A\s(—v) for all frequencies
v, then the filter preserves cosine series and sine series.

Proof. We have that

1 , ,
s(cos(2mnt/T)) = s (2(€2mnt/T n e—27r1nt/T)>

1 - 1 .
— 5)\S(,’,L/Ti)e%rznt/T + 5)\S(_,’,L/Ti)e—QTrz'mf/T

As(n/T) (;(ezﬂmt/T + ez’rmt/T)) = As(n/T) cos(2mnt/T).

CHAPTER 1. SOUND AND FOURIER SERIES 37

This means that s preserves cosine-series. A similar computation holds for
sine-series holds as well. O

An analog filter where A\;(v) = As(—v) is also called a symmetric filter. As
an example, consider the analog filter s(f1) = ffa g(8)f1(t — s)ds where g is
symmetric around 0 and supported on [—a,a]. s is a symmetric filter since

a a
As(v) = / g(s)e 25 ds = / g(s)e*™ s ds = N\ (—v).
—a —a
Filters are much used in practice, but the way we have defined them here makes
them not very useful for computation. We will handle the problem of making
filters suitable for computation in Chapter 3.

1.6 The MP3 standard

Digital audio first became commonly available when the CD was introduced in
the early 1980s. As the storage capacity and processing speeds of computers
increased, it became possible to transfer audio files to computers and both play
and manipulate the data, in ways such as in the previous section. However,
audio was represented by a large amount of data and an obvious challenge was
how to reduce the storage requirements. Lossless coding techniques like Huffman
and Lempel-Ziv coding were known and with these kinds of techniques the file
size could be reduced to about half of that required by the CD format. However,
by allowing the data to be altered a little bit it turned out that it was possible
to reduce the file size down to about ten percent of the CD format, without
much loss in quality. The MP3 audio format takes advantage of this.

MP3, or more precisely MPEG-1 Audio Layer 3, is part of an audio-visual
standard called MPEG. MPEG has evolved over the years, from MPEG-1 to
MPEG-2, and then to MPEG-4. The data on a DVD disc can be stored with
either MPEG-1 or MPEG-2, while the data on a bluray-disc can be stored
with either MPEG-2 or MPEG-4. MP3 was developed by Philips, CCETT
(Centre commun d’etudes de television et telecommunications), IRT (Institut fur
Rundfunktechnik) and Fraunhofer Society, and became an international standard
in 1991. Virtually all audio software and music players support this format.
MP3 is just a sound format. It leaves a substantial amount of freedom in the
encoder, so that different encoders can exploit properties of sound in various
ways, in order to alter the sound in removing inaudible components therein.
As a consequence there are many different MP3 encoders available, of varying
quality. In particular, an encoder which works well for higher bit rates (high
quality sound) may not work so well for lower bit rates.

With MP3, the sound is split into frequency bands, each band corresponding
to a particular frequency range. In the simplest model, 32 frequency bands are
used. A frequency analysis of the sound, based on what is called a psycho-acoustic
model, is the basis for further transformation of these bands. The psycho-acoustic
model computes the significance of each band for the human perception of the

CHAPTER 1. SOUND AND FOURIER SERIES 38

sound. When we hear a sound, there is a mechanical stimulation of the ear
drum, and the amount of stimulus is directly related to the size of the sample
values of the digital sound. The movement of the ear drum is then converted to
electric impulses that travel to the brain where they are perceived as sound. The
perception process uses a transformation of the sound so that a steady oscillation
in air pressure is perceived as a sound with a fixed frequency. In this process
certain kinds of perturbations of the sound are hardly noticed by the brain, and
this is exploited in lossy audio compression.

More precisely, when the psycho-acoustic model is applied to the frequency
content resulting from our frequency analysis, scale factors and masking thresholds
are assigned for each band. The computed masking thresholds have to do with a
phenomenon called masking. A simple example of this is that a loud sound will
make a simultaneous low sound inaudible. For compression this means that if
certain frequencies of a signal are very prominent, most of the other frequencies
can be removed, even when they are quite large. If the sounds are below the
masking threshold, it is simply omitted by the encoder, since the model says
that the sound should be inaudible.

Masking effects are just one example of what is called psycho-acoustic effects,
and all such effects can be taken into account in a psycho-acoustic model. Another
obvious such effect regards computing the scale factors: the human auditory
system can only perceive frequencies in the range 20 Hz - 20 000 Hz. An obvious
way to do compression is therefore to remove frequencies outside this range,
although there are indications that these frequencies may influence the listening
experience inaudibly. The computed scaling factors tell the encoder about the
precision to be used for each frequency band: If the model decides that one band
is very important for our perception of the sound, it assigns a big scale factor to
it, so that more effort is put into encoding it by the encoder (i.e. it uses more
bits to encode this band).

Using appropriate scale factors and masking thresholds provide compression,
since bits used to encode the sound are spent on parts important for our percep-
tion. Developing a useful psycho-acoustic model requires detailed knowledge of
human perception of sound. Different MP3 encoders use different such models,
so they may produce very different results, worse or better.

The information remaining after frequency analysis and using a psycho-
acoustic model is coded efficiently with (a variant of) Huffman coding. MP3
supports bit rates from 32 to 320 kb/s and the sampling rates 32, 44.1, and 48
kHz. The format also supports variable bit rates (the bit rate varies in different
parts of the file). An MP3 encoder also stores metadata about the sound, such
as the title of the audio piece, album and artist name and other relevant data.

MP3 too has evolved in the same way as MPEG, from MP1 to MP2, and to
MP3, each one more sophisticated than the other, providing better compression.
MP3 is not the latest development of audio coding in the MPEG family: AAC
(Advanced Audio Coding) is presented as the successor of MP3 by its principal
developer, Fraunhofer Society, and can achieve better quality than MP3 at the
same bit rate, particularly for bit rates below 192 kb/s. AAC became well
known in April 2003 when Apple introduced this format (at 128 kb/s) as the

CHAPTER 1. SOUND AND FOURIER SERIES 39

standard format for their iTunes Music Store and iPod music players. AAC is
also supported by many other music players, including the most popular mobile
phones.

The technologies behind AAC and MP3 are very similar. AAC supports
more sample rates (from 8 kHz to 96 kHz) and up to 48 channels. AAC uses the
same transformation as MP3, but AAC processes 1 024 samples at a time. AAC
also uses much more sophisticated processing of frequencies above 16 kHz and
has a number of other enhancements over MP3. AAC, as MP3, uses Huffman
coding for efficient coding of the transformed values. Tests seem quite conclusive
that AAC is better than MP3 for low bit rates (typically below 192 kb/s), but
for higher rates it is not so easy to differentiate between the two formats. As
for MP3 (and the other formats mentioned here), the quality of an AAC file
depends crucially on the quality of the encoding program.

There are a number of variants of AAC, in particular AAC Low Delay
(AAC-LD). This format was designed for use in two-way communication over a
network,

for example the internet. For this kind of application, the encoding (and
decoding) must be fast to avoid delays (a delay of at most 20 ms can be tolerated).

1.7 Summary

We discussed the basic question of what is sound is, and concluded that sound
could be modeled as a sum of frequency components. If the function was periodic
we could define its Fourier series, which can be thought of as an approximation
scheme for periodic functions using finite-dimensional spaces of trigonometric
functions. We established the basic properties of Fourier series, and some duality
relationships between the function and its Fourier series. We have also computed
the Fourier series of the square wave and the triangle wave, and we saw that we
could speed up the convergence of the Fourier series by instead considering the
symmetric extension of the function.

We also discussed the MP3 standard for compression of sound, and its relation
to a psychoacoutic model which describes how the human auditory system
perceives sound. There exist a wide variety of documents on this standard. In
[24], an overview is given, which, although written in a signal processing friendly
language and representing most relevant theory such as for the psychoacoutic
model, does not dig into all the details.

we also defined analog filters, which were operations which operate on con-
tinuous sound, without any assumption on periodicity. In signal processing
literature one defines the Continuous-time Fourier transform, or CTFT. We will
not use this concept in this book. We have instead disguised this concept as the
frequency response of an analog filter. To be more precise: in the literature, the
CTFT of g

is nothing but the frequency response of an analog filter with g as convolution
kernel.

Chapter 2

Digital sound and Discrete
Fourier analysis

In Chapter 1 we saw how a periodic function can be decomposed into a linear
combination of sines and cosines, or equivalently, a linear combination of com-
plex exponential functions. This kind of decomposition is, however, not very
convenient from a computational point of view. First of all, the coefficients are
given by integrals that in most cases cannot be evaluated exactly, so some kind
of numerical integration technique needs to be applied. Secondly, functions are
defined for all time instances. On computers and various kinds of media players,
however, the sound is digital, meaning that it is represented by a large number
of function values, and not by a function defined for all time instances.

In this chapter our starting point is simply a vector which represents the
sound values, rather than a function f(t). We start by seeing how we can make
use of this on a computer, either by playing it as a sound, or performing simple
operations on it. After this we continue by decomposing vectors in terms of
linear combinations of vectors built from complex exponentials. As before it
turns out that this is simplest when we assume that the values in the vector
repeat periodically. Then a vector of finite dimension can be used to represent all
sound values, and a transformation to the frequency domain, where operations
which change the sound can easily be made, simply amounts to multiplying the
vector by a matrix. This transformation is called the Discrete Fourier transform,
and we will see how we can implement this efficiently. It turns out that these
algorithms can also be used for computing approximations to the Fourier series,
and for sampling a sound in order to create a vector of sound data.

The examples in this chapter and the next chapter can be run from the
notebook applinalgnbchap2.ipynb. Functionality for accessing sound are
collected in a module called sound.

40

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS41

2.1 Digital sound and simple operations on dig-
ital sound

We start by defining what a digital sound is and by establishing some notation
and terminology.

Definition 2.1. Digital sound.

A digital sound is a sequence x = {xi}ﬁgl that corresponds to measurements
of the air pressure of a sound f, recorded at a fixed rate of f; (the sampling
frequency or sampling rate) measurements per second, i.e.,

v = f(k/fs), fork=0,1;..., N.

The measurements are often referred to as samples. The time between successive
measurements is called the sampling period and is usually denoted Ts;. The
length of the vector is usually assumed to be N, and it is indexed from 0 to
N — 1. If the sound is in stereo there will be two arrays x; and xs, one for
each channel. Measuring the sound is also referred to as sampling the sound, or
analog to digital (AD) conversion.

Note that this indexing convention for vectors is not standard in mathematics,
where vector indices start at 1, as they do in Matlab. In most cases, a digital
sound is sampled from an analog (continuous) audio signal. This is usually done
with a technique called Pulse Code Modulation (PCM). The audio signal is
sampled at regular intervals and the sampled values stored in a suitable number
format. Both the sampling frequency, and the accuracy and number format used
for storing the samples, may vary for different kinds of audio, and both influence
the quality of the resulting sound. For simplicity the quality is often measured
by the number of bits per second, i.e., the product of the sampling rate and the
number of bits (binary digits) used to store each sample. This is also referred to
as the bit rate. For the computer to be able to play a digital sound, samples must
be stored in a file or in memory on a computer. To do this efficiently, digital
sound formats are used. A couple of them are described in the examples below.

Example 2.2. The CD-format.

In the classical CD-format the audio signal is sampled 44 100 times per
second and the samples stored as 16-bit integers. This works well for music with
a reasonably uniform dynamic range, but is problematic when the range varies.
Suppose for example that a piece of music has a very loud passage. In this
passage the samples will typically make use of almost the full range of integer
values, from —2'® — 1 to 2'°. When the music enters a more quiet passage the
sample values will necessarily become much smaller and perhaps only vary in the
range —1000 to 1000, say. Since 2'° = 1024 this means that in the quiet passage
the music would only be represented with 10-bit samples. This problem can be
avoided by using a floating-point format instead, but very few audio formats
appear to do this.

The bit rate for CD-quality stereo sound is 44100 x 2 x 16 bits/s = 1411.2
kb/s. This quality measure is particularly popular for lossy audio formats where

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS42

the uncompressed audio usually is the same (CD-quality). However, it should
be remembered that even two audio files in the same file format and with the
same bit rate may be of very different quality because the encoding programs
may be of different quality.

This value 44 100 for the sampling rate is not coincidental, and we will return
to this later.

Example 2.3. Telephony.

For telephony it is common to sample the sound 8000 times per second and
represent each sample value as a 13-bit integer. These integers are then converted
to a kind of 8-bit floating-point format with a 4-bit significand. Telephony
therefore generates a bit rate of 64 000 bits per second, i.e. 64 kb/s.

Newer formats with higher quality are available. Music is distributed in
various formats on DVDs (DVD-video, DVD-audio, Super Audio CD) with
sampling rates up to 192 000 and up to 24 bits per sample. These formats also
support surround sound (up to seven channels in contrast to the two stereo
channels on a CD). In the following we will assume all sound to be digital. Later
we will return to how we reconstruct audible sound from digital sound.

Simple operations and computations with digital sound can be done in any
programming environment. Let us take a look at how these. From Definition 2.1,
digital sound is just an array of sample values © = (xi)ivzgl, together with the
sample rate f;. Performing operations on the sound therefore amounts to doing
the appropriate computations with the sample values and the sample rate. The
most basic operation we can perform on a sound is simply playing it.

2.1.1 Playing a sound

You may already have listened to pure tones, square waves and triangle waves
in the last section. The corresponding sound files were generated in a way we
will describe shortly, placed in a directory available on the internet, and linked
to from these notes. A program on your computer was able to play these files
when you clicked on them. Let us take a closer look at the different steps here.
You will need these steps in Exercise 2.3, where you will be asked to implement
a function which plays a pure sound with a given frequency on your computer.

First we need to know how we can obtain the samples of a pure tone. The
following code does this when we have defined the variables f for its frequency,
antsec for its length in seconds, and fs for the sampling rate.

t
X

linspace(0, antsec, fs*antsec)
sin(2*pi*f*t)

Code will be displayed in this way throughout these notes. We will mostly use
the value 44100 for fs, to abide to the sampling rate used on CD’s. We also
need a function to help us listen to the sound samples. We will use the function
play(x, fs) in the module sound for this. This function basically sends the

http://folk.uio.no/oyvindry/matinf2360/sounds/

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS43

array of sound samples and sample rate to the sound card, which uses some
method for reconstructing the sound to an analog sound signal. This analog
signal is then sent to the loudspeakers and we hear the sound.

Fact 2.4. Basic command to handle sound.

The basic command in a programming environment that handles sound
takes as input an array of sound samples & and a sample rate s, and plays the
corresponding sound through the computer’s loudspeakers.

The sound samples can have different data types. We will always assume that
they are of type double. The computer requires that they have values between
—1 and 1 (i.e. these represent the range of numbers which can be played through
the sound card of the computer). Also, x can actually be a matrix: Each column
in the matrix represents a sound channel. Sounds we generate on our own from
a mathematical function (as for the pure tone above) will typically have only
one channel, so that x has only one column. If x originates from a stereo sound
file, it will have two columns.

You can create x on your own, either by filling it with values from a mathe-
matical function as we did for the pure tone above, or filling in with samples
from a sound file. To do this from a file in the wav-format named filename,
simply write

x, fs = audioread(filename)

The wav-format was developed by Microsoft and IBM, and is one of the most
common file formats for CD-quality audio. It uses a 32-bit integer to specify
the file size at the beginning of the file, which means that a WAV-file cannot
be larger than 4 GB. In addition to filling in the sound samples in the vector x,
this function also returns the sampling rate fs used in the file. The function

audiowrite(filename, x, fs)

can similarly be used to write the data stored in the vector x to the wav-file by
the name filename. As an example, we can listen to and write the pure tone
above with the help of the following code:

play(x, fs)
audiowrite(’puretone440.wav’, x, fs)

The sound file for the pure tone embedded into this document was created in
this way. In the same way we can listen to the square wave. In order to do this
we can first create the samples of one period of the square wave as follows:

samplesperperiod = fs/f
oneperiod = hstack([ones((samplesperperiod/2),dtype=float), \
-ones ((samplesperperiod/2) ,dtype=float)])

Here we have first computed the number of samples in one period. With the
following code we can then repeat this period so that the produced sound has
the desired length (fs copies of one period per second), and then play it:

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS44

x = tile(oneperiod, antsec*f)
play(x, fs)

In the same fashion we can listen to the triangle wave simply by replacing the
code for generating the samples for one period with the following:

oneperiod = hstack([linspace(-1, 1, samplesperperiod/2), \
linspace(1l, -1, samplesperperiod/2)])

Instead of using the formula for the triangle wave, directly, we have used the
function linspace.
As an example of how to fill in the sound samples from a file, the code

x, fs = audioread(’sounds/castanets.wav’)

reads the file castanets.wav, and stores the sound samples in the matrix x. In
this case there are two sound channels, so there are two columns in x. To listen
to the sound from only one channel, we can write

play(x[:, 1], £fs);

In the following we will usually not to do this, as it is possible to apply operations
to all channels simultaneously using the same simple syntax. audioread returns
sound samples with floating point precision.

It may be that some other environment gives you the play functionality on
your computer. Even if no environment on your computer supports such play-
functionality at all, you may still be able to play the result of your computations
if there is support for saving the sound in some standard format like mp3. The
resulting file can then be played by the standard audio player on your computer.

Example 2.5. Changing the sample rate.

We can easily play back a sound with a different sample rate than the
standard one. If we in the code above instead wrote £s=80000, the sound card
will assume that the time distance between neighboring samples is half the time
distance in the original. The result is that the sound takes half as long, and the
frequency of all tones is doubled. For voices the result is a characteristic Donald
Duck-like sound.

Conversely, the sound can be played with half the sample rate by setting
£s=20000. Then the length of the sound is doubled and all frequencies are
halved. This results in low pitch, roaring voices.

A digital sound can be played at normal, double and half sampling rate by
writing

play(x, fs)
play(x, 2xfs)
play(x, £s/2)

http://folk.uio.no/oyvindry/matinf2360/sounds/castanets.wav

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS45

respectively. The sample file castanets.wav played at double sampling rate
sounds like this, while it sounds like this when it is played with half the sampling
rate.

Example 2.6. Playing the sound backwards.

At times a popular game has been to play music backwards to try and find
secret messages. In the old days of analog music on vinyl this was not so easy,
but with digital sound it is quite simple; we just need to reverse the samples.
To do this we just loop through the array and put the last samples first.

Let x = (xi)z]-v:_ol be the samples of a digital sound. Then the samples
y = (y;)Y5" of the reverse sound are given by

Yi =TN_i_1, fori=0,1,...N —1.

When we reverse the sound samples, we have to reverse the elements in both
sound channels. This can be performed as follows

z = x[(N-1)::(-1), :]

Performing this on our sample file you generate a sound which sounds like this.

Example 2.7. Adding noise.

To remove noise from recorded sound can be very challenging, but adding
noise is simple. There are many kinds of noise, but one kind is easily obtained
by adding random numbers to the samples of a sound.

Let « be the samples of a digital sound of length N. A new sound z with
noise added can be obtained by adding a random number to each sample,

= x + c*x(2*random.random(shape(x))-1)
/= abs(z) .max()

z

V4
Here rand is a function that returns random numbers in the interval [0, 1], and
¢ is a constant (usually smaller than 1) that dampens the noise. The effect of
writing (2*rand(1,N)-1) above is that random numbers between —1 and 1 are
returned instead of random numbers between 0 and 1. Note that we also have
scaled the sound samples so that they lie between -1 and 1 (as required by our
representation of sound), since the addition may lead to numbers which are
outside this range. Without this we may obtain an unrecognizable sound, as
values outside the legal range are changed.

Adding noise in this way will produce a general hissing noise similar to the
noise you hear on the radio when the reception is bad. As before you should
add noise to both channels. Note alse that the sound samples may be outside
[—1,1] after adding noise, so that you should scale the samples before writing
them to file. The factor c¢ is important, if it is too large, the noise will simply
drown the signal z: castanets.wav with noise added with ¢ = 0.4 sounds like
this, while with ¢ = 0.1 it sounds like this.

In addition to the operations listed above, the most important operations
on digital sound are digital filters. These are given a separate treatment in
Chapter 3.

http://folk.uio.no/oyvindry/matinf2360/sounds/castanetsdouble.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castanetshalf.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castanetsreverse.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castanetsnoisehigh.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castanetsnoiselow.wav

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS46

What you should have learned in this section.
e Computer operations for reading, writing, and listening to sound.

e Construct sounds such as pure tones, and the square and triangle waves,
from mathematical formulas.

e Comparing a sound with its Fourier series.

e Changing the sample rate, adding noise, or playing a sound backwards.

Exercise 2.1: Sound with increasing loudness

Define the following sound signal

0 0 <t <4/440
f(t)=q 24084 in(27440t) 4/440 < ¢ < 12/440
2 sin(27440t) 12/440 < t < 20/440

This corresponds to the sound in the left plot of Figure 1.1, where the sound is
unaudible in the beginning, and increases linearly in loudness over time with a
given frequency until maximum loudness is avchieved. Write a function which
generates this sound, and listen to it.

Exercise 2.2: Sum of two pure tones

Find two constant a and b so that the function f(t) = asin(27440t)+b sin(274400t)
resembles the right plot of Figure 1.1 as closely as possible. Generate the samples
of this sound, and listen to it.

Exercise 2.3: Playing general pure tones.
Let us write some code so that we can experiment with different pure sounds

a) Write a function play_pure_sound(f) which generates the samples over a
period of 3 seconds for a pure tone with frequency f, with sampling frequency
fs =2.5f (we will explain this value later).

b) Use the function play_pure_sound to listen to pure sounds of frequency
440Hz and 1500Hz, and verify that they are the same as the sounds you already
have listened to in this section.

¢) How high frequencies are you able to hear with the function play_pure_sound?
How low frequencies are you able to hear?

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSISA7

Exercise 2.4: Playing the square- and triangle waves

Write functions play_square and play_triangle which take 1" as input, and
which play the square wave of Example 1.10 and the triangle wave of Example 1.11,
respectively. In your code, let the samples of the waves be taken at a frequency
of 44100 samples per second. Verify that you generate the same sounds as you

played in these examples when you set T' = ﬁ.

Exercise 2.5: Playing Fourier series of the square- and tri-
angle waves

Let us write programs so that we can listen to the Fourier approximations of
the square wave and the triangle wave.

a) Write functions play_square_fourier and play_triangle_fourier which
take T and N as input, and which play the order N Fourier approximation of
the square wave and the triangle wave, respectively, for three seconds. Verify
that you can generate the sounds you played in examples 1.17 and 1.18.

b) For these Fourier approximations, how high must you choose N for them to
be indistuingishable from the square/triangle waves themselves? Also describe
how the characteristics of the sound changes when n increases.

Exercise 2.6: Playing with different sample rates

Write a function play_with_different_fs which takes the sound samples x
and a sampling rate fs as input, and plays the sound samples with the same
sample rate as the original file, then with twice the sample rate, and then half the
sample rate. You should start with reading the file into a matrix (as explained
in this section). When applied to the sample audio file, are the sounds the same
as those you heard in Example 2.57

Exercise 2.7: Playing the reverse sound
Let us also experiment with reversing the samples in a sound file.

a) Write a function play_reverse which takes sound data and a sample rate as
input, and plays the sound samples backwards. When you run the code on our
sample audio file, is the sound the same as the one you heard in Example 2.67

b) Write the new sound samples from a) to a new wav-file, as described in this
section, and listen to it with your favourite mediaplayer.

Exercise 2.8: Play sound with added noise

In this exercise, we will experiment with adding noise to a signal.

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS48

a) Write a function play_with_noise which takes sound data, sampling rate,
and the damping constant ¢ as input, and plays the sound samples with noise
added as described above. Your code should add noise to both channels of the
sound, and scale the sound samples so that they are between —1 and 1.

b) With your program, generate the two sounds played in Example 2.7, and
verify that they are the same as those you heard.

c) Listen to the sound samples with noise added for different values of c¢. For
which range of c is the noise audible?

2.2 Discrete Fourier analysis and the discrete
Fourier transform

In this section we will parallel the developments we did for Fourier series,
assuming instead that vectors (rather than functions) are involved. As with
Fourier series we will assume that the vector is periodic. This means that we
can represent it with the values from only the first period. In the following we
will only work with these values, but we will remind ourselves from time to time
that the values actually come from a periodic vector. As for functions, we will
call denote the periodic vector as the periodic extension of the finite vector. To
illustrate this, we have in Figure 2.1 shown a vector x and its periodic extension
x.

2.0 2.0
1.5/] 1.5!]
1.0] 1.0]
O.SH | N |
0.0% 10 20 30 40 0.0% 10 20 30 40

Figure 2.1: A vector and its periodic extension.

At the outset our vectors will have real components, but since we use complex
exponentials we must be able to work with complex vectors also. We therefore
first need to define the standard inner product and norm for complex vectors.

Definition 2.8. Fuclidean inner product.
For complex vectors of length IV the Euclidean inner product is given by

(x,y) = Z Tk (2.1)

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS49

The associated norm is

In the previous chapter we saw that, using a Fourier series, a function with
period T could be approximated by linear combinations of the functions (the
pure tones) {e?™/TIN_ This can be generalized to vectors (digital sounds),
but then the pure tones must of course also be vectors.

Definition 2.9. Discrete Fourier analysis.
In Discrete Fourier analysis, a vector = (xg,...,xn_1) is represented as a
linear combination of the N vectors

by = 1 (17 2min/N 2mizn/N - 2mikn/N ’627rin(N—1)/N) .

These vectors are called the normalised complex exponentials, or the pure
digital tones of order N. n is also called frequency index. The whole collection
Fn = {¢n)} is called the N-point Fourier basis.

Note that pure digital tones can be considered as samples of a pure tone,
taken uniformly over one period: If f(t) = e27"*/T /\/N is the pure tone with
frequency n/T, then f(kT/N) = >™nkT/N)/T |\/N = e2mink/N [\/N = ¢,,.
When mapping a pure tone to a digital pure tone, the index n corresponds to
frequency v = n/T, and N the number of samples takes over one period. Since
Tfs = N, where f is the sampling frequency, we have the following connection
between frequency and frequency index:

B N
nf andn:V

N Js

vV =

(2.3)

The following lemma shows that the vectors in the Fourier basis are orthonor-
mal, so they do indeed form a basis.

Lemma 2.10. Complex exponentials are an orthonormal basis.
The normalized complex exponentials {¢., 7];[:_01 of order N form an orthonor-
mal basis in RV,

Proof. Let n; and ny be two distinct integers in the range [0, N — 1]. The inner
product of ¢, and ¢,, is then given by

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS50

<627mn1k/N, e27rzn2k/N>

<¢n1) ¢n2> =

=

-1

eZﬂinlk/Ne—27rin2k/N

2= ==
Z
Ld

627ri(n17n2)k:/N

2| =
E
I
o

1 1— e27ri(n1—n2)
= Nl _ e27ri(n17n2)/N
=0.

In particular, this orthogonality means that the the complex exponentials form
a basis. Clearly also (¢, ¢,) = 1, so that the N-point Fourier basis is in fact
an orthonormal basis. O

Note that the normalizing factor \/% was not present for pure tones in the

previous chapter. Also, the normalizing factor % from the last chapter is not part
of the definition of the inner product in this chapter. These are small differences
which have to do with slightly different notation for functions and vectors, and
which will not cause confusion in what follows.

The focus in Discrete Fourier analysis is to change coordinates from the
standard basis to the Fourier basis, performing some operations on this “Fourier
representation”, and then change coordinates back to the standard basis. Such
operations are of crucial importance, and in this section we study some of their
basic properties. We start with the following definition.

Definition 2.11. Discrete Fourier Transform.

We will denote the change of coordinates matrix from the standard basis of
RY to the Fourier basis Fy by Fx. We will also call this the (N-point) Fourier
matric.

The matrix /N Fy is also called the (N-point) discrete Fourier transform,
or DFT. If is a vector in R", then y = DFTx are called the DFT coefficients
of . (the DFT coefficients are thus the coordinates in Fy, scaled with vN).
DFTzx is sometimes written as &.

Note that we define the Fourier matrix and the DFT as two different matrices,
the one being a scaled version of the other. The reason for this is that there are
different traditions in different fields. In pure mathematics, the Fourier matrix
is mostly used since it is, as we wil see, a unitary matrix. In signal processing,
the scaled version provided by the DFT is mostly used. We will normally write
x for the given vector in RV, and y for its DFT. In applied fields, the Fourier
basis vectors are also called synthesis vectors, since they can be used used to
“synthesize” the vector a, with weights provided by the coordinates in the Fourier
basis. To be more precise, we have that the change of coordinates performed by
the Fourier matrix can be written as

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS51

T=yopo+y1p1+ - +yn_10n-1= (o &1 - dn_1)y=Fy'y, (2.4)

where we have used the inverse of the defining relation y = Fy«, and that the
¢r, are the columns in Fy; ! (this follows from the fact that Fy !is the change of
coordinates matrix from the Fourier basis to the standard basis, and the Fourier
basis vectors are clearly the columns in this matrix). Equation (2.4) is also called
the synthesis equation.

Example 2.12. DFT of a cosine.

Let « be the vector of length N defined by z, = cos(275k/N), and y the
vector of length N defined by yi, = sin(277k/N). Let us see how we can compute
Fy (2x 4 3y). By the definition of the Fourier matrix as a change of coordinates,
Fn(¢y) = e,. We therefore get

Fy (2 + 3y) = Fy(2cos(2n5 - /N) + 3sin(277 - /N))

1 . . 1 .)
_ FN(27(627”5'/N + 6727rz5-/N) + 3277:(627m7-/N _ 6727rz7-/N))

2
= Fn(VN¢s + VNon_5 — %\/ﬁ(% —¢oN_7))
= VN (FEn(s) + Fn(dn—5) — %FNQZW + %FN(ZSN—?)

31 31
= \/N65 + \/NBN,g, — EZ\/N67 + ;\/NBN,%

Let us find an expression for the matrix Fy. From Lemma 2.10 we know that
the columns of Fy L are orthonormal. If the matrix was real, it would have been
called orthogonal, and the inverse matrix could have been obtained by transposing.
F &1 is complex, however, and it is easy to see that the conjugation present in
the definition of the inner product (2.1), implies that the inverse of Fiy can be
obtained if we also conjugate, in addition to transpose, i.e. (Fy)~! = (Fy)7.
We call (A)T the conjugate transpose of A, and denote this by A7. We thus
have that (Fy)~! = (Fy)". Matrices which satisfy A = A are called unitary.
For complex matrices, this is the parallel to orthogonal matrices.

Theorem 2.13. Fourier matriz is unitary.
The Fourier matrix Fiy is the unitary N x N-matrix with entries given by

(FN)nk = L e mink/IN,
for0<n,k<N-—1.
Since the Fourier matrix is easily inverted, the DFT is also easily inverted.

Note that, since (Fy)T = Fy, we have that (Fy)~! = Fy. Let us make the
following definition.

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS52

Definition 2.14. [DFT.
The matrix FN/\/N is the inverse of the matrix DFT = vV NFy. We call
this inverse matrix the inverse discrete Fourier transform, or IDFT.

We can thus also view the IDFT as a change of coordinates (this time from
the Fourier basis to the standard basis), with a scaling of the coordinates by
1/\/N at the end. The IDFT is often called the reverse DFT. Similarly, the
DFT is often called the forward DFT.

That y = DFTa and = IDFTy can also be expressed in component form
as

N—-1 1 N-1
Yn =y wpe RN = > yne?m kN (2.5)
k=0 n=0

In applied fields such as signal processing, it is more common to state the DFT
and IDFT in these component forms, rather than in the matrix forms y = DFTy
and x = IDFTy.

Let us now see how these formulas work out in practice by considering some
examples.

Example 2.15. DFT on a square wave.
Let us attempt to apply the DFT to a signal & which is 1 on indices close to
0, and 0 elsewhere. Assume that

x_L:...:x_l:xolez...:xL:L
while all other values are 0. This is similar to a square wave, with some
modifications: First of all we assume symmetry around 0, while the square wave
of Example 1.10 assumes antisymmetry around 0. Secondly the values of the
square wave are now 0 and 1, contrary to —1 and 1 before. Finally, we have a
different proportion of where the two values are assumed. Nevertheless, we will
also refer to the current digital sound as a square wave.

Since indices with the DF'T are between 0 an N —1, and since « is assumed to
have period N, the indices [—L, L] where our signal is 1 translates to the indices
[0,L] and [N — L, N — 1] (i.e., it is 1 on the first and last parts of the vector).
Elsewhere our signal is zero. Since ZQ;&,_L e~ 2mink/N — Z,::l_L e~ 2mink/N
(since e=27"k/N i periodic with period N), the DFT of z is

L N-1 L —1
Yn = E e—27rink:/N + § e—QTrink/N — § e—27rink/N + § e—27rink/N
k=0 k=N-L k=0 k=—L
L —2min(2L+1)/N
_ }: “omink/N _ 2minL/N1 € ()/
= e =e -
1 — e—2min/N
k=L
min(2L+1)/N —min(2L+1)/N

— €

_ _2minL/N —win(2L+1)/N _min/N €
=e e e . .
emin/N _ g—min/N

sin(mn(2L 4+ 1)/N)
sin(mn/N)

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS53

This computation does in fact also give us the IDFT of the same vector, since
the IDFT just requires a change of sign in all the exponents, in addition to the
1/N normalizing factor. From this example we see that, in order to represent
x in terms of frequency components, all components are actually needed. The
situation would have been easier if only a few frequencies were needed.

Example 2.16. Computing the DFT by hand.

In most cases it is difficult to compute a DFT by hand, due to the entries
e—2mnk/N in the matrices, which typically can not be represented exactly. The
DFT is therefore usually calculated on a computer only. However, in the case
N = 4 the calculations are quite simple. In this case the Fourier matrix takes
the form

DFT, =

e)
|
S
I
—_
~

-1 1 -1
i =1 —

We now can compute the DFT of a vector like (1,2,3,4)” simply as

1 1424344 10
2 | | 1-2i-3+4i | | —2+2i

DFT4 | 4 1—-24+3—4 | -2
4 142 —3—4i —2 -9

In general, computing the DFT implies using floating point multiplication. For
N =4, however, we see that there is no need for floating point multiplication at
all, since DFT4 has unit entries which are either real or purely imaginary.

Example 2.17. Direct implementation of the DFT.
The DFT can be implemented very simply and directly by the code

def DFTImpl(x):
y = zeros_like(x).astype(complex)
N = len(x)
for n in xrange(N):
D = exp(-2*pi*n*1j*arange(float(N))/N)
y[n] = dot(D, x)
return y

In Exercise 2.16 we will extend this to a general implementation we will use
later. Note that we do not allocate the entire matrix Fy in this code, as this
quickly leads to out of memory situations, even for N of moderate size. Instead
we construct one row of Fy at a time, and use use this to compute one entry
in the output. The method dot can be used here, since each entry in matrix
multiplication can be viewed as an inner product. It is likely that the dot
function is more efficient than using a for-loop, since Python may have an
optimized way for computing this. Note that dot in Python does not conjugate

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS54

any of the components, contrary to what we do in our definition of a complex
inner product. This can be rewritten to a direct implementation of the IDFT
also. We will look at this in the exercises, where we also make the method more
general, so that the DFT can be applied to a series of vectors at a time (it can
then be applied to all the channels in a sound in one call). Multiplying a full
N x N matrix by a vector requires roughly N? arithmetic operations. The DFT
algorithm above will therefore take a long time when N becomes moderately
large. It turns out that a much more efficient algorithm exists for computing the
DFT, which we will study at the end of this chapter. Python also has a built-in
implementation of the DF'T which uses such an efficient algorithm.

The DFT has properties which are very similar to those of Fourier series, as
they were listed in Theorem 1.28. The following theorem sums this up:

Theorem 2.18. Properties of the DFT.
Let « be a real vector of length N. The DFT has the following properties:

L ()y_,=(x), for0<n<N-—1.
2. If xp, = xn—g for all n (so x is symmetric), then & is a real vector.

3. If x, = —xn_y for all k (so x is antisymmetric), then Z is a purely
imaginary vector.

4. If d is an integer and z is the vector with components zp = z;_4 (the
vector & with its elements delayed by d), then (2), = e=27"/N (g) .

5. If d is an integer and z is the vector with components z;, = e /Nyg

then (£),, = (@), 4.

Proof. The methods used in the proof are very similar to those used in the proof
of Theorem 1.28. From the definition of the DFT we have

N-1 N-1 N-1
=~ _ —2mik(N—n)/N _ 2mwikn/N _ —o7wikn/N s
B = S e, 3 i, 3 s,
k=0 k=0 k=0

which proves property 1.
To prove property 2, we write

N-1 N-1 N

(E)n — 2 Zk€727mkn/N _ § $N_k€727”kn/N — E xu€727rz(N7u)n/N
k=0 k=0 u=1
N-1

N-1
= E x e2mun/N — E zye2miun/N = (F) .
u=0

u=0

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS55

If « is symmetric it follows that z = x, so that (Z),, = (Z),,. Therefore & must
be real. The case of antisymmetry in property 3 follows similarly.
To prove property 4 we observe that

N-1 N-1
(g)n — .’L'k,de_QTrikn/N — Z xke—27ri(k+d)n/N
k=0 k=0
N—-1
— 6727ridn/N Z xk6727rikn/N _ 6727ridn/N (Z/C\)n
k=0

For the proof of property 5 we note that the DFT of z is

N—-1 N—1
(g)n _ 627ridlc/anef27rikn/N _ Z xn6727ri(n7d)k/N _ (a:\)n—d'
k=0 k=0
This completes the proof. O

These properties have similar interpretations as the ones listed in Theo-
rem 1.28 for Fourier series. Property 1 says that we need to store only about one
half of the DFT coefficients, since the remaining coefficients can be obtained by
conjugation. In particular, when N is even, we only need to store yo, y1, ..., Yn/2-
This also means that, if we plot the (absolute value) of the DFT of a real vector,
we will see a symmetry around the index n = N/2. The theorem generalizes the
properties from Theorem 1.28, except for the last property where the signal had
a point of symmetry. We will delay the generalization of this property to later.

Example 2.19. Computing the DFT when multiplying with a complex exponen-
tial.

To see how we can use the fourth property of Theorem 2.18, consider a
vector x = (x9, T1, 22, X3, T4, Ts5, Te, T7) with length N = 8, and assume that x
is so that Fg(x) = (1,2,3,4,5,6,7,8). Consider the vector z with components
2p = €2™28/85 . Let us compute Fg(z). Since multiplication of & with e27?kd/N
delays the output y = Fy(x) with d elements, setting d = 2, the Fg(z) can be
obtained by delaying Fg(x) by two elements, so that Fg(z) = (7,8,1,2,3,4,5,6).
It is straightforward to compute this directly also:

N-1 N-1
(FNZ)n — Zke—QTr'Lkn/N _ Z eQﬂiQk/kae—Qﬂ'ikn/N
k=0 k=0
N-1
_ xk6727rik:(n72)/N _ (FN(m))n—2~
k=0

What you should have learned in this section.

e The definition of the Fourier basis and its orthonormality.

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS56

e The definition of the Discrete Fourier Transfrom as a change of coordinates
to the Fourier basis, its inverse, and its unitarity.

e How to apply the DFT to a sum of sinusoids.

e Properties of the DFT, such as conjugate symmetry when the vector is
real, how it treats delayed vectors, or vectors multiplied with a complex
exponential.

Exercise 2.9: Computing the DFT by hand
Compute Fyx when & = (2,3,4,5).

Exercise 2.10: Exact form of low-order DFT matrix

As in Example 2.16, state the exact cartesian form of the Fourier matrix for the
cases N =6, N =8, and N = 12.

Exercise 2.11: DFT of a delayed vector

We have a real vector with length N, and define the vector z by delaying

all elements in « with 5 cyclically, i.e. z5 = g, 26 = T1,---,2N-1 = TN—6,
and 29 = Tn_5,...,24 = Ty—1. For a given n, if |(Fyx),| = 2, what is then
|(Fnz)n|? Justify the answer.

Exercise 2.12: Using symmetry property

Given a real vector x of length 8 where (Fg(x))2 = 2 — 4, what is (Fg(x))s?

Exercise 2.13: DFT of cos?(27k/N)
Let x be the vector of length N where z, = cos?(2wk/N). What is then Fyx?

Exercise 2.14: DFT of cfx

Let a be the vector with entries ;, = c*. Show that the DFT of « is given by
the vector with components

1—cN
Yn = o
1 — ce—2min/N

forn=0,..., N—1.

Exercise 2.15: Rewrite a complex DFT as real DFT’s
If x is complex, Write the DFT in terms of the DFT on real sequences.

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS57
Hint. Split into real and imaginary parts, and use linearity of the DFT.

Exercise 2.16: DFT implementation

Extend the code for the function DFTImpl in Example 2.17 so that

e The function also takes a second parameter called forward. If this is true
the DFT is applied. If it is false, the IDF'T is applied. If this parameter is
not present, then the forward transform should be assumed.

e If the input x is two-dimensional (i.e. a matrix), the DFT/IDFT should be
applied to each column of x. This ensures that, in the case of sound, the
FFT is applied to each channel in the sound when the enrire sound is used
as input, as we are used to when applying different operations to sound.

Also, write documentation for the code.

Exercise 2.17: Symmetry
Assume that N is even.
a) Show that, if z14 n/2 = zx for all 0 < &k < N/2, then y,, = 0 when n is odd.

b) Show that, if x4 N/ = —x for all 0 < k < N/2, then y,, = 0 when n is
even.

c) Show also the converse statements in a) and b).
d) Also show the following:
e x, = 0 for all odd n if and only if yj 4 n/o =y for all 0 < k < N/2.

e x, = 0 for all even n if and only if yj 4 n/o = —yx for all 0 <k < N/2.

Exercise 2.18: DFT on complex and real data

Let @1, x5 be real vectors, and set @ = @1 +ixs. Use Theorem 2.18 to show that

(Fx(@) = 5 ((En @) + En(@)n—)

((Py @) — Fn@)—r)

?

‘,_.M\H

(Fn(22))n =

[\

This shows that we can compute two DFT’s on real data from one DFT on
complex data, and 2N extra additions.

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS58

2.3 Connection between the DFT and Fourier

series. Sampling and the sampling theorem

So far we have focused on the DFT as a tool to rewrite a vector in terms of the
Fourier basis vectors. In practice, the given vector x will often be sampled from
some real data given by a function f(¢). We may then compare the frequency
content of x and f, and ask how they are related: What is the relationship
between the Fourier coefficients of f and the DFT-coefficients of x?

In order to study this, assume for simplicity that f € Vi r for some M. This
means that f equals its Fourier approximation fys,

M

, 1 (7 .
f(t) — f]V[(t) _ Z Zne27mmf/T7 where z,, = T/ f(t)e—Qﬂznt/T dt. (26)
n=—»M 0

We here have changed our notation for the Fourier coefficients from v, to z,, in
order not to confuse them with the DFT coefficients. We recall that in order to
represent the frequency n/T fully, we need the corresponding exponentials with
both positive and negative arguments, i.e., both e2™*/T and e=27t/T,

Fact 2.20. frequency vs. Fourier coefficients.
Suppose f is given by its Fourier series (2.6). Then the total frequency
content for the frequency n/T is given by the two coefficients z, and z_,,.

We have the following connection between the Fourier coefficients of f and
the DFT of the samples of f.

Proposition 2.21. Relation between Fourier coefficients and DFT coefficients.
Let N > 2M, f € Vasr, and let = {f(kT/N)}1 -} be N uniform samples
from f over [0,T]. The Fourier coefficients z,, of f can be computed from

1
(20,21,...,2’]\/[, 0,...70 7Z_M,Z_]w+1,...,z_1) = —DFTN:c (27)
N—— N
N—(2M+1)

In particular, the total contribution in f from frequency n/T, for 0 <n < M, is
given by y, and yy_,, where y is the DFT of .

Proof. Let x and y be as defined, so that

N-1

— 1 2mink/N
Tk = o Z Yneé . (2.8)

n=0

Inserting the sample points ¢ = kKT/N into the Fourier series, we must have that

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS59

T = kT/N Z Zn e27mnk/N Z P eQﬂznk/N+Zz e?frznk:/N

n=—M
N—1
— Z Zn,NGQTri(n_N)k/N + Z Zn€27rink/N
n=N-M n=0
M N—1
— Z Zne27rink/N + Z zn_NeQ’Ti"k/N.
n=0 n=N-—-M
This states that € = NIDFT N (20,21, ---,20m5 0y...,0 2 py 2o Mgty ey 2—1)-
——
N—(2M+1)

Equation (2.7) follows by applying the DFT to both sides. We also see that
Zn = Yn/N and z_, = yors+1-n/N = yn—n/N, when y is the DFT of x. It now
also follows immediately that the frequency content in f for the frequency n/T
is given by ¥, and yy_,. This completes the proof. O

In Proposition 2.21 we take N samples over [0,7], i.e. we sample at rate
fs = N/T samples per second. When |n| < M, a pure sound with frequency
v = n/T is then seen to correspond to the DFT indices n and N — n. Since
T = N/fs, v =n/T can also be written as v = nfs/N. Moreover, the highest
frequencies in Proposition 2.21 are those close to v = M /T, which correspond to
DFT indices close to N — M and M, which are the nonzero frequencies closest
to N/2. DFT index N/2 corresponds to the frequency N/(2T) = f5/2, which
corresponds to the highest frequency we can reconstruct from samples for any
M. Similarly, the lowest frequencies are those close to v = 0, which correspond
to DFT indices close to 0 and N. Let us summarize this as follows.

Observation 2.22. Connection between DFT index and frequency.

Assume that & are N samples of a sound taken at sampling rate f,; samples
per second, and let y be the DFT of . Then the DFT indices n and N — n
give the frequency contribution at frequency v = nfs/N. Moreover, the low
frequencies in & correspond to the y,, with n near 0 and N, while the high
frequencies in @ correspond to the y, with n near N/2.

The theorem says that any f € Vi1 can be reconstructed from its samples
(since we can write down its Fourier series), as long as N > 2M. That f € Vi r
is important. From Figure 2.2 it is clear that information is lost in the right plot
when we discard everything but the sample values from the left plot.

Here the function is f(t) = sin(278t) € Vs 1, so that we need to choose N
so that N > 2M = 16 samples. Here N = 23 samples were taken, so that
reconstruction from the samples is possible. That the condition N < 2M is also
necessary can easily be observed in Figure 2.3.

Right we have plotted sin(274t) € V41, with N = 8 sample points taken
uniformly from [0, 1]. Here M = 4, so that we require 2M + 1 = 9 sample points,
according to Proposition 2.21. Clearly there is an infinite number of possible

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS60

1.0 1.0

y SRR
!

186~ 02 02 06 o8 10 ‘80 02 02 08 08 1o

Figure 2.2: An example on how the samples are picked from an underlying
continuous time function (left), and the samples on their own (right).

1.0 : : : : 1.0 : : :

0.57 | 0.57 /\ /\ /\ |

0.0 0.0

-0.5!] -0.5/ \/ \/ \/]
‘ ‘ ‘ . 0 02 04 06 08 1

18002 902 08 o8 1o ‘0. .0

Figure 2.3: Sampling sin(27t) with two points (left), and sampling sin(2m4t)
with eight points (right).

functions in Vi passing through the sample points (which are all zero): Any
f(t) = csin(2n4t) will do. Left we consider one period of sin(27t). Since this is
in Vs = Vi1, reconstruction should be possible if we have N > 2M +1 =3
samples. Four sample points, as seen left, is thus be enough to secure reconstruct.

The special case N = 2M + 1 is interesting. No zeros are then inserted in
the vector in Equation (2.7). Since the DFT is one-to-one, this means that there
is a one-to-one correspondence between sample values and functions in Vi 7
(i.e. Fourier series), i.e. we can always find a unique interpolant in Vi from
N =2M + 1 samples. In Exercise 2.21 you will asked to write code where you
start with a given function f, Take N = 2M + 1 samples, and plot the interpolant
from Vs r against f. Increasing M should give an interpolant which is a better
approximation to f, and if f itself resides in some Vjs 1 for some M, we should
obtain equality when we choose M big enough. We have in elementary calculus
courses seen how to determine a polynomial of degree N — 1 that interpolates a
set of N data points, and such polynomials are called interpolating polynomials.
In mathematics many other classes than polynomials exist which are also useful
for interpolation, and the Fourier basis is just one example.

Besides reconstructing a function from its samples, Proposition 2.21 also
enables us to approximate functions in a simple way. To elaborate on this, recall

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS61

that the Fourier series approximation f; is a best approximation to f from
V. We usually can’t compute fj; exactly, however, since this requires us to
compute the Fourier integrals. We could instead form the samples @ of f, and
apply Proposition 2.21. If M is high, fps is a good approximation to f, so that
the samples of fj; are a good approximation to . By continuity of the DFT, it
follows that y = DFTyx is a good approximation to the DFT of the samples of
far, so that

N-1
ft) =" ypetmm/" (2.9)
n=0

is a good approximation to fjs, and therefore also to f. We have illustrated this
in Figure 2.4.

_—

f f
-
r——vy

Figure 2.4: How we can interpolate f from Vj; r with help of the DFT. The
left vertical arrow represents sampling. The right vertical arrow represents
interpolation, i.e. computing Equation (2.9).

The new function f has the same values as [in the sample points. This is
usually not the case for fys, so that f and fj; are different approximations to f.
Let us summarize as follows.

Idea 2.23. f as approzimation to f.

The function f resulting from sampling, taking the DFT, and interpolation, as
shown in Figure 2.4, also gives an approximation to f. f is a worse approximation
in the mean square sense (since fjs is the best such), but it is much more useful
since it avoids evaluation of the Fourier integrals, depends only on the samples,
and is easily computed.

The condition N > 2M in Proposition 2.21 can also be written as N/T >
2M/T. The left side is now the sampling rate fs, while the right side is the
double of the highest frequency in f. The result can therefore also be restated
as follows

Proposition 2.24. Reconstruction from samples.

Any f € Va1 can be reconstructed uniquely from a uniform set of samples
{f(KT/N)}Y=!, as long as fs > 2|v|, where v denotes the highest frequency in
I

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS62

We also refer to f; = 2|v| as the critical sampling rate, since it is the
minimum sampling rate we need in order to reconstruct f from its samples. If
fs is substantially larger than 2|v| we say that f is oversampled, since we have
takes more samples than we really need. Similarly we say that f is undersampled
if fs is smaller than 2|v|, since we have not taken enough samples in order to
reconstruct f. Clearly Proposition 2.21 gives one formula for the reconstruction.
In the literature another formula can be found, which we now will deduce. This
alternative version of Theorem 2.21 is also called the sampling theorem. We start
by substituting N = T/Ts (i.e. T = NT,, with T, being the sampling period) in
the Fourier series for f:

M
FRT) = > zpemmhN —M<k<M.
n=—M

Equation (2.7) said that the Fourier coefficients could be found from the samples
from

1
(2:(),21,...,2,“1\/[7 0,...,0 ,Z,M,Z,M+1,...,Z,1) = fDFTNQE.
N—— N
N—(2M+1)

By delaying the n index with —M, this can also be written as

N-1 M
1 . 1 ,
= > f(RT)e 2k N = N > f(RT)e > mRIN M <n < M.
k=0 k=—M

Inserting this in the reconstruction formula we get

| M M ‘ .
f(t) _ N Z Z f(kTs)e—Qﬂ'mk/NeQTrznt/T

n=—M k=—M

— Z N(Mf(kTs)e%mn(t/T—k/N))

k=—M n=—

M i _
_ Z ief27riM(t/Tfk/N) 1 — e2mi(2M+1)(t/T—k/N)
N

k=—M

M1 sin(r(t — kTy)/T))
=2 N sin(n(t — kTy)/T)

1 — e27i(t/T—k/N) f(kTs)

f(KT)

k=—M
Let us summarize our findings as follows:

Theorem 2.25. Sampling theorem and the ideal interpolation formula for peri-
odic functions.

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS63

Let f be a periodic function with period T, and assume that f has no
frequencies higher than vHz. Then f can be reconstructed exactly from its
samples f(—MTs),..., f(MT,) (where Ty is the sampling period, N = % is the
number of samples per period, and M = 2N +1) when the sampling rate f; =
is bigger than 2v. Moreover, the reconstruction can be performed through the
formula

1 sin(m(t — kTs)/Ts)
Z Ik N sin(w(t — kTs)/T) (2.10)

Formula (2.10) is also called the ideal interpolation formula for periodic
functions. Such formulas, where one reconstructs a function based on a weighted
sum of the sample values, are more generally called interpolation formulas. The
function %% is also called an interpolation kernel. Note that f
itself may not be equal to a finite Fourier series, and reconstruction is in general
not possible then. The ideal interpolation formula can in such cases still be used,
but the result we obtain may be different from f(¢).

In fact, the following more general result holds, which we will not prove. The
result is also valid for functions which are not periodic, and is frequently stated
in the literature:

Theorem 2.26. Sampling theorem and the ideal interpolation formula, general
version..

Assume that f has no frequencies higher than vHz. Then f can be recon-
structed exactly from its samples ..., f(—=2T5), f(=T5s), £(0), f(Ts), f(2T%s), . ..
when the sampling rate is bigger than 2v. Moreover, the reconstruction can be
performed through the formula

sln kTs) /Ty
Z f(ETY) ((t(_kTs)/)és). (2.11)

k=—o00

When f is periodic, it is possible to deduce this partly from the interpolation
formula for periodic functions. An ingredient in this is that xz ~ sinz for small
x, so that there certainly is a connection between the terms in the two sums.
The non-periodicity requires more tools in Fourier analysis, however.

The DFT coefficients represent the contribution in a sound at given frequen-
cies. Due to this the DFT is extremely useful for performing operations on sound,
and also for compression as we will see. For instance we can listen to either the
lower or higher frequencies after performing a simple adjustment of the DFT
coefficients. Observation 2.22 says that the 2L 4+ 1 lowest frequencies correspond
to the DFT-indices [0, L] U [N — L, N — 1], while the 2L + 1 highest frequencies
correspond to DFT-indices [N/2 — L, N/2 + L] (if we assume that N is even).
If we perform a DFT, eliminate these low or high frequencies, and perform an
inverse DF'T, we recover the sound signal where these frequencies have been
eliminated. With the help of the DFT implementation from Example 2.17, all

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS64

this can be achieved for zeroing out the highest frequencies with the following
code:

10000

shape (x) [0]

Zero out higher frequencies
= fft.fft(x, None, 0)
yL@L+1): (-1)] = o;

newx = fft.ifft(y)

< ®H=C

Example 2.27. Using the DFT to adjust frequencies in sound.

Let us test the above code on the sound samples in castanets.wav. As a
first attempt, let us split the sound samples into small blocks of size N = 32,
and zero out frequencies as described for each block. This should certainly be
more efficient than applying the DFT to the entire sound, since it corresponds
to applying a sparse block matrix to the entire sound, rather than the full DFT
matrix'. You will be spared the details for actually splitting the sound file
into blocks: you can find the function playDFT(L, lower) which performs this
splitting, sets frequency components to 0 except the described 2L + 1 frequency
components, and plays the resulting sound. The second parameter lower states
if the highest or the lowest frequency components should be kept. If you try this
for L =7 (i.e. we keep only 15 of the DFT coefficients) for the lower frequencies,
the result sounds like this. You can hear the disturbance in the sound, but we
have not lost that much even if more than half the DFT coefficients are dropped.
If we instead try L = 3 the result will sound like this. The quality is much
poorer now. However we can still recognize the song, and this suggests that
most of the frequency information is contained in the lower frequencies. If we
instead use playDFT to listen to the higher frequencies, for L = 7 the result now
sounds like this, and for L = 3 the result sounds like this. Both sounds are
quite unrecognizable, confirming that most information is contained in the lower
frequencies.

Note that there may be a problem in the previous example: when we restrict
to the values in a given block, we actually look at a different signal. The new
signal repeats the values in the block in periods, while the old signal consists of
one much bigger block. What are the differences in the frequency representations
of the two signals?

Assume that the entire sound has length M. The frequency representation
of this is computed as an M-point DFT (the signal is actually repeated with
period M), and we write the sound samples as a sum of frequencies: xp =
ﬁ 22/12_01 yne2™ /M T et us consider the effect of restricting to a block for each
of the contributing pure tones eQ’Tik”D/M, 0 <ng <M —1. When we restrict
this to a block of size N, we get the signal {62”%"0/”[}2\:01. Depending on ng,
this may not be a Fourier basis vector! Its N-point DFT gives us its frequency
representation, and the absolute value of this is

IWe will shortly see, however, that efficient algorithms for the DFT exist, so that this
problem is not so big after all.

http://folk.uio.no/oyvindry/matinf2360/sounds/castanetslowerfreq7.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castanetslowerfreq3.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castanetshigherfreq7.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castanetshigherfreq3.wav

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS65

N-1 N-1
|yn| _ E eZﬂ'zk:ng/Mef%mkn/N _ § 627r7,lc(no/M7n/N)

1— 27iN(no/M —n/N)
:‘ e ’: (2.12)

1 — e2mi(no/M—n/N)

sin(mN(no/M —n/N)) '
sin(m(ng/M —n/N))

If ng = kM/N, this gives y, = N, and y, = 0 when n # k. Thus, splitting
the signal into blocks gives another pure tone when ng is a multiplum of M/N.
When ny is different from this the situation is different. Let us set M = 1000,
ng = 1, and experiment with different values of N. Figure 2.5 shows the y,
values for different values of N. We see that the frequency representation is now
very different, and that many frequencies contribute.

3 1.2
1.0 1.0}
0.8 0.8}
0.6 0.6/
0.4 0.4}
0.2 0.2}
0.0 LSNP ! 0.0} WJ
~02—3"70 20 30 40 50 60 70 %2 0 50 100 150 200 250

Figure 2.5: The frequency representation obtained when restricting to a block
of size N of the signal, for N = 64 (left), and N = 256 (right)

The explanation is that the pure tone is not a pure tone when N = 64 and
N = 256, since at this scale such frequencies are too high to be represented
exactly. The closest pure tone in frequency is n = 0, and we see that this
has the biggest contribution, but other frequencies also contribute. The other
frequencies contribute much more when N = 256, as can be seen from the peak
in the closest frequency n = 0. In conclusion, when we split into blocks, the
frequency representation may change in an undesirable way. This is a common
problem in signal processing theory, that one in practice needs to restrict to
smaller segments of samples, but that this restriction may have undesired effects.

Another problem when we restrict to a shorter periodic signal is that we
may obtain discontinuities at the boundaries between the new periods, even if
there were no discontinuities in the original signal. And, as we know from the
square wave, discontinuities introduce undesired frequencies. We have already
mentioned that symmetric extensions may be used to remedy this.

The MP3 standard also applies a DFT to the sound data. In its simplest form
it applies a 512 point DFT. There are some differences to how this is done when
compared to Example 2.27, however. In our example we split the sound into
disjoint blocks, and applied a DFT to each of them. The MP3 standard actually
splits the sound into blocks which overlap, as this creates a more continuous

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS66

frequency representation. Another difference is that the MP3 standard applies a
window to the sound samples, and the effect of this is that the new signal has a
frequency representation which is closer to the original one, when compared to
the signal obtained by using the block values unchanged as above. We will go
into details on this in Section 3.3.1.

Example 2.28. Compression by zeroing out DFT coefficients.

We can achieve compression of a sound by setting small DFT coefficients
which to zero. The idea is that frequencies with small values at the corresponding
frequency indices contribute little to our perception of the sound, so that they
can be discarded. As a result we obtain a sound with less frequency components,
which is thus more suitable for compression. To test this in practice, we first
need to set a threshold, which decides which frequencies to keep. The following
code then sets frequencies below the threshold to zero:

threshold = 50

y = fft.fft(x, None, 0)

y = (abs(y) >= threshold)*y
newx = fft.ifft(y)

In this code 1 represents a value of true in the logical expression which is
evaluated, 0 represents false. The value is 1 if and only if the absolute value
of the corresponding element is greater than or equal to threshold. As in the
previous example, we can apply this code to small blocks of the signal at a
time, and listen to the result by playing it. We have implemented a function
playDFTthreshold(threshold) which splits our sample audio file into blocks
of the same size as above, applies the code above with the given threshold, and
plays the result. The code also writes to the display how large percentage of the
DFT indices were set to 0. If you run this function with threshold equal to 0.02,
the result sounds like this, and the function says that about 74.1% of the DFT
indices were set to zero. You can clearly hear the disturbance in the sound, but
we have not lost that much. If we instead try threshold equal to 0.1, the result
will sound like this, and the function says that about 93.5% of the DFT indices
were set to zero. The quality is much poorer now, even if we still can recognize
the song. This suggests that most of the frequency information is contained
in frequencies with the highest values. In Figure 2.6 we have illustrated this
principle for compression for 512 sound samples from a song.

The samples of the sound and (the absolute value of) its DFT are shown at
the top. At the bottom all values of the DFT with absolute value smaller than
0.02 are set to zero (52) values then remain), and the sound is reconstructed
with the IDFT, and then shown in. The start and end signals look similar, even
though the last signal can be represented with less than 10 % of the values from
the first.

Note that using a neglection threshold in this way is too simple in practice:
The neglection threshold in general should depend on the frequency, since the
human auditory system is more sensitive to certain frequencies.

Example 2.29. Compression by quantizing DFT coefficients.

http://folk.uio.no/oyvindry/matinf2360/sounds/castanetsthreshold002.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castanetsthreshold01.wav

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS67

0.10 0.4
0.3
0.05 0.2
0.1
0.00 0.0 .
-0.1
-0.05 -0.2
-0.3
~010—66 200 300 400 500 % 100 200 300 400 500
0.4 : : : : : 0.10
0.3/
0.2 0.05/
0.1
0.0k | 0.00
fe
_01,
-0.2| -0.05]
_03,
~04 100 200 300 00 500 0% 100 200 300 400 500

Figure 2.6: Experimenting with the DFT on a small part of a song.

The previous example is a rather simple procedure to obtain compression.
The disadvantage is that it only affects frequencies with low contribution. A
more neutral way to obtain compression is to let each DFT index occupy a
certain number of bits. This is also called quantization, and provides us with
compression if the number of bits is less than what actually is used to represent
the sound. This is closer to what modern audio standards do. Consider the
following code:

n 5

y = fft.fft(x, None, 0)
y *= 2%%*n

y = round_(y)
y

n

/= float (2**n)
ewx = fft.ifft(y)

The effect of the middle lines is that a number with bit representation

.dodido.d_1d_sd_3...

is truncated so that the bits d,,_1, d,_2, d,,_o are discarded. In other words,
high values of n mean more rounding. We have implemented a function
playDFTquantized(n) which executes this code and plays the result, in the
same way as in the examples above. If you run this function with n equal to —3,
the result sounds like this, with n = —1 the result sounds like this, and with
n = 1 the result sounds like this. You can hear that the sound degrades further
when n is increased.

http://folk.uio.no/oyvindry/matinf2360/sounds/castantesquantizedm3.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castantesquantizedm1.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castantesquantizedp1.wav

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS68

In practice this quantization procedure is also too simple, since the human
auditory system is more sensitive to certain frequency information, and should
thus allocate a higher number of bits for such frequencies. Modern audio
standards take this into account, but we will not go into details on this.

What you should have learned in this section.

e Translation between DFT index and frequency. In particular DFT indices
for high and low frequencies.

e How one can use the DFT to adjust frequencies in sound.

Exercise 2.19: Comment code

Explain what the code below does, line by line:

x[0:2%x17]

y = fft.fft(x, None, 0)
y[(2%x17/4) : (3x2%x17/4)] = 0
newx = abs(fft.ifft(y))

newx /= abs(newx) .max()
play(newx, fs)

X

Comment in particular why we adjust the sound samples by dividing with the
maximum value of the sound samples. What changes in the sound do you expect
to hear?

Exercise 2.20: Which frequency is changed?

In the code from the previous exercise it turns out that f, = 44100Hz, and that
the number of sound samples is N = 292570. Which frequencies in the sound
file will be changed on the line where we zero out some of the DFT coeflicients?
Exercise 2.21: Implement interpolant

Implement code where you do the following;:

e at the top you define the function f(z) = cos®(z), and M = 3,

e compute the unique interpolant from Vs r (i.e. by taking N = 2M + 1
samples over one period), as guaranteed by Proposition 2.21,

e plot the interpolant against f over one period.

Finally run the code also for M =4, M =5, and M = 6. Explain why the plots
coincide for M = 6, but not for M < 6. Does increasing M above M = 6 have
any effect on the plots?

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS69

2.4 The Fast Fourier Transform (FFT)

The main application of the DFT is as a tool to compute frequency information
in large datasets. Since this is so useful in many areas, it is of vital importance
that the DFT can be computed with efficient algorithms. The straightforward
implementation of the DFT with matrix multiplication we looked at is not
efficient for large data sets. However, it turns out that the DFT matrix may be
factored in a way that leads to much more efficient algorithms, and this is the
topic of the present section. We will discuss the most widely used implementation
of the DFT, usually referred to as the Fast Fourier Transform (FFT). The FFT
has been stated as one of the ten most important inventions of the 20’th century,
and its invention made the DFT computationally feasible in many fields. The
FFT is for instance used much in real time processing, such as processing and
compression of sound, images, and video. The MP3 standard uses the FFT
to find frequency components in sound, and matches this information with a
psychoachoustic model, in order to find the best way to compress the data.

FFT-based functionality is collected in a module called £ft.

Let us start with the most basic FFT algorithm, which applies for a general
complex input vector x, with length N being an even number.

Theorem 2.30. FFT algorithm when N is even.

Let y = DFTy« be the N-point DFT of @, with N an even number, and let
Dy o be the (N/2) x (N/2)-diagonal matrix with entries (Dy2)n,n = e~ 2™ "/N
for 0 <mn < N/2. Then we have that

(Y0, Y1, - - Yn/2—1) = DFT /029 + Dy /oDF Ty oz (2.13)
(UN/2: YNJ2415 - YN-1) = DFTN/2CC(6) - DN/2DFTN/2CU(O) (2.14)

where (¢), x(®) € RN/2 consist of the even- and odd-indexed entries of x,
respectively, i.e.

z®) = (zo,22,...,TN_2) z0) = (1,3, .., EN_1)-

Put differently, the formulas (2.13)-(2.14) reduce the computation of an
N-point DFT to two N/2-point DFT’s. It turns out that this is the basic fact
which speeds up computations considerably. It is important to note that we first
should compute that the same term Dy, DFT N/gac(") appears in both formulas
above. It is thus important that this is computed only once, and then inserted
in both equations. Let us first check that these formulas are correct.

Proof. Suppose first that 0 < n < N/2 — 1. We start by splitting the sum in the
expression for the DFT into even and odd indices,

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS70

N-1 N/2-1 N/2-1
Yn = 2 IL‘k€727”nk/N: E 12k6727mn2k:/N+ E $2k+1672ﬂ-zn(2k+1)/1\[
k=0 k=0 k=0
N/2-1 N/2—1
E m2k6727rznk/(N/2) +€727mn/N E x2k+16727r7,nk/(N/2)
k=0 k=0

= (DFTypp2®) e 27N (DFTy 02l |

where we have substituted (¢ and z(® as in the text of the theorem, and
recognized the N/2-point DFT in two places. Assembling this for 0 < n <
N/2 we obtain Equation (2.13). For the second half of the DFT coefficients,

i.e. {yn/24nto<n<n/2-1, we similarly have

N—1
YN/2in = Z Te —27i(N/24+n)k/N _ Z Te - 6 —2mink/N

k=0
N/2—1 N/271

— Z kae—Qﬂian/N_ Z x2k+1e—27rin(2k+l)/N
k=0 k=0
N/2—1 N/2—1

_ Z ope—2mink/ (N/2) _ o=2min/N Z gy 1e 2Tk (N/2)
k=0 k=0

- (DFTN/2m<€>) _ e—2min/N (DFTN/2w<°>)

Equation (2.14) now follows similarly. O

Note that an algorithm for the IDFT can be deduced in exactly the same
way. All we need to change is the sign in the exponents of the Fourier matrix. In
addition we need to divide by 1/N at the end. If we do this we get the following
result, which we call the IFFT algorithm. Recall that we use the notation A for
the matrix where all the elements of A have been conjugated.

Theorem 2.31. IFFT algorithm when N is even.
Let N be an even number and let € = DFT yy. Then we have that

(To,Z1,...,Tnj2-1) = DFTN/27J(€) + DN/2DFTN/2)y(O) (2.15)
(Zn/2,EN/241 - - s En—1) = DF Ty 5y'? — Dy /sDF Ty 5)y (2.16)

where y(©), y(©) € RN/2 are the vectors

y = (Yo, Y2, yn-2) y) = (W1,93, -+ YN —1)-

Moreover, = IDFT yy can be computed from @ = &/N = DFTny/N

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIST71

It turns out that these theorems can be interpreted as matrix factorizations.
For this we need to define the concept of a block matrix.

Definition 2.32. Block matrizx.

Let mg, ..., my—1 and ng, ..., ns_1 be integers, and let A7) be an m; x n;-
matrix fort =0, ...,r—1and j =0, ..., s — 1. The notation
A4(0,0) A0.1) o A0s=1)
A(LO) A(lrl) oo A(lasfl)
A= .
A(ril,O) A(ril,l) . A(rf.l,sfl)

denotes the (mg +my + ... +my_1) X (ng +nq1 + ... + ns_1)-matrix where the
matrix entries occur as in the A7) matrices, in the way they are ordered. When
A is written in this way it is referred to as a block matrix.

Clearly, using equations (2.13)-(2.14), the DFT matrix can be factorized
using block matrix notation as

8
&
~——

(
(Y0 Y15 ynya—1) = (DFTxjs DyssDFT) (w(o)

(e)
T
(YN/2:YUN/2415 -+ YN-1) = (DFTN/2 _DN/2DFTN/2) (:c(")))

Combining these, noting that
(DFTN/Q Dy/2DFET 2) _ (I Do) (DFTN/2 0)
DFTy/2 —Dn2DFTy 2 I —Dyyjs 0 DFTwn/)’
we obtain the following factorisations:

Theorem 2.33. DFT and IDFT matrix factorizations.
We have that

(I Dy (DFTy) 0 x(©)
DFIyz = (I —DN/Q) (0 DFTy;) \a©

_ 1 /I Dy DFTy s 0 y(©
IDFTNy_N(I “Dars o BFTy3) Ly (2.17)

We will shortly see why these factorizations reduce the number of arithmetic
operations we need to do, but first let us consider how to implement them. First
of all, note that we can apply the FFT factorizations again to Fi/, to obtain

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS72

I Dy 0 0
(I Dy I —Dpyy 0 0
DFTN‘”_(I DN/Q) 0 0 I Dyyl|”~
0 0 I Dy

DFT 4 0 0 0 x(ee)

0 DFT y/4 0 0 x(€0)

0 0 DFTN/4 0 w(oe)

0 0 0 DFTN/4 w(oo)

where the vectors (¢ and 2(°) have been further split into even- and odd-indexed
entries. Clearly, if this factorization is repeated, we obtain a factorization

I Dy 0 0 0 0
I —Dyjgr 0 0 0 o0
e, v |0 0 I Dy 0 o0
DFTy = [] |° 0 I =Dyyan 0 0 P (2.18)
k=1 : : : 0 0
0o 0 0 0 I Dy
0o 0 0 o0 I —Dy/a

The factorization has been repated until we have a final diagonal matrix with
DFT; on the diagonal, but clearly DFT; = 1, so we do not need any DFT-
matrices in the final factor. Note that all matrices in this factorization are
sparse. A factorization into a product of sparse matrices is the key to many
efficient algorithms in linear algebra, such as the computation of eigenvalues and
eigenvectors. When we later compute the number of arithmetic operations in
this factorization, we will see that this is the case also here.

In Equation (2.18), P is a permutation matrix which secures that the even-
indexed entries come first. Since the even-indexed entries have 0 as the last
bit, this is the same as letting the last bit become the first bit. Since we here
recursively place even-indexed entries first, it is not too difficult to see that P
permutes the elements of & by performing a bit-reversal of the indices, i.e.

P(6i>=€j Z:dldgdn j:dndn—1~-~d17

where we have used the bit representations of i and j. Since P? = I, a bit-reversal
can be computed very efficiently, and performed in-place, i.e. so that the result
ends up in same vector x, so that we do not need to allocate any memory in
this operation. We will use an existing function called bitreverse to perfom
in-place bit-reversal. In Exercise 2.30 we will go through this implementation.
Matrix multiplication is usually not done in-place, i.e. when we compute
y = Az, different memory is allocated for « and y. For certain simple matrices,

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS73

however, matrix multiplication can also be done in-place, so that the output can
be written into the same memory (x) used by the input. It turns out that the
matrices in factorization (2.18) are of this kind, so that the entire FFT can be
computed in-place. We will have more to say on this in the exercises.

In a practical algorithm, it is smart to perform the bit-reversal first, since
the matrices in the factorization (2.18) are block diagonal, so that the different
blocks in each matrix can be applied in parallel to Pz (the bit-reversed version
of). We can thus exploit the parallel processing capabilities of the computer.
It turns out that this bit-reversal is useful for other similar factorizations of the
DFT as well. We will also look at other such factorizations, and we will therefore
split the computation of the DFT as follows: First a general function is applied,
which is responsible for the bit-reversal of the input vector . Then the matrices
in the factorization (2.18) is applied in a “kernel FFT function” (and we will
have many such kernels), which assumes that the input has been bit-reversed. A
simple implementation of the general function can be as follows.

def FFTImpl(x, FFTKernel):
bitreverse(x)
FFTKernel (x)

A simple implementation of the kernel FFT function, based on the first FFT
algorithm we stated, can be as follows.

def FFTKernelStandard(x):

N = len(x)

if N > 1:
xe, xo = x[0:(N/2)], x[(N/2):]
FFTKernelStandard (xe)
FFTKernelStandard (xo)
D = exp(-2*pi*lj*arange(float(N/2))/N)
x0 *= D
x[:] = concatenate([xe + xo0, xe - xo0])

In Exercise 2.22 we will extend these to the general implementations we will
use later. We can now run the FFT by combining the general function and the
kernel as follows:

FFTImpl(x, FFTKernelStandard)

Note that FFTKernelStandard is recursive; it calls itself. If this is your first
encounter with a recursive program, it is worth running through the code
manually for a given value of N, such as N = 4.

Immediately we see from factorization (2.18) two possible implementations
for a kernel. First, as we did, we can apply the FFT recursively. A second way
is to, instead of using recursive function calls, use a for-loop where we at each
stage in the loop compute the product with one matrix in factorization (2.18),
from right to left. Inside this loop there must be another for-loop, where the
different blocks in this matrix are applied. We will establish this non-recursive
implementation in Exercise 2.28, and see that this leads to a more efficient
algorithm.

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS74

Python has built-in functions for computing the DFT and the IDFT using
the FFT algorithm. These reside in the module numpy. The functions are called
fft and ifft. These functions make no assumption about the length of the
vector, i.e. it may not be of even length. The implementation may however check
if the length of the vector is 2", and in those cases variants of the algorithm
discussed here can be used. In general, fast algorithms exist when the vector
length N can be factored as a product of small integers.

2.4.1 Reduction in the number of multiplications with the
FFT

Now we will explain why the FFT and IFFT factorizations reduce the number of
arithmetic operations when compared to direct DFT and IDFT implementations.
We will assume that € RY with N a power of 2, so that the FFT algorithm
can be used recursively, all the way down to vectors of length 1. In many settings
this power of 2 assumption can be done. As an example, in compression of
sound, one restricts processing to a certain block of the sound data, since the
entire sound is too big to be processed in one piece. One then has a freedom to
how big these blocks are made, and for optimal speed one often uses blocks of
length 2" with r some integer in the range 5-10. At the end of this section we
will explain how the more general FFT can be computed when N is not a power
of 2.

We first need some terminology for how we count the number of operations
of a given type in an algorithm. In particular we are interested in the limiting
behaviour when N becomes large, which is the motivation for the following
definition.

Definition 2.34. Order of an algorithm.

Let Ry be the number of operations of a given type (such as multiplication
or addition) in an algorithm, where N describes the dimension of the data (such
as the size of the matrix or length of the vector), and let f be a positive function.
The algorithm is said to be of order f(N), also written O(f(N)), if the number
of operations grows as f(IV) for large N, or more precisely, if

. Ry

Noeo f(N)

In some situations we may count the number of operations exactly, but we
will also see that it may be easier to obtain the order of the algorithm, since the
number of operations may have a simpler expression in the limit. Let us see how
we can use this terminology to describe the complexity of the FFT algorithm.
Let My and Ay denote the number of real multiplications and real additions,
respectively, required by the FFT algorithm. Once the FFT’s of order N/2 have
been computed (M /o real multiplications and Ay /o real additions are needed
for each), it is clear from equations (2.13)-(2.14) that an additional N complex
additions, and an additional N/2 complex multiplications, are required. Since
one complex multiplication requires 4 real multiplications and 2 real additions,

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIST75

and one complex addition requires two real additions, we see that we require
an additional 2V real multiplications, and 2N + N = 3N real additions. This
means that we have the difference equations

MN:2MN/2+2N An :QAN/2+3N. (2.19)

Note that e=27//N may be computed once and for all and outside the algorithm,
and this is the reason why we have not counted these operations.

The following example shows how the difference equations (2.19) can be solved.
It is not too difficult to argue that My = O(2N logy N) and Ay = O(3N log,),
by noting that there are logy N levels in the FFT, with 2N real multiplications
and real 3N additions at each level. But for N = 2 and N = 4 we may actually
avoid some multiplications, so we should solve these equations by stating initial
conditions carefully, in order to obtain exact operation counts. In practice, and
as we will see later, one often has more involved equations than (2.19), for which
the solution can not be seen directly, so that one needs to apply systematic
mathematical methods instead, such as in the example below.

Example 2.35. Solving for the number of operations.

To use standard solution methods for difference equations to equations (2.19),
we first need to write them in a standard form. Assuming that Ay and My
are powers of 2, we set N = 2" and z, = Myr, or x, = Asr. The difference
equations can then be rewritten as x, = 2x,_1 + 2 - 2" for multiplications, and
T, = 2x,._1 + 32" for additions, and again be rewritten in the standard forms

Tpy1 — 22, =4-27 Tpy1 — 22, =627,

The homogeneous equation x,41 — 2z, = 0 has the general solution xff =C2".
Since the base in the power on the right hand side equals the root in the
homogeneous equation, we should in each case guess for a particular solution on
the form (z,), = Ar2". If we do this we find that the first equation has particular
solution (x,), = 2r2", while the second has particular solution (x,), = 3r2".
The general solutions are thus on the form x, = 272" + C2", for multiplications,
and z, = 3r2" + C2" for additions.

Now let us state initial conditions for the number of additions and multipli-
cations. Example 2.16 showed that floating point multiplication can be avoided
completely for N = 4. We can therefore use My = x5 = 0 as an initial value.
This gives, x, = 2r2" — 42", so that My = 2N logy, N —4N.

For additions we can use As = x1 = 4 as initial value (since DF Ty (1, 22) =
(z1 + z2,21 — x2)), which gives x,, = 372", so that Ay = 3N logy N — N. Our
FFT algorithm thus requires slightly more additions than multiplications. FFT
algorithms are often characterized by their operation count, i.e. the total number
of real additions and real multiplications, i.e. Ry = My + Ay. We see that
Ry =5Nlogy N —5N. The order of the operation count of our algorithm can

thus be written as O(5N log, N), since limpy oo W =1.

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS76

In practice one can reduce the number of multiplications further, since
e=2mn/N take the simple values 1, —1, —i, i for some n. One can also use that
e~2mn/N can take the simple values 4+1/v/241/v/2i = 1/v/2(£1 4 1), which also
saves some floating point multiplication, due to that we can factor out 1/v/2.
These observations do not give big reductions in the arithmetic complexity,
however, and one can show that the operation count is still O(5N log, N) after
using these observations.

It is straightforward to show that the IFFT implementation requires the
same operation count as the FFT algorithm.

In contrast, the direct implementation of the DFT requires N? complex
multiplications and N(N — 1) complex additions. This results in 4N? real
multiplications and 2N2? + 2N (N — 1) = 4N? — 2N real additions. The total
operation count is thus 8N2 — 2N. In other words, the FFT and IFFT signifi-
cantly reduce the number of arithmetic operations. In Exercise 2.29 we present
another algorithm, called the Split-radix algorithm, which reduces the number of
operations even further. We will see, however, the reduction obtained with the
split-radix algorithm is about 20%. Let us summarize our findings as follows.

Theorem 2.36. Number of operations in the FFT and IFFT algorithms.

The N-point FFT and IFFT algorithms we have gone through both require
O(2N log, N) real multiplications and O(3N log, N) real additions. In compar-
ison, the number of real multiplications and real additions required by direct
implementations of the N-point DFT and IDFT are O(8N?).

Often we apply the DFT for real data, so we would like to have FFT-
algorithms tailored to this, with reduced complexity (since real data has half
the dimension of general complex data). By some it has been argued that one
can find improved FFT algorithms when one assumes that the data is real. In
Exercise 2.27 we address this issue, and conclude that there is little to gain from
assuming real input: The general algorithm for complex input can be tailored
for real input so that it uses half the number of operations, which harmonizes
with the fact that real data has half the dimension of complex data.

Another reason why the FFT is efficient is that, since the FFT splits the
calculation of the DFT into computing two DFT’s of half the size, the FFT
is well suited for parallel computing: the two smaller FFT’s can be performed
independently of one another, for instance in two different computing cores
on the same computer. Besides reducing the number of arithmetic operations,
FFT implementation can also apply several programming tricks to speed up
computation, see for instance http://cnx.org/content/m12021/latest/ for an
overview.

2.4.2 The FFT when N = N1 N,

Applying an FFT to a vector of length 2" is by far the most common thing to
do. It turns out, however, that the idea behind the algorithm easily carries over
to the case when N is any composite number, i.e. when N = N;N,. This make

http://cnx.org/content/m12021/latest/

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIST7

the FF'T useful also in settings where we have a dictated number of elements in
@, which is not an even number. The approach we will present in this section
will help us as long as N is not a prime number. The case when N is a prime
number needs other techniques.

So, assume that N = N;N,. Any time-index k can be written uniquely on
the form N1k +p, with 0 < k < Np, and 0 < p < N;. We will make the following
definition.

Definition 2.37. Polyphase components of a vector.
Let « € RMN2. We denote by x(P) the vector in R? with entries (x®));, =
TNy ktp- x(?) is also called the p’th polyphase component of x.

The previous vectors £(¢) and x(°) can be seen as special cases of polyphase
components. Polyphase components will also be useful later (see Chapter 8).
Using the polyphase notation, we can write

N-1 Ni—1N3—1
DFT Nz = Z mke—QTrink/N _ Z Z (:L,(p))ke—QTrin(N1k+p)/N
k=0 p=0 k=0
Ni—1 Ny—1
_ Z 6727rinp/N Z (:I}(p))k€72ﬂ-ink/N2
p=0 k=0

Similarly, any frequency index n can be written uniquely on the form Nog + n,
with 0 < ¢ < Ny, and 0 < n < N, so that the DFT can also be written as

Ni1—1 No—1
Z e—2ﬂi(N2q+n)p/N Z (w(p))ke—27fi(N2q+ﬂ)k/N2
p—=0 k=0

N1—1 N2—1
_ § e—27rqu/Nle—2mnp/N § : (w(p))ke—%rmk'/Ng_
p=0 k=0

Now, if X is the Ny x Nj-matrix X where the p’th column is ("), we recognize
the inner sum Y 720" (2(P))e~27ink/N2 a5 matrix multiplication with DFT y,
and X, so that this can be written as (DFTy,X), . The entire sum can thus
be written as

N;—1

Z e—Zﬂiqp/Nle—27rinp/N(DFTNzX)nJ).

p=0
Now, define Y as the matrix where X is multiplied component-wise with the
matrix with (n, p)-component e~27""?/N_ The entire sum can then be written as

Ni—1

Z efzm‘qp/le’n’p = (YFNl)n,q
pZO

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS78

This means that the sum can be written as component (n,q) in the matrix
Y Fy,. Clearly Y Fy, is the matrix where the DFT is applied to all rows of Y.
We have thus shown that component Nag + n of Fyx equals (Y Fi,)y, 4. This
means that Fiyx can be obtained by stacking the columns of Y Fly, on top of
one-another. We can thus summarize our procedure as follows, which gives a
recipe for splitting an FFT into smaller FFT’s when NN is not a prime number.

Theorem 2.38. FFT algorithm when N is composite.
When N = NNy, the FET of a vector & can be computed as follows

e Form the N, x Ni-matrix X, where the p’th column is z®.
e Perform the DFT on all the columns in X, i.e. compute Fi, X.

—2minp/N (these are

e Multiply element (n,p) in the resulting matrix with e
called twiddle factors), to obtain matrix Y.

e Perform the DFT on all the rows in the resulting matrix, i.e. compute
Y Fn,.

e Form the vector where the columns of the resulting matrix are stacked on
top of one-another.

From the algorithm one easily deduces how the IDFT can be computed also:
All steps are invertible, and can be performed by IFFT or multiplication. We
thus only need to perform the inverse steps in reverse order.

But what about the case when N is a prime number? Rader’s algorithm
[29] handles this case by expressing a DFT with N a prime number in terms of
DFT’s of length N —1 (which is not a prime number). Our previous scenario can
then be followed, but stops quickly again if N — 1 has prime factors of high order.
Since there are some computational penalties in applying Rader’s algorithm, it
may be inefficient some cases. Winograd’s FFT algorithm [39] extends Rader’s
algorithm to work for the case when N = p”. This algorithm tends to reduce
the number of multiplications, at the price of an increased number of additions.
It is difficult to program, and is rarely used in practice.

What you should have learned in this section.

e How the FFT algorithm works by splitting into two FFT’s of half the
length.

e Simple FFT implementation.

e Reduction in the number of operations with the FFT.

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS79

Exercise 2.22: Extend implementation

Recall that, in Exercise 2.16, we extended the direct DFT implementation so
that it accepted a second parameter telling us if the forward or reverse transform
should be applied. Extend the general function and the standard kernel in the
same way. Again, the forward transform should be used if the forward parameter
is not present. Assume also that the kernel accepts only one-dimensional data,
and that the general function applies the kernel to each column in the input if
the input is two-dimensional (so that the FFT can be applied to all channels
in a sound with only one call). The signatures for our methods should thus be
changed as follows:

def FFTImpl(x, FFTKernel, forward = True):
def FFTKernelStandard(x, forward):

It should be straightforward to make the modifications for the reverse transform
by consulting the second part of Theorem 2.33. For simplicity, let FFTImpl take
care of the additional division with /N we need to do in case of the IDFT. In the
following we will assume these signatures for the FFT implementation and the
corresponding kernels.

Exercise 2.23: Compare execution time

In this exercise we will compare execution times for the different methods for
computing the DFT.

a) Write code which compares the execution times for an N-point DFT for the
following three cases: Direct implementation of the DFT (as in Example 2.17),
the FFT implementation used in this chapter, and the built-in fft-function.
Your code should use the sample audio file castanets.wav, apply the different
DFT implementations to the first N = 2" samples of the file for r = 3 to r = 15,
store the execution times in a vector, and plot these. You can use the function
time () in the time module to measure the execution time.

b) A problem for large N is that there is such a big difference in the execution
times between the two implementations. We can address this by using a loglog-
plot instead. Plot N against execution times using the function loglog. How
should the fact that the number of arithmetic operations are 8N? and 5N logy, N
be reflected in the plot?

c) It seems that the built-in FFT is much faster than our own FFT implemen-
tation, even though they may use similar algorithms. Try to explain what can
be the cause of this.

Exercise 2.24: Combine two FFT’s

Let 1 = (1,3,5,7) and &2 = (2,4,6,8). Compute DFT x; and DFT x5, Ex-
plain how you can compute DFTs(1,2, 3,4, 5,6, 7,8) based on these computations

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS80

(you don’t need to perform the actual computation). What are the benefits of
this approach?

Exercise 2.25: Composite FFT

When N is composite, there are a couple of results we can state regarding
polyphase components.

a) Assume that N = N; N, and that & € RY satisfies ;. ,n, = z for all k,r,
i.e. has period N;. Show that y,, = 0 for all n which are not a multiplum of
Ns.

b) Assume that N = N;N,, and that () = 0 for p # 0. Show that the
polyphase components y® of y = DFT yx are constant vectors for all p.

Exercise 2.26: FFT operation count

When we wrote down the difference equation for the number of multiplications in
the FFT algorithm, you could argue that some multiplications were not counted.
Which multiplications in the FFT algorithm were not counted when writing down
this difference equation? Do you have a suggestion to why these multiplications
were not counted?

Exercise 2.27: Adapting the FFT algorithm to real data

In this exercise we will look at an approach to how we can adapt an FFT
algorithm to real input . We will now instead rewrite Equation (2.13) in the
compendium for indices n and N/2 — n as

= (DFTyn/0z'?), + e 2"/ N(DF Ty p2?),

= (DFT w2 yja—p + e 27NN (DFT 52)) o
= (DFTy/22) nj2—p — €™/ Y (DF Ty 22(),,

= (DF Ty 52}, — e~ 27n/N (DFT g /52(©)),..

Yn

YN/2—-n

We see here that, if we have computed the terms in y,, (which needs an additional 4
real multiplications, since e=2™/N and (DFT N/Q:r,("))n are complex), no further
multiplications are needed in order to compute yn/2_y, since its compression
simply conjugates these terms before adding them. Again yy/, must be handled
explicitly with this approach. For this we can use the formula

yny2 = (DEFTy/52)g — (Dy/sDF Ty 02

instead.

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS81

a) Conclude from this that an FFT algorithm adapted to real data at each
step requires N/4 complex additions and N/2 additions. Conclude from this
as before that an algorithm based on real data requires My = O(Nlog, N)
multiplications and Ay = O (£Nlog, N) additions (i.e. again we obtain half
the operation count of complex input).

b) Find an IFFT algorithm adapted to vectors y which have conjugate symmetry,
which has the same operation count we found above.

Hint. Consider the vectors y, + Yn/2—, and e2min/N(
equations above, how can these be used in an IFFT?

Yn — UN/2—n)- From the

Exercise 2.28: Non-recursive FFT algorithm

Use the factorization in (2.18) in the compendium to write a kernel function
FFTKernelNonrec for a non-recursive FF'T implementation. In your code, per-
form the matrix multiplications in Equation (2.18) in the compendium from
right to left in an (outer) for-loop. For each matrix loop through the different
blocks on the diagonal in an (inner) for-loop. Make sure you have the right
number of blocks on the diagonal, each block being on the form

I DN/Qk

I —Dnjor)’
It may be a good idea to start by implementing multiplication with such a simple
matrix first as these are the building blocks in the algorithm (also attempt to do
this so that everything is computed in-place). Also compare the execution times

with our original FFT algorithm, as we did in Exercise 2.23, and try to explain
what you see in this comparison.

Exercise 2.29: The Split-radix FFT algorithm

In this exercise we will develop a variant of the FFT algorithm called the split-
radiz FFT algorithm, which until recently held the record for the lowest operation
count for any FFT algorithm.

We start by splitting the rightmost DFT /5 in Equation (2.17) in the com-
pendium by using this equation again, to obtain

DFTy/s Dy (DFTN/4 DN/4DFTN/4> 200

DFTy/s —DnjsDFTy),
DFTy,4 DN/4DFTN/4)

2(00)
DFETy/2 =Dy <DFTN/4 ~Dn/4DF Ty 4

£(00)

DFTNCL‘ =

(2.20)
The term radix describes how an FF'T is split into FFT’s of smaller sizes, i.e. how
the sum in an FFT is split into smaller sums. The FFT algorithm we started
this section with is called a radix 2 algorithm, since it splits an FFT of length

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS82

N into FFT’s of length N/2. If an algorithm instead splits into FFT’s of length
N/4, it is called a radix 4 FFT algorithm. The algorithm we go through here is
called the split radix algorithm, since it uses FFT’s of both length N/2 and N/4.

a) Let G4 be the (N/4)x(N/4) diagonal matrix with e~2mn/N on the diagonal.

Show that Dz = (Gg/‘* . g))
- N/4

b) Let Hy/, be the (N/4) x (N/4) diagonal matrix Gp,4Dyys. Verify the
following rewriting of Equation (2.20):

GN/4DFTN/4 HN/4DFTN/4> (e)
DFT . . x'\¢
N/z <—ZGN/4DFTN/4 iH Ny DFT N4 £000)

DFTyx =
N DET —~Gn/DFTy/y —Hy/DFT)y —(00)
N2\ iGn/DFTy/y —iHy/uDF Ty,
[0 Gy Hiya DFT /s 0 0 z(©
_ |0 I ~iGna il 0 DFT 0 ()
[0 —Gyu —Hyp 0 ON/4 DFT 2(00)
0 I Gy —iHnp N/4
I Gnya o Hipa DFT y/px(®)
—iGnys iHnyy /
= a / H/ DFTN/4£13(06)
I —(N/4 N/4 DFT /42

—iGra iHyys

DFTN/Zw(e)+(Gn/aDFT g2 + HyyyDFT 42)

—1 (GN/4DFTN/4$E(OE) — HN/4DFTN/4ZC(OO))
GN/4DFTN/45E(OS) + HN/4DFTN/4$(OO)
—i (Gn/aDFT n/4@®®) — Hy 4 DFT 4209

DFT oz — (

¢) Explain from the above expression why, once the three FFT’s above have
been computed, the rest can be computed with N/2 complex multiplications,
and 2 x N/4 + N = 3N/2 complex additions. This is equivalent to 2N real
multiplications and N + 3N = 4N real additions.

Hint. It is important that GN/4DFTN/4:B(O€) and HN/4DFTN/4;B(°°) are com-
puted first, and the sum and difference of these two afterwards.

d) Due to what we just showed, our new algorithm leads to real multiplication
and addition counts which satisfy

MNZMN/2+2MN/4+2N ANZAN/2+2AN/4—|—4N
Find the general solutions to these difference equations and conclude from these

that My = O (%NlogQ N), and Ay =0 (%Nlogg N). The operation count is
thus O (4N log, N), which is a reduction of Nlogy N from the FFT algorithm.

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS83

e) Write an FFT kernel function FFTKernelSplitradix for the split-radix
algorithm (again this should handle both the forward and reverse transforms).
Are there more or less recursive function calls in this function than in the
original FFT algorithm? Also compare the execution times with our original
FFT algorithm, as we did in Exercise 2.23. Try to explain what you see in this
comparison.

By carefully examining the algorithm we have developed, one can reduce
the operation count to 4N log, N — 6N + 8. This does not reduce the order of
the algorithm, but for small N (which often is the case in applications) this
reduces the number of operations considerably, since 6V is large compared to
4Nlogy N for small N. In addition to having a lower number of operations
than the FFT algorithm of Theorem 2.31, a bigger percentage of the operations
are additions for our new algorithm: there are now twice as many additions
than multiplications. Since multiplications may be more time-consuming than
additions (depending on how the CPU computes floating-point arithmetic), this
can be a big advantage.

Exercise 2.30: Bit-reversal

In this exercise we will make some considerations which will help us explain the
code for bit-reversal. This is perhaps not a mathematically challenging exercise,
but nevertheless a good exercise in how to think when developing an efficient
algorithm. We will use the notation ¢ for an index, and j for its bit-reverse. If
we bit-reverse k bits, we will write N = 2% for the number of possible indices.

a) Consider the following code

j=20
for i in range(N-1):
print j
m = N/2
while (m >= 1 and j >= m):
j -—=m
/=2
j+=m

Explain that the code prints all numbers in [0, N — 1] in bit-reversed order (i.e. j).
Verify this by running the program, and writing down the bits for all numbers
for, say N = 16. In particular explain the decrements and increments made to
the variable j. The code above thus produces pairs of numbers (7, j), where j is
the bit-reverse of i. As can be seen, bitreverse applies similar code, and then
swaps the values z; and z; in z, as it should.

Since bit-reverse is its own inverse (i.e. P? = I), it can be performed by
swapping elements i and j. One way to secure that bit-reverse is done only once,
is to perform it only when j > i. You see that bitreverse includes this check.

b) Explain that N — j — 1 is the bit-reverse of N —i — 1. Due to this, when
i,7 < N/2, we have that N —i —1, N — j — [> N/2, and that bitreversal can
swap them. Moreover, all swaps where 4,7 > N/2 can be performed immediately

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS84

when pairs where i,j < N/2 are encountered. Explain also that j < N/2
if and only if ¢ is even. In the code you can see that the swaps (i,7) and
(N —i—1,N —j — 1) are performed together when i is even, due to this.

c) Assume that ¢ < N/2 is odd. Explain that j > N/2, so that j > . This says
that when ¢ < N/2 is odd, we can always swap ¢ and j (this is the last swap
performed in the code). All swaps where 0 < j < N/2 and N/2 < j < N can be
performed in this way.

In bitreversal, you can see that the bit-reversal of 2r and 2r+1 are handled
together (i.e. 7 is increased with 2 in the for-loop). The effect of this is that the
number of if-tests can be reduced, due to the observations from b) and c).

2.5 Summary

We defined digital sound, and demonstrated how we could perform simple
operations on digital sound such as adding noise, playing at different rates e.t.c..
Digital sound could be obtained by sampling the sounds from the previous
chapter. We considered the analog of Fourier series for digital sound, which
is called the Discrete Fourier Transform, and looked at its properties and its
relation to Fourier series. We also saw that the sampling theorem guaranteed
that there is no loss in considering the samples of a function, as long as the
sampling rate is high enough compared to the highest frequency in the sound.
We obtained an implementation of the DFT, called the FFT, which is
more efficient in terms of the number of arithmetic operations than a direct
implementation of the DFT. The FFT has been cited as one of the ten most
important algorithms of the 20’th century [3]. The original paper [6] by Cooley
and Tukey dates back to 1965, and handles the case when N is composite. In the
literature, one has been interested in the FFT algorithms where the number of
(real) additions and multiplications (combined) is as low as possible. This number
is also called the flop count. The presentation in this book thus differs from
the literature in that we mostly count only the number of multiplications. The
split-radix algorithm [40, 10], which we reviewed in Exercise 2.4. 2.29, held the
record for the lowest flop count until quite recently. In [18], Frigo and Johnson
showed that the operation count can be reduced to O(34N log,(N)/9), which
clearly is less than the O(4N log, N) we obatined for the split-radix algorithm.
It may seem strange that the total number of additions and multiplications
are considered: Aren’t multiplications more time-consuming than additions?
When you consider how this is done mechanically, this is certainly the case:
In fact, floating point multiplication can be considered as a combination of
many floating point additions. Due to this, one can find many places in the
literature where expressions are rewritten so that the multiplication count is
reduced, at the cost of a higher addition count. Winograd’s algorithm [39] is
an example of this, where the number of additions is much higher than the
number of multiplications. However, most modern CPU’s have more complex
hardware dedicated to computing multiplications, which can result in that one

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS85

floating point multiplication can be performed in one cycle, just as one addition
can. Another thing is that modern CPU’s typically can perform many additions
and multiplications in parallel, and the higher complexity in the multiplication
hardware may result in that the CPU can run less multiplications in parallel,
compared to additions. In other words, if we run test program on a computer, it
may be difficult to detect any differences in performance between addition and
multiplication, even though complex big-scale computing should in theory show
some differences. There are also other important aspects of the FFT, besides
the flop count. Another is memory use. It is possible to implement the FFT so
that the output is computed into the same memory as the input, so that the
FFT algorithm does not require extra memory besides the input buffer. Clearly,
one should bit-reverse the input buffer in order to achieve this.

We have now defined two types of transforms to the frequency domain: Fourier
series for continuous, periodic functions, and the DFT, for periodic vectors. In
the literature there are in two other transforms also: The Continuous time
Fourier transform (CTFT) we have already mentioned at the end of Chapter 1.
We also have the Discrete time Fourier transform (DTFT)) for vectors which
are not periodic [28]. In this book we will deliberately avoid the DTFT as well,
since it assumes that the signal to transform is of infinite duration, while we in
practice analyze signals with a limited time scope.

The sampling theorem is also one of the most important results of the last
century. It was discovered by Harry Nyquist and Claude Shannon [31], but also
by others independently. One can show that the sampling theorem holds also
for functions which are not periodic, as long as we have the same bound on the
highest frequency. This is more common in the literature. In fact, the proof seen
here where we restrict to periodic functions is not common. The advantage of
the proof seen here is that we remain in a finite dimensional setting, and that
we only need the DFT. More generally, proofs of the sampling theorem in the
literature use the DTFT and the CTFT.

Chapter 3

Operations on digital sound:
digital filters

In Section 1.5 we defined analog filters as operations on sound which preserved
different frequencies. Such operations are important since they can change the
frequency content in many ways. Analog filters can not be used computationally,
however, since they are defined for all instances in time. As when we defined the
DFT to make Fourier series computable, we would like to define digital filters, in
order to make analog filters computable. It turns out that what we will define
as digital filters can be computed by the following procedure:

i(xn_1+2xn—|—xn+1), forn=0,1,..., N —1. (3.1)
Here x denotes the input vector, and z the output vector. In other words, the
output of a digital filter is constructed by combining several input elements
linearly. The concrete filter defined by Equation (3.1) is called a smoothing filter.
We will demonstrate that it smooths the variations in the sound, and this is
where it gets its name from. We will start this chapter by by looking at matrix
representations for operations as given by Equation (3.1). Then we will formally
define digital filters in terms of preservation of frequencies as we did for analog
filters, and show that the formal definition is equivalent to such operations.

Zn =

3.1 DMatrix representations of filters
Let us consider Equation (3.1) in some more detail to get more intuition about
filters. As before we assume that the input vector is periodic with period N,

so that z,4n = x,. Our first observation is that the output vector z is also
periodic with period N since

1 1
ZntN = 1(%+N—1 + 2Ty N + TngNg1) = Z(xn_l + 2% + Tpt1) = 20

86

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS87

The filter is also clearly a linear transformation and may therefore be represented
by an N x N matrix S that maps the vector @ = (xg,z1,...,25_1) to the vector
z=(z0,21,--.,2N-1), i.e., we have z = Sx. To find S, for 1 <n < N — 2 it is
clear from Equation (3.1) that row n has the value 1/4 in column n — 1, the
value 1/2 in column n, and the value 1/4 in column n + 1. For row 0 we must be
a bit more careful, since the index —1 is outside the legal range of the indices.
This is where the periodicity helps us out so that

1 1 1
20 = Z(33_1 + 20+ 21) = z(xN—1 + 220+ 1) = 1(2370 21+ TN-1).

From this we see that row 0 has the value 1/4 in columns 1 and N — 1, and the
value 1/2 in column 0. In exactly the same way we can show that row N — 1
has the entry 1/4 in columns 0 and N — 2, and the entry 1/2 in column N — 1.
In summary, the matrix of the smoothing filter is given by

2100 - 00 01
1210 0000
510121-~-0000
- 3.2
4;:3::1:3: ()
0000 --- 0121
1000 - 00 1 2

A matrix on this form is called a Toeplitz matrix. The general definition is as
follows and may seem complicated, but is in fact quite straightforward:

Definition 3.1. Toeplitz matrices.

An N x N-matrix S is called a Toeplitz matrix if its elements are constant
along each diagonal. More formally, Si; = Si4s,+s for all nonnegative integers
k, I, and s such that both k+ s and [+ s lie in the interval [0, N —1]. A Toeplitz
matrix is said to be circulant if in addition

S(k+s) mod N,(I+s) mod N = Sk,

for all integers k, [in the interval [0, N — 1], and all s (Here mod denotes the
remainder modulo N).

Toeplitz matrices are very popular in the literature and have many applica-
tions. A Toeplitz matrix is constant along each diagonal, while the additional
property of being circulant means that each row and column of the matrix
'wraps over’ at the edges. Clearly the matrix given by Equation (3.2) satisfies
Definition 3.1 and is a circulant Toeplitz matrix. A Toeplitz matrix is uniquely
identified by the values on its nonzero diagonals, and a circulant Toeplitz matrix
is uniquely identified by the values on the main diagonal, and on the diagonals
above (or under) it. Toeplitz matrices show up here in the context of filters, but
they will also show up later in the context of wavelets.

Equation (3.1) leads us to the more general expression

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERSS8

2y = Z 17 (3.3)
k

If ¢ has infinitely many nonzero entries, the sum is an infinite one, and may
diverge. We will, however, mostly assume that ¢ has a finite number of nonzero
entries. This general expression opens up for defining many types of operations.
The values t;, will be called filter coefficients. The range of k is not specified,
but is typically an interval around 0, since z, usually is calculated by combining
x)’s with indices close to n. Both positive and negative indices are allowed.
As an example, for formula (3.1) k ranges over —1,0, and 1, and we have that
t_y =t =1/4, and to = 1/2. Since Equation (3.3) needs to be computed for
each n, if only tg, ..., tgmaes are nonzero, we need to go through the following
for-loop to compute Zimaz,---,2N—1:

z = zeros_like(x)
for n in range (kmax,N):
for k in range(kmax + 1):
z[n] += tlkl*x[n - k]

It is clearly possible to vectorize the inner loop here, since it takes the form of a
dot product. Another possible way to vectorize is to first change the order of
summation, and then vectorize as follows

z = zeros_like(x)
for k in range(kmax + 1):
z[kmax:N] += t[k]*x[(kmax-k): (N-k)]

Depending on how vectorization is supported, this code will in general execute
faster, and is to prefer. The drawback, however, is that a filter often is applied in
real time, with the output computed only when enough input is available, with
the input becoming available continuously. This second approach then clearly
fails, since it computes nothing before all input is available. In the exercise we
will compare the computation times for the two approaches above, and compare
them with a built-in function which computes the same.

Note that above we did not consider the first entries in z, since this is where
the circulation occurs. Taken this into account, the first filter we considered in
this chapter can be implemented in vectorized form simply as

z[0] = x[1]/4. + x[0]/2. + x[N-1]/4.
z[1:(N-1)] = x[2:N]/4. + x[1:(N-1)]1/2. + x[0:(N-2)]/4.
z[N-1] = x[01/4. + x[N-11/2. + x[N-2]/4.

In the following we will avoid such implementations, since for-loops can be
very slow in Python. We will see that an efficient built-in function exists for
computing this, and use this instead.

By following the same argument as above, the following is clear:

Proposition 3.2. Filters as matrices.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS89

Any operation defined by Equation (3.3) is a linear transformation which
transforms a vector of period N to another of period N. It may therefore be
represented by an N x N matrix S that maps the vector & = (2o, z1,...,2N-1)
to the vector z = (20, 21,-..,2N-1), i.6., we have z = Sx. Moreover, the matrix
S is a circulant Toeplitz matrix, and the first column s of this matrix is given by

if 0 < N/2;
Sk:{tk, fo<k< /7 (34)

then fN/2<k<N-—1.

In other words, the first column of S can be obtained by placing the coefficients
in (3.3) with positive indices at the beginning of s, and the coefficients with
negative indices at the end of s.

This proposition will be useful for us, since it explains how to pass from the
form (3.3), which is most common in practice, to the matrix form S.

Example 3.3. Finding the matriz elements from the filter coefficients.
Let us apply Proposition 3.2 to the operation defined by formula (3.1):

o for k = 0 Equation (3.4) gives sg =t = 1/2.
e For k =1 Equation (3.4) gives s; =t; = 1/4.
e For k = N — 1 Equation (3.4) gives sy_1 =t_1 = 1/4.

For all £ different from 0, 1, and IV — 1, we have that sy = 0. Clearly this gives
the matrix in Equation (3.2).

Proposition 3.2 is also useful when we have a circulant Toeplitz matrix .5,
and we want to find filter coefficients ¢; so that z = Sx can be written on the
form (3.3):

Example 3.4. Finding the filter coefficients from the matriz.
Consider the matrix

S:

= O W N
W N =
= O W

0
1
2
0 3 2

This is a circulant Toeplitz matrix with NV = 4, and we see that so = 2, s; = 3,
so = 0, and s3 = 1. The first equation in (3.4) gives that to = sp = 2, and
t; = s3 = 3. The second equation in (3.4) gives that t_o = s; = 0, and
t_1 = s3 = 1. By including only the t; which are nonzero, the operation can be
written as

Zn =t 1Tp_(—1) ttoTn + 11%n—1 +t2Tn_2 = Tpy1 + 220 + 3Tp_1.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS90

Since the filter coefficients t; uniquely define any N x N-circulant Toeplitz
matrix, we will establish the following shorthand notation for the filter matrix
for a given set of filter coefficients. We will use this notation only when we have
a finite set of nonzero filter coefficients (note however that many interesting
filters in signal processing have infinitely many nonzero filter coefficients, see
Section 3.5) Note also that we always choose N so large that the placement of
the filter coefficients in the first column, as dictated by Proposition 3.2, never
collide (as happens when N is smaller than the number of filter coefficients).

Definition 3.5. Compact notation for filters.
Let kmin, kmax be the smallest and biggest index of a filter coefficient in
Equation (3.3) so that ¢; # 0 (if no such values exist, let kyin = kmax = 0), i.e.

kmax

Zn = Z thn,k. (35)

k=kmin

We will use the following compact notation for S:

S = {tknlin"' '7t—17t707t17"'7tkmam}'

In other words, the entry with index 0 has been underlined, and only the nonzero
ti’s are listed. ke and k., are also called the start and end indices of S. By
the length of S, denoted I(.S), we mean the number kpaz — Kmin-

One seldom writes out the matrix of a filter, but rather uses this compact
notation.

Example 3.6. Writing down compact filter notation.
Using the compact notation for a filter, we would write S = {1/4,1/2,1/4}
for the filter given by formula (3.1)). For the filter

Zp = Tpy1 + 220 + 3x,1

from Example 3.4, we would write S = {1,2,3}.

3.1.1 Convolution

Applying a filter to a vector x is also called taking the convolution of the two
vectors t and x. Convolution is usually defined without the assumption that
the input vector is periodic, and without any assumption on the vector lengths
(i.e. they may be sequences of inifinite length). The case where both vectors ¢
and x have a finite number of nonzero elements dererves extra attention. Assume
that ¢g,...,tp—1 and xg,...,zy_1 are the only nonzero elements in ¢ and
(i.e. we can view them as vectors in RM and R, respectively). It is clear from
the expression z, = Y txx,_r that only 2q,...,2p4+n—2 can be nonzero. This
motivates the following definition.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS91

Definition 3.7. Convolution of vectors.

By the convolution of two vectors t € RM and & € R we mean the vector
t+x € RMTN-1 defined by

(Exa)p = tpwn s, (3.6)
k

where we only sum over k so that 0 < k< M,0<n—k < N.

Note that convolution in the literature usually assumes infinite vectors.
Python has the built-in function convolve for computing ¢ * . As we shall see
in the exercises this function is highly optimized, and is therefore much used
in practice. Since convolution is not exactly the same as our definition of a
filter (since we assume that a vector is repeated periodically), it would be a
good idea to express our definition of filters in terms of convolution. This can
be achieved with the next proposition, which is formulated for the case with
equally many filter coefficients with negative and positive indices. The result is
thus directly applicable for symmetric filters, which is the type of filters we will
mostly concentrate on. It is a simple exercise to generalize the result to other
filters, however.

Proposition 3.8. Using convolution to compute filters.
Assume that S is a filter on the form

S={t_r,...,to,...,tr}.

If z € RV, then Sa can be computed as follows:

e Form the vector & = (zn_r, " ,ZN-1,Z0, " yEN—1,T0y""* s LL—1) E
RN+2L

e Use the convolve function to compute 2 =t * & € RMTN+2L-1

e We have that Sx = (Z21,..., 21 N—2).

We will consider an implementation of this result using the convolve function
in the exercises.

Proof. When x € RY, the operation & — t * can be represented by an
(M + N —1) x N matrix. It is easy to see that this matrix has element (i + s, 1)
equal to s, for 0 <i < M, 0 < s < N. In Figure 3.1 such a matrix is shown for
M = 5. The nonzero diagonals are shown as diagonal lines.

Now, form the vector & € RV*+2L as in the text of the theorem. Convolving
(t_r1,...,tr) with vectors in RVN*+2L can similarly be represented by an (M + N +
2L — 1) x (N 4 2L)-matrix. The rows from 2L up to and including M + N — 2
in this matrix (we have marked these with horizontal lines above) make up a
new matrix S, and this is shown in Figure 3.2 (S is an N x (N + 2L) matrix).

We need to show that Sz = S&. We have that S equals the matrix shown
in Figure 3.3 multiplied with (xy_r,...,ZN-1,Z0y..-, EN—1,Z0s--.,TL—1) (We

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS92

Figure 3.1: A (M 4+ N — 1) x N matrix representing the operation & — t x x.

Figure 3.2: The N x (N 4 2L)-matrix S.

inserted extra vertical lines in the matrix where circulation occurs), which equals
the matrix shown in Figure 3.4 multiplied with (xq,...,2x_1). We see that this
is Sz, and the proof is complete.

Figure 3.3: The matrix we multiply with
(TN—Ly- s TN-1,T05 -+ s TN—-1,20,- -, TL—1)-

O

There is also a very nice connection between convolution and polynomials:

Proposition 3.9. Convolution and polynomials.
Assume that p(x) = ayz +ay_12ny_1 +...,a17 + ag and q(z) = byrz™ +
by—1zp—1 + ..., b1z + by are polynomials of degree N and M respectively.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS93

Figure 3.4: The matrix we multiply with (zq,...,zn_1)-

Then the coefficients of the polynomial pq can be obtained by computing
convolve(a,b).

We can thus interpret a filter as a polynomial. In this setting, clearly the
length [(.S) of the filter can be interpreted as the degree of the polynomial. If
t € RM and € RY, then they can be associated with polynomials of degree
M —1 and N — 1, respectively. Also, their convolution, which is in RM*N=1 can
be associated with a polynomial of degree M + N — 2, which is the sum of the
degrees of the individual polynomials. Of course we can make the same addition
of degrees when we multiply polynomials. Clearly the polynomial associated
with ¢ is the frequency response, when we insert = e~*. Also, applying two
filters in succession is equivalent to applying the convolution of the filters, so
that two filtering operations can be combined to one.

Since the number of nonzero filter coefficients is typically much less than N
(the period of the input vector), the matrix S have many entries which are zero.
Multiplication with such matrices requires less additions and multiplications
than for other matrices: If S has k nonzero filter coefficients, S has Nk nonzero
entries, so that kN multiplications and (k—1)N additions are needed to compute
Sz. This is much less than the N2 multiplications and (N — 1)N additions
needed in the general case. Perhaps more important is that we need not form
the entire matrix, we can perform the matrix multiplication directly in a loop.
For large N we risk running into out of memory situations if we had to form the
entire matrix.

What you should have learned in this section.

e How to write down the circulant Toeplitz matrix from a digital filter
expression, and vice versa.

e How to find the first column of this matrix (s) from the filter coefficients
(t), and vice versa.

e The compact filter notation for filters with a finite number of filter coeffi-
cients.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS94

e The definition of convolution, its connection with filters, and the conv-
function for computing convolution.

e Connection between applying a filter and multiplying polynomials.

Exercise 3.1: Finding the filter coefficients and the matrix
Assume that the filter S is defined by the formula

1 1
Zn = Z$n+1 + an + anfl + an72'

Write down the filter coefficients t;, and the matrix for S when N = 8.

Exercise 3.2: Finding the filter coefficients from the matrix

Given the circulant Toeplitz matrix

S:

N OO
OO =N
O~ N O
=N oo

write down the filter coefficients ty.

Exercise 3.3: Convolution and polynomials

Compute the convolution of {1,2,1} with itself. interpret the result in terms of
two polynomials.

Exercise 3.4: Implementation of convolution

Implement code which computes ¢ x & in the two ways described after Equation
(3.3) in the compendium, i.e. as a double for loop, and as a simple for loop in
k, with n vectorized. As your ¢, take k randomly generated numbers. Compare
execution times for these two methods and the convolve function, for different
values of k. Present the result as a plot where k runs along the z-axis, and
execution times run along the y-axis. Your result will depend on how Python
performs vectorization.

Exercise 3.5: Filters with a different number of coefficients
with positive and negative indices

Assume that S = {t_g,...,to,...,tp}. Formulate a generalization of Proposi-
tion 3.8 for such filters, i.e. to filters where there may be a different number of
filter coefficients with positive and negative indices. You should only need to
make some small changes to the proof of Proposition 3.8 to achieve this.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS95

Exercise 3.6: Implementing filtering with convolution

Implement a function filterS which uses Proposition 3.8 and the convolve
function Sa when S = {t_r,...,to,...,tr} The function should take the vectors
(t_r,...,to,...,tr) and @ as input.

3.2 Formal definition of filters and the vector
frequency response

Let us now define digital filters formally, and establish their relationship to
Toeplitz matrices. We have seen that a sound can be decomposed into different
frequency components, and we would like to define filters as operations which
adjust these frequency components in a predictable way. One such example is
provided in Example 2.27, where we simply set some of the frequency components
to 0. The natural starting point is to require for a filter that the output of a
pure tone is a pure tone with the same frequency.

Definition 3.10. Digital filters and vector frequency response.

A linear transformation S : RY — R¥ is a said to be a digital filter, or simply
a filter, if, for any integer n in the range 0 < n < N — 1 there exists a value Ag
so that

i.e., the NV Fourier vectors are the eigenvectors of S. The vector of (eigen)values
Ag = ()\S’n)g;()l is often referred to as the (vector) frequency response of S.

Since the Fourier basis vectors are orthogonal vectors, S is clearly orthogonally
diagonalizable. Since also the Fourier basis vectors are the columns in (Fy)*,
we have that

S=FdDFy (3.8)

whenever S is a digital filter, where D has the frequency response (i.e. the
eigenvalues) on the diagonal !. We could also use DFT y to diagonalize filters,
but it is customary to use an orthogonal matrix (i.e. Fy) when the matrix is
orthogonally diagonalizable. In particular, if S7 and Sy are digital filters, we can
write S = FJ{,IDlFN and Sy = FJI_,IDQFN, so that

518y = FAD\FNFEDyFy = FE DDy Fy.

Since D1 Dy = Dy D, for any diagonal matrices, we get the following corollary:

Corollary 3.11. The product of two filters is a filter.
The product of two digital filters is again a digital filter. Moreover, all digital
filters commute, i.e. if S; and Sy are digital filters, S1 S5 = S5.57.

1Recall that the orthogonal diagonalization of S takes the form S = PDPT, where P
contains as columns an orthonormal set of eigenvectors, and D is diagonal with the eigenvectors
listed on the diagonal (see Section 7.1 in [20]).

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS96

Clearly also S7+ S5 is a filter when S7 and S are. The set of all filters is thus
a vector space, which also is closed under multiplication. Such a space is called
an algebra. Since all filters commute, this algebra is also called a commutative
algebra.

The next result states three equivalent characterizations of a digital filter.
The first one is simply the definition in terms of having the Fourier basis as
eigenvectors. The second is that the matrix is circulant Toeplitz, i.e. that
the operations we started this chapter with actually are filters. The third
characterization is in terms of a new concept which we now define.

Definition 3.12. Time-invariance.

Assume that S is a linear transformation from RY to RV. Let & be input
to S, and y = Sx the corresponding output. Let also z, w be delays of x, y
with d elements (i.e. 2, = Tp_g, Wy = Yn—q). S is said to be time-invariant if,
for any d and x, Sz = w (i.e. S sends the delayed input vector to the delayed
output vector).

With this notation, it is clear that time-delay with d elements, i.e. the
operation € — z, is a filter, since the time-delay of = ¢,, = \/#Ne%’k”ﬂv is

%627”(16_@”/]\, = e 2mdn/N g and the Fourier basis are thus eigenvectors. If we

denote the time-delay filter with F,4, the definition of time-invariance demands
that SEqx = E4Sx for any « and d, i.e. SE; = E4S for any d. We can now
prove the following.

Theorem 3.13. Characterizations of digital filters.
The following are equivalent characterizations of a digital filter:

e S = (Fy)¥DFy for a diagonal matrix D, i.e. the Fourier basis is a basis
of eigenvectors for S.

e S is a circulant Toeplitz matrix.

e S is linear and time-invariant.

Proof. If S is a filter, then SE; = E4S for all d since all filters commute, so that
S is time-invariant. This proves 1. — 3..

Assume that S is time-invariant. Note that Ejeq = e4, and since SEgeq =
E;Sey we have that Seqy = Eg4s, where s is the first column of S. This also says
that column d of S can be obtained by delaying the first column of .S with d
elements. But then d is a circulant Toeplitz matrix. This proves 3. — 2..

Finally, any circulant Toeplitz matrix can be written on the form Zfiv:_ol saFq
(by splitting the matrix into a sum of its diagonals). Since all Ey are filters, it is
clear that any circulant Toeplitz matrix is a filter. This proves 2. — 1.. O

Due to this result, filters are also called LTT filters, LTI standing for Linear,
Time-Invariant. Also, operations defined by (3.3) are digital filters, when re-
stricted to vectors with period N. The following results enables us to compute
the eigenvalues/frequency response easily, so that we do not need to form the
characteristic polynomial and find its roots:

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS97

Theorem 3.14. Connection between frequency response and the matriz.

Any digital filter is uniquely characterized by the values in the first column
of its matrix. Moreover, if s is the first column in S, the frequency response of
S is given by

As = DFTys. (3.9)

Conversely, if we know the frequency response Ag, the first column s of S is
given by

s = IDFTN>\5. (310)
Proof. If we replace S by (Fn)? DFy we find that

0
DFTys = VNFys =VNFNS | . | = VNENFEDFEy

0 0
: 1

=VNDFEx | .| =D|:|=2xs,
0 1

where we have used that the first column in F)y has all entries equal to 1/ VN,
and that the diagonal matrix D has all the eigenvalues of S on its diagonal,
so that the last expression is the vector of eigenvalues Ag. This proves (3.9).
Equation (3.10) follows directly by applying the inverse DFT to (3.9). O

The first column s, which thus characterizes the filter, is also called the
impulse response. This name stems from the fact that we can write s = Sey,
i.e. the vector s is the output (often called response) to the vector ey (often
called an impulse). Equation (3.9) states that the frequency response can be
written as

N-1
Ao =D spe TN forn=0,1,..., N -1, (3.11)
k=0

where s are the components of s.

Example 3.15. The identity is a filter.

The identity matrix is a digital filter since I = (Fy)®IFy. Since e is the
first column, it has impulse response s = eg. Its frequency response has 1 in all
components and therefore preserves all frequencies, as expected.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS98

Example 3.16. Frequency response of a simple filter.

When only few of the coefficients s; are nonzero, it is possible to obtain nice
expressions for the frequency response. To see this, let us compute the frequency
response of the filter defined from formula (3.1). We saw that the first column
of the corresponding Toeplitz matrix satisfied s = 1/2, and sy_1 = s1 = 1/4.
The frequency response is thus

Asn = 160 + le—%in/N + }e 2min(N—1)/N
) 9 4
1 1) 1) 1 1
_ 56O + 167271'171/1\/' =+ 1eQ‘n’zn/N _ 5 + 5 COS(27T’I7,/N),

Equations (3.8), (3.9), and (3.10) are important relations between the matrix-
and frequency representations of a filter. We see that the DFT is a crucial
ingredient in these relations. A consequence is that, once you recognize a
matrix as circulant Toeplitz, you do not need to make the tedious calculation of
eigenvectors and eigenvalues which you are used to. Let us illustrate this with
an example.

Example 3.17. Matriz form.
Let us compute the eigenvalues and eigenvectors of the simple matrix

S:Gl i)

It is straightforward to compute the eigenvalues and eigenvectors of this matrix
the way you learnt in your first course in linear algebra. However, this matrix is
also a circulant Toeplitz matrix, so that we can use the results in this section
to compute the eigenvalues and eigenvectors. Since here N = 2, we have that
e2mink/N — emink — (_1)7k This means that the Fourier basis vectors are
(1,1)/v/2 and (1, —1)/+/2, which also are the eigenvectors of S. The eigenvalues
are the frequency response of S, which can be obtained as

et) ()-()

The eigenvalues are thus 3 and 5. You could have obtained the same result with
your computer. Note that the computer may not return the eigenvectors exactly
as the Fourier basis vectors, since the eigenvectors are not unique (the multiple of
an eigenvector is also an eigenvector). The computer may for instance switch the
signs of the eigenvectors. We have no control over what the computer actually
chooses to do, since it uses some underlying numerical algorithm for computing
eigenvectors which we can’t influence.

In signal processing, the frequency content of a vector (i.e., its DFT) is also
referred to as its spectrum. This may be somewhat confusing from a linear
algebra perspective, because in this context the term spectrum is used to denote
the eigenvalues of a matrix. But because of Theorem 3.14 this is not so confusing

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS99

after all if we interpret the spectrum of a vector (in signal processing terms) as
the spectrum of the corresponding digital filter (in linear algebra terms).

Certain vectors are easy to express in terms of the Fourier basis. This enables
us to compute the output of such vectors from a digital filter easily, as the
following example shows.

Example 3.18. Computing the output of a filter.
Let us consider the filter S defined by z, = %(l'n+2 + 4z, + 62, + 42,1 +
Zn—2), and see how we can compute S when

x = (cos(2n5 - 0/N),cos(275 - 1/N), ..., cos(2n5 - (N —1)/N)),

where N is the length of the vector. We note first that

VN¢s = (627ri5-0/N’ 2SN 62,”-5.(1\;_1)/1\/)

VNén_5 = (6—27rz’5~0/N’e—27ri5~1/N7 y .’e—gm5.(1v—1)/1v) 7

Since e2™OkR/N 4 =2m5k/N — 9 cos(2n5k/N), we get by adding the two vectors
that « = %\/N(% + ¢n—5). Since the ¢, are eigenvectors, we have expressed x
as a sum of eigenvectors. The corresponding eigenvalues are given by the vector
frequency response, so let us compute this. If N = 8, computing Sx means to
multiply with the 8 x 8 circulant Toeplitz matrix

6 41000 1 4
46 410001
146 41000
1o 1 46 4100
6lo 01 46 4 10
000146 41
1 0001 46 4
41000 1 4 6

We now see that

AS,?’L _ é(6 +46727Tin/N + 6727Ti2n/N + 6727r72(N72)n/N +46727Ti(N71)n/N)
_1
6
4 1
=1+ 3 cos(2mn/N) + 3 cos(4mn/N).

2min/N —27in/N 27i2n /N —2mi2n/N
(64 4de + 4e +e +e)

The two values of this we need are

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS100

4 1
Ass =1+ 3 cos(2w5/N) + 3 cos(4w5/N)
4 1
As N5 =1+ 3 cos(2rn(N —5)/N) + 3 cos(4m(N — 5)/N)
4 1
=1+ 3 cos(275/N) + 3 cos(4w5/N).

Since these are equal, « is a sum of eigenvectors with equal eigenvalues. This
means that @ itself also is an eigenvector, with the same eigenvalue, so that

Sx = (1 + §COS(27T5/N) + Zl))cos(47r5/N)> x.

3.2.1 Using digital filters to approximate analog filters

The formal definition of digital filters resembles that of analog filters, the
difference being that the Fourier basis is now discrete. From this one may
think that one can construct digital filters from analog filters. The following
result clarifies this:

Theorem 3.19. Connection with analog frequency response.
Let s be an analog filter with frequency response A (f), and assume that
f € Varr (so that also s(f) € Vasrr). Let

x = (f(0-T/N), f(L-T/N),.... f(N = 1)T/N))
z=(s(/)0-T/N),s(f)AL-T/N),...,s(/)(N =1)T/N))

be vectors of N = 2M + 1 uniform samples from f and s(f). Then the operation
S :x — z (i.e. the operation which sends the samples of the input to the samples
of the output) is well-defined on RY and is an N x N-digital filter with frequency
response \g, = As(n/T).

Proof. With N =2M + 1 we know that f € Vi, r is uniquely determined from
2. This means that s(f) also is uniquely determined from x, so that z also is
uniquely determined from @. The operation S : € — z is therefore well-defined
on RY.

Clearly also s(e?™™t/T) = \,(n/T)e?"™/T . Since the samples of e27"t/T
is the vector e2™*"/N and the samples of Ay (n/T)e2 /T is A (n/T)e> /N
the vector e2™#"/N is an eigenvector of S with eigenvalue \y(n/T). Clearly then
S is a digital filter with frequency response Ag,, = A\;(n/T). O

It is interesting that the digital frequency response above is obtained by
sampling the analog frequency response. In this way we also see that it is easy
to realize any digital filter as the restriction of an analog filter: any analog filter
s will do where the frequency response has the values Ag,, at the points n/T.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS101

In the theorem it is essential that f € Vi . There are many functions with the
same samples, but where the samples of the output from the analog filter are
different. When we restrict to Vas 7, however, the output samples are always
determined from the input samples.

Theorem 3.19 explains how digital filters can occur in practice. In the real
world, a signal is modeled as a continuous function f(t), and an operation on
signals as an analog filter s. We can’t compute the entire output s(f) of the
analog filter, but it is possible to apply the digital filter from Theorem 3.19 to
the samples @ of f. In general f(¢) may not lie in Vs, but we can denote by f
the unique function in Vjs r with the same samples as f (as in Section 2.3). By
definition, Sx are the samples of s(f) € Var. s(f) can finally be found from
these samples by using the procedure from Figure 2.4 for finding s(f) This
procedure for finding s(f) is illustrated in Figure 3.5.

—s(f)

L

Figure 3.5: The connections between analog and digital filters, sampling and
interpolation, provided by Theorem 3.19. The left vertical arrow represents
sampling, the right vertical arrow represents interpolation.

Clearly, s(f) is an approximation to s(f), since f is an approximation to f,
and since s is continuous. Let us summarize this as follows:

Idea 3.20. Approzimating an analog filter.

An analog filter s can be approximated through sampling, a digital filter, the
DFT, and interpolation, as illustrated in Figure 3.5. S is the digital filter with
frequency response As.,, = As(n/T). When f € Vi, this approximation equals
s(f). When we increase the number of sample points/the size of the filter, the
approximation becomes better. If there is a bound on the highest frequency in f,
there exists an NV so that when sampling of that size, the approximation equals

s(f)-

Let us comment on why the last statements here are true. That the approx-
imation equals s(f) when f € Vi r is obvious, since both f and s(f) € Vi,
are determined from their samples then. If there is a bound on the highest
frequency in f, then f lies in Vi p for large enough M, so that we recover s(f)
as our approximation using N = 2M + 1. Finally, what happens when there is
no bound on the highest frequency? We know that s(fn) = (s(f))n. Since fn
is a good approximation to f, the samples x of f are close to the samples of fy.
By continuity of the digital filter, z = Sa will also be close to the samples of
(s(f))n = s(fn), so that (also by continuity) interpolating with z gives a good
approximation to (s(f))n, which is again a good approximation to s(f)). From
this it follows that the digital filter is a better approximation when N is high.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS102

What you should have learned in this section.

e The formal definition of a digital filter in terms of having the Fourier
vectors as eigenvectors.

e The definition of the vector frequency response in terms of the correspond-
ing eigenvalues.

e The definition of time-invariance and the three equivalent characterizations
of a filter.

e For filters, eigenvalues can be computed by taking the DFT of the first
column s, and there is no need to compute eigenvectors explicitly.

e How to apply a digital filter to a sum of sines or cosines, by splitting these
into a sum of eigenvectors.

Exercise 3.7: Time reversal is not a filter

In Example 2.6 we looked at time reversal as an operation on digital sound.
In RY this can be defined as the linear mapping which sends the vector e;, to
env_1_pforall 0 < k<N —1.

a) Write down the matrix for the time reversal linear mapping, and explain
from this why time reversal is not a digital filter.

b) Prove directly that time reversal is not a time-invariant operation.

Exercise 3.8: When is a filter symmetric?

Let S be a digital filter. Show that S is symmetric if and only if the frequency
response satisfies Ag, = Ag,ny—p for all n.

Exercise 3.9: Eigenvectors and eigenvalues

Consider the matrix

S:

— 0
W =
— s =W
N e

a) Compute the eigenvalues and eigenvectors of S using the results of this
section. You should only need to perform one DFT in order to achieve this.

b) Verify the result from a) by computing the eigenvectors and eigenvalues the
way you taught in your first course in linear algebra. This should be a much
more tedious task.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS103

c) Use a computer to compute the eigenvectors and eigenvalues of S also. For
some reason some of the eigenvectors seem to be different from the Fourier basis
vectors, which you would expect from the theory in this section. Try to find an
explanation for this.

Exercise 3.10: Composing filters
Assume that S; and S are two circulant Toeplitz matrices.

a) How can you express the eigenvalues of S7 + S5 in terms of the eigenvalues
of S1 and S5?

b) How can you express the eigenvalues of 5153 in terms of the eigenvalues of
S1 and S5?

c) If A and B are general matrices, can you find a formula which expresses the
eigenvalues of A+ B and AB in terms of those of A and B? If not, can you find
a counterexample to what you found in a) and b)?

Exercise 3.11: Keeping every second component

Consider the linear mapping S which keeps every second component in RV,
i.e. S(eqr) = ear, and S(ear—1) = 0. Is S a digital filter?

3.3 The continuous frequency response and prop-
erties

If we make the substitution w = 27n/N in the formula for Ag,, we may interpret
the frequency response as the values on a continuous function on [0, 27).

Theorem 3.21. Connection between vector- and continuous frequency response.
The function Ag(w) defined on [0, 27) by

As(w) =Y tre e, (3.12)
k
where t; are the filter coefficients of S, satisfies

Asn = As(2mn/N) forn=0,1,..., N -1

for any N. In other words, regardless of N, the vector frequency response lies
on the curve Ag.

Proof. For any N we have that

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS104

N-1
)\S,n — § Ske—Zﬂink/N — § : ske—Qwink/N+ § : Ske—2ﬂ'ink/N

k=0 0<k<N/2 N/2<k<N-1
— Z tke—QTrink/N + Z tk,N€_2ﬂ'ink/N
0<k<N/2 N/2<k<N-1
_ Z tkef%rink:/N + Z tk€72ﬂ-in(k+N)/N
0<k<N/2 —N/2<k<—1
_ Z tk6727rink:/N + Z tk6727rink/N
0<k<N/2 —N/2<k<-1
= > e N = Xg(2mn/N).
—N/2<k<N/2
where we have used Equation (3.4). O

Both Ag(w) and Ag ,, will be referred to as frequency responses in the following,.
To distinguish the two, while Ag,, is called the vector frequency response of
S, As(w)) is called the continuous frequency response of S. w is called angular
frequency.

The difference in the definition of the continuous- and the vector frequency
response lies in that one uses the filter coefficients t;, while the other uses the
impulse response s;. While these contain the same values, they are ordered
differently. Had we used the impulse response to define the continuous frequency
response, we would have needed to compute Zg:_ol spe” ™ which does not
converge when N — oo (although it gives the right values at all points w = 27n/N
for all N)! The filter coefficients avoid this convergence problem, however, since
we assume that only t; with |k| small are nonzero. In other words, filter
coefficients are used in the definition of the continuous frequency response so
that we can find a continuous curve where we can find the vector frequency
response values for all N.

The frequency response contains the important characteristics of a filter,
since it says how it behaves for the different frequencies. When analyzing a
filter, we therefore often plot the frequency response. Often we plot only the
absolute value (or the magnitude) of the frequency response, since this is what
explains how each frequency is amplified or attenuated. Since Ag is clearly
periodic with period 27, we may restrict angular frequency to the interval [0, 27).
The conclusion in Observation 2.22 was that the low frequencies in a vector
correspond to DFT indices close to 0 and N — 1, and high frequencies correspond
to DFT indices close to N/2. This observation is easily translated to a statement
about angular frequencies:

Observation 3.22. Plotting the frequency response.

When plotting the frequency response on [0, 27), angular frequencies near 0
and 27 correspond to low frequencies, angular frequencies near 7 correspond to
high frequencies

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS105

As may also be viewed as a function defined on the interval [—, 7). Plotting
on [—,] is often done in practice, since it makes clearer what corresponds to
lower frequencies, and what corresponds to higher frequencies:

Observation 3.23. Higher and lower frequencies.

When plotting the frequency response on [—7, 7), angular frequencies near 0
correspond to low frequencies, angular frequencies near +m correspond to high
frequencies.

The following holds:

Theorem 3.24. Connection between analog and digital filters.

Assume that s is an analog filter, and that we sample a periodic function at
rate fs over one period, and denote the corresponding digital filter by S. The
analog and digital frequency responses are related by As(f) = As(27f fs).

To see this, note first that S has frequency response Ag, = As(n/T) =
As(f), where f =n/T. We then rewrite Ag,, = As(2nn/N) = Ag(2nfT/N) =
/\S(2Wffs)'

Example 3.25. Plotting a simple frequency response.

In Example 3.16 we computed the vector frequency response of the filter
defined in formula (3.1). The filter coefficients are here t_; = 1/4, to = 1/2, and
t; = 1/4. The continuous frequency response is thus

w 1 —tw 1 1
)\s(w):Ze —&—54—16 :§+§cosw.

Clearly this matches the computation from Example 3.16. Figure 3.6 shows
plots of this frequency response, plotted on the intervals [0, 27) and [—m, 7).

1.0 1.0p
0.8} . 0.8
0.6} . 0.6
0.4¢ E 0.4
0.2}] 0.2
00%G————% 3 4 35 6 00 5——3——1 06 1 2 3

Figure 3.6: The (absolute value of the) frequency response of the moving
average filter of Formula (3.1) from the beginning of this chapter, plotted over
[0,27] and [, 7].

Both the continuous frequency response and the vector frequency response
for N = 51 are shown. Figure (b) shows clearly how the high frequencies are
softened by the filter.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS106

Since the frequency response is essentially a DF'T, it inherits several properties
from Theorem 2.18. We will mostly use the continuous frequency response to
express these properties.

Theorem 3.26. Properties of the frequency response.
We have that

e The continuous frequency response satisfies Ag(—w) = Ag(w).

o If S is a digital filter, ST is also a digital filter. Moreover, if the frequency
response of S is Ag(w), then the frequency response of ST is Ag(w).

e If S is symmetric, g is real. Also, if S is antisymmetric (the element on
the opposite side of the diagonal is the same, but with opposite sign), Ag
is purely imaginary.

o A digital filter S is an invertible if and only if Ag, # 0 for all n. In that
case S~! is also a digital filter, and Ag-1n =1/Asn.

o If S; and Sy are digital filters, then 5155 also is a digital filter, and
)‘5152 (w) =)\Sl (UJ))\S’Z (w)

Proof. Property 1. and 3. follow directly from Theorem 2.18. Transposing a
matrix corresponds to reversing the first column of the matrix and thus also the
filter coefficients. Due to this Property 2. also follows from Theorem 2.18. If
S = (Fnx)¥DFy, and all \g, # 0, we have that S~! = (F)” D= Fy, where
D! is a diagonal matrix with the values 1/\g,, on the diagonal. Clearly then
S~1 is also a digital filter, and its frequency response is As-1., = 1/Agn, which
proves 4. The last property follows in the same was as we showed that filters
commute:

518y = (FN)" D Fn(Fn)®DyFy = (Fn)® D1 Dy Fy.

The frequency response of S1.55 is thus obtained by multiplying the frequency
responses of S and S5. O

In particular the frequency response may not be real, although this was the
case in the first example of this section. Theorem 3.26 applies also for the vector
frequency response. Since the vector frequency response are the eigenvalues of
the filter, the last property above says that, for filters, multiplication of matrices
corresponds to multiplication of eigenvalues. Clearly this is an important property
which is shared with all other matrices which have the same eigenvectors.

Example 3.27. Computing a composite filter.

Assume that the filters S; and S3 have the frequency responses Ag, (w) =
cos(2w), Ag,(w) = 1 + 3cosw. Let us see how we can use Theorem 3.26 to
compute the filter coefficients and the matrix of the filter S = 51.55. We first

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS107

notice that, since both frequency responses are real, all Sy, S, and S = 515,
are symmetric. We rewrite the frequency responses as

1, ., . 1., 1)
)‘Sl (W) _ 5(6210.1 4 e—QwJ) _ §e2zw + 56—2191
3, ; 3 3
As,(w) =1+ 5(6“" +e)= 56“" +1+ 567“”.
We now get that

<3 W 3 iw)
—e“ 4+ 1+ —e

1 w 1 — 2w
)\51’92 (w) =)‘51 (w))\52 (w) - (262 + 56 ?) 2 2
= Zeiﬂzw 4 5esz 4 Zeuu T ie—zw + 56_2%‘) + 16_3“‘)

From this expression we see that the filter coefficients of S are t11 = 3/4,
tyo =1/2, t13 = 3/4. All other filter coefficients are 0. Using Theorem 3.2, we
get that s; = 3/4, s = 1/2, and s3 = 3/4, while sy_1 = 3/4, sy—2 = 1/2, and
sn—3 = 3/4 (all other s; are 0). This gives us the matrix representation of S.

3.3.1 Windowing operations

In this section we will take a look at a very important, and perhaps surprising,
application of the continuous frequency response. Let us return to the computa-
tions from Example 2.27. There we saw that, when we restricted to a block of
the signal, this affected the frequency representation. If we substitute with the
angular frequencies w = 27n/N and wy = 27ng/M in Equation (2.12), we get

N-1 1 N-1
ezk‘woe—zkw

= e
k=0 k=0

1
yn—N

—ik(w—wo)

N

(here y,, were the DFT components of the sound after we had restricted to a
block). This expression states that, when we restrict to a block of length N in
the signal by discarding the other samples, a pure tone of angular frequency
wp suddenly gets a frequency contribution at angular frequency w also, and the
contribution is given by this formula. The expression is seen to be the same as
the frequency response of the filter %{L 1,...,1} (where 1 is repeated N times),
evaluated at w — wp. This filter is nothing but a (delayed) moving average filter.
The frequency response of a moving average filter thus governs how the different
frequencies pollute when we limit ourselves to a block of the signal. Since this
frequency response has its peak at 0, angular frequencies w close to wy have
biggest values, so that the pollution is mostly from frequencies close to wy. But
unfortunately, other frequencies also pollute.

One can also ask the question if there are better ways to restrict to a block
of size N of the signal. We formulate the following idea.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS108

Idea 3.28. Windows.

Let @ = (z0,...,2) be a sound of length M. We would like to find values
w = {wp, ..., wy—_1} so that the new sound (wozo,...,wn—12n-1) of length
N < M has a frequency representation similar to that of . w is called a window
of length N, and the new sound is called the windowed signal.

Above we encountered the window w = {1,1,...,1}. This is called the
rectangular window. To see how we can find a good window, note first that the
DFT values in the windowed signal of length N is

N—
zkwo —tkw __ 72k (w—wo)
UYp = E =

k=0 k=0

MZ

This is the frequency response of -+ ~w. In order to limit the pollution from
other frequencies, we thus need to construct a window with a frequency response
with smaller values than that of the rectangular window away from 0. Let us
summarize our findings as follows:

Observation 3.29. Constructing a window.
Assume that we would like to construct a window of length N. It is desirable
that the frequency response of the window has small values away from zero.

We will not go into techniques for how such frequency responses can be
constructed, but only consider one example different from the rectangular window.
We define the Hamming window by

wy, = 2(0.54 — 0.46 cos(2mn /(N — 1))). (3.13)

The frequency responses of the rectangular window and the Hamming window
are compared in Figure 3.7 for N = 32.

1.0 1.0
0.8}] 0.8}
0.6] 0.6
0.4}] 0.4
0.2}] 0.2}
00253571 0o 1 2 3 00 53— 1 3 3

Figure 3.7: The frequency responses of the rectangular and Hamming windows,
which we considered for restricting to a block of the signal.

We see that the Hamming window has much smaller values away from 0,
so that it is better suited as a window. However, the width of the “main lobe”

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS109

(i.e. the main structure at the center), seems to be bigger. The window coefficients
themselves are shown in Figure 3.8. It is seen that the frequency response of the
Hamming window attenuates more and more as we get close to the boundaries.

2.0 2.0

1.5+ R 1.5} 4
1.0+ R 1.0t]
“HHH\HHHHHHH\HH\H\H |
0.0 0 5 10 15 20 25 30 0.0 (l)I I I ‘5 10 15 20 25 ‘ I I310l

Figure 3.8: The coefficients of the rectangular and Hamming windows, which
we considered for restricting to a block of the signal.

Many other windows are used in the literature. The concrete window from
Exercise 3.21 is for instance used in the MP3 standard. It is applied to the
sound, and after this an FFT is applied to the windowed sound in order to make
a frequency analysis of that part of the sound. The effect of the window is that
there is smaller loss in the frequency representation of the sound when we restrict
to a block of sound samples. This is a very important part of the psychoacoustic
model used in the MP3 encoder, since it has to make compression decisions
based on the frequency information in the sound.

What you should have learned in this section.

e The definition of the continuous frequency response in terms of the filter
coefficients .

e Connection with the vector frequency response.

e Properties of the continuous frequency response, in particular that the
product of two frequency responses equals the frequency response of the
product.

e How to compute the frequency response of the product of two filters,.

e How to find the filter coefficients when the continuous frequency response
is known.

Exercise 3.12: Plotting a simple frequency response

Let again S be the filter defined by the equation

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS110

Zn = Zmn-&-l + an + an—l + an—Qa

as in Exercise 3.1. Compute and plot (the magnitude of) Ag(w).

Exercise 3.13: Low-pass and high-pass filters
A filter S is defined by the equation

1
Zp = g(xn + 321+ 3Tp_2 + Tp_3).

a) Compute and plot the (magnitude of the continuous) frequency response of
the filter, i.e. [Ag(w)]|. Is the filter a low-pass filter or a high-pass filter?

b) Find an expression for the vector frequency response Ag 2. What is S when
x is the vector of length N with components e272k/N?

Exercise 3.14: Circulant matrices

A filter S7 is defined by the equation

Zn Tp42 + 4xn+1 + 637” + 4$n71 + xn72)'

1
= Tﬁ(
a) Write down an 8 x 8 circulant Toeplitz matrix which corresponds to applying
S1 on a periodic signal with period N = 8.

b) Compute and plot (the continuous) frequency response of the filter. Is the
filter a low-pass filter or a high-pass filter?

c) Another filter Sy has (continuous) frequency response Ag, (w) = (e + 2 +
e~ ™) /4. Write down the filter coefficients for the filter Sy Ss.

Exercise 3.15: Composite filters

Assume that the filters S; and S have the frequency responses Ag, (w) =
2 4+ 4cos(w), Ag, (w) = 3sin(2w).

a) Compute and plot the frequency response of the filter S1.55.

b) Write down the filter coefficients ¢; and the impulse response s for the filter
S155.

Exercise 3.16: Maximum and minimum

Compute and plot the continuous frequency response of the filter S = {1/4,1/2,1/4}.
Where does the frequency response achieve its maximum and minimum value,
and what are these values?

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS111

Exercise 3.17: Plotting a simple frequency response

Plot the continuous frequency response of the filter 7' = {1/4,—1/2,1/4}. Where
does the frequency response achieve its maximum and minimum value, and what
are these values? Can you write down a connection between this frequency
response and that from Exercise 3.167

Exercise 3.18: Continuous- and vector frequency responses
Define the filter S by S = {1,2,3,4,5,6}. Write down the matrix for S when
N = 8. Plot (the magnitude of) Ag(w), and indicate the values Ag,, for N =8
in this plot.

Exercise 3.19: Starting with circulant matrices

Given the circulant Toeplitz matrix

111 --- 1
111 0
0 1 1 0

5:}::: :
510 0 0 1
1 00 1
1 10 1
11 1 1

Write down the compact notation for this filter. Compute and plot (the magni-
tude) of Ag(w).

Exercise 3.20: When the filter coefficients are powers

Assume that S = {1,¢,¢c2,...,c*}. Compute and plot Ag(w) when k = 4 and
k = 8. How does the choice of k influence the frequency response? How does
the choice of ¢ influence the frequency response?

Exercise 3.21: The Hanning window

The Hanning window is defined by w,, = 1—cos(27n/(N —1)). Compute and plot
the window coefficients and the continuous frequency response of this window for
N = 32, and compare with the window coefficients and the frequency responses
for the rectangular- and the Hamming window.

3.4 Some examples of filters

We have now established the basic theory of filters, and it is time to study some
specific examples.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS112

Example 3.30. Time delay filters.

We have already encountered the time-delay filter S = E;. With only one
nonzero diagonal, this is the simplest possible type of filters. Since s = Fyeq = ey,
we can write B4 = {0,..., 1}, where the 1 occurs at position d. Intuitively, we
would expect that time-delay does not change the frequencies in sounds we hear.
This is confirmed by the fact that the frequency response of the time delay filter
is Ag(w) = e~ which has magnitude 1, so that the filter does not change the
magnitude of the different frequencies.

Fact 3.31. Adding echo.
Let « be a digital sound. Then the sound z with samples given by

N, nchannels = shape(x)

z = zeros((N,nchannels))
z[0:d] = x[0:d]

z[d:N] = x[d:N] + c*x[0:(N-d)]

will include an echo of the original sound. d is the delay in samples, and is an
integer. c is a constant called the damping factor, and is usually smaller than 1.

Example 3.32. Adding echo.

An echo is a copy of the sound that is delayed and softer than the original
sound. The sample that comes ¢ seconds before sample 7 has index ¢ — ¢t fs where
fs is the sampling rate. This also makes sense even if ¢ is not an integer so we can
use this to produce delays that are less than one second. The one complication
with this is that the number ¢ f, may not be an integer. We can get round this
by rounding it to the nearest integer. This corresponds to adjusting the echo
slightly. The following holds:

This is an example of a filtering operation where each output element is
constructed from two input elements. As in the case of noise it is important to
dampen the part that is added to the original sound, otherwise the echo will be
too loud. Note also that the formula that creates the echo is not used at the
beginning of the signal, since it is not audible until after d samples. Also, the
echo is not audible if d is too small. You can listen to the sample file with echo
added with d = 10000 and ¢ = 0.5 here.

Using our compact filter notation, the filter which adds echo can be written
as

S =1{1,0,...,0,c},

where the damping factor ¢ appears after the delay d. The frequency response
of this is Ag(w) = 1 + ce~*. This frequency response is not real, which means
that the filter is not symmetric. In Figure 3.9 we have plotted the magnitude of
this frequency response with ¢ = 0.1 and d = 10.

We see that the response varies between 0.9 and 1.1, so that the deviation
from 1 is controlled by the damping factor c¢. Also, we see that the oscillation in
the frequency response, as visible in the plot, is controlled by the delay d.

http://folk.uio.no/oyvindry/matinf2360/sounds/castanetsecho.wav

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS113

1-2 T T T T T T

0.8} -

0.4}]

00 I I I I I I
0

Figure 3.9: The frequency response of a filter which adds an echo with damping
factor ¢ = 0.1 and delay d = 10.

Let us now take a look at some filters which adjust the bass and treble in
sound. The fact that the filters are useful for these purposes will be clear when
we plot the frequency response.

Example 3.33. Reducing the treble with moving average filters.

The treble in a sound is generated by the fast oscillations (high frequencies)
in the signal. If we want to reduce the treble we have to adjust the sample values
in a way that reduces those fast oscillations. A general way of reducing variations
in a sequence of numbers is to replace one number by the average of itself and
its neighbors, and this is easily done with a digital sound signal. If z = (zl)fvz 61
is the sound signal produced by taking the average of three successive samples,
we have that

Zy = §($n+1 + X+ Tpo1),

ie. S =1{1/3,1/3,1/3}. This filter is also called a moving average filter (with
three elements), and it can be written in compact form as. If we set N = 4, the
corresponding circulant Toeplitz matrix for the filter is

1101
111110
S’§ 01 1 1
10 1 1

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS114

The frequency response is

As(w) = (e +14+e7™)/3 = (1 +2cos(w))/3.

More generally we can construct the moving average filter of 2L + 1 elements,

which is § = {1,---,1,--- ,1}/(2L + 1), where there is symmetry around 0.

Clearly then the first column of Sis s = (1,...,1,0,...,0,1,...,1)/(2L+1). In
—— ——

L+1 times L times
Example 2.15 we computed that the DFT of the vectorx = (1,...,1,0,...,0,1,...,1)
—— ——
L+1 times L times

had components

_ sin(mn(2L + 1)/N)
Yn sin(mn/N) '

Since s = x/(2L + 1) and A\g = DFTys, the frequency response of S is

1 sin(mn(2L + 1)/N)

A n — 5
5 2L +1 sin(mn/N)
so that) in((2L + 1)w/2)
sin + 1w
A f— .
s@) = ST T smw2)
We clearly have
0< 1 sin((2L + 1)w/2) <1,

~2L+1 sin(w/2) -

and this frequency response approaches 1 as w — 0. The frequency response
thus peaks at 0, and this peak gets narrower and narrower as L increases, i.e. as
we use more and more samples in the averaging process. This filter thus “keeps’
only the lowest frequencies. When it comes to the highest frequencies it is seen
that the frequency response is small for w =~ 7. In fact it is straightforward to
see that |[Ag(w)] = 1/(2L + 1). In Figure 3.10 we have plotted the frequency
response for moving average filters with L =1, L = 5, and L = 20.

Unfortunately, the frequency response is far from a filter which keeps some
frequencies unaltered, while annihilating others: Although the filter distinguishes
between high and low frequencies, it slightly changes the small frequencies.
Moreover, the higher frequencies are not annihilated, even when we increase L
to high values.

)

In the previous example we mentioned filters which favor certain frequencies
of interest, while annihilating the others. This is a desirable property for filters,
so let us give names to such filters:

Definition 3.34. Lowpass and highpass filters.
A filter S is called

o a lowpass filter if Ag(w) is large when w is close to 0, and Ag(w) ~ 0 when w
is close to m (i.e. S keeps low frequencies and annhilates high frequencies),

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS115

1.0 1.0
0.8t E 0.8+
0.6f E 0.6+
0.4t E 0.4}
0.2+ E 0.2}
0.0t E 0.0t
-0.2¢ E -0.2¢
3 5 6 i 3 a5 6
1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

o 1 2 3 4 5 &6

Figure 3.10: The frequency response of moving average filters with L = 1,
L =5, and L = 20.

e a highpass filter if Ag(w) is large when w is close to 7, and Ag(w) ~ 0 when
w is close to 0 (i.e. S keeps high frequencies and annhilates low frequencies),

e a bandpass filter if Ag(w) is large within some interval [a,b] C [0, 27], and
As(w) = 0 outside this interval.

This definition should be considered rather vague when it comes to what we
mean by “w close to 0,77, and “Ag(w) is large”: in practice, when we talk about
lowpass and highpass filters, it may be that the frequency responses are still
quite far from what is commonly refered to as ideal lowpass or highpass filters,
where the frequency response only assumes the values 0 and 1 near 0 and 7. The
next example considers an ideal lowpass filter.

Example 3.35. Ideal lowpass filters.

By definition, the ideal lowpass filter keeps frequencies near 0 unchanged, and
completely removes frequencies near 7. We now have the theory in place in order
to find the filter coeflicients for such a filter: In Example 2.27 we implemented
the ideal lowpass filter with the help of the DFT. Mathematically you can see
that this code is equivalent to computing (Fy)? DFy where D is the diagonal
matrix with the entries 0,...,L and N — L,..., N — 1 being 1, the rest being
0. Clearly this is a digital filter, with frequency response as stated. If the filter
should keep the angular frequencies |w| < w, only, where w, describes the highest
frequency we should keep, we should choose L so that w. = 2rL/N. Again,

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS116

in Example 2.15 we computed the DFT of this vector, and it followed from
Theorem 2.18 that the IDFT of this vector equals its DFT. This means that we
can find the filter coefficients by using Equation (3.10), i.e. we take an IDFT.
We then get the filter coefficients

1 sin(7wk(2L +1)/N)

N sin(nk/N)
This means that the filter coefficients lie as N points uniformly spaced on the
1 sin(wt(2L+1)/2)
curve = en e
other places in these notes. The filter which keeps only the frequency w. = 0 has
all filter coefficients being + (set L = 1), and when we include all frequencies (set
L = N) we get the filter where zy = 1 and all other filter coefficients are 0. When
we are between these two cases, we get a filter where sq is the biggest coeflicient,
while the others decrease towards 0 along the curve we have computed. The
bigger L and N are, the quicker they decrease to zero. All filter coefficients are
usually nonzero for this filter, since this curve is zero only at certain points. This
is unfortunate, since it means that the filter is time-consuming to compute.

between 0 and 1. This curve has been encountered many

The two previous examples show an important duality between vectors which
are 1 on some elements and 0 on others (also called window vectors), and the
vector %% (also called a sinc): filters of the one type correspond to
frequency responses of the other type, and vice versa. The examples also show
that, in some cases only the filter coefficients are known, while in other cases
only the frequency response is known. In any case we can deduce the one from
the other, and both cases are important.

Filters are much more efficient when there are few nonzero filter coefficients.
In this respect the second example displays a problem: in order to create filters
with particularly nice properties (such as being an ideal lowpass filter), one may
need to sacrifice computational complexity by increasing the number of nonzero
filter coefficients. The trade-off between computational complexity and desirable
filter properties is a very important issue in filter design theory.

Example 3.36. Dropping filter coefficients.
In order to decrease the computational complexity for the ideal lowpass filter
in Example 3.35, one can for instance include only the first filter coefficients, i.e.

{ 1 sin(rk(2L +1)/N) }NO
N sin(nk/N)

k=—No
ignoring the last ones. Hopefully this gives us a filter where the frequency reponse
is not that different from the ideal lowpass filter. In Figure 3.11 we show the
corresponding frequency responses. In the figure we have set NV = 128, L = 32,
so that the filter removes all frequencies w > 7/2. Ny has been chosen so that
the given percentage of all coefficients are included.

Clearly the figure shows that we should be careful when we omit filter
coefficients: if we drop too many, the frequency response is far away from that of

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS117

1.2 T 1.2
1.0 1.0}
0.8 0.8
0.6 0.6}
0.4 0.4}
0.2 0.2}
0.0 0.0
-0.2 -0.2}
o 1 2 3 4 5 &6 0o 1 2 3 4 5 &6
1.2
1.0
0.8
0.6
0.4
0.2
0.0
-0.2

o 1 2 3 4 5 &6

Figure 3.11: The frequency response which results by including the first 1/32,
the first 1/16, the first 1/4, and and all of the filter coefficients for the ideal
lowpass filter.

an ideal bandpass filter. In particular, we see that the new frequency response
oscillates wildly near the discontinuity of the ideal lowpass filter. Such oscillations
are called Gibbs oscillations.

Example 3.37. Filters and the MP3 standard.

We mentioned previously that the MP3 standard splits the sound into
frequency bands. This splitting is actually performed by particular filters, which
we will consider now.

In the example above, we saw that when we dropped the last filter coefficients
in the ideal lowpass filter, there were some undesired effects in the frequency
response of the resulting filter. Are there other and better approximations
to the ideal lowpass filter which uses the same number of filter coefficients?
This question is important, since the ear is sensitive to certain frequencies, and
we would like to extract these frequencies for special processing, using as low
computational complexity as possible. In the MP3-standard, such filters have
been constructed. These filters are more advanced than the ones we have seen
upto now. They have as many as 512 filter coefficients! We will not go into the
details on how these filters are constructed, but only show how their frequency
responses look. In the left plot in Figure 3.12, the “prototype filter” which is
used in the MP3 standard is shown. We see that this is very close to an ideal
lowpass filter. Moverover, many of the undesirable effect from the previous

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS118

example have been eliminated: The oscillations near the discontinuities are much
smaller, and the values are lower away from 0. Using Property 4 in Theorem 2.18,
it is straightforward to construct filters with similar frequency responses, but
centered around different frequencies: We simply need to multiply the filter
coefficients with a complex exponential, in order to obtain a filter where the
frequency response has been shifted to the left or right. In the MP3 standard,
this observation is used to construct 32 filters, each having a frequency response
which is a shifted copy of that of the prototype filter, so that all filters together
cover the entire frequency range. 5 of these frequency responses are shown in
the right plot in Figure 3.12.

1.2
2.0}] 1.0
Lsl 0.8
0.6
1.0/
0.4
0.5/ 0.2
00 =56=04-02 00 02 04 06 00 =66-04-02 00 02 04 06

Figure 3.12: Frequency responses of some filters used in the MP3 standard.
The prototype filter is shown left. The other frequency responses at right are
simply shifted copies of this.

To understand the effects of the different filters, let us apply them to our
sample sound. If you apply all filters in the MP3 standard in successive order
with the most lowpass filters first, the result will sound like this. You should
interpret the result as low frequencies first, followed by the high frequencies. m
corresponds to the frequency 22.05KHz (i.e. the highest representable frequency
equals half the sampling rate on 44.1KHz. The different filters are concentrated
on 1/32 of these frequencies each, so that the angular frequencies you here are
[w/64,3mw/64], [37/64,57/64], [57/64, 7w /64], and so on, in that order.

In Section 3.3.1 we mentioned that the psycoacoustic model of the MP3
standard applied a window the the sound data, followed by an FFT to that
data. This is actually performed in parallel on the same sound data. Applying
two different operations in parallel to the sound data may seem strange. In the
MP3 standard [16] (p. 109) this is explained by “the lack of spectral selectivity
obtained at low frequencies® by the filters above. In other words, the FFT can
give more precise frequency information than the filters can. This more precise
information is then used to compute psychoacoustic information such as masking
thresholds, and this information is applied to the output of the filters.

Example 3.38. Reducing the treble II.

http://folk.uio.no/oyvindry/matinf2360/sounds/mp3bands.wav

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS119

When reducing the treble it is reasonable to let the middle sample z; count
more than the neighbors in the average, so an alternative is to compute the
average by instead writing

Zn = (zn—l + an + xn+1)/4

The coefficients 1,2, 1 here have been taken from row 2 in Pascal’s triangle. It
turns out that this is a good choice of coefficients. Also if we take averages of
more numbers it will turn out that higher rows of Pascals triangle are good
choices. Let us take a look at why this is the case. Let S be the moving average
filter of two elements, i.e.

1
(Sw)n = i(xn—l + xn)

In Example 3.33 we had an odd number of filter coefficients. Here we have only
two. We see that the frequency response in this case is

As(w) = %(1 + e W) = e/ 2 cos(w/2).

The frequency response is complex now, since the filter is not symmetric in this
case. Let us now apply this filter k£ times, and denote by Si the resulting filter.
Theorem 3.26 gives us that the frequency response of Sy, is

1 . .
27(1 + e*lw)k — efzkw/Q COSk(w/Q),

w

/\5k ((JJ) =

which is a polynomial in e™*“ with the coefficients taken from Pascal’s triangle
(remember that the values in Pascals triangle are the coefficients of z in the
expression (1 + x)*, i.e. the binomial coefficients (f) for 0 <r < k). At least,
this partially explains how filters with coefficients taken from Pascal’s triangle
appear. The reason why these are more desirable than moving average filters,
and are used much for smoothing abrupt changes in images and in sound, is the
following: Since (1+e~%)* is a factor in Agk (w), it has a zero of multiplicity of k
at w = 7. In other words, when k is large, Agr has a zero of high multiplicity at
w = 7, and this implies that the frequency response is very flat for w ~ m when
k increases, i.e. the filter is good at removing the highest frequencies. This can
be seen in Figure 3.13, where we have plotted the magnitude of the frequency
response when k£ = 5, and when k = 30. Clearly the latter frequency response is
much flatter for w &~ 7. On the other side, it is easy to show that the moving
average filters of Example 3.33 had a zero of multiplicity one at w = 7, regardless
of L. Clearly, the corresponding frequency responses, shown in Figure 3.10, were
not as flat for w &~ 7, when compared to the ones in Figure 3.13.

While using S* gives a desirable behaviour for w ~ 7, we see that the
behaviour is not so desirable for small frequencies w = 0: Only frequencies very
close to 0 are kept unaltered. It should be possible to produce better lowpass
filters than this also, and the frequency responses we plotted for the filters used
in the MP3 standard gives an indication to this.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS120

Figure 3.13: The frequency response of filters corresponding to iterating the
moving average filter {1/2,1/2} k =5 and k = 30 times (i.e. using row k in
Pascal’s triangle).

Let us now see how to implement the filters S*. Since convolution corresponds
to multiplication of polynomials, we can obtain their filter coefficients with the
following code

t = [1.]
for kval in range(k):
t = convolve(t, [1/2., 1/2.])

Note that S* has k + 1 filter coefficients, and that S* corresponds to the filter
coefficients of a symmetric filter when k is even. Having computed t, we can
simply compute the convolution of the input x and t. In using conv we disregard
the circularity of S, and we introduce a time delay. These issues will, however,
not be audible when we listen to the output. An example of the result of
smoothing is shown in Figure 3.14.

1.0

0.5

0.0

-0.5

~1%00 0.002 0.004 0,006 0.008 0.010 0000 0.002 0.004 0.006 0.008 0.010

Figure 3.14: Reducing the treble. The original sound signal is shown left, the
result after filtering using row 4 in Pascal’s triangle is shown right.

The left plot shows the samples of the pure sound with frequency 440Hz (with
sampling frequency fs = 4400Hz). The right plot shows the result of applying the
averaging process by using row 4 of Pascals triangle. We see that the oscillations
have been reduced. In Exercise 3.25 you will be asked to implement reducing

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS121

the treble in our sample audio file. If you do this you should hear that the
sound gets softer when you increase k: For k = 32 the sound will be like this,
for k = 256 it will be like this.

Picking coefficients from a row in Pascals triangle works better the longer
the filter is:

Observation 3.39. Reducing the treble.

Let @ be the samples of a digital sound, and let S be a filter with coefficients
taken from row k of Pascals triangle. Then S has reduced treble when compared
to @.

Another common option in an audio system is reducing the bass. This
corresponds to reducing the low frequencies in the sound, or equivalently, the
slow variations in the sample values. It turns out that this can be accomplished
by simply changing the sign of the coefficients used for reducing the treble. Let
us explain why this is the case. Let S; be a filter with filter coefficients g,
and let us consider the filter Sy with filter coefficient (—1)*#;,. The frequency
response of Sy is

As, (w) = Z(_l)ktke—iwk _ Z(e_m)ktke_i“’k

k k
_ Zefiwktkefiwk _ Ztkefi(uwhr)k _ /\81 (w + 7T).
k k
where we have set e™*™ = —1 (note that this is nothing but Property 4. in

Theorem 2.18, with d = N/2). Now, for a lowpass filter S1, Ag, (w) has large
values when w is close to 0 (the low frequencies), and values near 0 when w is
close to 7 (the high frequencies). For a highpass filter Sa, Ag,(w) has values near
0 when w is close to 0 (the low frequencies), and large values when w is close to
7 (the high frequencies). When S5 is obtained by adding an alternating sign to
the filter coefficicents of S1, The relation Ag, (w) = Ag, (w + 7) thus says that So
is a highpass filter when 57 is a lowpass filter, and vice versa:

Observation 3.40. Passing between lowpass- and highpass filters.

Assume that S, is obtained by adding an alternating sign to the filter
coefficicents of Sy. If S is a lowpass filter, then S is a highpass filter. If .S; is a
highpass filter, then S5 is a lowpass filter.

The following example elaborates further on this.

Example 3.41. Reducing the bass.
Consider the bass-reducing filter deduced from the fourth row in Pascals
triangle:

1
Zn = TG(xn—Q - 4xn—1 + 61'71 - 4mn+1 + In+2)

http://folk.uio.no/oyvindry/matinf2360/sounds/castanetstreble32.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castanetstreble256.wav

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS122

1.0 T T T T

0.5} -

-0.5F -

-1.0 I I I I
0.000 0.002 0.004 0.006 0.008 0.010

Figure 3.15: The result of applying the bass-reducing filter deduced from row 4
in Pascals triangle to the pure sound in the left plot of Figure 3.14.

The result of applying this filter to the sound in Figure 3.14 is shown in Fig-
ure 3.15.

We observe that the samples oscillate much more than the samples of the
original sound. In Exercise 3.25 you will be asked to implement reducing the
bass in our sample audio file. The new sound will be difficult to hear for large k,
and we will explain why later. For k = 1 the sound will be like this, for k = 2 it
will be like this. Even if the sound is quite low, you can hear that more of the
bass has disappeared for k = 2.

The frequency response we obtain from using row 5 of Pascal’s triangle is
shown in Figure 3.16. It is just the frequency response of the corresponding
treble-reducing filter shifted with m. The alternating sign can also be achieved if
we write the frequency response 2%(1 +e7™)k from Example 3.38 as %(1—6_“’)’“,
which corresponds to applying the filter S(x) = %(—xn_l + x,) k times.

If we play a sound after such a bass-reducing filter has been applied to it,
the bass will be reduced:

Observation 3.42. Pascals triangle and reducing the bass.

Let « be the samples of a digital sound, and let S be a filter with filter
coefficients taken from row k of Pascal’s triangle, and add an alternating sign to
the filter coefficients. Then Sz has reduced bass when compared to x.

What you should have learned in this section.

http://folk.uio.no/oyvindry/matinf2360/sounds/castanetsbass1.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castanetsbass2.wav

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS123

1-2 T T T T T T

0.8

0.4+

0.0
0

Figure 3.16: The frequency response of the bass reducing filter, which corre-
sponds to row 5 of Pascal’s triangle.

e Simple examples of filters, such as time delay filters and filters which add
echo.

e Lowpass and highpass filters and their frequency responses, and their
interpretation as treble- and bass-reducing filters. Moving average filters,
and filters arising from rows in Pascal’s triangle, as examples of such filters.

e How to pass between lowpass and highpass filters by adding an alternating
sign to the filter cofficients.

Exercise 3.22: Composing time delay filters

Let E4, and Eg4, be two time delay filters. Show that Eg, Eq, = Eg4, +4, (i-e. that
the composition of two time delays again is a time delay) in two different ways:

a) Give a direct argument which uses no computations.

b) By using Property 3 in Theorem 2.18, i.e. by using a property for the Discrete
Fourier Transform.

Exercise 3.23: Adding echo

In this exercise, we will experiment with adding echo to a signal.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS124

a) Write a function play_with_echo which takes the sound samples, the sample
rate, a damping constant c, and a delay d as input, and plays the sound samples
with an echo added, as described in Example 3.32. Recall that you have to
ensure that the sound samples lie in [—1, 1].

b) Generate the sound from Example 3.32, and verify that it is the same as the
one you heard there.

c) Listen to the sound samples for different values of d and ¢. For which range
of d is the echo distinguisible from the sound itself? How low can you choose ¢
in order to still hear the echo?

Exercise 3.24: Adding echo filters

Consider the two filters S; = {1,0,...,0,¢} and Sy = {1,0,...,0,—c}. Both of
these can be interpreted as filters which add an echo. Show that %(51 +S52) =1.
What is the interpretation of this relation in terms of echos?

Exercise 3.25: Reducing bass and treble

In this exercise, we will experiment with increasing and reducing the treble and
bass in a signal as in examples 3.38 and 3.41.

a) Write functions play_with_reduced_treble and play_with_reduced_bass
which take a data vector, sampling rate, and k as input, and which reduce bass
and treble, respectively, in the ways described above, and plays the result, when
row number 2k in Pascal’ triangle is used to construct the filters. Use the
function convolve to help you to find the values in Pascal’s triangle. You can
use the convolve function also to compute the output of the filter, but note that
this disregards the circularity of the filter. If you solved Exercise 3.6, you can
also use the function filterS you implemented there, since row 2k in Pascal’s
triangle has an odd number of values, and thus corresponds to a symmetric filter.

b) Generate the sounds you heard in examples 3.38 and 3.41, and verify that
they are the same.

¢) In your code, it will not be necessary to scale the values after reducing the
treble, i.e. the values are already between —1 and 1. Explain why this is the
case.

d) How high must k be in order for you to hear difference from the actual sound?
How high can you choose k and still recognize the sound at all?

Exercise 3.26: Constructing a highpass filter

Consider again Example 3.35. Find an expression for a filter so that only
frequencies so that |w — 7| < w,. are kept, i.e. the filter should only keep angular
frequencies close to 7 (i.e. here we construct a highpass filter).

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS125

Exercise 3.27: Combining lowpass and highpass filters

In this exercise we will investigate how we can combine lowpass and highpass
filters to produce other filters

a) Assume that S; and S2 are lowpass filters. What kind of filter is 57557
What if both S; and S5 are highpass filters?

b) Assume that one of S1, .55 is a highpass filter, and that the other is a lowpass
filter. What kind of filter S5 in this case?

Exercise 3.28: Composing filters

A filter S; has the frequency response %(1 + cosw), and another filter has the
frequency response 1 (1 + cos(2w)).

a) Is 515 a lowpass filter, or a highpass filter?
b) What does the filter $1.52 do with angular frequencies close to w = 7/2.
c) Find the filter coefficients of S1.55.

Hint. Use Theorem 3.26 to compute the frequency response of S7.55 first.
d) Write down the matrix of the filter S1.55 for N = 8.

Exercise 3.29: Composing filters

An operation describing some transfer of data in a system is defined as the
composition of the following three filters:

e First a time delay filter with delay d; = 2, due to internal transfer of data
in the system,

e then the treble-reducing filter 7' = {1/4,1/2,1/4},

e finally a time delay filter with delay do = 4 due to internal transfer of the
filtered data.

We denote by Ty = E4,TE,, = E4TE> the operation which applies these filters
in succession.

a) Explain why T5 also is a digital filter. What is (the magnitude of) the
frequency response of E;, 7 What is the connection between (the magnitude of)
the frequency response of T and 157

b) Show that T3 = {0,0,0,0,0,1/4,1/2,1/4}.

Hint. Use the expressions (E4, @), = Tn—g,, (Tx), = ifﬂm-l + %xn + %xn_l,
(Eg,), = Tp—d,, and compute first (E4,x),, then (TE4 x),, and finally
(Tox), = (Eg,TEq,x),. From the last expression you should be able to read
out the filter coefficients.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS126

c) Assume that N = 8. Write down the 8 x 8-circulant Toeplitz matrix for the
filter T5.

Exercise 3.30: Filters in the MP3 standard

In Example 3.37, we mentioned that the filters used in the MP3-standard were
constructed from a lowpass prototype filter by multiplying the filter coefficients
with a complex exponential. Clearly this means that the new frequency response
is a shift of the old one. The disadvantage is, however, that the new filter
coefficients are complex. It is possible to address this problem as follows. Assume
that t; are the filter coefficients of a filter S7, and that S5 is the filter with filter
coefficients cos(2wkn/N)ty, where n € N. Show that

Ay () = %()\51 (@ — 270/N) + s, (w + 270/N)).

In other words, when we multiply (modulate) the filter coefficients with a cosine,
the new frequency response can be obtained by shifting the old frequency response
with 27n/N in both directions, and taking the average of the two.

Exercise 3.31: Explain code

a) Explain what the code below does, line by line.

x, fs = audioread(’sounds/castanets.wav’)
N, nchannels = shape(x)
z = zeros((N, nchannels))
for n in range(1,N-1):
z[n] = 2*x[n+1] + 4*x[n] + 2*x[n-1]
z[0] = 2*x[1] + 4*x[0] + 2*x[N-1]
z[N-1] = 2*x[0] + 4*x[N-1] + 2*x[N-2]
z = z/abs(z) .max()
play(z, fs)

Comment in particular on what happens in the three lines directly after the
for-loop, and why we do this. What kind of changes in the sound do you expect
to hear?

b) Write down the compact filter notation for the filter which is used in the
code, and write down a 5 x 5 circulant Toeplitz matrix which corresponds to
this filter. Plot the (continuous) frequency response. Is the filter a lowpass- or a
highpass filter?

c) Another filter is given by the circulant Toeplitz matrix

4 -2 0 0 -2
-2 4 =2 0 0
0 -2 4 -2 0
0 0 -2 4 =2
-2 0 0 -2 4

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS127

Express a connection between the frequency responses of this filter and the filter
from b. Is the new filter a lowpass- or a highpass filter?

3.5 More general filters

The starting point for defining filters at the beginning of this chapter was
equations on the form

Zn = g L Tp—t-
k

For most filters we have looked at, we had a limited number of nonzero t;, and this
enabled us to compute them on a computer using a finite number of additions and
multiplications. Filters which have a finite number of nonzero filter coefficients
are also called FIR-filters (FIR is short for Finite Impulse Response. Recall
that the impulse response of a filter can be found from the filter coefficients).
However, there exist many useful filters which are not FIR filters, i.e. where
the sum above is infinite. The ideal lowpass filter from Example 3.35 was one
example. It turns out that many such cases can be made computable if we
change our procedure slightly. The old procedure for computing a filter is to
compute z = Sx. Consider the following alternative:

Idea 3.43. More general filters (1).
Let « be the input to a filter, and let T be a filter. By solving the system
Tz = x for z we get another filter, which we denote by S.

Of course T must then be the inverse of S (which also is a filter), but the point
is that the inverse of a filter may have a finite number of filter coefficicents, even
if the filter itself does not. In such cases this new procedure is more attractive
that the old one, since the equation system can be solved with few arithmetic
operations when T has few filter coefficients.

It turns out that there also are highly computable filters where neither the
filter nor its inverse have a finite number of filter coefficients. Consider the
following idea:

Idea 3.44. More general filters (2).

Let « be the input to a filter, and let U and V be filters. By solving the
system Uz = Vx for z we get another filter, which we denote by S. The filter .S
can be implemented in two steps: first we compute the right hand side y = Vx,
and then we solve the equation Uz = y.

If both U and V are invertible we have that the filter is S = U~'V, and this
is invertible with inverse S~! = V~1U. The point is that, when U and V have
a finite number of filter coefficicents, both S and its inverse will typically have
an infinite number of filter coefficients. The filters from this idea are thus more
general than the ones from the previous idea, and the new idea makes a wider
class of filters implementable using row reduction of sparse matrices. Computing

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS128

a filter by solving Uz = V& may also give meaning when the matrices U and
V are singular: The matrix system can have a solution even if U is singular.
Therefore we should be careful in using the form T = U1V,

We have the following result concerning the frequency responses:

Theorem 3.45. Frequency response of IIR filters.
Assume that S is the filter defined from the equation Uz = V. Then we

have that Ag(w) = S\EEZ; whenever Ay (w) # 0.

Proof. Set * = ¢,,. We have that Uz = Ay ,Asndn, and Va = Ay, ¢,,. If the

expressions are equal we must have that Ay ,As, = Avp, so that Ag,, = %
for all n. By the definition of the continuous frequency response this means that
As(w) = i‘;g:’g whenever Ay (w) # 0. O

The following example clarifies the points made above, and how one may
construct U and V from S. The example also shows that, in addition to making
some filters with infinitely many filter coefficients computable, the procedure
Uz = Vx for computing a filter can also reduce the complexity in some filters
where we already have a finite number of filter coefficients.

Example 3.46. Mowving average filter.
Consider again the moving average filter S from Example 3.33:

_ 1
20 +1
If we implemented this directly, 2L additions would be needed for each n, so
that we would need a total of 2N L additions. However, we can also write

Zn, (xn+L+"'+xn+"'+xn—L)-

Zn+1 = ﬁ(xn+l+L + -+ Tn+1 + -+ «rn-l—l—L)
1
= m(%ﬁL +o o) + T_H(I'rH»lJrL —Tp-r)
1
= Zn + m(anrlJrL - xnfL)~

This means that we can also compute the output from the formula

1

-~ 2L+1
which can be written on the form Uz = Va with U = {1,—-1} and V =
ﬁ{l, 0,...,0,—1} where the 1 is placed at index —L — 1 and the —1 is placed
at index L. We now perform only 2NV additions in computing the right hand
side, and solving the equation system requires only 2(N — 1) additions. The
total number of additions is thus 2N + 2(N — 1) = 4N — 2, which is much less
than the previous 2L N when L is large.

A perhaps easier way to find U and V is to consider the frequency response
of the moving average filter, which is

Zn+1 — Zn (xn+1+L - xn—L)v

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS129

1 (e—Lm; + + eLiw) — 1 e—Liw 1- €(2L+1)iw
2L +1 N 20+1 1—eww
2L1+1 (_e(L+1)iw _’_efLiw)
N 1 —ew ’

where we have used the formula for the sum of a geometric series. From here
we easily see the frequency responses of U and V' from the numerator and the
denominator.

Filters with an infinite number of filter coefficients are also called IIR filters
(IIR stands for Infinite Impulse Response). Thus, we have seen that some IIR
filters may still have efficient implementations.

Exercise 3.32: A concrete IIR filter
A filter is defined by demanding that z, 2 — 2411 + 20 = Tna1 — Tn-
a) Compute and plot the frequency response of the filter.

b) Use a computer to compute the output when the input vector is & =
(1,2,...,10). In order to do this you should write down two 10 x 10-circulant
Toeplitz matrices.

3.6 Implementation of filters

As we saw in Example 3.46, a filter with many filter coefficients could be
factored into the application of two simpler filters, and this could be used as
a basis for an efficient implementation. There are also several other possible
efficient implementations of filters. In this section we will consider two such
techniques. The first technique considers how we can use the DFT to speed up
the computation of filters. The second technique considers how we can factorize
a filter into a product of simpler filters.

3.6.1 Implementation of filters using the DFT

If there are k filter coefficients, a direct implementation of a filter would require
kN multiplications. Since filters are diagonalized by the DFT, one can also
compute the filter as the product S = F]IV{ DFy. This would instead require
O (Nlogy N) complex multiplications when we use the FFT algorithm, which
may be a higher number of multiplications. We will however see that, by slightly
changing our algorithm, we may end up with a DFT-based implementation of
the filter which requires fewer multiplications.

The idea is to split the computation of the filter into smaller parts. Assume
that we compute M elements of the filter at a time. If the nonzero filter
coeflicients of S are t_y,,. .. ,tx_k,—1, We have that

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS130

(Sz), = Z brZs—r =t koTttke T -+ th—ko—1Tt—(k—ko—1)-

T

From this it is clear that (Sx); only depends on @;_(x_g,—1),- - Tt+ky- This
means that, if we restrict the computation of S to y_(k_ro—1), -+ Te4 M—14k0>
the outputs x4, ..., 24 a7—1 will be the same as without this restriction. This

means that we can compute the output M elements at a time, at each step
multiplying with a circulant Toeplitz matrix of size (M +k—1) x (M +k—1). If
we choose M so that M +k —1 = 2", we can use the FFT and IFFT algorithms
to compute S = FH DFy, and we require O(r2") multiplications for every block
of length M. The total number of multiplications is NJ(; = 27]\1775“ If k=128,
you can check on your calculator that the smallest value is for r = 10 with
value 11.4158 x N. Since the direct implementation gives kN multiplications,
this clearly gives a benefit for the new approach, it gives a 90% decrease in the
number of multiplications.

3.6.2 Factoring a filter into several filters

In practice, filters are often applied in hardware, and applied in real-time scenarios
where performance is a major issue. The most CPU-intensive tasks in such
applications often have few memory locations available. These tasks are thus not
compatible with filters with many filter coefficients, since for each output sample
we then need access to many input samples and filter coefficients. A strategy
which addresses this is to factorize the filter into the product of several smaller
filters, and then applying each filter in turn. Since the frequency response of
the product of filters equals the product of the frequency responses, we get the
following idea:

Idea 3.47. Fuactorizing a filter.
Let S be a filter with real coefficients. Assume that

As(w) = Ke™ (e —ap)... (€™ —an)(e®™ +b1e™ +c1) ... (€2 +bpe™ +¢,).

(3.14)
Then we can write S = KEpA;...AnB1...B,, where 4; = {1,—a;} and
Bi = {1,()”&}

Note that in Equation (3.14) a; correspond to the real roots of the frequency
response, while b;, ¢; are obtained by pairing the complex conjugate roots. Clearly
the frequency responses of A;, B; equal the factors in the frequency response of
S, which in any case can be factored into the product of filters with 2 and 3
filter coefficients, followed by a time-delay.

Note that, even though this procedure factorizes a filter into smaller parts
(which is attractive for hardware implementations since smaller filters require
fewer locations in memory), the number of of arithmetic operations is usually
not reduced. However, consider Example 3.38, where we factorized the treble-
reducing filters into a product of moving average filters of length 2 (all roots in

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS131

the previous idea are real, and equal). Each application of a moving average
filter of length 2 does not really require any multiplications, since multiplication
with % corresponds to a bitshift. Therefore, the factorization of Example 3.38
removes the need for doing any multiplications at all, while keeping the number
of additions the same. There are computational savings in this case, due to the
special filter structure here.

Exercise 3.33: Implementing the factorization

Write a function filterdftimpl, which takes the filter coefficients ¢ and the
value kg from this section, computes the optimal M, and implements the filter
as here.

Exercise 3.34: Factoring concrete filter

Factor the filter S = {1,5,10,6} into a product of two filters, one with two filter
coefficients, and one with three filter coefficients.

3.7 Summary

We defined digital filters, which do the same job for digital sound as analog filters
do for (continuous) sound. Digital filters turned out to be linear transformations
diagonalized by the DFT. We proved several other equivalent characterizations
of digital filters as well, such as being time-invariant, and having a matrix
which is circulant and Toeplitz. Just as for continuous sound, digital filters are
characterized by their frequency response, which explains how the filter treats
the different frequencies. We also went through several important examples of
filters, some of which corresponded to meaningful operations on sound, such as
adjustmest of bass and treble, and adding echo. We also explained that there
exist filters with useful implementations which have an infinite number of filter
coefficients, and we considered techniques for implementing filters efficiently.
Most of the topics covered on that can also be found in [28]. We also took a look
at the role of filters in the MP3 standard for compression of sound.

In signal processing literature, the assumption that vectors are periodic is
often not present, and filters are thus not defined as finite-dimensional operations.
With matrix notation they would then be viewed as infinite matrices which
have the Toeplitz structure (i.e. constant values on the diagonals), but with no
circulation. The circulation in the matrices, as well as the restriction to finite
vectors, come from the assumption of a periodic vector. There are, however, also
some books which view filters as circulant Toeplits matrices as we have done,
such as [13].

Chapter 4

Symmetric filters and the
DCT

In Chapter 1 we approximated a signal of finite duration with trigonometric
functions. Since these are all periodic, there are some undesirable effects near
the boundaries of the signal (at least when the values at the boundaries are
different), and this resulted in a slowly converging Fourier series. This was
addressed by instead considering the symmetric extension of the function, for
which we obtained a more precise Fourier representation, as fewer Fourier basis
vectors were needed in order to get a precise approximation.

This chapter is dedicated to addressing these thoughts for vectors. We will
start by defining symmetric extensions of vectors, similarly to how we defined
these for functions. Just as the Fourier series of a symmetric function was a
cosine series, we will see that the symmetric extension can be viewed as a cosine
vector. This gives rise to a different change of coordinates than the DFT, which
we will call the DCT, which enables us to express a symmetric vector as a sum
of cosine-vectors (instead of the non-symmetric complex exponentials). Since
a cosine also can be associated with a given frequency, the DCT is otherwise
similar to the DFT, in that it extracts the frequency information in the vector.
The advantage is that the DCT can give more precise frequency information
than the DFT, since it avoids the discontinuity problem of the Fourier series.
This makes the DCT very practical for applications, and we will explain some
of these applications. We will also show that the DCT has a a very efficient
implementation, comparable with the FFT.

In this chapter we will also see that the DCT has a very similar role as the
DFT when it comes to filters: just as the DFT diagonalized filters, we will see
that symmetric filters can be diagonalized by the DCT, when we apply the filter
to the symmetric extension of the input. We will actually show that the filters
which preserve our symmetric extensions are exactly the symmetric filters.

132

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 133

4.1 Symmetric vectors and the DCT

As in Chapter 1, vectors can also be extended in a symmetric manner, besides
the simple periodic extension procedure from Figure 2.1. In Figure 4.1 we have
shown such an extension of a vector . It has x as its first half, and a copy of «
in reverse order as its second half.

20—mMM 2.0r
1.5 1.5
1.0 1.0
0.5 H 0.5|
006 10 20 30 4o 006710 20 30 40

Figure 4.1: A vector and its symmetric extension.

We will call this the symmetric extension of a:

Definition 4.1. Symmetric extension of a vector.
By the symmetric extension of x € RY, we mean the symmetric vector
& € R?N defined by

(4.1)

B — T 0<k<N
T zoyo1ox N<k<2N -1

Clearly, the symmetric extension is symmetric around N — 1/2. This is not
the only way to construct a symmetric extension, as we will return to later. As
shown in Figure 4.1, but not included in Definition 4.1, we also repeat & € R?N
in order to obtain a periodic vector. Creating a symmetric extension is thus a
two-step process:

e First, “mirror” the vector to obtain a vector in RV,

e repeat this periodically to obtain a periodic vector.

The result from the first step lies in an N-dimensional subspace of all vectors in
R2N | which we will call the space of symmetric vectors. To account for the fact
that a periodic vector can have a different symmetry point than N — 1/2; let us
make the following general definition:

Definition 4.2. Symmetric vector.

We say that a periodic vector x is symmetric if there exists a number d so
that 44 = xq_ for all k so that d + k and d — k are integers. d is called the
symmetry point of x

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 134

Due to the inherent periodicity of @, it is clear that N must be an even
number for symmetric vectors to exist at all. d can take any value, and it may
not be an integer: It can also be an odd multiple of 1/2, because then both d+ &
and d — k are integers when k also is an odd multiple of 1/2. The symmetry
point in symmetric extensions as defined in Definition 4.1 was d = N — 1/2.
This is very common in the literature, and this is why we concentrate on this in
this chapter. Later we will also consider symmetry around N — 1, as this also is
much used.

We would like to find a basis for the IN-dimensional space of symmetric
vectors, and we would like this basis to be similar to the Fourier basis. Since the
Fourier basis corresponds to the standard basis in the frequency domain, we are
lead to studying the DFT of a symmetric vector. If the symmetry point is an
integer, it is straightforward to prove the following:

Theorem 4.3. Symmetric vectors with integer symmetry points.
Let d be an integer. The following are equivalent

e x is real and symmetric with d as symmetry point.

—2midn/N
e~ 2T n/

o (), =2 where z,, are real numbers so that z,, = z2y_p,.

Proof. Assume first that d = 0. It follows in this case from property 2(a) of
Theorem 2.18 that (), is a real vector. Combining this with property 1 of
Theorem 2.18 we see that Z, just as «, also must be a real vector symmetric about
0. Since the DFT is one-to-one, it follows that x is real and symmetric about 0
if and only if & is. From property 3 of Theorem 2.18it follows that, when d is
an integer, x is real and symmetric about d if and only if (Z), = z,e” 274/
where z, is real and symmetric about 0. This completes the proof. O

Symmetric extensions were here defined by having the non-integer symmetry
point N —1/2, however. For these we prove the following, which is slightly more
difficult.

Theorem 4.4. Symmetric vectors with non-integer symmetry points.
Let d be an odd multiple of 1/2. The following are equivalent
e x is real and symmetric with d as symmetry point.

6727r7idn/N

o (Z), =2, where z,, are real numbers so that zy_,, = —z,.

Proof. When x is as stated we can write

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 135

2

-1
—2mikn/N

(]

Tre

=~
Il

0

xd+86727ri(d+s)n/N + Z xd_86727ri(dfs)n/N

s>0

@
v
o

Ld+s

5 3 sl
(]

(e—Qwi(d+s)n/N + e—27ri(d—s)n/N)

0

1, o .
— e 2midn/N § Tdts (8 2misn/N + eszsn/N)
N s>0

S

v

- 4

= ——¢ 2midn/N Z 22445 cos(2msn/N).
s>0

=

Here s runs through odd multiples of 1/2. Since z,, = ﬁ > >0 2Td+s cos(2msn/N)

is a real number, we can write the result as z,e2™*"/N Substituting N — n
for n, we get

1 .
(B) y_, = ——e 2ridN-m)/N Z 2x 445 cos(2ws(N —n)/N)
\/N s>0
1

_ —2mid(N—n)/N Z) —92 N +2
—e Zts cos(—2mwsn/N + 2ms)
\/N s>0

1

— —2mid(N—n)/N 22 _ —2mid(N—n)/N
= —e ZTats cos(2msn/N) = —zpe .
N s>0
This shows that zy_, = —z,, and this completes one way of the proof. The
other way, we can write
| N-n
T = Z (i)n eQﬂ'zkn/N

=

3

N:O

if (Z), = zoe” 7/N and (Z)y_,, = —2,e 24N ")/N " the sum of the n’th
term and the N — n’th term in the sum is

6727ridn/N627rikn/N 277rid(N7n)/Ne27rik(N7n)/N

Zn — zZpe

e27ri(k—d)n/N _ —27rid+27ridn/N—27rik,n/N)

= zn(e

= z, (2™ k=N 2mild=kn/NY — 9, cos(27(k — d)n/N).

This is real, so that all x, are real. If we set k = d+ s, k = d — s here we get

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 136

2z, cos(2m((d + s) — d)n/N) = 2z, cos(2mwsn/N)
2z, cos(2m((d — s) — d)n/N) = 2z, cos(—2msn/N) = 2z, cos(2wsn/N).

By adding terms together and comparing we must have that x4ys = 245, and
the proof is done. O

Now, let us specialize to symmetric extensions as defined in Definition 4.1,
i.e. where d = N — 1/2. The following result gives us an orthonormal basis for
the symmetric extensions, which are very simple in the frequency domain:

Theorem 4.5. Orthonormal basis for symmetric vectors.
The set of all @ symmetric around N — 1/2 is a vector space of dimension N,
and we have that

1 . , N1
{60, {\/i (eﬂ'ln/(2N)en + e—ﬂ'ln/(QN)ezN_n)} }

n=1
is an orthonormal basis for Z where @ is symmetric around N — 1/2.

Proof. For a vector & symmetric about d = N — 1/2 we know that
&), = e 2T N =1/2)n/(2N)

and the only requirement on the vector z is the antisymmetry condition zon_,, =
—2,. The vectors z; = %(ei —ean—i), 1 <i< N —1, together with the vector
zo = eg, are clearly orthonormal and satisifes the antisymmetry condition. From
these we obtain that

N-1
{60, {1 (6727ri(N71/2)n/(2N)en _ eQﬂ'i(N1/2)(2Nn)/(2N)e2Nn)} }

is an orthonormal basis for the & with & symmetric. We can write

(6—27ri(N—1/2)n/(2N)en _ e—2m’(N—1/2)(2N—n)/(2N)ezN_n)

[E\H

L (e—ﬂznewzn/(QN)en + eﬂ—lne_ﬂ'ln/(zN)e2N7n)

V2
7

This also means that

1 A _ N—1
{607 {\/i (ewzn/(QN) e, + 67ﬂzn/(2N)62N_n) } }

eﬂ'in/(QN)en + 677Tin/(2N)62N_n>)

n=1

is an orthonormal basis. O

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 137

We immediately get the following result:

Theorem 4.6. Orthonormal basis for symmetric vectors.
We have that

(e (o) (o e D))

is an orthonormal basis for the set of vectors symmetric around N — 1/2 in R2V.
Moreover, the n’th vector in this basis has frequency contribution only from the
indices n and 2N — n.

Proof. Since the IDFT is unitary, the IDFT applied to the vectors above gives
an orthonormal basis for the set of symmetric extensions. We get that

(F2N)H(eo):(&,&,...,&):\/;Ncos@w;v <k+;)>

We also get that

1 .)
(FZN)H (\/§ (e‘n'zn/(QN)en + e—ﬂ'zn/(?N)ean)>

_ L (eﬂ'in/(2N) L omink/(2n) 4 o= min/(2N) 1 e2m‘(2Nn)k/(2N)>
V2 V2 V2N
1

=

1 . 1 . _ 1 _

_ min/(2N) 2mink/(2N) —min/(2N) —2mink/(2N)
= e e +e e
2 (V2N V2N)

)) 1 n 1
_ _ ~ A 27i(n/(2N))(k+1/2) —2m(n/(2N))(k+1/2)) = e -
= e +e = cos | 27 k+ .
2«/N(VN (2N (2))

Since Fyp is unitary, and thus preserves the scalar product, the given vectors
are orthonormal. O

We need to address one final thing before we can define the DCT: The vector
x we start with is in RY, but the vectors above are in R?Y. We would like
to have orthonormal vectors in RY, so that we can use them to decompose
x. It is possible to show with a direct argument that, when we restrict the
vectors above to the first N elements, they are still orthogonal. We will, however,
apply a more instructive argument to show this, which gives us some intuition
into the connection with symmetric filters. We start with the following result,
which shows that a filter preserves symmetric vectors if and only if the filter is
symmetric.

Theorem 4.7. Criteria for preserving symmetric vectors.
Let S be a filter. The following are equivalent

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 138

e S preserves symmetric vectors (i.e. Sz is a symmetric vector whenever x
is).

e The set of filter coefficients of S is a symmetric vector.
Also, when S preserves symmetric vectors, the following hold:

e The vector of filter coefficients has an integer symmetry point if and only
if the input and output have the same type (integer or non-integer) of
symmetry point.

e The input and output have the same symmetry point if and only if the
filter is symmetric.

Proof. Assume that the filter S maps a symmetric vector with symmetry at d;
to another symmetric vector. Let & be the symmetric vector so that (), =
e 2midin/N for p < N/2. Since the output is a symmetric vector, we must have
that
AS e—Qﬂidln/N =z e—2ﬂid2n/N
n — <n

for some da, z, and for n < N/2. But this means that \g, = y,e” 27/ (d2—d1)n/N

Similar reasoning applies for n > N/2, so that Ag, clearly equals § for some
symmetric vector s from Theorems 4.3 and 4.4. This vector equals (up to
multiplication with v N) the filter coefficients of S, which therefore is a symmetric.
Moreover, it is clear that the filter coeflicients have an integer symmetry point if
and only if the input and output vector either both have an integer symmetry
point, or both a non-integer symmetry point. O

Since the filter coefficients of a filter which preserves symmetric vectors
also is a symmetric vector, this means that its frequency response takes the
form Ag, = 2, e 2midn/N , where z is a real vector. This means that the phase
(argument) of the freqency response is —2wdn/N or m — 2wdn/N, depending on
the sign of z,. In other words, the phase is linear in n. Filters which preserve
symmetric vectors are therefore also called linear phase filters

Note also that the case d = 0 or d = N — 1/2 corresponds to symmetric
filters. An example of linear phase filters which are not symmetric are smoothing
filters where the coefficients are taken from odd rows in Pascal’s triangle.

When S is symmetric, it preserves symmetric extensions, so that it makes
sense to restrict S to symmetric vectors. We therefore make the following
definition.

Definition 4.8. Symmetric restriction.

Assume that S : R?N — R2Y is a symmetric filter. We define S, : RN — RN
as the mapping which sends € R to the first N components of the vector
Sx. S, is also called the symmetric restriction of S.

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 139
S, is clearly linear, and the restriction of S to vectors symmetric about
N — 1/2 is characterized by S,.. We continue with the following result:

Theorem 4.9. Ezpression for S,.
Assume that S : R?V — R2V is a symmetric filter, and that

(S S,
5= (o 54) |
Then S, is symmetric, and S, = Sy + (S2)7, where (S5)/ is the matrix Sy with

the columns reversed.

Proof. With S as in the text of the theorem, we compute

Zo IN-1
Syx = =951 : + 59
TN-1 Zo
o o
=S| | HE)T | =S+ (S)),
IN—-1 TN-1

so that S, = Sy + (S2)7. Since S is symmetric, S; is also symmetric. (S3)f is
also symmetric, since it is constant on anti-diagonals. It follows then that S is
also symmetric. This completes the proof. O

Note that S, is not a digital filter, since its matrix is not circulant. In
particular, its eigenvectors are not pure tones. In the block matrix factorization
of S, Sy contains the circulant part of the matrix, and forming (S;)/ means that
the circulant parts switch corners. With the help of Theorem 4.9 we can finally
establish the orthogonality of the cosine-vectors in R¥.

Corollary 4.10. Basis of eigenvectors for S...
Let S be a symmetric filter, and let S,. be the mapping defined in Theorem 4.9.
Define

,nm=20
an:

)

EaEy

2 1<n<N

and d,, = d,, n cos (271’% (k:—|— %)) for 0 <n < N —1, then {dy,dy,...,dy_1}
is an orthonormal basis of eigenvectors for .S,..

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 140

Proof. Let S be a symmetric filter of length 2N. We know then that Ag, =
AS,2N—n, S0 that

5 (e (oo (++3)

<; (ezm(n/(zN))(k+1/2) + e—2m‘(n/(2N))(k+1/2))>

(em‘n/(2N)S <e27rink/(2N)) 1 e min/(2N) g <6—27rink/(2N)))

(e”"/(zN)AS

n

2mink/(2N) | ef'n'in/(ZN)/\Sv2N—n6727rink/(2N))

s

()\s 2T/ @N)(k+1/2) |y 2N_ne—27ri(n/(2N))(k+l/2))

1

S,n§

n 1
=Agn r— (k+=)),
S, cos(7T2N(+2)>

where we have used that e2™%/(2N) {5 an eigenvector of S with eigenvalue
As,n, and e~ 2mink/(2N) — o2mi2N-n)k/(2N) is an eigenvector of S with eigenvalue
As,2N—n. This shows that the vectors are eigenvectors for symmetric filters of
length 2N. It is also clear that the first half of the vectors must be eigenvectors
for S, with the same eigenvalue, since when y = Sx = Ag ,x, we also have that

> NI R N RN

(627ri(n/(2N))(k+1/2) +e—27ri(n/(2N))(k+1/2))

(yo,yh cee 7yN—1) = 57-(9?0,331, cee 733N—1) =)\S,n($07$17 cee 737N—1)-

To see why these vectors are orthogonal, choose at the outset a symmetric filter
where {\s,,}N-} are distinct. Then the cosine-vectors of length N are also
eigenvectors with distinct eigenvalues, and they must be orthogonal since S, is
symmetric. Moreover, since

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 141

=0
N-1 n 1 2N-—1 n 1
_ 2 e - 2 o -
—ZCOS (271’2N <k+2>>+ cos <27r2N <k+2>)
k=0 k=N
N-1 n 1 N-1 n
= cos? (27T2N (k—|— 2)) + cos? (27T2N (k + N + 2))
k=0 k=0
N-1 n 1 N-1 n 1
= cos? (2772]\7 (kz + 2>) + (=1)2" cos? <2W2N (k + 2>)
k=0 k=0
N-1 n 1
=2 2lom— (k+=
o oy 141

where we used that cos(x + nm) = (—1)" cosz. This means that

n 1 2N—1 n 1 N-1

2n— | k+ = 2n— | k+ =
o orgi (o)L, = 2o i (o 2)).
Thus, in order to make the vectors orthonormal when we consider the first N
elements instead of all 2N elements, we need to multiply with /2. This gives

us the vectors d,, as defined in the text of the theorem. This completes the
proof. U

=2

We now clearly see the analogy between symmetric functions and vectors:
while the first can be written as a sum of cosine-functions, the second can be
written as a sum of cosine-vectors. The orthogonal basis we have found is given
its own name:

Definition 4.11. DCT basis.
We denote by Dy the orthogonal basis {do,d,...,dy_1}. We also call Dy
the N-point DCT basis.

Using the DCT basis instead of the Fourier basis we can make the following
definitions, which parallel those for the DFT:

Definition 4.12. Discrete Cosine Transform.

The change of coordinates from the standard basis of RY to the DCT basis
Dy is called the discrete cosine transform (or DCT). The N x N matrix DCTy
that represents this change of basis is called the (N-point) DCT matrix. If @ is
a vector in RV, its coordinates y = (yo,v1,- - -,yn_1) relative to the DCT basis
are called the DCT coefficients of « (in other words, y = DCTyx).

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 142

Note that we can also write

1/vV2 0 --- 0
0 1 - 0

DCTNZM% : L (cos (2m 3% (k +1/2))) . (4.3)
0 0 - 1

Since this matrix is orthogonal, it is immediate that

1/2 0 0
(cos(gwﬁ(kﬂm))*l:%(cos(zw%}v/?k)) 0 10 (4.4)
0 0 1
12 0 - 0
(cos(%%}v/?k))_l:% " 1 B (cos (2m 2 (k + 1/2))) -
0 0 1

(4.5)

In other words, not only can DCTy be directly expressed in terms of a cosine-
matrix, but our developments helped us to express the inverse of a cosine
matrix in terms of other cosine-matrices. In the literature different types of
cosine-matrices have been useful:

I Cosine-matrices with entries cos(2mnk/(2(N — 1))).

IT Cosine-matrices with entries cos(2nn(k + 1/2)/(2N)).

ITI Cosine-matrices with entries cos(2m(n + 1/2)k/(2N)).

IV Cosine-matrices with entries cos(2m(n + 1/2)(k + 1/2)/(2N)).

We will call these type-I, type-11, type-I11, and type-IV cosine-matrices, respec-
tively. What we did above handles the case of type-1I cosine-matrices. It will
turn out that not all of these cosine-matrices are orthogonal, but that we in all
cases, as we did above for type-II cosine matrices, can express the inverse of a
cosine-matrix of one type in terms of a cosine-matrix of another type, and that
any cosine-matrix is easily expressed in terms of an orthogonal matrix. These
orthogonal matrices will be called DCT%), DCT%I), DCT%H)7 and DCT%V),
respectively, and they are all called DCT-matrices. The DCTy we constructed
abobe is thus DCT%D. The type-II DCT matrix is the most commonly used,
and the type is therefore often dropped when refering to these. We will consider
the other cases of cosine-matrices at different places in this book: In Section 5.6
we will run into type-I cosine matrices, in connection with a different extension

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 143

strategy used for wavelets. Type-IV cosine-matrices will be encountered in
exercises 4.4 and 4.5 at the end of this section.

As with the Fourier basis vectors, the DCT basis vectors are called synthesis
vectors, since we can write

x =yodo +y1di + - +yn—1dn-_1 (4.6)

in the same way as for the DFT. Following the same reasoning as for the DFT,
DCT' is the matrix where the d,, are columns. But since these vectors are real
and orthonormal, DCT y must be the matrix where the d,, are rows. Moreover,
since Theorem 4.9 also states that the same vectors are eigenvectors for filters
which preserve symmetric extensions, we can state the following:

Theorem 4.13. The DCT is orthogonal.

DCTy is the orthogonal matrix where the rows are d,,. Moreover, for any
digital filter S which preserves symmetric extensions, (DCT)7 diagonalizes S,
ie. S, = DCT%DDCTN where D is a diagonal matrix.

Let us also make the following definition:

Definition 4.14. IDCT.
We will call z = (DCT)Ty the inverse DCT or (IDCT) of x.

Example 4.15. Computing lower order DCTs.

As with Example 2.16, exact expressions for the DCT can be written down
just for a few specific cases. It turns out that the case N = 4 as considered in
Example 2.16 does not give the same type of nice, exact values, so let us instead
consider the case N = 2. We have that

The DCT of the same vector as in Example 2.16 can now be computed as:

1 i
DCT2(2):<_@>.
V2

Matlab’s functions for computing the DCT and IDCT are called dct, and
idct, respectively. These are defined exactly as they are here, contrary to the
case for the FFT (where a different normalizing factor was used).

With these functions we can repeat examples 2.27- 2.29, by simply replacing
the calls to DFTImpl with calls to the DCT counterparts. You may not here
much improvements in these simple experiments, but in theory the DCT should
be able to approximate sound better.

Similarly to the DFT, one can think of the DCT as a least squares approx-
imation and the unique representation of a function having the same sample
values, but this time in terms of sinusoids instead of complex exponentials:

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 144

Theorem 4.16. Interpolation with the DCT basis.
Let f be a function defined on the interval [0, 7], and let @ be the sampled
vector given by

xzp = f((2k+1)T/(2N)) fork=0,1,..., N —1.
There is exactly one linear combination g(¢) on the form

N—-1
> Yndn y cos(2m(n/2)t/T)
n=0

which satisfies the conditions

g((2k +1)T/(2N)) = f((2k + 1)T/(2N)), k=0,1,..., N —1,
and its coefficients are determined by y = DCT y.

Proof. This follows by inserting ¢t = (2k + 1)T'/(2N) in the equation

g(t) = z_: Yndn, N cos(2m(n/2)t/T)
n=0

to arrive at the equations

N-—1
1
= Ynn, N COS o k+ - 0<k<N-1.
f(kT/N dy, 2m o 5
n=0

This gives us an equation system for finding the y,, with the invertible DCT
matrix as coefficient matrix, and the result follows. O

Due to this there is a slight difference to how we applied the DFT, due to the
subtle change in the sample points, from kT'/N for the DFT, to (2k + 1)T/(2N)
for the DCT. The sample points for the DCT are thus the midpoints on the
intervals in a uniform partition of [0, 7] into N intervals, while they for the DFT
are the start points on the intervals. Also, the frequencies are divided by 2. In
Figure 4.2 we have plotted the sinusoids of Theorem 4.16 for 7' =1, as well as
the sample points used in that theorem.

The sample points in the upper left plot correspond to the first column in the
DCT matrix, the sample points in the upper right plot to the second column of
the DCT matrix, and so on (up to normalization with d,,). As n increases, the
functions oscillate more and more. As an example, y5 says how much content of
maximum oscillation there is. In other words, the DCT of an audio signal shows
the proportion of the different frequencies in the signal, and the two formulas
y = DCTyz and z = (DCTy)Ty allow us to switch back and forth between
the time domain representation and the frequency domain representation of the
sound. In other words, once we have computed y = DCTyax, we can analyse

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT

145

1.06 1.0
1.04
0.5
1.02
1.00 0.0
0.98
-0.5
0.96
09002 02 06 o8 1o ‘0.
1.0 1.0
0.5 \ / 0.5
0.0 0.0
-05) -05
-1. -1.
8002 02 06 08 10 8.
1.0 1.0 :
0.5 0.5
0.0 Y 3 0.0l
—-0.5 \\ /, /I —05} \ ‘\‘ l/
18502 02 08 08 1o ‘90 02 02 06 08 1.0

Figure 4.2: The 6 different sinusoids used in DCT for N = 6, i.e. cos(2w(n/2)t),
0 < n < 6. The plots also show piecewise linear functions (in red) between the
sample points 2’;—]@1 0 < k < 6, since only the values at these points are used in
Theorem 4.16.

the frequency content of x. If we want to reduce the bass we can decrease the
y-values with small indices and if we want to increase the treble we can increase
the y-values with large indices.

Exercise 4.1: Computing eigenvalues

Consider the matrix

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 146

2100 00
1 11000
S_1011100
“3/0 01110
0001 11
0000 1 2

a) Compute the eigenvalues and eigenvectors of S using the results of this
section. You should only need to perform one DFT or one DCT in order to
achieve this.

b) Use a computer to compute the eigenvectors and eigenvalues of S also. What
are the differences from what you found in a)?

c) Find a filter T so that S = T,. What kind of filter is 77

Exercise 4.2: Writing down lower order S,

Consider the averaging filter S = {1, 3, +}. Write down the matrix S, for the

1
l)
case when N = 4.

Exercise 4.3: Writing down lower order DCTs

As in Example 4.15, state the exact cartesian form of the DCT matrix for the
case N = 3.

Exercise 4.4: DCT-IV

Show that the vectors {cos (QW% (k + %))} in RV are orthogonal, with
n=0

1
lengths y/N/2. This means that the matrix with entries |/ % cos (277 n;;\ﬁ (k+ %))
is orthogonal. Since this matrix also is symmetric, it is its own inverse. This is

the DCT-IV, which we denote by DCTE\I,V). Although we will not consider this,
the DCT-IV also has an efficient implementation.

Hint. Compare with the orthogonal vectors d,,, used in the DCT.

Exercise 4.5: MDCT

The MDCT is defined as the N x (2N)-matrix M with elements M,, , = cos(2m(n+
1/2)(k+1/2+ N/2)/(2N)). This exercise will take you through the details of
the transformation which corresponds to multiplication with this matrix. The
MDCT is very useful, and is also used in the MP3 standard and in more recent
standards.

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 147

a) Show that

_ N aw) (0 A
M =4/ 5DCTY (B 0)

where A and B are the (IN/2) x N-matrices

0 -1 -1 0

A= 5 - (—If Iy 2)
0 -1 1 0 N/z /
-1 0 0o -1
1 0 0 -1
0 1 -+v eov eev oo —1 0
f
B=1. : : : : : : 3 (IN/2 _IN/2)'
0 1 -1 0

Due to this expression, any algorihtm for the DCT-IV can be used to compute
the MDCT.

b) The MDCT is not invertible, since it is not a square matrix. We will show
here that it still can be used in connection with invertible transformations. We
first define the IMDCT as the matrix M 7T /N. Transposing the matrix expression
we obtained in a) gives

1 0 BT (1v)
7w (4 g e

for the IMDCT, which thus also has an efficient implementation. Show that if

Lo = (»Toa e axN—l) L1 = ($N7 e 71'2N—1) Ty = ($2N,---,$3N—1)

and

_ o _ T
Yo,1 = M (561) Y12 =M (m2>

(i.e. we compute two MDCT’s where half of the data overlap), then

@y = {IMDCT(yo,1)};2 5" + {IMDCT(y1,2)} -

Even though the MDCT itself is not invertible, the input can still be recovered
from overlapping MDCT’s.

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 148

4.2 Improvements from using the DCT to inter-
polate functions and approximate analog fil-
ters

Recall that, in Section 3.2.1, we explained how to approximate an analog filter
from the samples. It turns out that, when an analog filter is symmetric, we can
use symimetric extensions to create a better approximation from the samples.

Assume that s is an analog filter, and that we apply it to a general function
f- Denote as before the symmetric extension of f by f . We start with the
following observation, which follows from the continuity of s.

Observation 4.17. Using symmetric extensions for approximations.
Since (f)n is a better approximation to f, compared to what fy is to f,

)

s((f)n) is a better approximation to s(f), compared to what s(fx) is to s(f).

Since s(f) agrees with s(f) except near the boundaries, we can thus conclude
that s((f)n) is a better approximation to s(f) than what s(fy) is.

We have seen that the restriction of s to Vi r is equivalent to an N x N
digital filter S, where N = 2M + 1. Let be the samples of f, & the samples of
f . Turning around the fact that (f) ~ is a better approximation to f , compared
to what fy is to f, the following is clear.

Observation 4.18. Using symmetric extensions for approximations.

The samples & are a better approximation to the samples of (f)N, than the

samples x are to the samples of fy.

Now, let z = Sz, and 2 = S&. The following is also clear from the preceding
observation, due to continuity of the digital filter S.

Observation 4.19. Using symmetric extensions for approximations.
Z is a better approximation to S(samples of (f)ny) = samples of s((f)n),
than z is to S(samples of fx) = samples of s(fn).

.

Since by Observation 4.17 s((f)n) is a better approximation to the output
s(f), we conclude that £ is a better approximation than z to the samples of the
output of the filter.

Observation 4.20. Using symmetric extensions for approximations.
S is a better approximation to the samples of s(f) than Sz is (x are the
samples of f).

Now, let us also bring in the assumption that s is symmetric. Then the
corresponding digital filter S is also symmetric, and we know then that we can
view its restriction to symmetric extensions in R?Y in terms of the mapping
S, : RN — RY. We can thus specialize Figure 3.5 to symmetric filters by adding
the step of creating the symmetric extension, and replacing S with S,.. We have
summarized these remarks in Figure 4.3. The DCT here appears, since we have
used Theorem 4.16 to interpolate with the DCT basis, instead of the Fourier

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 149

basis. Note that this also requires that the sampling is performed as required
in that theorem, i.e. the samples are the midpoints on all intervals. This new
sampling procedure is not indicated in Figure 4.3.

f s(f)

8¢

s v o S o v
(iBo,.’Bl,...,.’BN_1>%(Zo,zl,...,ZN_l —Y

Figure 4.3: The connections between the new mapping S,., sampling, and
interpolation. The right vertical arrow represents interpolation with the DCT,
i.e. that we compute Zf::ol Yndn, N cos(2m(n/2)t/T) for values of .

Figure 4.3 can be further simplified to that shown in Figure 4.4.

()

f
\L Sr DCTN T
x]

—_—

Figure 4.4: Simplification of Figure 4.3. The left vertical arrow represents
sampling as dictated by the DCT.

Note that the assumption that s is symmetric only helped us to implement
the approximation s(f) in a nore efficient way, since S, has N points and S has

2N points. s(f) can in any way be used as an approximation, even if s is not
symmetric. But this approximation is actually even better when s is symmetric:
Since s is symmetric, s(f) is a symmetric function (since f is a symmetric
function). The N’th order Fourier series of s(f) is s((f)n) = (s(f))n, and this
is a better approximation to s(f) since s(f) is a symmetric function. Since
the procedure above obtained an approximation to (the samples of) (s(f)), it
follows that the approximations are better when s is symmetric.

As mentioned in Section 3.2, interpolation of a function from its samples can
be seen as a special case. This can thus be illustrated as in Figure 4.5.

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 150

——s(f)

f
L DCTx]
z Y

E—

Figure 4.5: How we can approximate a function from its samples with the DCT.

Note that the approximation lies in Vaps o (i-e. it is in a higher order Fourier
space), but the point is that the same number of samples is used.

4.2.1 Implementations of symmetric filters

Symmetric filters are also important for applications since they can be imple-
mented efficiently. To see this, we can write

N—1
(Sw)n == Z Skx(n—k) mod N
k=0
(N-1)/2 N-1
= SoTn + Z SkT(n—k) mod N t Z Sk (n—k) mod N
k=1 k=(N+1)/2
(N-1)/2 (N-1)/2
= S50Tn + Z SkT(n—k) mod N T Z SET(n—(N—k)) mod N
k=1 k=1
(N-1)/2
= 80Tp + Z 56(T(n—k) mod N+ T(n+k) mod N)- (4.7)
k=1

If we compare the first and last expressions here, we need the same number of
summations, but the number of multiplications needed in the latter expression
has been halved.

Observation 4.21. Reducing arithmetic operations for symmetric filters.

Assume that a symmetric filter has 2s+ 1 filter coefficients. The filter applied
to a vector of length N can then be implemented using (s + 1) N multiplications
and 2sN additions. This gives a reduced number of arithmetic operations when
compared to a filter with the same number of coefficients which is not symmetric,
where a direct implementations requires (2s + 1) N multiplications and 2sN
additions.

Similarly to as in Section 3.6.2, a symmetric filter can be factored into a
product of symmetric filters. To see how, note first that a real polynomial is
symmetric if and only if 1/a is a root whenever a is. If we pair together the

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 151

factors for the roots a,1/a when a is real we get a component in the frequency
response of degree 2. If we pair the factors for the roots a,1/a,a,1/a when a is
complex, we get a component in the frequency response of degree 4. We thus
get the following idea:

Idea 4.22. Factorizing symmetric filters.
Let S be a symmetric filter with real coefficients. There exist constants K,
A1y .-y Qm, b1,C1, ..., by, Cp SO that

As(w) =K (ar1e™ +1+a1e”) ... (ame™ + 1+ ape” ™)
X (ble%“’ +ce +1+ce ™+ ble*%“’) e
X (0p€?™ + cpe®™ + 14 cpe™™ + be %),
We can write S = KA;...A,,B;...B,, where 4; = {a;,1,a;} and B; =
{b’ia Ci, l7 Ci, bl}

In any case we see that the component filters have 3 and 5 filter coefficients.

Exercise 4.6: Component expressions for a symmetric filter

Assume that S =t_p,...,to,...,tr is a symmetric filter. Use Equation (4.7)
in the compendium to show that z, = (Sx), in this case can be split into the
following different formulas, depending on n:

a) 0<n<L:
n L
Zn = tOmn + Z tk(mn-&-k: + xn—k) + Z tk:(xn-i—k + mn—k-{-N)- (48)
k=1 k=n+1
b) L<n<N— Lt
L
Zn = toTn + Z te(Tntk + Tnok)- (4.9)
k=1
c) N—-L<n<N:
N—-1-n L
Zn = toTn + Z tk(xn—l-k + xn—k) + Z tk(xn+k—N + zn—k)- (410)
k=1 k=N—-1—-n+1

The convolve function may not pick up this reduction in the number of
multiplications, since it does not assume that the filter is symmetric. We will
still use the convolve function in implementations, however, due to its heavy
optimization.

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 152

4.3 Efficient implementations of the DCT

When we defined the DCT in the preceding section, we considered symmetric
vectors of twice the length, and viewed these in the frequency domain. In order to
have a fast algorithm for the DCT, which are comparable to the FFT algorithms
we developed in Section 2.4, we need to address the fact that vectors of twice
the length seem to be involved. The following theorem addresses this. This
result is much used in practical implementations of DCT, and can also be used
for practical implementation of the DFT as we will see in Exercise 4.8. Note
that the result, and the following results in this section, are stated in terms
of the cosine matrix Cy (where the entries are (C), = cos (2m5% (k+ 1)),
rather than the DCTx matrix (which uses the additional scaling factor d,, n
for the rows). The reason is that Cy appears to me most practical for stating
algorithms. When computing the DCT, we simply need to scale with the d, n
at the end, after using the statements below.

Theorem 4.23. DCT algorithm.
Let y = Cyzx. Then we have that

Yn = (cos (w%) R((DFTyzM),) + sin (w%) %((DFTN:c(l))n)) . (4.11)

where (1) € RY is defined by

(W) = zgp for 0 < k< N/2 -1
(m(l))N_k—l = T2k+1 fOI‘ O S k S N/2 — 1,

Proof. Using the definition of C}, ans splitting the computation of y = Cyx
into two sums, corresponding to the even and odd indices as follows:

k=0
N/2-1 n 1 N/2-1 . ,
= kz_o Z2f COS (27r2N (Qk’ + 2)) + ,;J Tok41 COS (27T2N (gk +14 2)) '

If we reverse the indices in the second sum, this sum becomes

N/2-1

n 1
Z ITN—2k—1 COS (27'('2]\/, (N —2k—1+ 2)) .

k=0

If we then also shift the indices with N/2 in this sum, we get

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 153

N-1 n 1
ok 2n— (2N — 2k — 1+ =
Z ToN_92k 1COS(7T2N(+2>)

k=N/2
N-1

n 1
= Y Tay_ok-1008 <27r2N <2k+ 2>) ,

k=N/2

where we used that cos is symmetric and periodic with period 27. We see that
we now have the same cos-terms in the two sums. If we thus define the vector
() as in the text of the theorem, we see that we can write

k=0

R

- (sz(m(l))kezwin(2k+;)/(2N)>

N-1
e—Trin/(QN) Z (w(l))ke—%rink/N)
k=0
=R (/N (DFTy2),,)
= (cos (7‘(%) R(DFTyxz™M),,) + sin (ﬂ'%) %((DFTN:L'“))”)) ,
where we have recognized the N-point DFT. This completes the proof. O

With the result above we have avoided computing a DFT of double size. If we
in the proof above define the N x N-diagonal matrix Qy by Q. = e~ ™"/ CN),
the result can also be written on the more compact form

y=Cyz=%R (QNDFTNm(l)) .

We will, however, not use this form, since there is complex arithmetic involved,
contrary to Equation(4.11). Code which uses Equation (4.11) to compute the
DCT, using the function FFTImpl from Section 2.4, can look as follows:

def DCTImpl(x):

Compute the DCT of the vector x

X: a vector
N = len(x)
if N > 1:
x1 = concatenate([x[0::2], x[-1:0:-2]]) .astype(complex)
FFTImpl(x1l, FFTKernelStandard)
cosvec = cos(pi*arange(float(N))/(2*N))
sinvec = sin(pi*arange(float(N))/(2*N))

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 154

if ndim(x) == 1:
x[:] = cosvec*real(xl) + sinvecx*imag(x1)
else:
for s2 in xrange(shape(x)[1]):
x[:, s82] = cosvec*real(x1[:, s2]) \
+ sinvecx*imag(x1[:, s2])
x[0] *= sqrt(1/float(N))
x[1:]1 *= sqrt(2/float(N))

In the code, the vector &(!) is created first by rearranging the components, and
it is sent as input to FFTImpl. After this we take real parts and imaginary parts,
and multiply with the cos- and sin-terms in Equation (4.11).

4.3.1 Efficient implementations of the IDCT

As with the FFT, it is straightforward to modify the DCT implementation so
that it returns the IDCT. To see how we can do this, write from Theorem 4.23,
forn>1

Yn = (cos (7‘(%) %((DFTNﬂ?(l))n) + sin (W%) %((DFTN‘B(U)”))
YN = (cos <WN2N"> R((DFTyz™)y_,,) + sin <7rN2N”) %((DFTNw(l))N_n))
= (sin (7‘(%) R((DFTxzM),) — cos (w%) %((DFTNm(l))n)) ,
(4.12)

where we have used the symmetry of DFT y for real signals. These two equations
enable us to determine R((DFTyz™),) and S((DFTxz™),) from y, and
YN—n- We get

cos (w%) Yn + sin (w%) YN_n = %((DFTNw(l))n)

in (7Y 0 — . -3 1
sin (7T2N)yn cos (W2N) YN—n = S((DFTyz'"),).

Adding we get

(1) - :) i (:) (si ;) B (;
(DFTnx'),, =cos <7T 5N Yn + sin TN YN—n + i(sin <7r 5N Yn — COS 7T2N) YN—n)
n . n . i .
=(cos (Wﬁ) + isin (ﬂﬁ))(yn —YN_n)=¢€ /Ny, — TYN—n)-

This means that (DFTyz™M), = ™/ CN) (y, 4+ iyn_,) = (yn + YN—n)/Qnn
for n > 1. Since I((DFTxzM)g) = 0 we have that (DFTyzM)y = Yo =
Yo/Qo,0- This means that 1) can be recovered by taking the IDFT of the
vector with component 0 being yo/Qo.0, and the remaining components being
(yn - ZyN—n)/Qn,n

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 155

Theorem 4.24. IDCT algorithm.
Let = (Cy)~'y. and let z be the vector with component 0 being yo/Qo 0,
and the remaining components being (y,, — {yn—_n)/@n,n- Then we have that

() = IDFTy 2,
where (1) is defined as in Theorem 4.23.

The implementation of IDCT can thus go as follows:

def IDCTImpl(y):

Compute the IDCT of the vector y

y: a vector
N = len(y)
if N > 1:
y[0] /= sqrt(1/float(N))
y[1:1 /= sqrt(2/float(N))
Q = exp(-pi*lj*arange(float(N))/(2%N))
y1 = zeros_like(y).astype(complex)
yilo]l = ylol/q[o]
if ndim(y) == 1:
yil1:1 = (y[1:1 - 1j*y[-1:0:-11)/Q[1:]
else:
for s2 in xrange(shape(y) [1]):
yi[1:, s2] = (y[1:, s2] - 1j*y[-1:0:-1, s2])/Q[1:]
FFTImpl(yl, FFTKernelStandard, 0)
y[0::2] = real(y1[0:(N/2)])
y[1::2] = real(y1[-1:(N/2-1):-1])

4.3.2 Reduction in the number of multiplications with the
DCT

Let us also state a result which confirms that the DCT and IDCT implementations
we have described give the same type of reductions in the number multiplications
as the FFT and IFFT:

Theorem 4.25. Number of multiplications required by the DCT and IDCT
algorithms.

The DCT and the IDCT can be implemented so that they use any FFT and
IFFT algorithms. Their operation counts then have the same order as these. In
particular, when the standard FFT algorithms of Section 2.4 are used, i.e. their
operation counts are O(5N log, /2). In comparison, the operation count for a
direct implementation of the N-point DCT/IDCT is 2N2.

Note that we divide the previous operation counts by 2 since the DCT applies
an FFT to real input only, and the operation count for the FFT can be halved
when we adapt to real data, see Exercise 2.27.

Proof. By Theorem 2.36, the number of multiplications required by the standard
FFT algorithm from Section 2.4 adapted to real data is O(N log, N), while

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 156

the number of additions is O(3N log, N/2). By Theorem 4.23, two additional
multiplications and one addition are required for each index (so that we have
2N extra real multiplications and N extra real additions in total), but this does
not affect the operation count, since O(N logs N + 2N) = O(N log, N). Since
the operation counts for the IFFT is the same as for the FFT, we only need
to count the additional multiplications needed in forming the vector z = (y,, —
iYN—n)/Qnn- Clearly, this also does not affect the order of the algorithm. [

Since the DCT and IDCT can be implemented using the FFT and IFFT,
it has the same advantages as the FFT when it comes to parallel computing.
Much literature is devoted to reducing the number of multiplications in the
DFT and the DCT even further than what we have done (see [18] for one of the
most recent developments). Another note on computational complexity is in
order: we have not counted the operations sin and cos in the DCT. The reason
is that these values can be precomputed, since we take the sine and cosine of
a specific set of values for each DCT or DFT of a given size. This is contrary
to to multiplication and addition, since these include the input values, which
are only known at runtime. We have, however, not written down that we use
precomputed arrays for sine and cosine in our algorithms: This is an issue to
include in more optimized algorithms.

Exercise 4.7: Trick for reducing the number of multiplica-
tions with the DCT

In this exercise we will take a look at a small trick which reduces the number of
additional multiplications we need for DCT algorithm from Theorem 4.23. This
exercise does not reduce the order of the DCT algorithms, but we will see in
Exercise 4.8 how the result can be used to achieve this.

a) Assume that x is a real signal. Equation (4.12) in the compendium, which
said that

= o (1) ; N\« (1)

Yn = COS (7‘(2) R((DFTnx'),,) + sin (7r 2]\7) S((DFTyzx'Y),)
= si n (1) ™\« (1)

YN _n = Sin (7r 2N> R((DFTxa'"),) — cos (71' QN) S((DFTyzx'),)

for the n’th and N — n’th coefficient of the DCT. This can also be rewritten as

(éR (DFTxz™),,) + S((DFTy2! >)n)) cos (w%)

TN) sin (ﬂ'%))
((DFTNw(l))n)) cos (W;)

— S((DFTyz™M),)(cos

/N

YN = — (?R((DFTNa:(l)))

VS +
HE
N—
+
S
=N
[\)
2
N

+ R(DFTyzM),)(sin

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 157

Explain that the first two equations require 4 multiplications to compute y,, and
YN—n, and that the last two equations require 3 multiplications to compute vy,
and Yy _n-

b) Explain why the trick in a) reduces the number of additional multiplications
in a DCT, from 2N to 3N/2.

c) Explain why the trick in a) can be used to reduce the number of additional
multiplications in an IDCT with the same number.

Hint. match the expression e™™/(N)(
IDCT with the rewriting you did in b.

Yn — WYN—n) you encountered in the

d) Show that the penalty of the trick we here have used to reduce the number
of multiplications, is an increase in the number of additional additions from NV
to 3N/2. Why can this trick still be useful?

Exercise 4.8: An efficient joint implementation of the DCT
and the FFT

In this exercise we will explain another joint implementation of the DFT and
the DCT, which has the benefit of a low multiplication count, at the expense
of a higher addition count. It also has the benefit that it is specialized to real
vectors, with a very structured implementation (this is not always the case for
the quickest FFT implementations. Not surprisingly, one often sacrifices clarity
of code when one pursues higher computational speed). a) of this exercise can be
skipped, as it is difficult and quite technical. For further details of the algorithm
the reader is refered to [38].

a) Let y = DFT v be the N-point DFT of the real vector . Show that

R((DFT /22)n) + (Cnyaz)n 0<n<N/-1
R(yn) = 8?((DFTN/QQS(G))n) n= N/4
R((DFTy/22))n) — (Cnjaz)nj2-n N/A+1<n< N/2-1
(4.13)
S((DFTn/2z),) n=0
S(yn) = ¢ S(DFTypz),) + (Cyjuw)nja—n 1<n< Nj4—1
S((DFT 22 9)n) + (Cnjaw)n-nys N/A<n < N/2-1

(4.14)

where (¢ is as defined in Theorem 2.31, where z,w € RY/4 defined by

2k = Tok+1 + TN—2k—1 0<k<N/4-1,
Wk = (—1)k($N—2k—1 — Tok+t1) 0<k<N/4-1,

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 158

Explain from this how you can make an algorithm which reduces an FFT of
length N to an FFT of length N/2 (on 2(®)), and two DCT’s of length N/4 (on
z and w). We will call this algorithm the revised FFT algorithm.

a) says nothing about the coefficients y,, for n > % These are obtained in
the same way as before through symmetry. a. also says nothing about yy/2.
This can be obtained with the same formula as in Theorem 2.31.

Let us now compute the number of arithmetic operations our revised algorithm
needs. Denote by the number of real multiplications needed by the revised N-
point FFT algorithm

b) Explain from the algorithm in a) that

My = Q(MN/4 + 3N/8) Jr]\f]\//g Any = Q(AN/4 +3N/8) JrAN/Q +3N/2
(4.15)

Hint. 3N/8 should come from the extra additions/multiplications (see Exer-
cise 4.7) you need to compute when you run the algorithm from Theorem 4.23
for Cy/4. Note also that the equations in a) require no extra multiplications,
but that there are xix equations involved, each needing N/4 additions, so that
we need 6N/4 = 3N /2 extra additions.

c) Explain why x,, = Ma- is the solution to the difference equation

Tpyo — Tpg1 — 22, = 3 X 27,

and that x, = Ao is the solution to

Tpyo — Tpgy1 — 22, =9 x 27,

and show that the general solution to these are z, = %TZT +C2" 4+ D(—1)" for
multiplications, and @, = 372" + C2" + D(—1)" for additions.

d) Explain why, regardless of initial conditions to the difference equations,
My =0 (%Nlog2 N) and Ay =0 (%Nlog2 N) both for the revised FFT and
the revised DCT. The total number of operations is thus O(2N log, N), i.e. half
the operation count of the split-radix algorithm. The orders of these algorithms
are thus the same, since we here have adapted to read data.

e) Explain that, if you had not employed the trick from Exercise 4.7, we would
instead have obtained My = O (%log2 N), and Ay = O (% log, N), which
equal the orders for the number of multiplications/additions for the split-radix
algorithm. In particular, the order of the operation count remains the same,
but the trick from Exercise 4.7 turned a bigger percentage of the arithmetic
operations into additions.

The algorithm we here have developed thus is constructed from the beginning
to apply for real data only. Another advantage of the new algorithm is that it
can be used to compute both the DCT and the DFT.

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 159

Exercise 4.9: Implementation of the IFFT/IDCT

We did not write down corresponding algorithms for the revised IFFT and IDCT
algorithms. We will consider this in this exercise.

a) Using equations (2.13) in the compendium-(4.14) in the compendium, show
that

§R(yn) - §R(yN/Q—n) = 2(C’N/4Z)n
S(yn) + S(Yn/2-—n) = 2(Cn/aW)Nja—n

for 1 <n < N/4 — 1. Explain how one can compute z and w from this using
two IDCT’s of length N/4.

b) Using equations (2.13) in the compendium-(4.14) in the compendium, show
that

§R(yn) + m(yN/Q—n) = §R((D]:—NTN/Q:B(E))n)
%<yn) - %(yN/an) = %((DFTN/Zm(e))n)y

and explain how one can compute x(®) from this using an IFFT of length N/2.

4.4 Summary

We started this chapter by extending a previous result which had to do with that
the Fourier series of a symmetric function converged quicker. To build on this
we first needed to define symmetric extensions of vectors and symmetric vectors,
before we classified symmetric extensions in the frequency domain. From this
we could find a nice, orthonormal basis for the symmetric extensions, which
lead us to the definition of the DCT. We also saw a connection with symmetric
filters: These are exactly the filters which preserve symmetric extensions, and
we could characterize symmetric filters restricted to symmetric extension as an
N-dimensional mapping. We also showed that it is smart to replace the DFT
with the DCT when we work with filters which are known to be symmetric.
Among other things, this lead to a better way of approximating analog filters,
and better interpolation of functions.

We also showed how to obtain an efficient implementation of the DCT, which
could reuse the FFT implementation. The DCT has an important role in the
MP3 standard. As we have explained, the MP3 standard applies several filters
to the sound, in order to split it into bands concentrating on different frequency
ranges. In Section 8.3 we will look closer at how these filters can be implemented
and constructed. The implementation can use transforms similar to the MDCT,
as explained in Exercise 4.5. The MDCT is also used in the more advanced
version of the MP3 standard (layer IIT). Here it is applied to the filtered data to
obtain a higher spectral resolution of the sound. The MDCT is applied to groups

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 160

of 576 (in special circumstances 192) samples. The MP3 standard document [16]
does not dig into the theory for this, only representing what is needed in order to
make an implementation. It is somewhat difficult to read this document, since it
is written in quite a different language, familiar mainly to those working with
international standards.

The different type of cosine-matrices can all be associated with some extension
strategy for the signal. [25] contains a review of these.

The DCT is particularly popular for processing sound data before they are
compressed with lossless techniques such as Huffman coding or arithmetic coding.
The reason is, as mentioned, that the DCT provides a better approximation
from a low-dimensional space than the DFT does, and that it has a very efficient
implementation. Libraries exist which goes into lengths to provide efficient
implementation of the FFT and the DCT. FFTW, short for Fastest Fourier
Transform in the West [14], is perhaps the best known of these.

Signal processing literature often does not motivate digital filters in explaining
where they come from, and where the input to the filters come from. Using
analog filters to motivate this, and to argue for improvements in using the DCT
and symmeric extensions, is not that common. Much literature simply says that
the property of linear phase is good, without elaborating on this further.

Chapter 5

Motivation for wavelets and
some simple examples

In the first part of the book our focus was to approximate functions or vectors
with trigonometric functions. We saw that the Discrete Fourier transform could
be used to obtain a representation of a vector in terms of such functions, and
that computations could be done efficiently with the FFT algorithm. This was
useful for analyzing, filtering, and compressing sound and other discrete data.
The approach with trigonometric functions has some limitations, however. One
of these is that, in a representation with trigonometric functions, the frequency
content is fixed over time. This is in contrast with most sound data, where
the characteristics are completely different in different parts. We have also
seen that, even if a sound has a simple representation in terms of trigonometric
functions on two different parts, the representation of the entire sound may not
be simple. In particular, if the function is nonzero only on a very small interval,
a representation of it in terms of trigonometric functions is not so simple.

In this chapter we are going to introduce the basic properties of an alternative
to Fourier analysis for representing functions. This alternative is called wavelets.
Similar to Fourier analysis, wavelets are also based on the idea of expressing a
function in some basis. But in contrast to Fourier analysis, where the basis is
fixed, wavelets provide a general framework with many different types of bases.
In this chapter we first give a motivation for wavelets, before we continue by
introducing some very simple wavelets. The first wavelet we look at can be
interpreted as an approximation scheme based on piecewise constant functions.
The next wavelet we look at is similar, but with piecewise linear functions used
instead. Following these examples we will establish a more general framework,
based on experiences from the simple wavelets. In the following chapters we will
interpret this framework in terms of filters, and use this connection to construct
even more interesting wavelets.

The examples in this and the next chapters can be run from the notebook
applinalgnbchap5.ipynb. Core functions are collected in a module called dwt.

161

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES162

5.1 Why wavelets?

The left image in Figure 5.1 shows a view of the entire Earth.

Figure 5.1: A view of Earth from space, together with versions of the image
where we have zoomed in.

The startup image in Google Earth™, a program for viewing satellite images,
maps and other geographic information, is very similar to this. In the middle
image we have zoomed in on the Mexican Gulff, as marked with a rectangle in
the left image. Similarly, in the right image we have further zoomed in on Cuba
and a small portion of Florida, as marked with a rectangle in the middle image.
There is clearly an amazing amount of information available behind a program
like Google Earth™ since we there can zoom further in, and obtain enough
detail to differentiate between buildings and even trees or cars all over the Earth.
So, when the Earth is spinning in the opening screen of Google Earth™ all
the Earth’s buildings appear to be spinning with it! If this was the case the
Earth would not be spinning on the screen, since there would just be so much
information to process that a laptop would not be able to display a rotating
Earth.

There is a simple reason that the globe can be shown spinning in spite of
the huge amounts of information that need to be handled. We are going to see
later that a digital image is just a rectangular array of numbers that represent
the color at a dense set of points. As an example, the images in Figure 5.1 are
made up of a grid of 1064 x 1064 points, which gives a total of 1 132 096 points.
The color at a point is represented by three eight-bit integers, which means that
the image files contain a total of 3 396 288 bytes each. So regardless of how
close to the surface of the Earth our viewpoint is, the resulting image always
contains the same number of points. This means that when we are far away
from the Earth we can use a very coarse model of the geographic information
that is being displayed, but as we zoom in, we need to display more details and
therefore need a more accurate model.

Observation 5.1. Images models.
When discrete information is displayed in an image, there is no need to use a
mathematical model that contains more detail than what is visible in the image.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES163

A consequence of Observation 5.1 is that for applications like Google Earth™
we should use a mathematical model that makes it easy to switch between different
levels of detail, or different resolutions. Such models are called multiresolution
models, and wavelets are prominent examples of this kind of models. We will
see that multiresolution models also provide us with means of approximating
functions, just as Taylor series and Fourier series. Our new approximation scheme
differs from these in one important respect, however: When we approximate
with Taylor series and Fourier series, the error must be computed at the same
data points as well, so that the error contains just as much information as the
approximating function, and the function to be approximated. Multiresolution
models on the other hand will be defined in such a way that the error and the
“approximating function” each contain half of the information from the function
we approximate, i.e. their amount of data is reduced. This property makes
multiresolution models attractive for the problems at hand, when compared to
approaches such as Taylor series and Fourier series.

When we zoom in with Google Earth™ it seems that this is done contin-
uously. The truth is probably that the program only has representations at
some given resolutions (since each representation requires memory), and that
one interpolates between these to give the impression of a continuous zoom. In
the coming chapters we will first look at how we can represent the information
at different resolutions, so that only new information at each level is included.

We will now turn to how wavelets are defined more formally, and construct
the simplest wavelet we have. Its construction goes in the following steps: First
we introduce what we call resolution spaces, and the corresponding scaling
function. Then we introduce the detail spaces, and the corresponding mother
wavelet. These two functions will give rise to certain bases for these spaces,
and we will define the Discrete Wavelet Transform as a change of coordinates
between these bases.

5.2 A wavelet based on piecewise constant func-
tions

Our starting point will be the space of piecewise constant functions on an interval
[0, V). This will be called a resolution space.

Definition 5.2. The resolution space Vj.

Let N be a natural number. The resolution space V| is defined as the space
of functions defined on the interval [0, N) that are constant on each subinterval
[n,n+1)forn=0,..., N—1.

Note that this also corresponds to piecewise constant functions which are
periodic with period N. We will, just as we did in Fourier analysis, identify a
function defined on [0, N') with its (period N) periodic extension. An example
of a function in Vj for N = 10 is shown in Figure 5.2. It is easy to check that V}
is a linear space, and for computations it is useful to know the dimension of the
space and have a basis.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES164

= N W s U1 0o

OO

2 4 6 8 10
Figure 5.2: A piecewise constant function.

Lemma 5.3. The function ¢.
Define the function ¢(t) by

¢(t){1, if0<t<l; 51)

0, otherwise;

and set ¢, (t) = ¢(t —n) for any integer n. The space Vj has dimension N, and
the N functions {¢, 111\[:_01 form an orthonormal basis for V with respect to the
standard inner product

N
(f.) = / F(t)g(t) dt. (5.2)

In particular, any f € Vj can be represented as

N-1

f(t) = Z Cn®n(t) (5.3)

n=0

for suitable coefficients (cn)fj:_Ol. The function ¢,, is referred to as the character-

istic function of the interval [n,n + 1)

Note the small difference between the inner product we define here from the
inner product we used for functions previously: Here there is no scaling 1/T
involved. Also, for wavelets we will only consider real functions, and the inner
product will therefore not be defined for complex functions. Two examples of
the basis functions defined in Lemma 5.5 are shown in Figure 5.3.

Proof. Two functions ¢,,, and ¢y,, with ny # ny clearly satisfy [¢y, (£)¢n, (£)dt =
0 since ¢p, (t)n, (t) = 0 for all values of x. It is also easy to check that ||¢,| =1
for all n. Finally, any function in Vj can be written as a linear combination the
functions ¢g, ¢1, ..., ¢n_1, SO the conclusion of the lemma follows. O

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES165

1.2 1.2
1.0t —_ 1.0t —_—
0.8+ 0.8+
0.6} 0.6}
0.4t 0.4l
0.2} 0.2}
O'00 2 4 6 8 10 0'00 2 4 6 8 10
Figure 5.3: The basis functions ¢5 and ¢7 from ¢y.
1.0
.0 — — — L —
05 0.5/ B
0.0 0.0p
—05 -0.5 _
-1.0 _ — — — T — —
-1.0
0 2 4 6 8 10 0 2 4 6 8 10

Figure 5.4: Examples of functions from Vj. The square wave in Vj (left), and
an approximation to cost from Vj (right).

In our discussion of Fourier analysis, the starting point was the function
sin(27t) that has frequency 1. We can think of the space V) as being analogous
to this function: The function EQ:J(—I)"@I (t) is (part of the) square wave
that we discussed in Chapter 1, and which also oscillates regularly like the sine
function, see the left plot in Figure 5.4. The difference is that we have more
flexibility since we have a whole space at our disposal instead of just one function
— the right plot in Figure 5.4 shows another function in Vj.

In Fourier analysis we obtained a linear space of possible approximations by
including sines of frequency 1, 2, 3, ..., up to some maximum. We use a similar
approach for constructing wavelets, but we double the frequency each time and
label the spaces as Vg, Vi, Vo, ...

Definition 5.4. Refined resolution spaces.

The space V;, for the interval [0, N) is the space of piecewise linear functions
defined on [0, N) that are constant on each subinterval [n/2™, (n 4 1)/2™) for
n=0,1,...,2"N — 1.

Some examples of functions in the spaces Vi, V2 and V3 for the interval [0, 10]
are shown in Figure 5.5. As m increases, we can represent smaller details. In
particular, the function in the rightmost is a piecewise constant function that
oscillates like sin(272%t) on the interval [0, 10].

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES166

1.0—— ‘ S— 1.0—— . —
0.5 - = 0.5 o
0.0 — - 0.0 _ B _
-0.5 -~ N -0.5¢ - - E
% 6 & 10 YNz & 6 8 10
1. - - -
B 10— — — — — — — — — —
03 - - g 0.5/
oo - - - 0.0}
-0.5 N - —0.5
. -] -10f — — — — — — — — —
-1.0 s =
0 2 4 6 8§ 10 0 2 4 6 8§ 10

Figure 5.5: Piecewise constant approximations to cost on the interval [0, 10] in
the spaces Vi, Vo, and V3. The lower right plot shows the square wave in V5.

It is easy to find a basis for V,,,, we just use the characteristic functions of
each subinterval.

Lemma 5.5. Basis for Vy,.
Let [0, N) be a given interval with N some positive integer. Then the
dimension of V,,, is 2™ N. The functions

Gmn(t) =2"2p(2™t —n), forn=0,1,...,2"N — 1. (5.4)

{(bm,n}f;f)v_l form an orthonormal basis for V,,,, which we will denote by ¢.,.

Any function f € V,, can thus be represented uniquely as
2N -1
=Y cunbmnlt).

n=0

Proof. The functions given by Equation (5.4) are nonzero on the subintervals
[n/2™, (n+1)/2™) which we referred to in Definition 5.4, so that ¢, ny Pmon, =0
when nj # ng, since these intervals are disjoint. The only mysterious thing may
be the normalisation factor 2™/2. This comes from the fact that

N (n+1)/2™ 1
/ H(27t —)2 dt :/ H2™ —)2 dt = z—m/ () du = 2~
0 n 0

/2m

The normalisation therefore thus ensures that ||¢, | = 1 for all m. O

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES167

In the following we will always denote the coordinates in the basis ¢,, by
Cm.,n- Note that our definition restricts the dimensions of the spaces we study
to be on the form N2™. In Chapter 6 we will explain how this restriction can
be dropped, but until then the dimensions will be assumed to be on this form.
In the theory of wavelets, the function ¢ is also called a scaling function. The
origin behind this name is that the scaled (and translated) functions ¢, , of ¢
are used as basis functions for the refined resolution spaces. Later on we will see
that other scaling functions ¢ can be chosen, where the scaled versions ¢, ,, will
be used to define similar resolution spaces, with slightly different properties.

5.2.1 Function approximation property

Each time m is increased by 1, the dimension of V,,, doubles, and the subinterval
on which the functions in V,,, are constant are halved in size. It therefore seems
reasonable that, for most functions, we can find good approximations in V,
provided m is big enough.

Theorem 5.6. Resolution spaces and approximation.
Let f be a given function that is continuous on the interval [0, N]. Given
€ > 0, there exists an integer m > 0 and a function g € V,,, such that

[f(t) —g(t)| <e
for all ¢ in [0, N].

Proof. Since f is (uniformly) continuous on [0, N], we can find an integer m so
that | f(t1)— f(t2)| < € for any two numbers ¢; and ¢, in [0, N] with [t;—to| < 27™.
Define the approximation g by

2MmN-—1

g(t) = Z f(tm,n+1/2)¢m,n(t)7

n=0
where ,, 11/ is the midpoint of the subinterval [n2_m, (n+ 1)2"“),
tm7n+1/2 = (TL —+ 1/2)27771

For t in this subinterval we then obviously have |f(t) — g(t)| < €, and since these
intervals cover [0, N], the conclusion holds for all ¢ € [0, N]. O

Theorem 5.6 does not tell us how to find the approximation g although the
proof makes use of an approximation that interpolates f at the midpoint of each
subinterval. Note that if we measure the error in the L?-norm, we have

N
Hf—g||2=/0 1£(t) — g(t)* di < N2,

so ||f — gl < eV/N. We therefore have the following corollary.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES168

Corollary 5.7. Resolution spaces and approzimation.
Let f be a given continuous function on the interval [0, N]. Then

Tim_ £~ projy, ()] = 0.

Figure 5.6 illustrates how some of the approximations of the function f(x) =
22 from the resolution spaces for the interval [0, 1] improve with increasing m.

1.2 1.2
1.0 1.0

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.0 0.0

065 02 02 06 08 1o Y60 02 04 06 08 1.0
1.2 1.2

1.0 B 1.0
0.8 — 0.8
0.6 = 0.6 =
0.4 - 0.4}

0.2 L 0.2} =

0.0——— 00—

065 02 02 06 08 1o Y60 02 04 06 08 10

Figure 5.6: Comparison of the function defined by f(t) =t on [0, 1] with the
projection onto Vs, V4, and Vg, respectively.

5.2.2 Detail spaces and wavelets

So far we have described a family of function spaces that allow us to determine
arbitrarily good approximations to a continuous function. The next step is to
introduce the so-called detail spaces and the wavelet functions. We start by

observing that since

[, +1) = [2n/2, (20 +1)/2) U [(2n + 1)/2, (2n + 2)/2),

we have

1 1
®o, \/§¢172 \/§¢1,2 +1

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES169

This provides a formal proof of the intuitive observation that Vi C Vi, for if
g € Vo, we can write

N-1 N-1
g(t) = Z conPon(t) = Z con (P1,2n + ¢1,2n+1)/\/§7
n=0 n=0

and the right-hand side clearly lies in V3. Since also

b1 (t) = 2 D2g(2m 1t) = 9(m=D/2g (gm—1y)
1

= 2(m=1/2 (61,20 (277 1) + d1,2041(27 1))

Sl

= 20m=D/2(5(2™¢ — 2n) + $(27t — (2n + 1)) =

- \%(%,gn(t) + Om2n+1(t)),

we also have that

1 1
m—1,n = —=Pm,2n T —=Pm 2n+1, 5.5
Gm—1, \@d) 2 \/5¢ 2n+1 (5.5)

so that also Vi, C Vi1 for any integer k > 0.

Lemma 5.8. Resolution spaces are nested.
The spaces Vy, Vi, ..., Vi, ...are nested,

VocWViCcVaC--CVpyoe-.

This means that it is meaningful to project Vi1 onto V. The next step is to
characterize the projection from V7 onto Vj, and onto the orthogonal complement
of Vy in V;. Before we do this, let us make the following definitions.

Definition 5.9. Detail spaces.
The orthogonal complement of V,,,_1 in V,,, is denoted W,,_1. All the spaces
W, are also called detail spaces, or error spaces.

The name detail space is used since the projection from V,,, onto V,,_1 in
considered as a (low-resolution) approximation, and the error, which lies in
Win—1, is the detail which is left out when we replace with this approximation.
We will also write ¢, = gm—1 + em—1 When we split g,,, € V},, into a sum of a
low-resolution approximation and a detail component. In the context of our
Google Earth™example, in Figure 5.1 you should interpret gy as the left image,
the middle image as an excerpt of g1, and eg as the additional details which are
needed to reproduce the middle image from the left image.

Since Vy and W, are mutually orthogonal spaces they are also linearly
independent spaces. When U and V are two such linearly independent spaces,
we will write U @ V for the vector space consisting of all vectors of the form
u+v,withu e U,veV. UV is also called the direct sum of U and V. This
also makes sense if we have more than two vector spaces (such as UV @ W),

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES170

and the direct sum clearly obeys the associate law U@ (Ve W)= (U V)p W.
Using the direct sum notation, we can first write

Vm =Vm-1® Wm—l- (56)

Since V;,, has dimension 2" N, it follows that also W,,, has dimension 2™ N. We
can continue the direct sum decomposition by also writing V;,,_1 as a direct sum,
then V,,,_5 as a direct sum, and so on, and end up with

Vi =Vo@Wo W1 &+ & W,p,_1, (5.7)

where the spaces on the right hand side have dimension N, N,2N,...,2m 1N,
This decomposition wil be important for our purposes. It says that the resolution
space V,,, acan be written as the sum of a lower order resolution space Vj, and
m detail spaces Wy, ..., W,,_1. We will later interpret this splitting into a
low-resolution component and m detail components.

It turns out that the following function will play the same role for the detail
space Wy, as the function ¢ plays for the resolution space Vj.

Definition 5.10. The function .
We define

P(t) = (d1.0(t) — d1.1(t))/V2 = (2t) — p(2t — 1), (5.8)

and

Vmon(t) = 272p(2™t —n), forn=0,1,...,2"N — 1. (5.9)

The functions ¢ and 1 are shown in Figure 5.7.

1.5 : ~ : L5
1.0 1.0
0.0 0.0
-0.5 -0.5
-1.0 -1.0
%5 00 0.5 1.0 15 205 00 0.5 1.0 1.5

Figure 5.7: The functions ¢ and 1 we used to analyse the space of piecewise
constant functions.

As in the proof for Equation (5.5), it follows that
1 1
ﬁgf)mﬂn - ﬁ(ﬁmﬁn—&-la

Clearly 1 is supported on [0,1), and ||¢|| = 1. From this it follows as for ¢q
that the {lbo,n}yjy _01 are orthonormal. In the same way as for ¢,,, it follows

¢m—1,n = (510)

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES171

also that the {¢,, n}2 N=1is orthonormal for any m. We will write 1, for
the orthonormal basis {wm B St "N=1 and we will always denote the coordinates
in the basis ¥, by wm . The next result motivates the definition of v, and
states how we can project from Vi onto Vy and Wy, i.e. find the low-resolution
approximation and the detail component of g; € V.

Lemma 5.11. Orthonormal bases.
For 0 < n < N we have that

. Go.n/2/ V2, if n is even;
n) =93 5.11
prolu; ($1n) {¢O,(n1)/2/\/§, if n is odd. (5-11)
: Yo n/2/\/§7 if n is even;
n) =9 _, 5.12
Projw, (91.n) {—wo,(nl) /2/V2, if nis odd. (5.12)

In particular, vy is an orthonormal basis for Wy. More generally, if g1 =
IN—1
Yoo Cln®in € V1, then

N—1
C1,2n + C1,2n+1
projy, (91) = Y _ condo.n, where o = HTH (5.13)
n=0
N—1
_ C1.2n — C1,2n+1
projyy, (91) Z Wo,no.n, Where wo , = T (5.14)
n=0

Proof. We first observe that ¢1,(¢t) # 0 if and only if n/2 <t < (n+1)/2.
Suppose that n is even. Then the intersection

n n+1
27 2

is nonempty only if n; = §. Using the orthogonal decomposition formula we get

) n [711, ny + 1) (515)

N-1
projy, (¢1,n) = Z (D1,n, Po.k) D0,k = (D1,n, Po,n1) P0,m4

(n-{—l)/Q\f 1
= 2dt oo nj2 = —=Po.n/2-
/n/2 0,n/2 \/§ 0,n/2

Using this we also get

1 1 1 1
Projyy, (P1,n) = P10 — ﬁ¢0,n/2 = P1,n — 7 (\/iﬁlh,n + \/§¢l,n+1>

1 1
= §¢1,n - §¢1,n+1 = Yo,n/2/ V2.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES172

This proves the expressions for both projections when n is even. When n is
odd, the intersection (5.15) is nonempty only if ny = (n — 1)/2, which gives the
expressions for both projections when n is odd in the same way. In particular
we get

n— 1 1 1
projWo (¢1,n) = ¢1,n - W = ¢1,n - ﬁ (\/?d)l,n—l + \/§¢1,n)

1 1
= §¢1,n - §¢1,n—1 = —1o,(n-1)/2/ V2.

g must be an orthonormal basis for Wy since 1, is contained in Wy, and both
have dimension N.

We project the function g7 in V; using the formulas in (5.11). We first split
the sum into even and odd values of n,

IN—1 N-1 N_1
g1 = Z ClynPin = Z c1,2nP1,2n + Z C1,2n+101,2n+1- (5.16)
n=0 n=0 n=0

We can now apply the two formulas in (5.11),

N—1 N-1
projy, (91) = projy, (Z C1,2n01,2n + Z 01,2n+1¢1,2n+1>

n=0 n=0

N— N-1
= E c1,2n PrOjy;, (P1,2n) + g €1,2n+1 Projy, (#1,2n41)

n=0 n=0

N-1

N-1
12000/ V2 + Z C1,2n4100.0/ V2
n=0

il
- O

C1,2n + C1,2n+1

: V2

which proves Equation (5.13). Equation (5.14) is proved similarly. O

¢0,n

n

In Figure 5.8 we have used Lemma 5.11 to plot the projections of ¢; o € V3
onto Vy and Wy. It is an interesting exercise to see from the plots why exactly
these functions should be least-squares approximations of ¢;,. It is also an
interesting exercise to prove the following from Lemma 5.11:

Proposition 5.12. Projections.

Let f(t) € V1, and let f,, 1 be the value f attains on [n,n + 1/2), and f, 2
the value f attains on [n +1/2,n + 1). Then projy, (f) is the function in V4
which equals (fn,1 4 fn,2)/2 on the interval [n,n + 1). Moreover, projy, (f) is
the function in Wy which is (fn,1 — fr2)/2 on [n,n+1/2), and —(fn1 — fn2)/2
on[n+1/2,n+1).

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES173

1.5 T T T 1.5

1.0 1.0

0.5 0.5

0.0 0.0

-0.50 — ¢, -0.5. — ¢,

-L0 — projy (¢0) ~LO — projy, (¢1)

-1.5 : : : -1.5 : : :

-0.5 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 1.5

Figure 5.8: The projection of ¢; 9 € V4 onto Vy and Wy.

In other words, the projection on Vj is constructed by averaging on two
subintervals, while the projection on Wy is constructed by taking the difference
from the mean. This sounds like a reasonable candidate for the least-squares
approximations. In the exercise we generalize these observations.

In the same way as in Lemma 5.11, it is possible to show that

'(/Jmfl,n/Z/\/i, if n is even;

5.17
~Vm—1,(n—1)/2/V2, if nis odd. (5.17)

From this it follows as before that 1), is an orthonormal basis for W,,. If {B;}*_,
are mutually independent bases, we will in the following write (B, Bs,...,B,)
for the basis where the basis vectors from B; are included before B; when ¢ < j.
With this notation, the decomposition in Equation (5.7) can be restated as
follows

Theorem 5.13. Bases for V.
¢m and (do, o, ¥1,- -+, Pm—1) are both bases for V,,,.

The function ¥ thus has the property that its dilations and translations
together span the detail components. Later we will encounter other functions,
which also will be denoted by %, and have similar properties. In the theory of
wavelets, such ¢ are called mother wavelets. There is one important property of
1, which we will return to:

Observation 5.14. Vanishing moment.
We have that [, 4 (t)dt = 0.

This can be seen directly from the plot in Figure 5.7, since the parts of
the graph above and below the z-axis cancel. In general we say that ¢ has k
vanishing moments if the integrals [t'4)(¢)dt = 0 for all 0 <1 < k — 1. Due to
Observation 5.14, 1) has one vanishing moment. In Chapter 7 we will show that
mother wavelets with many vanishing moments are very desirable when it comes
to approximation of functions.

We now have all the tools needed to define the Discrete Wavelet Transform.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES174

Definition 5.15. Discrete Wavelet Transform.

The DWT (Discrete Wavelet Transform) is defined as the change of coordi-
nates from ¢, to (¢g, ¥o). More generally, the m-level DWT is defined as the
change of coordinates from ¢, to (¢o, %o, V1, ,Pm—1). In an m-level DWT,
the change of coordinates from

(¢m7k+17 wmfkﬂrh ¢mfk+27 e »’l,bmfl) to (d)mfkv djmflm ¢m7k+1u e 7¢m71)
(5.18)

is also called the k’th stage. The (m-level) IDWT (Inverse Discrete Wavelet
Transform) is defined as the change of coordinates the opposite way.

The DWT corresponds to replacing as many ¢-functions as we can with
1-functions, i.e. replacing the original function with a sum of as much detail at
different resolutions as possible. We now can state the following result.

Theorem 5.16. FExpression for the DWT.
It Im = Gm—-1 + €em—1 with

2MmMN—-1
Im = § Cm,n¢m7n € Vm;
n=0
om—1px_1 om—1pN_1
Im—-1 = § Cmfl,ngbmfl,n € mel E€m—1 = § wmfl,nwmfl,n € Wmfla
n=0 n=0

then the change of coordinates from ¢y, to (¢m—1,%m—1) (i.e. first stage in a
DWT) is given by

Cm—1,n — 1/\/5 1/\/§ Cm,2n (5 19)

wmfl,n 1/\/5 _1/\/i Cm,2n+1 '
Conversely, the change of coordinates from (¢n—1,%m—1) to @, (i.e. the last
stage in an IDWT) is given by

(c;n;jil) - Gfﬁ _11//{/55) (;’;’;112) (5.20)

Proof. Equations (5.5) and (5.10) say that

¢m—1,n = ¢m,2n/\/§ + ¢m,2n+1/\/§ wm—l,n = ¢m,2n/\/§ - ¢m,2n+1/\/§-

The change of coordinate matrix from the basis {@m—1.n, Ym—1.n} 10 {Om 20, Om. 2041}
. 1/vV2 1/V2
is thus (1/\/5 _1/\/§

immediately since this matrix equals its inverse. O

). This proves Equation (5.20). Equation (5.19) follows

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES175

Above we assumed that N is even. In Exercise 5.8 we will see how we can
handle the case when N is odd.
From Theorem 5.16, we see that, if we had defined

Con = {Dm=1,00Vm—=1,0, Prn—1,1, Vm—1,1>" " s Pm—12m-1N—1, ¥m—1,2m-1N_1}-
(5.21)
i.e. we have reordered the basis vectors in (¢, —1, ¥m—1) (the subscript m is used
since Cy, is a basis for V,,,), it is apparent from Equation (5.20) that G = Py, ¢,

is the matrix where
1 1
V2 V2

is repeated along the main diagonal 2~ 1N times. Also, from Equation (5.19) it
is apparent that H = FP¢, « ¢,, is the same matrix. Such matrices are called block
diagonal matrices. This particular block diagonal matrix is clearly orthogonal.
Let us make the following definition

Definition 5.17. DWT and IDWT kernel transformations.
The matrices H = Fe, ¢, and G = Py, ¢, are called the DWT and

IDWT kernel transformations. The DWT and the IDWT can be expressed in
terms of these kernel transformations by

DWT = P(¢)m_171/)m_1)<7cm/H and IDWT = GPCm,‘*(tﬁm—lﬂ/)m—l)?
respectively, where

® Pl 1 pm_1)—C,, 18 @ permutation matrix which groups the even elements
first, then the odd elements,

® I, «(¢dm_1.9m_1) 1S a permutation matrix which places the first half at

m

the even indices, the last half at the odd indices.

Clearly, the kernel transformations H and G also invert each other. The point
of using the kernel transformation is that they compute the output sequentially,
similarly to how a filter does. Clearly also the kernel transformations are very
similar to a filter, and we will return to this in the next chapter.

At each level in a DWT, Vj is split into one low-resolution component from
Vi_1, and one detail component from W _;. We have illustrated this in figure 5.9,
where the arrows represent changes of coordinates.

The detail component from Wy _; is not subject to further transformation.
This is seen in the figure since 1;_1 is a leaf node, i.e. there are no arrows going
out from ,,—1. In a similar illustration for the IDWT, the arrows would go the
opposite way.

The Discrete Wavelet Transform is the analogue in a wavelet setting to the
Discrete Fourier transform. When applying the DFT to a vector of length N,

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES176

Gy —> Py 1 ——> Do (of) oR

\\\ N

Py

Figure 5.9: Tllustration of a wavelet transform.

one starts by viewing this vector as coordinates relative to the standard basis.
When applying the DWT to a vector of length N, one instead views the vector
as coordinates relative to the basis ¢,,. This makes sense in light of Exercise 5.1.

What you should have learned in this section.

o Definition of resolution spaces (V,;,), detail spaces (W,,), scaling function
(¢), and mother wavelet (¢)) for the wavelet based on piecewise constant
functions.

e The nesting of resolution spaces, and how one can project from one reso-
lution space onto a lower order resolution space, and onto its orthogonal
complement.

e The definition of the Discrete Wavelet Transform as a change of coordinates,
and how this can be written down from relations between basis functions.

Exercise 5.1: Samples are the coordinate vector

Show that the coordinate vector for f € Vp in the basis {¢0,0, ¢0,1,---,PoN—-1}
is (£(0), f(1),....F(N —1)).

Exercise 5.2: Proposition 5.12

Prove Proposition 5.12.

Exercise 5.3: Computing projections
In this exercise we will consider the two projections from V; onto V) and Wj.

a) Consider the projection projy, of V; onto V5. Use Lemma 5.11 to write down
the matrix for projy, relative to the bases ¢; and ¢y.

b) Similarly, use Lemma 5.11 to write down the matrix for projy,, : Vi — Wy
relative to the bases ¢1 and .

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES177

Exercise 5.4: Computing projections 2
Consider again the projection projy, of V1 onto Vj.
a) Explain why projy, (¢) = ¢ and projy, (v/) = 0.

b) Show that the matrix of projy, relative to (o, o) is given by the diagonal
matrix where the first half of the entries on the diagonal are 1, the second half 0.

c) Show in a similar way that the projection of V; onto Wy has a matrix relative
to (¢, o) given by the diagonal matrix where the first half of the entries on
the diagonal are 0, the second half 1.

Exercise 5.5: Computing projections

Show that

projy, (f) = NZ (/ " f(t)dt) b0 (1) (5.22)

for any f. Show also that the first part of Proposition 5.12 follows from this.

Exercise 5.6: Finding the least squares error

Show that

n+1 2

I ; (/:+1 f(t)dt) Son() = fIP=(f./) =D (/n

n

f(t)dt>

This, together with the previous exercise, gives us an expression for the least-
squares error for f from V; (at least after taking square roots). 2DO: Generalize
tom

Exercise 5.7: Projecting on W)

Show that
N-1 n+1/2 n+1
projg () = 2 (/ f(tydt - / +1/2f(t)dt> Gonlt) (5.23)

for any f. Show also that the second part of Proposition 5.12 follows from this.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES178

Exercise 5.8: When N is odd

When N is odd, the (first stage in a) DWT is defined as the change of coordinates
from (¢1,0,1,1,---,¢1,8-1) tO

(¢0,05%0,0, P0,1,%0,15 - - - » Po,(N—1) /2, V(N-1) /25 Po,(N+1)/2)-

Since all functions are assumed to have period N, we have that

bo,(N+1)/2 = %(%,N—l +o1N) = %(5251,0 + d1N-1).

From this relation one can find the last column in the change of coordinate
matrix from ¢g to (¢1,1), i.e. the IDWT matrix. In particular, when N is
odd, we see that the last column in the IDWT matrix circulates to the upper
right corner. In terms of coordinates, we thus have that

1 1
cL,0 = %@0’0 + wo,0 + Co,(N+1)/2) Cl,N-1= ﬁco,(N+1)/2- (5.24)

1&1 1
a) If N = 3, the DWT matrix equals % 1 —1&0 |, and the inverse of
0&0 1
1&1 -1
this is % 1 -1 —1|. Explain from this that, when IV is odd, the DWT
2
0&0 2
matrix can be constructed by adding a column on the form % (-1,-1,0,...,0,2)
to the DWT matrices we had for NV even (in the last row zeros are also added).
In terms of the coordinates, we thus have the additional formulas

1 1 1
Co,0 = ﬁ(clyo'i‘cl,l_cl,N—l) Wo,0 = ﬁ(clyo_cl,l_cl‘N—l) Co,(N+1)/2 = \ﬁzcl,N—l-

(5.25)

b) Explain that the DWT matrix is orthogonal if and only if NV is even. Also
explain that it is only the last column which spoils the orthogonality.

5.3 Implementation of the DWT and examples

The DWT is straightforward to implement: One simply needs to iterate Equation
(5.19) in the compendium for m,m—1,...,1. We will use a DWT kernel function
which takes as input the coordinates (¢, 0, ¢m 1, - - -), and returns the coordinates
(Cm—1,0,Wm—1,0,Cm—1,1;Wm—1,1, - - -), i.e. computes one stage of the DWT. This is
a different order for the coordinates than that given by the basis (¢, 1.,). The
reason is that it is easier with this new order to compute the DWT in-place. As

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES179

an example, the kernel transformation for the Haar wavelet can be implemented
as follows. For simplicity this first version of the code assumes that NV is even:

def DWTKernelHaar(x, symm, dual):
x /= sqrt(2)
for k in range(2,len(x) - 1,2):
a, b = x[k] + x[k+1], x[k] - x[k+1]
x[k], x[k+1] = a, b

Note that the code above accepts two-dimensional data, just as our function
FFTImpl did. Thus, the function may be applied simultaneously to all channels
in a sound. The mysterious parameters symm and dual will be explained in
Chapter 6. For now they have no role in the code, but will still appear several
places in the code in this section. When N is even, IDWTKernelHaar can be
implemented with the exact same code. When N is odd, we can use the results
from Exercise 5.8 (see also Exercise 5.24). The reason for using a general kernel
function will be apparent later, when we change to different types of wavelets.
Since the code above does not give the coordinates in the same order as
(s ¥m), an implementation of the DWT needs to organize the DWT coefficients
in the right order, in addition to calling the kernel function for each stage, and
applying the kernel to the right coordinates. Clearly, the coordinates from ¢,,
end up at indices k2"", where m represents the current stage, and k runs through
the indices. The following function, called DWTImpl, follows this procedure. It
takes as input the number of levels, nres, as well as the input vector x, runs
the DWT on x with the given number of resolutions, and returns the result:

def DWTImpl(x, nres, f, symm=True, dual=False):
for res in range(nres):
f(x[0::2%*res], symm, dual)
reorganize_coefficients(x, nres, True)

Again note that the code is applied to all columns if the data is two-dimensional.
Note also that here the kernel function f is first invoked, one time for each
resolution. Finally, the coefficients are reorganized so that the ¢,, coordinates
come first, followed by the coordinates from the different levels. We have provided
a function reorganize_coefficients which does this reorganization, and you
will be spared the details in this implementation. In Exercise 5.25 we go through
some aspects of this implementation. Note that, although the DWT requires this
reorganization, this reorganization may not be required in practice, as further
processing is needed, for which the coefficients can be accessed where they have
been placed after the in-place operations. Note also the two last arguments,
symm and dual, which we have not commented on. We will return to these in
Chapter 6. This implementation is not recursive, as the for-loop runs through the
different stages. Inside the loop we perform the change of coordinates from ¢y to
(r—1,¥r—1) by applying Equation (5.19). This works on the first coordinates,
since the coordinates from ¢y are stored first in

(¢k7¢k7¢k+la e 7¢m—27¢m—1)-

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES180

Finally, the c-coordinates are stored before the w-coordinates. In this imple-
mentation, note that the first levels require the most multiplications, since the
latter levels leave an increasing part of the coordinates unchanged. Note also
that the change of coordinates matrix is a very sparse matrix: At each level a
coordinate can be computed from only two of the other coordinates, so that
this matrix has only two nonzero elements in each row/column. The algorithm
clearly shows that there is no need to perform a full matrix multiplication to
perform the change of coordinates.

The corresponding function for the IDWT, called IDWTImpl, goes as follows:

def IDWTImpl(x, nres, f, symm=True, dual=False):
reorganize_coefficients(x, nres, False)
for res in range(nres - 1, -1, -1):
f(x[0::2%*res], symm, dual)

Here the steps are simply performed in the reverse order, and by iterating
Equation (5.20). You may be puzzled by the names DWTKernelHaar and
IDWTKernelHaar. In the next sections we will consider other cases, where
the underlying function ¢ may be a different function, not necessarily piecewise
constant. It will turn out that much of the analysis we have done makes sense
for other functions ¢ as well, giving rise to other structures which we also will
refer to as wavelets. The wavelet resulting from piecewise constant functions
is thus simply one example out of many, and it is commonly referred to as the
Haar wavelet.
Let us round off this section with some important examples.

Example 5.18. Computing the DWT by hand.

In some cases, the DWT can be computed by hand, keeping in mind its
definition as a change of coordinates. As an example, consider the simple vector
x of length 2!° = 1024 defined by

1 for n <512
Ty =
0 forn > 512,

and let us compute the 10-level DW'T of this vector by first visualizing the
function with these coordinates. Since m = 10 here, we should view x as
coordinates in the basis ¢19 of a function f(t) € Vig. This is f(t) = 221:10 ®10,n,
and since ¢1q,,, is supported on [271%,2719(n + 1)), the support of f has width
512 x 2719 = 1/2 (512 translates, each with width 271°). Moreover, since ¢1,,

is 219/2 = 25 = 32 on [271%1,271%(n 4 1)) and 0 elsewhere, it is clear that

32 for0<t<1/2
ft) = /
0 for Ot >1/2.

This is by definition a function in V;: f must in fact be a multiplum of ¢, ¢, since
this also is supported on [0,1/2). We can thus write f(t) = c¢1,0(¢) for some
c. We can find ¢ by setting ¢t = 0. This gives that 32 = 21/2¢ (since f(0) = 32,

http://folk.uio.no/oyvindry/matinf2360/code/matlab/IDWTImpl.m

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES181

#1.0(0) = 21/2), so that ¢ = 32/4/2. This means that f(t) = %gﬁ)l,o(t), fisin

Vi, and with coordinates (32/v/2,0,...,0) in ¢.

When we run a 10-level DWT we make a change of coordinates from ¢1¢ to
(o, Yo, -+ ,1g). The first 9 levels give us the coordinates in (¢1, 91,2, ..., P9),
and these are (32/4/2,0,...,0) from what we showed. It remains thus only to
perform the last level in the DWT, i.e. perform the change of coordinates from

@1 to (¢o,0). Since ¢1 0 = %(éf)o,o +10,0), so that we get

32 32 1

)= "= o(t) = = —
f() ﬂ@sl,O() \@ \/5
From this we see that the coordinate vector of f in (¢o, ¥, - ,%9), i.e. the
10-level DWT of x, is (16,16,0,0,...,0). Note that here Vj and Wy are both
1-dimensional, since Vjy was assumed to be of dimension 20 (in particular,
N =1).

It is straightforward to verify what we found using the algorithm above:

(60,0 + 10,0) = 16¢0,0 + 16¢0 0.

x = hstack([ones(512), zeros(512)])
DWTImpl(x, 10, DWTKernelHaar)
print x

The reason why the method from this example worked was that the vector we
started with had a simple representation in the wavelet basis, actually it equaled
the coordinates of a basis function in ¢;. Usually this is not the case, and our
only possibility then is to run the DWT on a computer.

Example 5.19. DWT and sound.

When you run a DWT you may be led to believe that coefficients from
the lower order resolution spaces may correspond to lower frequencies. This
sounds reasonable, since the functions ¢(2™t — n) € V,, change more quickly
than ¢(t —n) € Vi. However, the functions ¢, , do not correspond to pure
tones in the setting of wavelets. But we can still listen to sound from the
different resolution spaces. In Exercise 5.19 you will be asked to implement
a function which runs an m-level DWT on the first samples of the sound file
castanets.wav, extracts the coefficients from the lower order resolution spaces
or the detail spaces, transforms the values back to sound samples with the
IDWT, and plays the result. When you listen to the result the sound is clearly
recognizable for lower values of m, but is degraded for higher values of m. The
explanation is that too much of the detail is omitted when you use a higher m.
To be more precise, when listening to the sound by throwing away everything
from the detail spaces Wy, W1, ..., W,,_1, we are left with a 2™ share of the
data. Note that this procedure is mathematically not the same as setting some
DFT coefficients to zero, since the DWT does not operate on pure tones.

It is of interest to plot the samples of our test audio file castanets.wav, and
compare it with the first order DWT coefficients of the same samples. This is
shown in Figure 5.10. The first half part of the plot represents the low-resolution
approximation of the sound, the second half part represents the detail/error.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES182

We see that the detail is quite significant in this case. This means that the first
order wavelet approximation does not give a very good approximation to the
sound. In the exercises we will experiment more on this.

1.0 - - - - - - 1.0
0.5¢ 0.5¢
0.0 0.0
—0.5} —0.5¢
_1'00 20000+0006000@B0O00DO00AR®0000 _1'00 20000+0006000@B0O00D0O00A®0000

Figure 5.10: The 2'7 first sound samples (left) and the DWT coefficients (right)
of the sound castanets.wav.

It is also interesting to plot only the detail/error in the sound, for different
resolutions. For this, we must perform a DWT so that we get a representation
in the basis (¢o, %o, ¥1,...,¥m—1), set the coeflicients from V{ to zero, and
transform back with the IDWT. In figure 5.11 the error is shown for the test
audio file castanets.wav for m = 1, m = 2. This clearly shows that the error
is larger when two levels of the DWT are performed, as one would suspect. It is
also seen that the error is larger in the part of the file where there are bigger
variations. This also sounds reasonable.

o — 1.0
0.5 0.5
0.0 0.0
-0.5 -0.5
~ 1.0 2000010006000®0002000a20000 - % 20006+0006000B0O00E000GER0000

Figure 5.11: The error (i.e. the contribution from Wy @ W1 & --- ® W,,,_1) in
the sound file castanets.wav, for m = 1 and m = 2, respectively.

The previous example illustrates that wavelets as well may be used to perform
operations on sound. As we will see later, however, our main application for
wavelets will be images, where they have found a more important role than
for sound. Images typically display variations which are less abrupt than the
ones found in sound. Just as the functions above had smaller errors in the
corresponding resolution spaces than the sound had, images are thus more suited
for for use with wavelets. The main idea behind why wavelets are so useful

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES183

comes from the fact that the detail, i.e., wavelet coeflicients corresponding to the
spaces Wy, are often very small. After a DWT one is therefore often left with a
couple of significant coefficients, while most of the coefficients are small. The
approximation from V can be viewed as a good approximation, even though
it contains much less information. This gives another reason why wavelets
are popular for images: Detailed images can be very large, but when they are
downloaded to a web browser, the browser can very early show a low-resolution of
the image, while waiting for the rest of the details in the image to be downloaded.
When we later look at how wavelets are applied to images, we will need to handle
one final hurdle, namely that images are two-dimensional.

Example 5.20. DWT on the samples of a mathematical function.

Above we plotted the DWT coefficients of a sound, as well as the detail /error.
We can also experiment with samples generated from a mathematical function.
Figure 5.12 plots the error for different functions, with N = 1024.

1.0 1.0
0.8 0.8f
0.6 0.6}
0.4 0.4¢
0.2 0.2
O'CO 200 400 600 800 1000 0'00 200 400 600 800 1000
1.0

0.8

0.6

0.4

0.2

0.0

0 200 400 600 800 1000

Figure 5.12: The error (i.e. the contribution from Wy ® W1 @ --- @ W,,_1) for
N = 1024 when f is a square wave, the linear function f(t) =1—2|1/2 —t/N]|,
and the trigonometric function f(¢) = 1/2 + cos(2nt/N)/2, respectively. The
detail is indicated for m = 6 and m = 8.

In these cases, we see that we require large m before the detail/error becomes
significant. We see also that there is no error for the square wave. The reason
is that the square wave is a piecewise constant function, so that it can be
represented exactly by the ¢-functions. For the other functions, however, this is
not the case, so we here get an error.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES184

Above we used the functions DWTImpl, IDWTImpl to plot the error. For the
functions we plotted in the previous example it is also possible to compute the
wavelet coefficients, which we previously have denoted by w,y, ., exactly. You
will be asked to do this in exercises 5.21 and 5.22. The following example shows
the general procedure which can be used for this:

Example 5.21. Computing the wavelet coefficients.

Let us consider the function f(¢) =1 —¢/N. This function decreases linearly
from 1 to 0 on [0, V], so that it is not piecewise constant, and does not lie in any
of the spaces V,,,. We can instead consider projy, f € V,, and apply the DWT
to this. Let us compute the 1),,-coordinates wy, , of projy, f in the orthonormal
basis (¢o, Yo, %1, .-, Pm—1). The orthogonal decomposition theorem says that

N N
W = (s Ymm) = / SO bmn(t)dt = / (1= t/N) n (1)t

Using the definition of 1, ,, we see that this can also be written as

N N N
2m/2‘/0 (1 _ t/N)lﬁ(th . n)dt — 9om/2 (/O (2™t — n)dt — /0 %w(th — n)dt) .

Using Observation 5.14 we get that fON ¥(2™t — n)dt = 0, so that the first term
above vanishes. Moreover, ¢, ,, is nonzero only on [27™n,27"(n+ 1)), and is 1
on [27"n,27™(n+1/2)), and —1 on [27™(n 4+ 1/2),27™(n + 1)). We therefore
get

p 27" (n41/2) 4 27" (1)
Wy = —2™ / —dt —/ —dt
' 2-mn N 2-m(nt1/2) NV

(2 12741/ e 127 k)
).,]

2—mn 2=m(n+1/2)
2m/2 2—2m(n+ 1/2)2 B 2—27r1n2 B 2—2m(n+ 1)2 B 2—27n(n|_ 1/2)2
2N 2N 2N 2N
2m/2 _2—2mn2 N 2—2m(n + 1/2)2 B 2—2m(n + 1)2
2N N 2N

2—3m/2) 9 9 1
We see in particular that w,, , — 0 when m — oo. Also, all coordinates were
equal, i.e. Wpy0 = Wm,1 = Wm,2 = ---. It is not too hard to convince oneself

that this equality has to do with the fact that f is linear. We see also that
there were a lot of computations even in this very simple example. For most
functions we therefore usually do not compute w,, , symbolically, but instead
run implementations like DWTImpl, IDWTImpl on a computer.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES185

What you should have learned in this section.
e Definition of the m-level Discrete Wavelet Transform.
e Implementation of the Haar wavelet transform and its inverse.

e Experimentation with wavelets on sound.

Exercise 5.9: Implement IDWT for The Haar wavelet

Write a function IDWTKernelHaar which uses the formulas (5.24) in the com-
pendium to implement the IDWT, similarly to how the function DWTKernelHaar
implemented the DWT using the formulas (5.25) in the compendium.

Exercise 5.10: Computing projections

Generalize Exercise 5.4 to the projections from V11 onto V,,, and W,,.

Exercise 5.11: Scaling a function

Show that f(t) € V;, if and only if ¢(t) = f(2t) € Vipy1.

Exercise 5.12: Direct sums

Let Cy,C5...,C, be independent vector spaces, and let T; : C; — C; be linear
transformations. The direct sum of 11, Ts,...,T,, written as T} ®To & ... B T,
denotes the linear transformation from Cy & Cy & - - - § C,, to itself defined by

Tl ®.. 0T (cr+ea+--+ep) =Ti(er) + To(ea) + -+ Thlen)

when ¢; € (1, 3 € Cy, ..., ¢, € C)y. Similarly, when Ay, Ao, ..., A, are square
matrices, A1 ® Ay @ --- P A, is defined as the block matrix where the blocks
along the diagonal are Ay, As, ..., A,, and where all other blocks are 0. Show
that, if B; is a basis for C; then

TeT®... &Ts, b6, 5, =Tl ®[T2]s, & @ [Tn]s

-----)

Here two new concepts are used: a direct sum of matrices, and a direct sum of
linear transformations.

Exercise 5.13: Eigenvectors of direct sums

Assume that T} and T are matrices, and that the eigenvalues of T} are equal
to those of T. What are the eigenvalues of 77 @ 15?7 Can you express the
eigenvectors of T7 @ T5 in terms of those of T} and T57

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES186

Exercise 5.14: Invertibility of direct sums

Assume that A and B are square matrices which are invertible. Show that A® B
is invertible, and that (A& B)~! = A1 @ B~L.

Exercise 5.15: Multiplying direct sums

Let A, B,C, D be square matrices of the same dimensions. Show that (A @
B)(C @ D) = (AC) & (BD).

Exercise 5.16: Finding N

Assume that you run an m-level DWT on a vector of length ». What value of
N does this correspond to? Note that an m-level DWT performs a change of

coordinates from ¢,, to (¢o, Yo, ¥1, -, Vm—2,Ym—1).

Exercise 5.17: Different DWTs for similar vectors

In Figure 5.13 we have plotted the DWT’s of two vectors ; and «5. In both
vectors we have 16 ones followed by 16 zeros, and this pattern repeats cyclically
so that the length of both vectors is 256. The only difference is that the second
vector is obtained by delaying the first vector with one element.

1.2 : : : : : 1.2
10l = o — — e e e e e . 1.0 — — — —

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.0 50 100 150 200 250 0.0 50 100 150 200 250

Figure 5.13: 2 vectors 1 and x5 which seem equal, but where the DWT’s are
very different.

You see that the two DW'T’s are very different: For the first vector we see
that there is much detail present (the second part of the plot), while for the
second vector there is no detail present. Attempt to explain why this is the case.
Based on your answer, also attempt to explain what can happen if you change
the point of discontinuity for the piecewise constant function in Figure 5.20(a)
to something else.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES187

Exercise 5.18: Plotting the DWT on a sound

Run a 2-level DWT on the first 217 sound samples of the audio file castanets.wav,
and plot the values of the resulting DWT-coefficients. Compare the values of
the coefficients from V with those from Wy and Wj.

Exercise 5.19: Zeroing out DWT coefficients

In this exercise we will experiment with applying an m-level DWT to a sound
file.

a) Write a function playDWT which takes m, a DWT kernel £, an IDWT kernel
invf, and a variable lowres as input, and

e reads the audio file castanets.wav,

e performs an m-level DWT to the first 2!7 sound samples of x using the
function DWTImpl with DWT kernel f,

e sets all wavelet coefficients representing detail to zero if lowres is true
(i.e. keep only the coordinates from ¢ in the basis (¢o, Yo, ¥1, - - -, Ym—2, ¥m—1)),

e sets all low-resolution coefficients to zero if lowres is false (i.e. zero out
the coordinates from ¢ and keep the others),

e performs an IDWT on the resulting coefficients using the function IDWTImpl
with IDWT kernel invf,

e plays the resulting sound.

b) Do the sound samples returned by playDWT lie in [—1,1]?

¢) Run the function playDWT with DWTKernelHaar and IDWTKernelHaar as
inputs, and for different values of m, with ‘lowres’ set to true (i.e. with the
low-resolution approximation chosen). For which m can you hear that the sound
gets degraded? How does it get degraded? Compare with what you heard
through the function playDFT in Example 2.27, where you performed a DFT on
the sound sample instead, and set some of the DFT coefficients to zero.

d) Repeat the listening experiment from c., but this time with lowres set to
false (i.e. keep only the detail from Wy, W1, What kind of sound do you
hear? Can you recognize the original sound in what you hear?

Exercise 5.20: Construct a sound

Attempt to construct a (nonzero) sound where the function playDWT form the
previous exercise does not change the sound for m = 1, 2.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES188

Exercise 5.21: Exact computation of wavelet coefficients 1

Compute the wavelet detail coefficients analytically for the functions in Exam-
ple 5.20, i.e. compute the quantities wy, , = fON F ()Y n(t)dt similarly to how
this was done in Example 5.21.

Exercise 5.22: Exact compution of wavelet coefficients 2

Compute the wavelet detail coefficients analytically for the functions f(t) = (%) k,

i.e. compute the quantities wy, , = fON (ﬁ)k Ym,n (t)dt similarly to how this was
done in Example 5.21. How do these compare with the coefficients from the
Exercise 5.217

Exercise 5.23: Computing the DWT of a simple vector

Suppose that we have the vector with length 2'°© = 1024, defined by z, = 1
for n even, x,, = —1 for n odd. What will be the result if you run a 10-level
DWT on «? Use the function DWTImpl to verify what you have found.

Hint. We defined v by 9(t) = (¢1,0(t) — ¢1.1(¢))/v/2. From this connection it

follows that 19 ,, = (h10.20 — P10.20+1)/ V2, and thus @102, — P10.2n41 = V200 n-
Try to couple this identity with the alternating sign you see in .

Exercise 5.24: The Haar wavelet when N is odd

Use the results from Exercise 5.8 to rewrite the implementations DWTKernelHaar
and IDWTKernelHaar so that they also work in the case when N is odd.

Exercise 5.25: in-place DWT

Show that the coordinates in ¢, after an in-place m-level DWT end up at
indices k2™, k= 0,1,2,.... Show similarly that the coordinates in ,, after an
in-place m-level DWT end up at indices 2™~ ! + k2™, k = 0,1,2,.... Find these
indices in the code for the function reorganize_coefficients.

5.4 A wavelet based on piecewise linear func-
tions

Unfortutately, piecewise constant functions are too simple to provide good
approximations. In this section we are going to extend the construction of
wavelets to piecewise linear functions. The advantage is that piecewise linear
functions are better for approximating smooth functions and data than piecewise
constants, which should translate into smaller components (errors) in the detail
spaces in many practical situations. As an example, this would be useful if we
are interested in compression. In this new setting it turns out that we loose the

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES189

orthonormality we had for the Haar wavelet. On the other hand, we will see
that the new scaling functions and mother wavelets are symmetric functions.
We will later see that this implies that the corresponding DWT and IDWT have
simple implementations with higher precision. Our experience from deriving
Haar wavelets will guide us in the construction of piecewise linear wavelets. The
first task is to define the new resolution spaces.

Definition 5.22. Resolution spaces of piecewise linear functions.
The space V,,, is the subspace of continuous functions on R which are periodic
with period N, and linear on each subinterval of the form [n2~", (n +1)27™).

10 : : : : 1.0
8 0.8/
6 0.6}
4 0.4}
2 0.2}
% 2 4 6 8 10 09— 1 2 3 4

Figure 5.14: A piecewise linear function and the two functions ¢(¢) and ¢(t — 3).

Any f € V,, is uniquely determined by its values in the points {2_mn},2:lév -1

The linear mapping which sends f to these samples is thus an isomorphism from
V,, onto RV2™ | so that the dimension of V,, is N2*. The 1ft plot in Figure 5.14
shows an example of a piecewise linear function in V on the interval [0, 10]. We
note that a piecewise linear function in Vj is completely determined by its value
at the integers, so the functions that are 1 at one integer and 0 at all others are
particularly simple and therefore interesting, see the right plot in Figure 5.14.
These simple functions are all translates of each other and can therefore be built
from one scaling function, as is required for a multiresolution analysis.

Lemma 5.23. The function ¢.
Let the function ¢ be defined by

¢(t){1—|t|7 if —1<t<1; (5.26)

0, otherwise;

and for any m > 0 set
mn(t) =2™2p(2™t —n) forn=0,1,...,2"N -1,

and @, = {dm.n f;f)vfl. ¢, is a basis for V,,,, and ¢g ,,(t) is the function in Vp
with smallest support that is nonzero at t = n.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES190

Proof. 1t is clear that ¢y, , € V;,, and

G (N27™) = 2M/24(2™(27™n) — n') = 2™/ 2¢(n — n').

Since ¢ is zero at all nonzero integers, and ¢(0) = 1, we see that ¢,/ (n27™) =
2m/2 when n' = n, and 0 if n’ # n. Let L,, : Vi, — RV2" be the isomorphism
mentioned above which sends f € V,,, to the samples in the points {2_,,n 3;6\’ -1
Our calculation shows that L, (¢m.n) = 2m/2¢, . Since L,, is an isomorphism it
follows that ¢, = {Pm.n iiévfl is a basis for V,,,.

Suppose that the function g € V; has smaller support than ¢g,, but is
nonzero at t = n. We must have that Lo(g) = ce, for some ¢, since g is zero on
the integers different from n. But then g is a multiple of ¢q ,, so that it is the

function in V with smallest support that is nonzero at t = n. O

The function ¢ and its translates and dilates are often referred to as hat
functions for obvious reasons. Note that the new function ¢ is nonzero for small
negative x-values, contrary to the ¢ we defined in Chapter 5. If we plotted the
function on [0, N), we would see the nonzero parts at the beginning and end of
this interval, due to the period IV, but we will mostly plot on an interval around
zero, since such an interval captures the entire support of the function. Also for
the piecewise linear wavelet the coordinates of a basis function is given by the
samples:

Lemma 5.24. Writing in terms of the samples.
A function f € V,,, may be written as

2MN-—1
F@&) =" fn/2m)27 g (1) (5.27)
n=0

An essential property also here is that the spaces are nested.

Lemma 5.25. Resolution spaces are nested.
The piecewise linear resolution spaces are nested,

VocVic---CVp,, C---.

Proof. We only need to prove that V) C Vi since the other inclusions are similar.
But this is immediate since any function in Vj is continuous, and linear on any
subinterval in the form [n/2,(n+ 1)/2). O

In the piecewise constant case, we saw in Lemma 5.5 that the scaling functions
were automatically orthogonal since their supports did not overlap. This is not
the case in the linear case, but we could orthogonalise the basis ¢,, with the
Gram-Schmidt process from linear algebra. The disadvantage is that we lose the
nice local behaviour of the scaling functions and end up with basis functions
that are nonzero over all of [0, N]. And for most applications, orthogonality is
not essential; we just need a basis. The next step in the derivation of wavelets is
to find formulas that let us express a function given in the basis ¢ for Vj in
terms of the basis ¢ for V.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES191

Lemma 5.26. The two-scale equation.
The functions ¢g ,, satisfy the relation

1 1 1
Pon = ﬁ <2¢1,2n1 + @120 + 2¢51,2n+1> . (5.28)

1.2
1.0 -~

0.8} PR

0.6} S/ N

0.4} AN NN
0.2} . N SN AN
00k--%--_-_ Lo AP S I
—-0.2

Figure 5.15: How ¢(t) can be decomposed as a linear combination of ¢ _1,
¢1,0, and ¢1,1.

Proof. Since ¢, is in Vp it may be expressed in the basis ¢; with formula

(5.27),
2N—-1

Gon(t) =272 > Gon(k/2)d1k(t).

k=0

The relation (5.28) now follows since
Do ((2n —1)/2) = don((2n+1)/2) =1/2, ¢on(2n/2) =1,
and ¢, (k/2) = 0 for all other values of k. O

The relationship given by Equation (5.28) is shown in Figure 5.15.

5.4.1 Detail spaces and wavelets

The next step in our derivation of wavelets for piecewise linear functions is
the definition of the detail spaces. We need to determine a space Wy that is
linearly independent from Vj, and so that Vi = V[, & Wy. In the case of piecewise
constant functions we started with a function g; in Vi, computed the least
squares approximation gy in Vy, and then defined the error function ey = g1 — go,
with eg € Wy and Wy as the orthogonal complement of Vj in V.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES192

It turns out that this strategy is less appealing in the case of piecewise linear
functions. The reason is that the functions ¢¢, are not orthogonal anymore
(see Exercise 5.26). Due to this we have no simple, orthogonal basis for the
set of piecewise linear functions, so that the orthogonal decomposition theorem
fails to give us the projection onto Vj in a simple way. It is therefore no reason
to use the orthogonal complement of V4 in Vi as our error space, since it is
hard to write a piecewise linear function as a sum of two other piecewise linear
functions which are orthogonal. Instead of using projections to find low-resolution
approximations, and orthogonal complements to find error functions, we will
attempt the following simple approximation method:

Definition 5.27. Alternative projection.
Let g1 be a function in V; given by

2N-1
g = Z Cln®P1n- (5.29)
n=0
The approximation go = P(g1) in Vp is defined as the unique function in Vj
which has the same values as g; at the integers, i.e.

go(n) =¢1(n), n=0,1,..., N—1. (5.30)

It is easy to show that P(g;) actually is different from the projection of ¢;
onto Vp: If g1 = ¢1,1, then ¢p is zero at the integers, and then clearly P(g1) = 0.
But in Exercise 5.27 you will be asked to compute the projection onto V4 using
different means than the orthogonal decomposition theorem, and the result will
be seen to be nonzero. It is also very easy to see that the coordinates of gg in ¢
can be obtained by dropping every second coordinate of gy in ¢1. To be more
precise, the following holds:

Lemma 5.28. Fapression for the alternative projection.
We have that

V200,52, if n is an even integer;

P(¢1,n) = {

0, otherwise.

Once this approximation method is determined, it is straightforward to
determine the detail space as the space of error functions.

Lemma 5.29. Resolution spaces.
Define
Wo={feVi| f(n)=0, forn=0,1,..., N—1},

and

1
V2

Suppose that g; € V; and that go = P(g1). Then

¥(t) b1.(t) Yo (t) = 220 (2™t — n). (5.31)

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES193

e the error ey = g1 — go lies in Wy,
o Py = {Yon}h "y is a basis for Wy.

e 1 and Wy are linearly independent, and V; =V & W

Proof. Since go(n) = g1(n) for all integers n, eg(n) = (g1 — go)(n) = 0, so that
eg € Wy. This proves the first statement.
For the second statement, note first that

Yon(t) =9t —n) = L¢1,1(75 —n)=¢2(t —n)—1) =2t — (2n+1)) = %¢1,2n+1(t)o

V2 2
(5.32)

1o is thus a linearly independent set of dimension NN, since it corresponds to a
subset of ¢1. Since ¢1 2,41 is nonzero only on (n,n + 1), it follows that all of
lies in Wy. Clearly then 1) is also a basis for Wy, since Wy also has dimension
N (its image under Ly consists of points where every second component is zero).
Consider finally a linear combination from ¢ and g which gives zero:

N—-1 N—-1
Z an¢0,n + Z bnwo,n =0.
n=0 n=0

If we evaluate this at ¢t = k, we see that 1o ,(k) =0, ¢o (k) =0 when n # k,
and ¢o,x(k) = 1. When we evaluate at k we thus get aj, which must be zero. If
we then evaluate at t = k + 1/2 we get in a similar way that all b, = 0, and it
follows that Vi and W)y are linearly independent. That V; = Vy & W, follows
from the fact that V7 has dimension 2N, and Vj and W, both have dimension
N. O

We can define W,,, in a similar way for m > 0, and generalize the lemma
to W,,. We can thus state the following analog to Theorem 5.16 for writing
gm € Vp as a sum of a low-resolution approximation ¢g,,—1 € V,,—1, and a
detail/error component e,,—1 € W,_1.

Theorem 5.30. Decomposing Vy,.
The space V,,, can be decomposed as the direct sum V,,, = V,,,_1 & W,,,_1
where

Wi ={f €V | f(n/2"") =0, forn=0,1,...,2" 'N —1}.

W, has the base ¥, = {wm,n}QmN_l, and V,,, has the two bases

n=0

m

(z)m - {¢m7n}72;:]0\]71, and (¢m—17'¢'m—1) = ({(bm—lm}izgljvila {wm—lm}i:(;l]vil).

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES194

With this result we can define the DWT and the IDWT with their stages
as before, but the matrices thesemselves are now different. For the IDWT
(i.e. Pg,«(¢o,0))> the columns in the matrix can be found from equations (5.28)
and (5.32), i.e.

1 1 1
Don = 7 (2¢1,2n1 + ¢1,2n + 2¢1,2n+1>
1
o, \/?¢1,2 +1 (5.33)

For the DWT we can find the columns in the matrix by rewriting these equations
to

1 1 1

\/§¢1,2n = ¢(),n - ﬁqslﬂnfl - Tﬂ¢1’2n+1
1

ﬁ¢1,2n+1 = ¢0,na

so that
1 1 V2 V2
01,20 = V200 — §¢172n—1 - §¢1,2n+1 = —71#0,71—1 + V200, — 71&0@
(5.34)
B1,2n4+1 = V200 - (5.35)

Example 5.31. DWT on sound.

Later we will write algorithms which performs the DWT/IDWT for the
piecewise linear wavelet, similarly to how we implemented the Haar wavelet
transformation in the previous chapter. This gives us new kernel transformations,
which we will call DWTKernelpwlO, IDWTKernelpwlO (The 0 stands for 0 vanishing
moments. We defined vanishing moments after Observation 5.14. We will have
more to say about vanishing moments later). Using these new kernels, let us plot
the detail/error in the test audio file castanets.wav for different resolutions, as
we did in Example 5.19. The result is shown in Figure 5.16. When comparing
with Figure 5.11 we see much of the same, but it seems here that the error is
bigger than before. In the next section we will try to explain why this is the
case, and construct another wavelet based on piecewise linear functions which
remedies this.

Example 5.32. DWT on the samples of a mathematical function.

Let us also repeat Exercise 5.20, where we plotted the detail/error at different
resolutions, for the samples of a mathematical function. Figure 5.17 shows the
new plot.

With the square wave we see now that there is an error. The reason is that
a piecewise constant function can not be represented exactly by piecewise linear

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES195

1.0 , — — , 1.0
0.5 0.5
0.0 0.0

-0.5 -0.5

~ 105 20006+0006000®0000000a20000 % 200061000B000BO00A000GE0000

Figure 5.16: The error (i.e. the contribution from Wy @ W1 & --- ® W,,,_1) in
the sound file castanets.wav, for m = 1 and m = 2, respectively.

1.0, : : : : : 1.0
0.8 0.8

0.6 0.6

0.4 0.4}

0.2 0.2}

00200 400 600 800 1000 % 200 400 600 800 1000
1.0 :

0.8

0.6 /

0.4 /

0.2 |

0.0 |

0 200 400 600 800 1000

Figure 5.17: The error (i.e. the contribution from Wy ® W1 @ --- & W,,_1) for
N =1025 when f is a square wave, the linear function f(t) =1—2|1/2 —t/N]|,
and the trigonometric function f(t) = 1/2 + cos(2wt/N)/2, respectivey. The
detail is indicated for m = 6 and m = 8.

functions, due to discontinuity. For the second function we see that there is no
error. The reason is that this function is piecewise linear, so there is no error
when we represent the function from the space V. With the third function,
hoewever, we see an error.

What you should have learned in this section.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES196

e Definition of scaling function, mother wavelet, resolution spaces, and detail
spaces for the wavelet of piecewise linear functions.

Exercise 5.26: The sample values are coordinates

Show that, for f € V we have that [f]s, = (f(0), f(1),..., f(N —1)). This
generalizes the result for piecewise constant functions.

Exercise 5.27: Computing projections

In this exercise we will show how the projection of ¢; ;1 onto Vj can be computed.
We will see from this that it is nonzero, and that its support is the entire [0, N].
Let f = projy, ¢1,1, and let ,, = f(n) for 0 < n < N. This means that, on
(n,n+1), f(t) = zn + (Tns1 — 25)(t — n).

a) Show that f"+1 2dt (l‘% + TpTpy1 + $%+1)/3~
b) Show that

1/2
/ (370 + (-'L'l - xo)t)d)l,l(t>dt = 2\/5 <1$0 + 1.’171)
0

12 24
! 1 1
/1/2(3?0 + (w1 — mo)t) 1,1 (t)dt = 2v/2 (243?0 + 12331> .

c) Use the fact that

/0 d)l 1 Z xn¢0 n
1/2 1
— / ¢171(t)2dt — 2/ (.’EO —+ (IEl — {I?())t)¢1’1(t)dt — 2/ ({L'() + ($1 — $0)t)¢1’1(t)dt
0 0 1/2
N-1 n+1
+ / (T + (Tn_1 — m,)t)2dt
n=0"v"

and a) and b) to find an expression for ||¢11(t) — Ziv 01 Tndo.n(t)]?

d) To find the minimum least squares error, we can set the gradient of the
expression in c. to zero, and thus find the expression for the projection of ¢; ;
onto Vp. Show that the values {x, }) - can be found by solving the equation
Sx = b, where S = £{1,4,1} is an N x N symmetric filter, and b is the vector
with components by = b; = ﬂ/?, and b, =0 for k > 2.

e) Solve the system in d. for some values of N to verify that the projection of
¢1,1 onto Vj is nonzero, and that its support covers the entire [0, N].

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES197

Exercise 5.28: Non-orthogonality for the piecewise linear
wavelet

Show that

<¢O,n; ¢0,n> = <¢O,n7 ¢O,ni1> = % <¢O,n> ¢O,nik> =0 for k> 1.

3
As a consequence, the {¢g ,,}, are neither orthogonal, nor have norm 1.

Exercise 5.29: Wavelets based on polynomials

The convolution of two functions defined on (—oo, 00) is defined by

(f *9)(x) = / Y gl — 1)t

Show that we can obtain the piecewise linear ¢ we have defined as ¢ = x[—1/2,1/2)*
X[-1/2,1/2) (recall that x[_1/2,1/2) is the function which is 1 on [-1/2,1/2) and
0 elsewhere). This gives us a nice connection between the piecewise constant
scaling function (which is similar to x|_i/2,1/2)) and the piecewise linear scaling
function in terms of convolution.

5.5 Alternative wavelet based on piecewise lin-
ear functions

For the scaling function used for piecewise linear functions, {¢(t—n)}o<n<n were
not orthogonal anymore, contrary to the case for piecewise constant functions. We
were still able to construct what we could call resolution spaces and