
Chapter 3

Operations on digital sound:
digital filters

In Section 1.5 we defined analog filters as operations on sound which preserved
di�erent frequencies. Such operations are important since they can change the
frequency content in many ways. Analog filters can not be used computationally,
however, since they are defined for all instances in time. As when we defined the
DFT to make Fourier series computable, we would like to define digital filters, in
order to make analog filters computable. It turns out that what we will define
as digital filters can be computed by the following procedure:

zn = 1
4(xn≠1

+ 2xn + xn+1

), for n = 0, 1, . . . , N ≠ 1. (3.1)

Here x denotes the input vector, and z the output vector. In other words, the
output of a digital filter is constructed by combining several input elements
linearly. The concrete filter defined by Equation (3.1) is called a smoothing filter.
We will demonstrate that it smooths the variations in the sound, and this is
where it gets its name from. We will start this chapter by by looking at matrix
representations for operations as given by Equation (3.1). Then we will formally
define digital filters in terms of preservation of frequencies as we did for analog
filters, and show that the formal definition is equivalent to such operations.

3.1 Matrix representations of filters
Let us consider Equation (3.1) in some more detail to get more intuition about
filters. As before we assume that the input vector is periodic with period N ,
so that xn+N = xn. Our first observation is that the output vector z is also
periodic with period N since

zn+N = 1
4(xn+N≠1

+ 2xn+N + xn+N+1

) = 1
4(xn≠1

+ 2xn + xn+1

) = zn.

86

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS87

The filter is also clearly a linear transformation and may therefore be represented
by an N ◊N matrix S that maps the vector x = (x

0

, x
1

, . . . , xN≠1

) to the vector
z = (z

0

, z
1

, . . . , zN≠1

), i.e., we have z = Sx. To find S, for 1 Æ n Æ N ≠ 2 it is
clear from Equation (3.1) that row n has the value 1/4 in column n ≠ 1, the
value 1/2 in column n, and the value 1/4 in column n + 1. For row 0 we must be
a bit more careful, since the index ≠1 is outside the legal range of the indices.
This is where the periodicity helps us out so that

z
0

= 1
4(x≠1

+ 2x
0

+ x
1

) = 1
4(xN≠1

+ 2x
0

+ x
1

) = 1
4(2x

0

+ x
1

+ xN≠1

).

From this we see that row 0 has the value 1/4 in columns 1 and N ≠ 1, and the
value 1/2 in column 0. In exactly the same way we can show that row N ≠ 1
has the entry 1/4 in columns 0 and N ≠ 2, and the entry 1/2 in column N ≠ 1.
In summary, the matrix of the smoothing filter is given by

S = 1
4

Q

ccccccca

2 1 0 0 · · · 0 0 0 1
1 2 1 0 · · · 0 0 0 0
0 1 2 1 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · 0 1 2 1
1 0 0 0 · · · 0 0 1 2

R

dddddddb

. (3.2)

A matrix on this form is called a Toeplitz matrix. The general definition is as
follows and may seem complicated, but is in fact quite straightforward:

Definition 3.1. Toeplitz matrices.
An N ◊ N -matrix S is called a Toeplitz matrix if its elements are constant

along each diagonal. More formally, Sk,l = Sk+s,l+s for all nonnegative integers
k, l, and s such that both k + s and l + s lie in the interval [0, N ≠ 1]. A Toeplitz
matrix is said to be circulant if in addition

S
(k+s) mod N,(l+s) mod N = Sk,l

for all integers k, l in the interval [0, N ≠ 1], and all s (Here mod denotes the
remainder modulo N).

Toeplitz matrices are very popular in the literature and have many applica-
tions. A Toeplitz matrix is constant along each diagonal, while the additional
property of being circulant means that each row and column of the matrix
’wraps over’ at the edges. Clearly the matrix given by Equation (3.2) satisfies
Definition 3.1 and is a circulant Toeplitz matrix. A Toeplitz matrix is uniquely
identified by the values on its nonzero diagonals, and a circulant Toeplitz matrix
is uniquely identified by the values on the main diagonal, and on the diagonals
above (or under) it. While Toeplitz matrices here show up in the context of
filters, they will also show up later in the context of wavelets.

Equation (3.1) leads us to the more general expression

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS88

zn =
ÿ

k

tkxn≠k. (3.3)

If t has infinitely many nonzero entries, the sum is an infinite one, and may
diverge. We will, however, mostly assume that t has a finite number of nonzero
entries. This general expression opens up for defining many types of operations.
The values tk will be called filter coe�cients . The range of k is not specified,
but is typically an interval around 0, since zn usually is calculated by combining
xk’s with indices close to n. Both positive and negative indices are allowed.
As an example, for formula (3.1) k ranges over ≠1, 0, and 1, and we have that
t≠1

= t
1

= 1/4, and t
0

= 1/2. Since Equation (3.3) needs to be computed for
each n, if only t

0

, . . . , tkmax are nonzero, we need to go through the following
for-loop to compute zkmax,. . . ,zN≠1

:

z = zeros_like(x)
for n in range(kmax,N):

for k in range(kmax + 1):
z[n] += t[k]*x[n - k]

It is clearly possible to vectorize the inner loop here, since it takes the form of a
dot product. Another possible way to vectorize is to first change the order of
summation, and then vectorize as follows

z = zeros_like(x)
for k in range(kmax + 1):

z[kmax:N] += t[k]*x[(kmax-k):(N-k)]

Depending on how vectorization is supported, this code will in general execute
faster, and is to prefer. The drawback, however, is that a filter often is applied in
real time, with the output computed only when enough input is available, with
the input becoming available continuously. This second approach then clearly
fails, since it computes nothing before all input is available. In the exercise we
will compare the computation times for the two approaches above, and compare
them with a built-in function which computes the same.

Note that above we did not consider the first entries in z, since this is where
the circulation occurs. Taken this into account, the first filter we considered in
this chapter can be implemented in vectorized form simply as

z[0] = x[1]/4. + x[0]/2. + x[N-1]/4.
z[1:(N-1)] = x[2:N]/4. + x[1:(N-1)]/2. + x[0:(N-2)]/4.
z[N-1] = x[0]/4. + x[N-1]/2. + x[N-2]/4.

In the following we will avoid such implementations, since for-loops can be
very slow in Python. We will see that an e�cient built-in function exists for
computing this, and use this instead.

By following the same argument as above, the following is clear:

Proposition 3.2. Filters as matrices.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS89

Any operation defined by Equation (3.3) is a linear transformation which
transforms a vector of period N to another of period N . It may therefore be
represented by an N ◊ N matrix S that maps the vector x = (x

0

, x
1

, . . . , xN≠1

)
to the vector z = (z

0

, z
1

, . . . , zN≠1

), i.e., we have z = Sx. Moreover, the matrix
S is a circulant Toeplitz matrix, and the first column s of this matrix is given by

sk =
I

tk, if 0 Æ k < N/2;
tk≠N if N/2 Æ k Æ N ≠ 1.

(3.4)

In other words, the first column of S can be obtained by placing the coe�cients
in (3.3) with positive indices at the beginning of s, and the coe�cients with
negative indices at the end of s.

This proposition will be useful for us, since it explains how to pass from the
form (3.3), which is most common in practice, to the matrix form S.

Example 3.3. Finding the matrix elements from the filter coe�cients.
Let us apply Proposition 3.2 to the operation defined by formula (3.1):

• for k = 0 Equation (3.4) gives s
0

= t
0

= 1/2.

• For k = 1 Equation (3.4) gives s
1

= t
1

= 1/4.

• For k = N ≠ 1 Equation (3.4) gives sN≠1

= t≠1

= 1/4.

For all k di�erent from 0, 1, and N ≠ 1, we have that sk = 0. Clearly this gives
the matrix in Equation (3.2).

Proposition 3.2 is also useful when we have a circulant Toeplitz matrix S,
and we want to find filter coe�cients tk so that z = Sx can be written on the
form (3.3):

Example 3.4. Finding the filter coe�cients from the matrix.
Consider the matrix

S =

Q

cca

2 1 0 3
3 2 1 0
0 3 2 1
1 0 3 2

R

ddb .

This is a circulant Toeplitz matrix with N = 4, and we see that s
0

= 2, s
1

= 3,
s

2

= 0, and s
3

= 1. The first equation in (3.4) gives that t
0

= s
0

= 2, and
t
1

= s
1

= 3. The second equation in (3.4) gives that t≠2

= s
2

= 0, and
t≠1

= s
3

= 1. By including only the tk which are nonzero, the operation can be
written as

zn = t≠1

xn≠(≠1)

+ t
0

xn + t
1

xn≠1

+ t
2

xn≠2

= xn+1

+ 2x
0

+ 3xn≠1

.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS90

Since the filter coe�cients tk uniquely define any N ◊ N -circulant Toeplitz
matrix, we will establish the following shorthand notation for the filter matrix
for a given set of filter coe�cients. We will use this notation only when we have
a finite set of nonzero filter coe�cients (note however that many interesting
filters in signal processing have infinitely many nonzero filter coe�cients, see
Section 3.5) Note also that we always choose N so large that the placement of
the filter coe�cients in the first column, as dictated by Proposition 3.2, never
collide (as happens when N is smaller than the number of filter coe�cients).

Definition 3.5. Compact notation for filters.
Let k

min

, k
max

be the smallest and biggest index of a filter coe�cient in
Equation (3.3) so that tk ”= 0 (if no such values exist, let k

min

= k
max

= 0), i.e.

zn =
kmaxÿ

k=kmin

tkxn≠k. (3.5)

We will use the following compact notation for S:

S = {tkmin , . . . , t≠1

, t
0

, t
1

, . . . , tkmax}.

In other words, the entry with index 0 has been underlined, and only the nonzero
tk’s are listed. kmax and kmin are also called the start and end indices of S. By
the length of S, denoted l(S), we mean the number kmax ≠ kmin.

One seldom writes out the matrix of a filter, but rather uses this compact
notation.

Example 3.6. Writing down compact filter notation.
Using the compact notation for a filter, we would write S = {1/4, 1/2, 1/4}

for the filter given by formula (3.1)). For the filter

zn = xn+1

+ 2x
0

+ 3xn≠1

from Example 3.4, we would write S = {1, 2, 3}.

3.1.1 Convolution
Applying a filter to a vector x is also called taking the convolution of the two
vectors t and x. Convolution is usually defined without the assumption that
the input vector is periodic, and without any assumption on the vector lengths
(i.e. they may be sequences of inifinite length). The case where both vectors t

and x have a finite number of nonzero elements dererves extra attention. Assume
that t

0

, . . . , tM≠1

and x
0

, . . . , xN≠1

are the only nonzero elements in t and x

(i.e. we can view them as vectors in RM and RN , respectively). It is clear from
the expression zn =

q
tkxn≠k that only z

0

, . . . , zM+N≠2

can be nonzero. This
motivates the following definition.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS91

Definition 3.7. Convolution of vectors.
By the convolution of two vectors t œ RM and x œ RN we mean the vector

t ú x œ RM+N≠1 defined by

(t ú x)n =
ÿ

k

tkxn≠k, (3.6)

where we only sum over k so that 0 Æ k < M , 0 Æ n ≠ k < N .

Note that convolution in the literature usually assumes infinite vectors.
Python has the built-in function convolve for computing t ú x. As we shall see
in the exercises this function is highly optimized, and is therefore much used
in practice. Since convolution is not exactly the same as our definition of a
filter (since we assume that a vector is repeated periodically), it would be a
good idea to express our definition of filters in terms of convolution. This can
be achieved with the next proposition, which is formulated for the case with
equally many filter coe�cients with negative and positive indices. The result is
thus directly applicable for symmetric filters, which is the type of filters we will
mostly concentrate on. It is a simple exercise to generalize the result to other
filters, however.

Proposition 3.8. Using convolution to compute filters.
Assume that S is a filter on the form

S = {t≠L, . . . , t
0

, . . . , tL},

If x œ RN , then Sx can be computed as follows:

• Form the vector x̃ = (xN≠L, · · · , xN≠1

, x
0

, · · · , xN≠1

, x
0

, · · · , xL≠1

) œ
RN+2L.

• Use the convolve function to compute z̃ = t ú x̃ œ RM+N+2L≠1.

• We have that Sx = (z̃
2L, . . . , z̃M+N≠2

).

We will consider an implementation of this result using the convolve function
in the exercises.

Proof. When x œ RN , the operation x æ t ú x can be represented by an
(M + N ≠ 1) ◊ N matrix. It is easy to see that this matrix has element (i + s, i)
equal to ts, for 0 Æ i < M , 0 Æ s < N . In Figure 3.1 such a matrix is shown for
M = 5. The nonzero diagonals are shown as diagonal lines.

Now, form the vector x̃ œ RN+2L as in the text of the theorem. Convolving
(t≠L, . . . , tL) with vectors in RN+2L can similarly be represented by an (M +N +
2L ≠ 1) ◊ (N + 2L)-matrix. The rows from 2L up to and including M + N ≠ 2
in this matrix (we have marked these with horizontal lines above) make up a
new matrix S̃, and this is shown in Figure 3.2 (S̃ is an N ◊ (N + 2L) matrix).

We need to show that Sx = S̃x̃. We have that S̃x̃ equals the matrix shown
in Figure 3.3 multiplied with (xN≠L, . . . , xN≠1

, x
0

, . . . , xN≠1

, x
0

, . . . , xL≠1

) (we

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS92

@
@

@
@
@

@
@
@

@
@

@
@
@

@
@
@

@
@

@
@
@

@
@
@

@
@

@
@
@

@
@
@

@
@

@
@
@

@
@
@

Figure 3.1: A (M + N ≠ 1) ◊ N matrix representing the operation x æ t ú x.

@
@

@
@
@

@

@
@
@

@
@
@

@
@

@
@

@
@

@
@

@
@
@

@

@
@
@

@
@
@

Figure 3.2: The N ◊ (N + 2L)-matrix S̃.

inserted extra vertical lines in the matrix where circulation occurs), which equals
the matrix shown in Figure 3.4 multiplied with (x

0

, . . . , xN≠1

). We see that this
is Sx, and the proof is complete.

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

Figure 3.3: The matrix we multiply with
(xN≠L, . . . , xN≠1

, x
0

, . . . , xN≠1

, x
0

, . . . , xL≠1

).

There is also a very nice connection between convolution and polynomials:

Proposition 3.9. Convolution and polynomials.
Assume that p(x) = aN xN + aN≠1

xN≠1

+ . . . , a
1

x + a
0

and q(x) = bM xM +
bM≠1

xM≠1

+ . . . , b
1

x + b
0

are polynomials of degree N and M respectively.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS93

@
@

@
@

@
@
@

@
@

@

@
@

@
@

@
@
@

@
@
@

@

@
@

@
@

@
@
@

@
@
@

@
@

@
@
@

@
@
@

@
@
@

@
@

@
@

@
@
@

@
@
@

@
@

@
@
@

@
@@

Figure 3.4: The matrix we multiply with (x
0

, . . . , xN≠1

).

Then the coe�cients of the polynomial pq can be obtained by computing
convolve(a,b).

We can thus interpret a filter as a polynomial. In this setting, clearly the
length l(S) of the filter can be interpreted as the degree of the polynomial. If
t œ RM and x œ RN , then they can be associated with polynomials of degree
M ≠1 and N ≠1, respectively. Also, their convolution, which is in RM+N≠1, can
be associated with a polynomial of degree M + N ≠ 2, which is the sum of the
degrees of the individual polynomials. Of course we can make the same addition
of degrees when we multiply polynomials. Clearly the polynomial associated
with t is the frequency response, when we insert x = e≠iÊ. Also, applying two
filters in succession is equivalent to applying the convolution of the filters, so
that two filtering operations can be combined to one.

Since the number of nonzero filter coe�cients is typically much less than N
(the period of the input vector), the matrix S have many entries which are zero.
Multiplication with such matrices requires less additions and multiplications
than for other matrices: If S has k nonzero filter coe�cients, S has Nk nonzero
entries, so that kN multiplications and (k≠1)N additions are needed to compute
Sx. This is much less than the N2 multiplications and (N ≠ 1)N additions
needed in the general case. Perhaps more important is that we need not form
the entire matrix, we can perform the matrix multiplication directly in a loop.
For large N we risk running into out of memory situations if we had to form the
entire matrix.

What you should have learned in this section.

• How to write down the circulant Toeplitz matrix from a digital filter
expression, and vice versa.

• How to find the first column of this matrix (s) from the filter coe�cients
(t), and vice versa.

• The compact filter notation for filters with a finite number of filter coe�-
cients.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS94

• The definition of convolution, its connection with filters, and the conv-
function for computing convolution.

• Connection between applying a filter and multiplying polynomials.

Exercise 3.1: Finding the filter coe�cients and the matrix
Assume that the filter S is defined by the formula

zn = 1
4xn+1

+ 1
4xn + 1

4xn≠1

+ 1
4xn≠2

.

Write down the filter coe�cients tk, and the matrix for S when N = 8.

Exercise 3.2: Finding the filter coe�cients from the matrix
Given the circulant Toeplitz matrix

S =

Q

cca

1 2 0 0
0 1 2 0
0 0 1 2
2 0 0 1

R

ddb ,

write down the filter coe�cients tk.

Exercise 3.3: Convolution and polynomials
Compute the convolution of {1, 2, 1} with itself. interpret the result in terms of
two polynomials.

Exercise 3.4: Implementation of convolution
Implement code which computes t ú x in the two ways described after Equation
(3.3)in the compendium, i.e. as a double for loop, and as a simple for loop in
k, with n vectorized. As your t, take k randomly generated numbers. Compare
execution times for these two methods and the convolve function, for di�erent
values of k. Present the result as a plot where k runs along the x-axis, and
execution times run along the y-axis. Your result will depend on how Python
performs vectorization.

Exercise 3.5: Filters with a di�erent number of coe�cients
with positive and negative indices
Assume that S = {t≠E , . . . , t

0

, . . . , tF }. Formulate a generalization of Proposi-
tion 3.8 for such filters, i.e. to filters where there may be a di�erent number of
filter coe�cients with positive and negative indices. You should only need to
make some small changes to the proof of Proposition 3.8 to achieve this.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS95

Exercise 3.6: Implementing filtering with convolution
Implement a function filterS which uses Proposition 3.8 and the convolve
function Sx when S = {t≠L, . . . , t

0

, . . . , tL} The function should take the vectors
(t≠L, . . . , t

0

, . . . , tL) and x as input.

3.2 Formal definition of filters and the vector
frequency response

Let us now define digital filters formally, and establish their relationship to
Toeplitz matrices. We have seen that a sound can be decomposed into di�erent
frequency components, and we would like to define filters as operations which
adjust these frequency components in a predictable way. One such example is
provided in Example 2.27, where we simply set some of the frequency components
to 0. The natural starting point is to require for a filter that the output of a
pure tone is a pure tone with the same frequency.
Definition 3.10. Digital filters and vector frequency response.

A linear transformation S : RN ‘æ RN is a said to be a digital filter , or
simply a filter, if, for any integer n in the range 0 Æ n Æ N ≠ 1 there exists a
value ⁄S,n so that

S („n) = ⁄S,n„n, (3.7)
i.e., the N Fourier vectors are the eigenvectors of S. The vector of (eigen)values
�S = (⁄S,n)N≠1

n=0

is often referred to as the (vector) frequency response of S.
Since the Fourier basis vectors are orthogonal vectors, S is clearly orthogonally

diagonalizable. Since also the Fourier basis vectors are the columns in (FN)H ,
we have that

S = F H
N DFN (3.8)

whenever S is a digital filter, where D has the frequency response (i.e. the
eigenvalues) on the diagonal 1. We could also use DFTN to diagonalize filters,
but it is customary to use an orthogonal matrix (i.e. FN) when the matrix is
orthogonally diagonalizable. In particular, if S

1

and S
2

are digital filters, we can
write S

1

= F H
N D

1

FN and S
2

= F H
N D

2

FN , so that

S
1

S
2

= F H
N D

1

FN F H
N D

2

FN = F H
N D

1

D
2

FN .

Since D
1

D
2

= D
2

D
1

for any diagonal matrices, we get the following corollary:
Corollary 3.11. The product of two filters is a filter.

The product of two digital filters is again a digital filter. Moreover, all digital
filters commute, i.e. if S

1

and S
2

are digital filters, S
1

S
2

= S
2

S
1

.
1
Recall that the orthogonal diagonalization of S takes the form S = P DP T

, where P
contains as columns an orthonormal set of eigenvectors, and D is diagonal with the eigenvectors

listed on the diagonal (see Section 7.1 in [20]).

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS96

Clearly also S
1

+S
2

is a filter when S
1

and S
2

are. The set of all filters is thus
a vector space, which also is closed under multiplication. Such a space is called
an algebra. Since all filters commute, this algebra is also called a commutative
algebra.

The next result we will state gives three equivalent characterizations of
a digital filter. The first one is simply the definition in terms of having the
Fourier basis as eigenvectors. The second is that the matrix is circulant Toeplitz,
i.e. that the operations we started this chapter with actually are filters. The
third characterization is in terms of a new concept which we now define.
Definition 3.12. Time-invariance.

Assume that S is a linear transformation from RN to RN . Let x be input
to S, and y = Sx the corresponding output. Let also z, w be delays of x, y
with d elements (i.e. zn = xn≠d, wn = yn≠d). S is said to be time-invariant if,
for any d and x, Sz = w (i.e. S sends the delayed input vector to the delayed
output vector).

With this notation, it is clear that time-delay with d elements, i.e. the
operation x æ z, is a filter, since the time-delay of x = „n = 1Ô

N
e2fiikn/N is

1Ô
N

e2fii(k≠d)n/N = e≠2fiidn/N
x, and the Fourier basis are thus eigenvectors. If

we denote the time-delay filter with Ed,
the definition of time-invariance demands that SEdx = EdSx for any x and

d, i.e. SEd = EdS for any d. We can now prove the following.
Theorem 3.13. Characterizations of digital filters.

The following are equivalent characterizations of a digital filter:

• S = (FN)HDFN for a diagonal matrix D, i.e. the Fourier basis is a basis
of eigenvectors for S.

• S is a circulant Toeplitz matrix.

• S is linear and time-invariant.

Proof. If S is a filter, then SEd = EdS for all d since all filters commute, so that
S is time-invariant. This proves 1. æ 3..

Assume that S is time-invariant. Note that Ede0

= ed, and since SEde0

=
EdSe

0

we have that Sed = Eds, where s is the first column of S. This also says
that column d of S can be obtained by delaying the first column of S with d
elements. But then d is a circulant Toeplitz matrix. This proves 3. æ 2..

Finally, any circulant Toeplitz matrix can be written on the form
qN≠1

d=0

sdEd

(by splitting the matrix into a sum of its diagonals). Since all Ed are filters, it is
clear that any circulant Toeplitz matrix is a filter. This proves 2. æ 1..

Due to this result, filters are also called LTI filters , LTI standing for
Linear, Time-Invariant. Also, operations defined by (3.3) are digital filters, when
restricted to vectors with period N . The following results enables us to compute
the eigenvalues/frequency response easily, so that we do not need to form the
characteristic polynomial and find its roots:

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS97

Theorem 3.14. Connection between frequency response and the matrix.
Any digital filter is uniquely characterized by the values in the first column

of its matrix. Moreover, if s is the first column in S, the frequency response of
S is given by

�S = DFTNs. (3.9)

Conversely, if we know the frequency response �S , the first column s of S is
given by

s = IDFTN�S . (3.10)

Proof. If we replace S by (FN)HDFN we find that

DFTNs =
Ô

NFNs =
Ô

NFN S

Q

ccca

1
0
...
0

R

dddb
=

Ô
NFN F H

N DFN

Q

ccca

1
0
...
0

R

dddb

=
Ô

NDFN

Q

ccca

1
0
...
0

R

dddb
= D

Q

ca
1
...
1

R

db = �S ,

where we have used that the first column in FN has all entries equal to 1/
Ô

N ,
and that the diagonal matrix D has all the eigenvalues of S on its diagonal,
so that the last expression is the vector of eigenvalues �S . This proves (3.9).
Equation (3.10) follows directly by applying the inverse DFT to (3.9).

The first column s, which thus characterizes the filter, is also called the
impulse response . This name stems from the fact that we can write s = Se

0

,
i.e. the vector s is the output (often called response) to the vector e

0

(often
called an impulse). Equation (3.9) states that the frequency response can be
written as

⁄S,n =
N≠1ÿ

k=0

ske≠2fiink/N , for n = 0, 1, . . . , N ≠ 1, (3.11)

where sk are the components of s.

Example 3.15. The identity is a filter.
The identity matrix is a digital filter since I = (FN)HIFN . Since e

0

is the
first column, it has impulse response s = e

0

. Its frequency response has 1 in all
components and therefore preserves all frequencies, as expected.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS98

Example 3.16. Frequency response of a simple filter.
When only few of the coe�cients sk are nonzero, it is possible to obtain nice

expressions for the frequency response. To see this, let us compute the frequency
response of the filter defined from formula (3.1). We saw that the first column
of the corresponding Toeplitz matrix satisfied s

0

= 1/2, and sN≠1

= s
1

= 1/4.
The frequency response is thus

⁄S,n = 1
2e0 + 1

4e≠2fiin/N + 1
4e≠2fiin(N≠1)/N

= 1
2e0 + 1

4e≠2fiin/N + 1
4e2fiin/N = 1

2 + 1
2 cos(2fin/N).

Equations (3.8), (3.9), and (3.10) are important relations between the matrix-
and frequency representations of a filter. We see that the DFT is a crucial
ingredient in these relations. A consequence is that, once you recognize a
matrix as circulant Toeplitz, you do not need to make the tedious calculation of
eigenvectors and eigenvalues which you are used to. Let us illustrate this with
an example.

Example 3.17. Matrix form.
Let us compute the eigenvalues and eigenvectors of the simple matrix

S =
3

4 1
1 4

4
.

It is straightforward to compute the eigenvalues and eigenvectors of this matrix
the way you learnt in your first course in linear algebra. However, this matrix is
also a circulant Toeplitz matrix, so that we can use the results in this section
to compute the eigenvalues and eigenvectors. Since here N = 2, we have that
e2fiink/N = efiink = (≠1)nk. This means that the Fourier basis vectors are
(1, 1)/

Ô
2 and (1, ≠1)/

Ô
2, which also are the eigenvectors of S. The eigenvalues

are the frequency response of S, which can be obtained as

Ô
NFNs =

Ô
2 1Ô

2

3
1 1
1 ≠1

4 3
4
1

4
=

3
5
3

4

The eigenvalues are thus 3 and 5. You could have obtained the same result with
your computer. Note that the computer may not return the eigenvectors exactly
as the Fourier basis vectors, since the eigenvectors are not unique (the multiple of
an eigenvector is also an eigenvector). The computer may for instance switch the
signs of the eigenvectors. We have no control over what the computer actually
chooses to do, since it uses some underlying numerical algorithm for computing
eigenvectors which we can’t influence.

In signal processing, the frequency content of a vector (i.e., its DFT) is also
referred to as its spectrum. This may be somewhat confusing from a linear
algebra perspective, because in this context the term spectrum is used to denote
the eigenvalues of a matrix. But because of Theorem 3.14 this is not so confusing

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS99

after all if we interpret the spectrum of a vector (in signal processing terms) as
the spectrum of the corresponding digital filter (in linear algebra terms).

Certain vectors are easy to express in terms of the Fourier basis. This enables
us to compute the output of such vectors from a digital filter easily, as the
following example shows.

Example 3.18. Computing the output of a filter.
Let us consider the filter S defined by zn = 1

6

(xn+2

+ 4xn+1

+ 6xn + 4xn≠1

+
xn≠2

), and see how we can compute Sx when

x = (cos(2fi5 · 0/N), cos(2fi5 · 1/N), . . . , cos(2fi5 · (N ≠ 1)/N)) ,

where N is the length of the vector. We note first that

Ô
N„

5

=
1

e2fii5·0/N , e2fii5·1/N , . . . , e2fii5·(N≠1)/N
2

Ô
N„N≠5

=
1

e≠2fii5·0/N , e≠2fii5·1/N , . . . , e≠2fii5·(N≠1)/N
2

,

Since e2fii5k/N + e≠2fii5k/N = 2 cos(2fi5k/N), we get by adding the two vectors
that x = 1

2

Ô
N(„

5

+ „N≠5

). Since the „n are eigenvectors, we have expressed x

as a sum of eigenvectors. The corresponding eigenvalues are given by the vector
frequency response, so let us compute this. If N = 8, computing Sx means to
multiply with the 8 ◊ 8 circulant Toeplitz matrix

1
6

Q

cccccccccca

6 4 1 0 0 0 1 4
4 6 4 1 0 0 0 1
1 4 6 4 1 0 0 0
0 1 4 6 4 1 0 0
0 0 1 4 6 4 1 0
0 0 0 1 4 6 4 1
1 0 0 0 1 4 6 4
4 1 0 0 0 1 4 6

R

ddddddddddb

We now see that

⁄S,n = 1
6(6 + 4e≠2fiin/N + e≠2fii2n/N + e≠2fii(N≠2)n/N + 4e≠2fii(N≠1)n/N)

= 1
6(6 + 4e2fiin/N + 4e≠2fiin/N + e2fii2n/N + e≠2fii2n/N)

= 1 + 4
3 cos(2fin/N) + 1

3 cos(4fin/N).

The two values of this we need are

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS100

⁄S,5 = 1 + 4
3 cos(2fi5/N) + 1

3 cos(4fi5/N)

⁄S,N≠5

= 1 + 4
3 cos(2fi(N ≠ 5)/N) + 1

3 cos(4fi(N ≠ 5)/N)

= 1 + 4
3 cos(2fi5/N) + 1

3 cos(4fi5/N).

Since these are equal, x is a sum of eigenvectors with equal eigenvalues. This
means that x itself also is an eigenvector, with the same eigenvalue, so that

Sx =
3

1 + 4
3 cos(2fi5/N) + 1

3 cos(4fi5/N)
4
x.

3.2.1 Using digital filters to approximate analog filters
The formal definition of digital filters resembles that of analog filters, the
di�erence being that the Fourier basis is now discrete. From this one may
think that one can construct digital filters from analog filters. The following
result clarifies this:

Theorem 3.19. Connection with analog frequency response.
Let s be an analog filter with frequency response ⁄s(f), and assume that

f œ VM,T (so that also s(f) œ VM,T). Let

x = (f(0 · T/N), f(1 · T/N), . . . , f((N ≠ 1)T/N))
z = (s(f)(0 · T/N), s(f)(1 · T/N), . . . , s(f)((N ≠ 1)T/N))

be vectors of N = 2M + 1 uniform samples from f and s(f). Then the operation
S : x æ z (i.e. the operation which sends the samples of the input to the samples
of the output) is well-defined on RN , and is an N ◊N -digital filter with frequency
response ⁄S,n = ⁄s(n/T).

Proof. With N = 2M + 1 we know that f œ VM,T is uniquely determined from
x. This means that s(f) also is uniquely determined from x, so that z also is
uniquely determined from x. The operation S : x æ z is therefore well-defined
on RN .

Clearly also s(e2fiint/T) = ⁄s(n/T)e2fiint/T . Since the samples of e2fiint/T

is the vector e2fiikn/N , and the samples of ⁄s(n/T)e2fiint/T is ⁄s(n/T)e2fiikn/N ,
the vector e2fiikn/N is an eigenvector of S with eigenvalue ⁄s(n/T). Clearly then
S is a digital filter with frequency response ⁄S,n = ⁄s(n/T).

It is interesting that the digital frequency response above is obtained by
sampling the analog frequency response. In this way we also see that it is easy
to realize any digital filter as the restriction of an analog filter: any analog filter
s will do where the frequency response has the values ⁄S,n at the points n/T .

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS101

In the theorem it is essential that f œ VM,T . There are many functions with the
same samples, but where the samples of the output from the analog filter are
di�erent. When we restrict to VM,T , however, the output samples are always
determined from the input samples.

Theorem 3.19 explains how digital filters can occur in practice. In the real
world, a signal is modeled as a continuous function f(t), and an operation on
signals as an analog filter s. We can’t compute the entire output s(f) of the
analog filter, but it is possible to apply the digital filter from Theorem 3.19 to
the samples x of f . In general f(t) may not lie in VM,T , but we can denote by f̃
the unique function in VM,T with the same samples as f (as in Section 2.3). By
definition, Sx are the samples of s(f̃) œ VM,T . s(f̃) can finally be found from
these samples by using the procedure from Figure 2.4 for finding s(f̃). This
procedure for finding s(f̃) is illustrated in Figure 3.5.

f //

✏✏

s(f̃)

x

S //
z

FN //
y

OO

Figure 3.5: The connections between analog and digital filters, sampling and
interpolation, provided by Theorem 3.19. The left vertical arrow represents
sampling, the right vertical arrow represents interpolation.

Clearly, s(f̃) is an approximation to s(f), since f̃ is an approximation to f ,
and since s is continuous. Let us summarize this as follows:

Idea 3.20. Approximating an analog filter.
An analog filter s can be approximated through sampling, a digital filter, the

DFT, and interpolation, as illustrated in Figure 3.5. S is the digital filter with
frequency response ⁄S,n = ⁄s(n/T). When f œ VM,T , this approximation equals
s(f). When we increase the number of sample points/the size of the filter, the
approximation becomes better. If there is a bound on the highest frequency in f ,
there exists an N so that when sampling of that size, the approximation equals
s(f).

Let us comment on why the last statements here are true. That the approx-
imation equals s(f) when f œ VM,T is obvious, since both f and s(f) œ VM,T

are determined from their samples then. If there is a bound on the highest
frequency in f , then f lies in VM,T for large enough M , so that we recover s(f)
as our approximation using N = 2M + 1. Finally, what happens when there is
no bound on the highest frequency? We know that s(fN) = (s(f))N . Since fN

is a good approximation to f , the samples x of f are close to the samples of fN .
By continuity of the digital filter, z = Sx will also be close to the samples of
(s(f))N = s(fN), so that (also by continuity) interpolating with z gives a good
approximation to (s(f))N , which is again a good approximation to s(f)). From
this it follows that the digital filter is a better approximation when N is high.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS102

What you should have learned in this section.

• The formal definition of a digital filter in terms of having the Fourier
vectors as eigenvectors.

• The definition of the vector frequency response in terms of the correspond-
ing eigenvalues.

• The definition of time-invariance and the three equivalent characterizations
of a filter.

• For filters, eigenvalues can be computed by taking the DFT of the first
column s, and there is no need to compute eigenvectors explicitly.

• How to apply a digital filter to a sum of sines or cosines, by splitting these
into a sum of eigenvectors.

Exercise 3.7: Time reversal is not a filter
In Example 2.6 we looked at time reversal as an operation on digital sound.
In RN this can be defined as the linear mapping which sends the vector ek to
eN≠1≠k for all 0 Æ k Æ N ≠ 1.

a) Write down the matrix for the time reversal linear mapping, and explain
from this why time reversal is not a digital filter.

b) Prove directly that time reversal is not a time-invariant operation.

Exercise 3.8: When is a filter symmetric?
Let S be a digital filter. Show that S is symmetric if and only if the frequency
response satisfies sk = sN≠k for all k.

Exercise 3.9: Eigenvectors and eigenvalues
Consider the matrix

S =

Q

cca

4 1 3 1
1 4 1 3
3 1 4 1
1 3 1 4

R

ddb .

a) Compute the eigenvalues and eigenvectors of S using the results of this
section. You should only need to perform one DFT in order to achieve this.

b) Verify the result from a. by computing the eigenvectors and eigenvalues the
way you taught in your first course in linear algebra. This should be a much
more tedious task.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS103

c) Use a computer to compute the eigenvectors and eigenvalues of S also. For
some reason some of the eigenvectors seem to be di�erent from the Fourier basis
vectors, which you would expect from the theory in this section. Try to find an
explanation for this.

Exercise 3.10: Composing filters
Assume that S

1

and S
2

are two circulant Toeplitz matrices.

a) How can you express the eigenvalues of S
1

+ S
2

in terms of the eigenvalues
of S

1

and S
2

?

b) How can you express the eigenvalues of S
1

S
2

in terms of the eigenvalues of
S

1

and S
2

?

c) If A and B are general matrices, can you find a formula which expresses the
eigenvalues of A + B and AB in terms of those of A and B? If not, can you find
a counterexample to what you found in a. and b.?

Exercise 3.11: Keeping every second component
Consider the linear mapping S which keeps every second component in RN ,
i.e. S(e

2k) = e

2k, and S(e
2k≠1

) = 0. Is S a digital filter?

3.3 The continuous frequency response and prop-
erties

If we make the substitution Ê = 2fin/N in the formula for ⁄S,n, we may interpret
the frequency response as the values on a continuous function on [0, 2fi).

Theorem 3.21. Connection between vector- and continuous frequency response.
The function ⁄S(Ê) defined on [0, 2fi) by

⁄S(Ê) =
ÿ

k

tke≠ikÊ, (3.12)

where tk are the filter coe�cients of S, satisfies

⁄S,n = ⁄S(2fin/N) for n = 0, 1, . . . , N ≠ 1

for any N . In other words, regardless of N , the vector frequency response lies
on the curve ⁄S .

Proof. For any N we have that

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS104

⁄S,n =
N≠1ÿ

k=0

ske≠2fiink/N =
ÿ

0Æk<N/2

ske≠2fiink/N +
ÿ

N/2ÆkÆN≠1

ske≠2fiink/N

=
ÿ

0Æk<N/2

tke≠2fiink/N +
ÿ

N/2ÆkÆN≠1

tk≠N e≠2fiink/N

=
ÿ

0Æk<N/2

tke≠2fiink/N +
ÿ

≠N/2ÆkÆ≠1

tke≠2fiin(k+N)/N

=
ÿ

0Æk<N/2

tke≠2fiink/N +
ÿ

≠N/2ÆkÆ≠1

tke≠2fiink/N

=
ÿ

≠N/2Æk<N/2

tke≠2fiink/N = ⁄S(Ê).

where we have used Equation (3.4).

Both ⁄S(Ê) and ⁄S,n will be referred to as frequency responses in the following.
To distinguish the two, while ⁄S,n is called the vector frequency response of S,
⁄S(Ê)) is called the continuous frequency response of S.

Ê is called angular frequency.
The di�erence in the definition of the continuous- and the vector frequency

response lies in that one uses the filter coe�cients tk, while the other uses the
impulse response sk. While these contain the same values, they are ordered
di�erently. Had we used the impulse response to define the continuous frequency
response, we would have needed to compute

qN≠1

k=0

ske≠fiiÊ, which does not
converge when N æ Œ (although it gives the right values at all points Ê = 2fin/N
for all N)! The filter coe�cients avoid this convergence problem, however, since
we assume that only tk with |k| small are nonzero. In other words, filter
coe�cients are used in the definition of the continuous frequency response so
that we can find a continuous curve where we can find the vector frequency
response values for all N .

The frequency response contains the important characteristics of a filter,
since it says how it behaves for the di�erent frequencies. When analyzing a
filter, we therefore often plot the frequency response. Often we plot only the
absolute value (or the magnitude) of the frequency response, since this is what
explains how each frequency is amplified or attenuated. Since ⁄S is clearly
periodic with period 2fi, we may restrict angular frequency to the interval [0, 2fi).
The conclusion in Observation 2.22 was that the low frequencies in a vector
correspond to DFT indices close to 0 and N ≠1, and high frequencies correspond
to DFT indices close to N/2. This observation is easily translated to a statement
about angular frequencies:

Observation 3.22. Plotting the frequency response.
When plotting the frequency response on [0, 2fi), angular frequencies near 0

and 2fi correspond to low frequencies, angular frequencies near fi correspond to
high frequencies

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS105

⁄S may also be viewed as a function defined on the interval [≠fi, fi). Plotting
on [≠fi, fi] is often done in practice, since it makes clearer what corresponds to
lower frequencies, and what corresponds to higher frequencies:

Observation 3.23. Higher and lower frequencies.
When plotting the frequency response on [≠fi, fi), angular frequencies near 0

correspond to low frequencies, angular frequencies near ±fi correspond to high
frequencies.

The following holds:

Theorem 3.24. Connection between analog and digital filters.
Assume that s is an analog filter, and that we sample a periodic function at

rate fs over one period, and denote the corresponding digital filter by S. The
analog and digital frequency responses are related by ⁄s(f) = ⁄S(2fiffs).

To see this, note first that S has frequency response ⁄S,n = ⁄s(n/T) =
⁄s(f), where f = n/T . We then rewrite ⁄S,n = ⁄S(2fin/N) = ⁄S(2fifT/N) =
⁄S(2fiffs).

Example 3.25. Plotting a simple frequency response.
In Example 3.16 we computed the vector frequency response of the filter

defined in formula (3.1). The filter coe�cients are here t≠1

= 1/4, t
0

= 1/2, and
t
1

= 1/4. The continuous frequency response is thus

⁄S(Ê) = 1
4eiÊ + 1

2 + 1
4e≠iÊ = 1

2 + 1
2 cos Ê.

Clearly this matches the computation from Example 3.16. Figure 3.6 shows
plots of this frequency response, plotted on the intervals [0, 2fi) and [≠fi, fi).

Figure 3.6: The (absolute value of the) frequency response of the moving
average filter of Formula (3.1) from the beginning of this chapter, plotted over
[0, 2fi] and [≠fi, fi].

Both the continuous frequency response and the vector frequency response
for N = 51 are shown. Figure (b) shows clearly how the high frequencies are
softened by the filter.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS106

Since the frequency response is essentially a DFT, it inherits several properties
from Theorem 2.18. We will mostly use the continuous frequency response to
express these properties.

Theorem 3.26. Properties of the frequency response.
We have that

• The continuous frequency response satisfies ⁄S(≠Ê) = ⁄S(Ê).

• If S is a digital filter, ST is also a digital filter. Moreover, if the frequency
response of S is ⁄S(Ê), then the frequency response of ST is ⁄S(Ê).

• If S is symmetric, ⁄S is real. Also, if S is antisymmetric (the element on
the opposite side of the diagonal is the same, but with opposite sign), ⁄S

is purely imaginary.

• A digital filter S is an invertible if and only if ⁄S,n ”= 0 for all n. In that
case S≠1 is also a digital filter, and ⁄S≠1,n = 1/⁄S,n.

• If S
1

and S
2

are digital filters, then S
1

S
2

also is a digital filter, and
⁄S1S2(Ê) = ⁄S1(Ê)⁄S2(Ê).

Proof. Property 1. and 3. follow directly from Theorem 2.18. Transposing a
matrix corresponds to reversing the first column of the matrix and thus also the
filter coe�cients. Due to this Property 2. also follows from Theorem 2.18. If
S = (FN)HDFN , and all ⁄S,n ”= 0, we have that S≠1 = (FN)HD≠1FN , where
D≠1 is a diagonal matrix with the values 1/⁄S,n on the diagonal. Clearly then
S≠1 is also a digital filter, and its frequency response is ⁄S≠1,n = 1/⁄S,n, which
proves 4. The last property follows in the same was as we showed that filters
commute:

S
1

S
2

= (FN)HD
1

FN (FN)HD
2

FN = (FN)HD
1

D
2

FN .

The frequency response of S
1

S
2

is thus obtained by multiplying the frequency
responses of S

1

and S
2

.

In particular the frequency response may not be real, although this was the
case in the first example of this section. Theorem 3.26 applies also for the vector
frequency response. Since the vector frequency response are the eigenvalues of
the filter, the last property above says that, for filters, multiplication of matrices
corresponds to multiplication of eigenvalues. Clearly this is an important property
which is shared with all other matrices which have the same eigenvectors.

Example 3.27. Computing a composite filter.
Assume that the filters S

1

and S
2

have the frequency responses ⁄S1(Ê) =
cos(2Ê), ⁄S2(Ê) = 1 + 3 cos Ê. Let us see how we can use Theorem 3.26 to
compute the filter coe�cients and the matrix of the filter S = S

1

S
2

. We first

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS107

notice that, since both frequency responses are real, all S
1

, S
2

, and S = S
1

S
2

are symmetric. We rewrite the frequency responses as

⁄S1(Ê) = 1
2(e2iÊ + e≠2iÊ) = 1

2e2iÊ + 1
2e≠2iÊ

⁄S2(Ê) = 1 + 3
2(eiÊ + e≠iÊ) = 3

2eiÊ + 1 + 3
2e≠iÊ.

We now get that

⁄S1S2(Ê) = ⁄S1(Ê)⁄S2(Ê) =
3

1
2e2iÊ + 1

2e≠2iÊ

4 3
3
2eiÊ + 1 + 3

2e≠iÊ

4

= 3
4e3iÊ + 1

2e2iÊ + 3
4eiÊ + 3

4e≠iÊ + 1
2e≠2iÊ + 3

4e≠3iÊ

From this expression we see that the filter coe�cients of S are t±1

= 3/4,
t±2

= 1/2, t±3

= 3/4. All other filter coe�cients are 0. Using Theorem 3.2, we
get that s

1

= 3/4, s
2

= 1/2, and s
3

= 3/4, while sN≠1

= 3/4, sN≠2

= 1/2, and
sN≠3

= 3/4 (all other sk are 0). This gives us the matrix representation of S.

3.3.1 Windowing operations
In this section we will take a look at a very important, and perhaps surprising,
application of the continuous frequency response. Let us return to the computa-
tions from Example 2.27. There we saw that, when we restricted to a block of
the signal, this a�ected the frequency representation. If we substitute with the
angular frequencies Ê = 2fin/N and Ê

0

= 2fin
0

/M in Equation (2.12), we get

yn = 1
N

N≠1ÿ

k=0

eikÊ0e≠ikÊ = 1
N

N≠1ÿ

k=0

e≠ik(Ê≠Ê0)

(here yn were the DFT components of the sound after we had restricted to a
block). This expression states that, when we restrict to a block of length N in
the signal by discarding the other samples, a pure tone of angular frequency
Ê

0

suddenly gets a frequency contribution at angular frequency Ê also, and the
contribution is given by this formula. The expression is seen to be the same as
the frequency response of the filter 1

N {1, 1, . . . , 1} (where 1 is repeated N times),
evaluated at Ê ≠ Ê

0

. This filter is nothing but a (delayed) moving average filter.
The frequency response of a moving average filter thus governs how the di�erent
frequencies pollute when we limit ourselves to a block of the signal. Since this
frequency response has its peak at 0, angular frequencies Ê close to Ê

0

have
biggest values, so that the pollution is mostly from frequencies close to Ê

0

. But
unfortunately, other frequencies also pollute.

One can also ask the question if there are better ways to restrict to a block
of size N of the signal. We formulate the following idea.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS108

Idea 3.28. Windows.
Let (x

0

, . . . , xM) be a sound of length M . We would like to find values
w = {w

0

, . . . , wN≠1

} so that the new sound (w
0

x
0

, . . . , wN≠1

xN≠1

) of length N
(i.e. where the w is called a window of length N , and the new sound is called
the windowed signal.

Above we encountered the window w = {1, 1, . . . , 1}. This is called the
rectangular window . To see how we can find a good window, note first that the
DFT values in the windowed signal of length N is

yn = 1
N

N≠1ÿ

k=0

wkeikÊ0e≠ikÊ = 1
N

N≠1ÿ

k=0

wke≠ik(Ê≠Ê0).

This is the frequency response of 1

N w. In order to limit the pollution from
other frequencies, we thus need to construct a window with a frequency response
with smaller values than that of the rectangular window away from 0. Let us
summarize our findings as follows:

Observation 3.29. Constructing a window.
Assume that we would like to construct a window of length N . It is desirable

that the frequency response of the window has small values away from zero.

We will not go into techniques for how such frequency responses can be
constructed, but only consider one example di�erent from the rectangular window.
We define the Hamming window by

wn = 2(0.54 ≠ 0.46 cos(2fin/(N ≠ 1))). (3.13)

The frequency responses of the rectangular window and the Hamming window
are compared in Figure 3.7 for N = 32.

Figure 3.7: The frequency responses of the rectangular and Hamming windows,
which we considered for restricting to a block of the signal.

We see that the Hamming window has much smaller values away from 0,
so that it is better suited as a window. However, the width of the “main lobe”

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS109

(i.e. the main structure at the center), seems to be bigger. The window coe�cients
themselves are shown in Figure 3.8. It is seen that the frequency response of the
Hamming window attenuates more and more as we get close to the boundaries.

Figure 3.8: The coe�cients of the rectangular and Hamming windows, which
we considered for restricting to a block of the signal.

Many other windows are used in the literature. The concrete window from
Exercise 3.21 is for instance used in the MP3 standard . It is applied to the
sound, and after this an FFT is applied to the windowed sound in order to make
a frequency analysis of that part of the sound. The e�ect of the window is that
there is smaller loss in the frequency representation of the sound when we restrict
to a block of sound samples. This is a very important part of the psychoacoustic
model used in the MP3 encoder, since it has to make compression decisions
based on the frequency information in the sound.

What you should have learned in this section.

• The definition of the continuous frequency response in terms of the filter
coe�cients t.

• Connection with the vector frequency response.

• Properties of the continuous frequency response, in particular that the
product of two frequency responses equals the frequency response of the
product.

• How to compute the frequency response of the product of two filters,.

• How to find the filter coe�cients when the continuous frequency response
is known.

Exercise 3.12: Plotting a simple frequency response
Let again S be the filter defined by the equation

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS110

zn = 1
4xn+1

+ 1
4xn + 1

4xn≠1

+ 1
4xn≠2

,

as in Exercise 3.1 in Section 3.1. Compute and plot (the magnitude of) ⁄S(Ê).

Exercise 3.13: Low-pass and high-pass filters
A filter S is defined by the equation

zn = 1
3(xn + 3xn≠1

+ 3xn≠2

+ xn≠3

).

a) Compute and plot the (magnitude of the continuous) frequency response of
the filter, i.e. |⁄S(Ê)|. Is the filter a low-pass filter or a high-pass filter?

b) Find an expression for the vector frequency response ⁄S,2. What is Sx when
x is the vector of length N with components e2fii2k/N ?

Exercise 3.14: Circulant matrices
A filter S

1

is defined by the equation

zn = 1
16(xn+2

+ 4xn+1

+ 6xn + 4xn≠1

+ xn≠2

).

a) Write down an 8 ◊ 8 circulant Toeplitz matrix which corresponds to applying
S

1

on a periodic signal with period N = 8.

b) Compute and plot (the continuous) frequency response of the filter. Is the
filter a low-pass filter or a high-pass filter?

c) Another filter S
2

has (continuous) frequency response ⁄S2(Ê) = (eiÊ + 2 +
e≠iÊ)/4. Write down the filter coe�cients for the filter S

1

S
2

.

Exercise 3.15: Composite filters
Assume that the filters S

1

and S
2

have the frequency responses ⁄S1(Ê) =
2 + 4 cos(Ê), ⁄S2(Ê) = 3 sin(2Ê).

a) Compute and plot the frequency response of the filter S
1

S
2

.

b) Write down the filter coe�cients tk and the impulse response s for the filter
S

1

S
2

.

Exercise 3.16: Maximum and minimum
Compute and plot the continuous frequency response of the filter S = {1/4, 1/2, 1/4}.
Where does the frequency response achieve its maximum and minimum value,
and what are these values?

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS111

Exercise 3.17: Plotting a simple frequency response
Plot the continuous frequency response of the filter T = {1/4, ≠1/2, 1/4}. Where
does the frequency response achieve its maximum and minimum value, and what
are these values? Can you write down a connection between this frequency
response and that from Exercise 3.16?

Exercise 3.18: Continuous- and vector frequency responses
Define the filter S by S = {1, 2, 3, 4, 5, 6}. Write down the matrix for S when
N = 8. Plot (the magnitude of) ⁄S(Ê), and indicate the values ⁄S,n for N = 8
in this plot.

Exercise 3.19: Starting with circulant matrices
Given the circulant Toeplitz matrix

S = 1
5

Q

ccccccccccca

1 1 1 · · · 1
1 1 1 · · · 0
0 1 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
1 0 0 · · · 1
1 1 0 · · · 1
1 1 1 · · · 1

R

dddddddddddb

Write down the compact notation for this filter. Compute and plot (the magni-
tude) of ⁄S(Ê).

Exercise 3.20: When the filter coe�cients are powers
Assume that S = {1, c, c2, . . . , ck}. Compute and plot ⁄S(Ê) when k = 4 and
k = 8. How does the choice of k influence the frequency response? How does
the choice of c influence the frequency response?

Exercise 3.21: The Hanning window
The Hanning window is defined by wn = 1≠cos(2fin/(N ≠1)). Compute and plot
the window coe�cients and the continuous frequency response of this window for
N = 32, and compare with the window coe�cients and the frequency responses
for the rectangular- and the Hamming window.

3.4 Some examples of filters
We have now established the basic theory of filters, and it is time to study some
specific examples.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS112

Example 3.30. Time delay filters.
We have already encountered the time-delay filter S = Ed. With only one

nonzero diagonal, this is the simplest possible type of filters. Since s = Ede0

= ed,
we can write Ed = {0, . . . , 1}, where the 1 occurs at position d. Intuitively, we
would expect that time-delay does not change the frequencies in sounds we hear.
This is confirmed by the fact that the frequency response of the time delay filter
is ⁄S(Ê) = e≠idÊ, which has magnitude 1, so that the filter does not change the
magnitude of the di�erent frequencies.

Fact 3.31. Adding echo.
Let x be a digital sound. Then the sound z with samples given by

N, nchannels = shape(x)
z = zeros((N,nchannels))
z[0:d] = x[0:d]
z[d:N] = x[d:N] + c*x[0:(N-d)]

will include an echo of the original sound. d is the delay in samples, and is an
integer. c is a constant called the damping factor, and is usually smaller than 1.

Example 3.32. Adding echo.
An echo is a copy of the sound that is delayed and softer than the original

sound. The sample that comes t seconds before sample i has index i ≠ tfs where
fs is the sampling rate. This also makes sense even if t is not an integer so we can
use this to produce delays that are less than one second. The one complication
with this is that the number tfs may not be an integer. We can get round this
by rounding it to the nearest integer. This corresponds to adjusting the echo
slightly. The following holds:

This is an example of a filtering operation where each output element is
constructed from two input elements. As in the case of noise it is important to
dampen the part that is added to the original sound, otherwise the echo will be
too loud. Note also that the formula that creates the echo is not used at the
beginning of the signal, since it is not audible until after d samples. Also, the
echo is not audible if d is too small. You can listen to the sample file with echo
added with d = 10000 and c = 0.5 here.

Using our compact filter notation, the filter which adds echo can be written
as

S = {1, 0, . . . , 0, c},

where the damping factor c appears after the delay d. The frequency response
of this is ⁄S(Ê) = 1 + ce≠idÊ. This frequency response is not real, which means
that the filter is not symmetric. In Figure 3.9 we have plotted the magnitude of
this frequency response with c = 0.1 and d = 10.

We see that the response varies between 0.9 and 1.1, so that the deviation
from 1 is controlled by the damping factor c. Also, we see that the oscillation in
the frequency response, as visible in the plot, is controlled by the delay d.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS113

Figure 3.9: The frequency response of a filter which adds an echo with damping
factor c = 0.1 and delay d = 10.

Let us now take a look at some filters which adjust the bass and treble in
sound. The fact that the filters are useful for these purposes will be clear when
we plot the frequency response.

Example 3.33. Reducing the treble with moving average filters.
The treble in a sound is generated by the fast oscillations (high frequencies)

in the signal. If we want to reduce the treble we have to adjust the sample values
in a way that reduces those fast oscillations. A general way of reducing variations
in a sequence of numbers is to replace one number by the average of itself and
its neighbors, and this is easily done with a digital sound signal. If z = (zi)N≠1

i=0

is the sound signal produced by taking the average of three successive samples,
we have that

zn = 1
3(xn+1

+ xn + xn≠1

,

i.e. S = {1/3, 1/3, 1/3}. This filter is also called a moving average filter (with
three elements), and it can be written in compact form as. If we set N = 4, the
corresponding circulant Toeplitz matrix for the filter is

S = 1
3

Q

cca

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

R

ddb

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS114

The frequency response is

⁄S(Ê) = (eiÊ + 1 + e≠iÊ)/3 = (1 + 2 cos(Ê))/3.

More generally we can construct the moving average filter of 2L + 1 elements,
which is S = {1, · · · , 1, · · · , 1}/(2L + 1), where there is symmetry around 0.
Clearly then the first column of S is s = (1, . . . , 1¸ ˚˙ ˝

L+1 times

, 0, . . . , 0, 1, . . . , 1¸ ˚˙ ˝
L times

)/(2L+1). In

Example 2.15 we computed that the DFT of the vector x = (1, . . . , 1¸ ˚˙ ˝
L+1 times

, 0, . . . , 0, 1, . . . , 1¸ ˚˙ ˝
L times

)

had components

yn = sin(fin(2L + 1)/N)
sin(fin/N) .

Since s = x/(2L + 1) and ⁄S = DFTNs, the frequency response of S is

⁄S,n = 1
2L + 1

sin(fin(2L + 1)/N)
sin(fin/N) ,

so that
⁄S(Ê) = 1

2L + 1
sin((2L + 1)Ê/2)

sin(Ê/2) .

We clearly have
0 Æ 1

2L + 1
sin((2L + 1)Ê/2)

sin(Ê/2) Æ 1,

and this frequency response approaches 1 as Ê æ 0. The frequency response
thus peaks at 0, and this peak gets narrower and narrower as L increases, i.e. as
we use more and more samples in the averaging process. This filter thus “keeps”
only the lowest frequencies. When it comes to the highest frequencies it is seen
that the frequency response is small for Ê ¥ fi. In fact it is straightforward to
see that ⁄S(fi) = 0. In Figure 3.10 we have plotted the frequency response for
moving average filters with L = 1, L = 5, and L = 20.

Unfortunately, the frequency response is far from a filter which keeps some
frequencies unaltered, while annihilating others: Although the filter distinguishes
between high and low frequencies, it slightly changes the small frequencies.
Moreover, the higher frequencies are not annihilated, even when we increase L
to high values.

In the previous example we mentioned filters which favor certain frequencies
of interest, while annihilating the others. This is a desirable property for filters,
so let us give names to such filters:

Definition 3.34. Lowpass and highpass filters.
A filter S is called

• a lowpass filter if ⁄S(Ê) is large when Ê is close to 0, and ⁄S(Ê) ¥ 0 when Ê
is close to fi (i.e. S keeps low frequencies and annhilates high frequencies),

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS115

Figure 3.10: The frequency response of moving average filters with L = 1,
L = 5, and L = 20.

• a highpass filter if ⁄S(Ê) is large when Ê is close to fi, and ⁄S(Ê) ¥ 0 when
Ê is close to 0 (i.e. S keeps high frequencies and annhilates low frequencies),

• a bandpass filter if ⁄S(Ê) is large within some interval [a, b] µ [0, 2fi], and
⁄S(Ê) ¥ 0 outside this interval.

This definition should be considered rather vague when it comes to what we
mean by “Ê close to 0, fi”, and “⁄S(Ê) is large”: in practice, when we talk about
lowpass and highpass filters, it may be that the frequency responses are still
quite far from what is commonly refered to as ideal lowpass or highpass filters
, where the frequency response only assumes the values 0 and 1 near 0 and fi.
The next example considers an ideal lowpass filter.

Example 3.35. Ideal lowpass filters.
By definition, the ideal lowpass filter keeps frequencies near 0 unchanged, and

completely removes frequencies near fi. We now have the theory in place in order
to find the filter coe�cients for such a filter: In Example 2.27 we implemented
the ideal lowpass filter with the help of the DFT. Mathematically you can see
that this code is equivalent to computing (FN)HDFN where D is the diagonal
matrix with the entries 0, . . . , L and N ≠ L, . . . , N ≠ 1 being 1, the rest being
0. Clearly this is a digital filter, with frequency response as stated. If the filter
should keep the angular frequencies |Ê| Æ Êc only, where Êc describes the highest
frequency we should keep, we should choose L so that Êc = 2fiL/N . Again,

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS116

in Example 2.15 we computed the DFT of this vector, and it followed from
Theorem 2.18 that the IDFT of this vector equals its DFT. This means that we
can find the filter coe�cients by using Equation (3.10), i.e. we take an IDFT.
We then get the filter coe�cients

1
N

sin(fik(2L + 1)/N)
sin(fik/N) .

This means that the filter coe�cients lie as N points uniformly spaced on the
curve 1

N
sin(Ê(2L+1)/2)

sin(Ê/2)

between 0 and fi. This curve has been encountered many
other places in these notes. The filter which keeps only the frequency Êc = 0 has
all filter coe�cients being 1

N (set L = 1), and when we include all frequencies (set
L = N) we get the filter where x

0

= 1 and all other filter coe�cients are 0. When
we are between these two cases, we get a filter where s

0

is the biggest coe�cient,
while the others decrease towards 0 along the curve we have computed. The
bigger L and N are, the quicker they decrease to zero. All filter coe�cients are
usually nonzero for this filter, since this curve is zero only at certain points. This
is unfortunate, since it means that the filter is time-consuming to compute.

The two previous examples show an important duality between vectors which
are 1 on some elements and 0 on others (also called window vectors), and the
vector 1

N
sin(fik(2L+1)/N)

sin(fik/N)

(also called a sinc): filters of the one type correspond to
frequency responses of the other type, and vice versa. The examples also show
that, in some cases only the filter coe�cients are known, while in other cases
only the frequency response is known. In any case we can deduce the one from
the other, and both cases are important.

Filters are much more e�cient when there are few nonzero filter coe�cients.
In this respect the second example displays a problem: in order to create filters
with particularly nice properties (such as being an ideal lowpass filter), one may
need to sacrifice computational complexity by increasing the number of nonzero
filter coe�cients. The trade-o� between computational complexity and desirable
filter properties is a very important issue in filter design theory.

Example 3.36. Dropping filter coe�cients.
In order to decrease the computational complexity for the ideal lowpass filter

in Example 3.35, one can for instance include only the first filter coe�cients, i.e.
;

1
N

sin(fik(2L + 1)/N)
sin(fik/N)

<N0

k=≠N0

,

ignoring the last ones. Hopefully this gives us a filter where the frequency reponse
is not that di�erent from the ideal lowpass filter. In Figure 3.11 we show the
corresponding frequency responses. In the figure we have set N = 128, L = 32,
so that the filter removes all frequencies Ê > fi/2. N

0

has been chosen so that
the given percentage of all coe�cients are included.

Clearly the figure shows that we should be careful when we omit filter
coe�cients: if we drop too many, the frequency response is far away from that of

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS117

Figure 3.11: The frequency response which results by including the first 1/32,
the first 1/16, the first 1/4, and and all of the filter coe�cients for the ideal
lowpass filter.

an ideal bandpass filter. In particular, we see that the new frequency response
oscillates wildly near the discontinuity of the ideal lowpass filter. Such oscillations
are called Gibbs oscillations.

Example 3.37. Filters and the MP3 standard.
We mentioned previously that the MP3 standard splits the sound into

frequency bands. This splitting is actually performed by particular filters, which
we will consider now.

In the example above, we saw that when we dropped the last filter coe�cients
in the ideal lowpass filter, there were some undesired e�ects in the frequency
response of the resulting filter. Are there other and better approximations
to the ideal lowpass filter which uses the same number of filter coe�cients?
This question is important, since the ear is sensitive to certain frequencies, and
we would like to extract these frequencies for special processing, using as low
computational complexity as possible. In the MP3-standard, such filters have
been constructed. These filters are more advanced than the ones we have seen
upto now. They have as many as 512 filter coe�cients! We will not go into the
details on how these filters are constructed, but only show how their frequency
responses look. In the left plot in Figure 3.12, the “prototype filter” which is
used in the MP3 standard is shown. We see that this is very close to an ideal
lowpass filter. Moverover, many of the undesirable e�ect from the previous

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS118

example have been eliminated: The oscillations near the discontinuities are much
smaller, and the values are lower away from 0. Using Property 4 in theorem 2.18,
it is straightforward to construct filters with similar frequency responses, but
centered around di�erent frequencies: We simply need to multiply the filter
coe�cients with a complex exponential, in order to obtain a filter where the
frequency response has been shifted to the left or right. In the MP3 standard,
this observation is used to construct 32 filters, each having a frequency response
which is a shifted copy of that of the prototype filter, so that all filters together
cover the entire frequency range. 5 of these frequency responses are shown in
the right plot in Figure 3.12.

Figure 3.12: Frequency responses of some filters used in the MP3 standard.
The prototype filter is shown left. The other frequency responses at right are
simply shifted copies of this.

To understand the e�ects of the di�erent filters, let us apply them to our
sample sound. If you apply all filters in the MP3 standard in successive order
with the most lowpass filters first, the result will sound like this. You should
interpret the result as low frequencies first, followed by the high frequencies. fi
corresponds to the frequency 22.05KHz (i.e. the highest representable frequency
equals half the sampling rate on 44.1KHz. The di�erent filters are concentrated
on 1/32 of these frequencies each, so that the angular frequencies you here are
[fi/64, 3fi/64], [3fi/64, 5fi/64], [5fi/64, 7fi/64], and so on, in that order.

In Section 3.3.1 we mentioned that the psycoacoustic model of the MP3
standard applied a window the the sound data, followed by an FFT to that
data. This is actually performed in parallel on the same sound data. Applying
two di�erent operations in parallel to the sound data may seem strange. In the
MP3 standard [16] (p. 109) this is explained by “the lack of spectral selectivity
obtained at low frequencies“ by the filters above. In other words, the FFT can
give more precise frequency information than the filters can. This more precise
information is then used to compute psychoacoustic information such as masking
thresholds, and this information is applied to the output of the filters.

Example 3.38. Reducing the treble II.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS119

When reducing the treble it is reasonable to let the middle sample xi count
more than the neighbors in the average, so an alternative is to compute the
average by instead writing

zn = (xn≠1

+ 2xn + xn+1

)/4

The coe�cients 1, 2, 1 here have been taken from row 2 in Pascal’s triangle. It
turns out that this is a good choice of coe�cients. Also if we take averages of
more numbers it will turn out that higher rows of Pascals triangle are good
choices. Let us take a look at why this is the case. Let S be the moving average
filter of two elements, i.e.

(Sx)n = 1
2(xn≠1

+ xn).

In Example 3.33 we had an odd number of filter coe�cients. Here we have only
two. We see that the frequency response in this case is

⁄S(Ê) = 1
2(1 + e≠iÊ) = e≠iÊ/2 cos(Ê/2).

The frequency response is complex now, since the filter is not symmetric in this
case. Let us now apply this filter k times, and denote by Sk the resulting filter.
Theorem 3.26 gives us that the frequency response of Sk is

⁄Sk (Ê) = 1
2k

(1 + e≠iÊ)k = e≠ikÊ/2 cosk(Ê/2),

which is a polynomial in e≠iÊ with the coe�cients taken from Pascal’s triangle
(remember that the values in Pascals triangle are the coe�cients of x in the
expression (1 + x)k, i.e. the binomial coe�cients

!
k
r

"
for 0 Æ r Æ k). At least,

this partially explains how filters with coe�cients taken from Pascal’s triangle
appear. The reason why these are more desirable than moving average filters,
and are used much for smoothing abrupt changes in images and in sound, is the
following: Since (1+e≠iÊ)k is a factor in ⁄Sk (Ê), it has a zero of multiplicity of k
at Ê = fi. In other words, when k is large, ⁄Sk has a zero of high multiplicity at
Ê = fi, and this implies that the frequency response is very flat for Ê ¥ fi when
k increases, i.e. the filter is good at removing the highest frequencies. This can
be seen in Figure 3.13, where we have plotted the magnitude of the frequency
response when k = 5, and when k = 30. Clearly the latter frequency response is
much flatter for Ê ¥ fi. On the other side, it is easy to show that the moving
average filters of Example 3.33 had a zero of multiplicity one at Ê = fi, regardless
of L. Clearly, the corresponding frequency responses, shown in Figure 3.10, were
not as flat for Ê ¥ fi, when compared to the ones in Figure 3.13.

While using Sk gives a desirable behaviour for Ê ¥ fi, we see that the
behaviour is not so desirable for small frequencies Ê ¥ 0: Only frequencies very
close to 0 are kept unaltered. It should be possible to produce better lowpass
filters than this also, and the frequency responses we plotted for the filters used
in the MP3 standard gives an indication to this.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS120

Figure 3.13: The frequency response of filters corresponding to iterating the
moving average filter {1/2, 1/2} k = 5 and k = 30 times (i.e. using row k in
Pascal’s triangle).

Let us now see how to implement the filters Sk. Since convolution corresponds
to multiplication of polynomials, we can obtain their filter coe�cients with the
following code

t = [1.]
for kval in range(k):

t = convolve(t, [1/2., 1/2.])

Note that Sk has k + 1 filter coe�cients, and that Sk corresponds to the filter
coe�cients of a symmetric filter when k is even. Having computed t, we can
simply compute the convolution of the input x and t. In using conv we disregard
the circularity of S, and we introduce a time delay. These issues will, however,
not be audible when we listen to the output. An example of the result of
smoothing is shown in Figure 3.14.

Figure 3.14: Reducing the treble. The original sound signal is shown left, the
result after filtering using row 4 in Pascal’s triangle is shown right.

The left plot shows the samples of the pure sound with frequency 440Hz (with
sampling frequency fs = 4400Hz). The right plot shows the result of applying the
averaging process by using row 4 of Pascals triangle. We see that the oscillations
have been reduced. In Exercise 3.25 you will be asked to implement reducing

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS121

the treble in our sample audio file. If you do this you should hear that the
sound gets softer when you increase k: For k = 32 the sound will be like this,
for k = 256 it will be like this.

Picking coe�cients from a row in Pascals triangle works better the longer
the filter is:

Observation 3.39. Reducing the treble.
Let x be the samples of a digital sound, and let S be a filter with coe�cients

taken from row k of Pascals triangle. Then Sx has reduced treble when compared
to x.

Another common option in an audio system is reducing the bass. This
corresponds to reducing the low frequencies in the sound, or equivalently, the
slow variations in the sample values. It turns out that this can be accomplished
by simply changing the sign of the coe�cients used for reducing the treble. Let
us explain why this is the case. Let S

1

be a filter with filter coe�cients tk,
and let us consider the filter S

2

with filter coe�cient (≠1)ktk. The frequency
response of S

2

is

⁄S2(Ê) =
ÿ

k

(≠1)ktke≠iÊk =
ÿ

k

(e≠ifi)ktke≠iÊk

=
ÿ

k

e≠ifiktke≠iÊk =
ÿ

k

tke≠i(Ê+fi)k = ⁄S1(Ê + fi).

where we have set e≠ifi = ≠1 (note that this is nothing but Property 4. in
Theorem 2.18, with d = N/2). Now, for a lowpass filter S

1

, ⁄S1(Ê) has large
values when Ê is close to 0 (the low frequencies), and values near 0 when Ê is
close to fi (the high frequencies). For a highpass filter S

2

, ⁄S2(Ê) has values near
0 when Ê is close to 0 (the low frequencies), and large values when Ê is close to
fi (the high frequencies). When S

2

is obtained by adding an alternating sign to
the filter coe�cicents of S

1

, The relation ⁄S2(Ê) = ⁄S1(Ê + fi) thus says that S
2

is a highpass filter when S
1

is a lowpass filter, and vice versa:

Observation 3.40. Passing between lowpass- and highpass filters.
Assume that S

2

is obtained by adding an alternating sign to the filter
coe�cicents of S

1

. If S
1

is a lowpass filter, then S
2

is a highpass filter. If S
1

is a
highpass filter, then S

2

is a lowpass filter.

The following example elaborates further on this.

Example 3.41. Reducing the bass.
Consider the bass-reducing filter deduced from the fourth row in Pascals

triangle:

zn = 1
16(xn≠2

≠ 4xn≠1

+ 6xn ≠ 4xn+1

+ xn+2

)

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS122

Figure 3.15: The result of applying the bass-reducing filter deduced from row 4
in Pascals triangle to the pure sound in the left plot of figure 3.14.

The result of applying this filter to the sound in Figure 3.14 is shown in Fig-
ure 3.15.

We observe that the samples oscillate much more than the samples of the
original sound. In Exercise 3.25 you will be asked to implement reducing the
bass in our sample audio file. The new sound will be di�cult to hear for large k,
and we will explain why later. For k = 1 the sound will be like this, for k = 2 it
will be like this. Even if the sound is quite low, you can hear that more of the
bass has disappeared for k = 2.

The frequency response we obtain from using row 5 of Pascal’s triangle is
shown in Figure 3.16. It is just the frequency response of the corresponding
treble-reducing filter shifted with fi. The alternating sign can also be achieved if
we write the frequency response 1

2

k (1+e≠iÊ)k from Example 3.38 as 1

2

k (1≠e≠iÊ)k,
which corresponds to applying the filter S(x) = 1

2

(≠xn≠1

+ xn) k times.

If we play a sound after such a bass-reducing filter has been applied to it,
the bass will be reduced:

Observation 3.42. Pascals triangle and reducing the bass.
Let x be the samples of a digital sound, and let S be a filter with filter

coe�cients taken from row k of Pascal’s triangle, and add an alternating sign to
the filter coe�cients. Then Sx has reduced bass when compared to x.

What you should have learned in this section.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS123

Figure 3.16: The frequency response of the bass reducing filter, which corre-
sponds to row 5 of Pascal’s triangle.

• Simple examples of filters, such as time delay filters and filters which add
echo.

• Lowpass and highpass filters and their frequency responses, and their
interpretation as treble- and bass-reducing filters. Moving average filters,
and filters arising from rows in Pascal’s triangle, as examples of such filters.

• How to pass between lowpass and highpass filters by adding an alternating
sign to the filter co�cients.

Exercise 3.22: Composing time delay filters
Let Ed1 and Ed2 be two time delay filters. Show that Ed1Ed2 = Ed1+d2 (i.e. that
the composition of two time delays again is a time delay) in two di�erent ways:

a) Give a direct argument which uses no computations.

b) By using Property 3 in Theorem 2.18, i.e. by using a property for the Discrete
Fourier Transform.

Exercise 3.23: Adding echo
In this exercise, we will experiment with adding echo to a signal.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS124

a) Write a function play_with_echo which takes the sound samples, the sample
rate, a damping constant c, and a delay d as input, and plays the sound samples
with an echo added, as described in Example 3.32. Recall that you have to
ensure that the sound samples lie in [≠1, 1].

b) Generate the sound from Example 3.32, and verify that it is the same as the
one you heard there.

c) Listen to the sound samples for di�erent values of d and c. For which range
of d is the echo distinguisible from the sound itself? How low can you choose c
in order to still hear the echo?

Exercise 3.24: Adding echo filters
Consider the two filters S

1

= {1, 0, . . . , 0, c} and S
2

= {1, 0, . . . , 0, ≠c}. Both of
these can be interpreted as filters which add an echo. Show that 1

2

(S
1

+ S
2

) = I.
What is the interpretation of this relation in terms of echos?

Exercise 3.25: Reducing bass and treble
In this exercise, we will experiment with increasing and reducing the treble and
bass in a signal as in examples 3.38 and 3.41.

a) Write functions play_with_reduced_treble and play_with_reduced_bass
which take a data vector, sampling rate, and k as input, and which reduce bass
and treble, respectively, in the ways described above, and plays the result, when
row number 2k in Pascal’ triangle is used to construct the filters. Use the
function convolve to help you to find the values in Pascal’s triangle. You can
use the convolve function also to compute the output of the filter, but note that
this disregards the circularity of the filter. If you solved Exerciseex2dctimpl2
in 3.1, you can also use the function filter you implemented there, since row
2k in Pascal’s triangle has an odd number of values, and thus corresponds to a
symmetric filter.

b) Generate the sounds you heard in examples 3.38 and 3.41, and verify that
they are the same.

c) In your code, it will not be necessary to scale the values after reducing the
treble, i.e. the values are already between ≠1 and 1. Explain why this is the
case.

d) How high must k be in order for you to hear di�erence from the actual sound?
How high can you choose k and still recognize the sound at all?

Exercise 3.26: Constructing a highpass filter
Consider again Example 3.35. Find an expression for a filter so that only
frequencies so that |Ê ≠ fi| < Êc are kept, i.e. the filter should only keep angular
frequencies close to fi (i.e. here we construct a highpass filter).

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS125

Exercise 3.27: Combining lowpass and highpass filters
In this exercise we will investigate how we can combine lowpass and highpass
filters to produce other filters

a) Assume that S
1

and S2 are lowpass filters. What kind of filter is S
1

S
2

?
What if both S

1

and S
2

are highpass filters?

b) Assume that one of S
1

, S
2

is a highpass filter, and that the other is a lowpass
filter. What kind of filter S

1

S
2

in this case?

Exercise 3.28: Composing filters
A filter S

1

has the frequency response 1

2

(1 + cos Ê), and another filter has the
frequency response 1

2

(1 + cos(2Ê)).

a) Is S
1

S
2

a lowpass filter, or a highpass filter?

b) What does the filter S
1

S
2

do with angular frequencies close to Ê = fi/2.

c) Find the filter coe�cients of S
1

S
2

.

Hint. Use Theorem 3.26 to compute the frequency response of S
1

S
2

first.

d) Write down the matrix of the filter S
1

S
2

for N = 8.

Exercise 3.29: Composing filters
An operation describing some transfer of data in a system is defined as the
composition of the following three filters:

• First a time delay filter with delay d
1

= 2, due to internal transfer of data
in the system,

• then the treble-reducing filter T = {1/4, 1/2, 1/4},

• finally a time delay filter with delay d
2

= 4 due to internal transfer of the
filtered data.

We denote by T
2

= Ed2TEd1 = E
4

TE
2

the operation which applies these filters
in succession.

a) Explain why T
2

also is a digital filter. What is (the magnitude of) the
frequency response of Ed1? What is the connection between (the magnitude of)
the frequency response of T and T

2

?

b) Show that T
2

= {0, 0, 0, 0, 0, 1/4, 1/2, 1/4}.

Hint. Use the expressions (Ed1x)n = xn≠d1 , (Tx)n = 1

4

xn+1

+ 1

2

xn + 1

4

xn≠1

,
(Ed2x)n = xn≠d2 , and compute first (Ed1x)n, then (TEd1x)n, and finally
(T

2

x)n = (Ed2TEd1x)n. From the last expression you should be able to read
out the filter coe�cients.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS126

c) Assume that N = 8. Write down the 8 ◊ 8-circulant Toeplitz matrix for the
filter T

2

.

Exercise 3.30: Filters in the MP3 standard
In Example 3.37, we mentioned that the filters used in the MP3-standard were
constructed from a lowpass prototype filter by multiplying the filter coe�cients
with a complex exponential. Clearly this means that the new frequency response
is a shift of the old one. The disadvantage is, however, that the new filter
coe�cients are complex. It is possible to address this problem as follows. Assume
that tk are the filter coe�cients of a filter S

1

, and that S
2

is the filter with filter
coe�cients cos(2fikn/N)tk, where n œ N. Show that

⁄S2(Ê) = 1
2(⁄S1(Ê ≠ 2fin/N) + ⁄S1(Ê + 2fin/N)).

In other words, when we multiply (modulate) the filter coe�cients with a cosine,
the new frequency response can be obtained by shifting the old frequency response
with 2fin/N in both directions, and taking the average of the two.

Exercise 3.31: Explain code
a) Explain what the code below does, line by line.

x, fs = audioread(’sounds/castanets.wav’)
N, nchannels = shape(x)
z = zeros((N, nchannels))
for n in range(1,N-1):

z[n] = 2*x[n+1] + 4*x[n] + 2*x[n-1]
z[0] = 2*x[1] + 4*x[0] + 2*x[N-1]
z[N-1] = 2*x[0] + 4*x[N-1] + 2*x[N-2]
z = z/abs(z).max()
play(z, fs)

Comment in particular on what happens in the three lines directly after the
for-loop, and why we do this. What kind of changes in the sound do you expect
to hear?

b) Write down the compact filter notation for the filter which is used in the
code, and write down a 5 ◊ 5 circulant Toeplitz matrix which corresponds to
this filter. Plot the (continuous) frequency response. Is the filter a lowpass- or a
highpass filter?

c) Another filter is given by the circulant Toeplitz matrix
Q

cccca

4 ≠2 0 0 ≠2
≠2 4 ≠2 0 0

0 ≠2 4 ≠2 0
0 0 ≠2 4 ≠2

≠2 0 0 ≠2 4

R

ddddb
.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS127

Express a connection between the frequency responses of this filter and the filter
from b. Is the new filter a lowpass- or a highpass filter?

3.5 More general filters
The starting point for defining filters at the beginning of this chapter was
equations on the form

zn =
ÿ

k

tkxn≠k.

For most filters we have looked at, we had a limited number of nonzero tk, and this
enabled us to compute them on a computer using a finite number of additions and
multiplications. Filters which have a finite number of nonzero filter coe�cients
are also called FIR-filters (FIR is short for Finite Impulse Response. Recall
that the impulse response of a filter can be found from the filter coe�cients).
However, there exist many useful filters which are not FIR filters, i.e. where
the sum above is infinite. The ideal lowpass filter from Example 3.35 was one
example. It turns out that many such cases can be made computable if we
change our procedure slightly. The old procedure for computing a filter is to
compute z = Sx. Consider the following alternative:

Idea 3.43. More general filters (1).
Let x be the input to a filter, and let T be a filter. By solving the system

Tz = x for z we get another filter, which we denote by S.

Of course T must then be the inverse of S (which also is a filter), but the point
is that the inverse of a filter may have a finite number of filter coe�cicents, even
if the filter itself does not. In such cases this new procedure is more attractive
that the old one, since the equation system can be solved with few arithmetic
operations when T has few filter coe�cients.

It turns out that there also are highly computable filters where neither the
filter nor its inverse have a finite number of filter coe�cients. Consider the
following idea:

Idea 3.44. More general filters (2).
Let x be the input to a filter, and let U and V be filters. By solving the

system Uz = V x for z we get another filter, which we denote by S. The filter S
can be implemented in two steps: first we compute the right hand side y = V x,
and then we solve the equation Uz = y.

If both U and V are invertible we have that the filter is S = U≠1V , and this
is invertible with inverse S≠1 = V ≠1U . The point is that, when U and V have
a finite number of filter coe�cicents, both S and its inverse will typically have
an infinite number of filter coe�cients. The filters from this idea are thus more
general than the ones from the previous idea, and the new idea makes a wider
class of filters implementable using row reduction of sparse matrices. Computing

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS128

a filter by solving Uz = V x may also give meaning when the matrices U and
V are singular: The matrix system can have a solution even if U is singular.
Therefore we should be careful in using the form T = U≠1V .

We have the following result concerning the frequency responses:

Theorem 3.45. Frequency response of IIR filters.
Assume that S is the filter defined from the equation Uz = V x. Then we

have that ⁄S(Ê) = ⁄V (Ê)

⁄U (Ê)

whenever ⁄U (Ê) ”= 0.

Proof. Set x = „n. We have that Uz = ⁄U,n⁄S,n„n, and V x = ⁄V,n„n. If the
expressions are equal we must have that ⁄U,n⁄S,n = ⁄V,n, so that ⁄S,n = ⁄V,n

⁄U,n

for all n. By the definition of the continuous frequency response this means that
⁄S(Ê) = ⁄V (Ê)

⁄U (Ê)

whenever ⁄U (Ê) ”= 0.

The following example clarifies the points made above, and how one may
construct U and V from S. The example also shows that, in addition to making
some filters with infinitely many filter coe�cients computable, the procedure
Uz = V x for computing a filter can also reduce the complexity in some filters
where we already have a finite number of filter coe�cients.

Example 3.46. Moving average filter.
Consider again the moving average filter S from Example 3.33:

zn = 1
2L + 1(xn+L + · · · + xn + · · · + xn≠L).

If we implemented this directly, 2L additions would be needed for each n, so
that we would need a total of 2NL additions. However, we can also write

zn+1

= 1
2L + 1(xn+1+L + · · · + xn+1

+ · · · + xn+1≠L)

= 1
2L + 1(xn+L + · · · + xn + · · · + xn≠L) + 1

2L + 1(xn+1+L ≠ xn≠L)

= zn + 1
2L + 1(xn+1+L ≠ xn≠L).

This means that we can also compute the output from the formula

zn+1

≠ zn = 1
2L + 1(xn+1+L ≠ xn≠L),

which can be written on the form Uz = V x with U = {1, ≠1} and V =
1

2L+1

{1, 0, . . . , 0, ≠1} where the 1 is placed at index ≠L ≠ 1 and the ≠1 is placed
at index L . We now perform only 2N additions in computing the right hand
side, and solving the equation system requires only 2(N ≠ 1) additions. The
total number of additions is thus 2N + 2(N ≠ 1) = 4N ≠ 2, which is much less
than the previous 2LN when L is large.

A perhaps easier way to find U and V is to consider the frequency response
of the moving average filter, which is

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS129

1
2L + 1(e≠LiÊ + . . . + eLiÊ) = 1

2L + 1e≠LiÊ 1 ≠ e(2L+1)iÊ

1 ≠ eiÊ

=
1

2L+1

!≠e(L+1)iÊ + e≠LiÊ
"

1 ≠ eiÊ
,

where we have used the formula for the sum of a geometric series. From here
we easily see the frequency responses of U and V from the numerator and the
denominator.

Filters with an infinite number of filter coe�cients are also called IIR filters
(IIR stands for Infinite Impulse Response). Thus, we have seen that some IIR
filters may still have e�cient implementations.

Exercise 3.32: A concrete IIR filter
A filter is defined by demanding that zn+2

≠ zn+1

+ zn = xn+1

≠ xn.

a) Compute and plot the frequency response of the filter.

b) Use a computer to compute the output when the input vector is x =
(1, 2, . . . , 10). In order to do this you should write down two 10 ◊ 10-circulant
Toeplitz matrices.

3.6 Implementation of filters
As we saw in Example 3.46, a filter with many filter coe�cients could be
factored into the application of two simpler filters, and this could be used as
a basis for an e�cient implementation. There are also several other possible
e�cient implementations of filters. In this section we will consider two such
techniques. The first technique considers how we can use the DFT to speed up
the computation of filters. The second technique considers how we can factorize
a filter into a product of simpler filters.

3.6.1 Implementation of filters using the DFT
If there are k filter coe�cients, a direct implementation of a filter would require
kN multiplications. Since filters are diagonalized by the DFT, one can also
compute the filter as the product S = F H

N DFN . This would instead require
O (N log

2

N) complex multiplications when we use the FFT algorithm, which
may be a higher number of multiplications. We will however see that, by slightly
changing our algorithm, we may end up with a DFT-based implementation of
the filter which requires fewer multiplications.

The idea is to split the computation of the filter into smaller parts. Assume
that we compute M elements of the filter at a time. If the nonzero filter
coe�cients of S are t≠k0 ,. . . ,tk≠k0≠1

, we have that

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS130

(Sx)t =
ÿ

r

trxs≠r = t≠k0xt+k0 + .. + tk≠k0≠1

xt≠(k≠k0≠1)

.

From this it is clear that (Sx)t only depends on xt≠(k≠k0≠1)

, . . . , xt+k0 . This
means that, if we restrict the computation of S to xt≠(k≠k0≠1)

, . . . , xt+M≠1+k0 ,
the outputs xt, . . . , xt+M≠1

will be the same as without this restriction. This
means that we can compute the output M elements at a time, at each step
multiplying with a circulant Toeplitz matrix of size (M + k ≠ 1) ◊ (M + k ≠ 1). If
we choose M so that M + k ≠ 1 = 2r, we can use the FFT and IFFT algorithms
to compute S = F H

N DFN , and we require O(r2r) multiplications for every block
of length M . The total number of multiplications is Nr2

r

M = Nr2

r

2

r≠k+1

. If k = 128,
you can check on your calculator that the smallest value is for r = 10 with
value 11.4158 ◊ N . Since the direct implementation gives kN multiplications,
this clearly gives a benefit for the new approach, it gives a 90% decrease in the
number of multiplications.

3.6.2 Factoring a filter into several filters
In practice, filters are often applied in hardware, and applied in real-time scenarios
where performance is a major issue. The most CPU-intensive tasks in such
applications often have few memory locations available. These tasks are thus not
compatible with filters with many filter coe�cients, since for each output sample
we then need access to many input samples and filter coe�cients. A strategy
which addresses this is to factorize the filter into the product of several smaller
filters, and then applying each filter in turn. Since the frequency response of
the product of filters equals the product of the frequency responses, we get the
following idea:

Idea 3.47. Factorizing a filter.
Let S be a filter with real coe�cients. Assume that

⁄S(Ê) = KeikÊ(eiÊ ≠ a
1

) . . . (eiÊ ≠ am)(e2iÊ + b
1

eiÊ + c
1

) . . . (e2iÊ + bneiÊ + cn).
(3.14)

Then we can write S = KEkA
1

. . . AmB
1

. . . Bn, where Ai = {1, ≠ai} and
Bi = {1, bi, ci}.

Note that in Equation (3.14) ai correspond to the real roots of the frequency
response, while bi, ci are obtained by pairing the complex conjugate roots. Clearly
the frequency responses of Ai, Bi equal the factors in the frequency response of
S, which in any case can be factored into the product of filters with 2 and 3
filter coe�cients, followed by a time-delay.

Note that, even though this procedure factorizes a filter into smaller parts
(which is attractive for hardware implementations since smaller filters require
fewer locations in memory), the number of of arithmetic operations is usually
not reduced. However, consider Example 3.38, where we factorized the treble-
reducing filters into a product of moving average filters of length 2 (all roots in

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS131

the previous idea are real, and equal). Each application of a moving average
filter of length 2 does not really require any multiplications, since multiplication
with 1

2

corresponds to a bitshift. Therefore, the factorization of Example 3.38
removes the need for doing any multiplications at all, while keeping the number
of additions the same. There are computational savings in this case, due to the
special filter structure here.

Exercise 3.33: Implementing the factorization
Write a function filterdftimpl, which takes the filter coe�cients t and the
value k

0

from this section, computes the optimal M , and implements the filter
as here.

Exercise 3.34: Factoring concrete filter
Factor the filter S = {1, 5, 10, 6} into a product of two filters, one with two filter
coe�cients, and one with three filter coe�cients.

3.7 Summary
We defined digital filters, which do the same job for digital sound as analog filters
do for (continuous) sound. Digital filters turned out to be linear transformations
diagonalized by the DFT. We proved several other equivalent characterizations
of digital filters as well, such as being time-invariant, and having a matrix
which is circulant and Toeplitz. Just as for continuous sound, digital filters are
characterized by their frequency response, which explains how the filter treats
the di�erent frequencies. We also went through several important examples of
filters, some of which corresponded to meaningful operations on sound, such as
adjustmest of bass and treble, and adding echo. We also explained that there
exist filters with useful implementations which have an infinite number of filter
coe�cients, and we considered techniques for implementing filters e�ciently.
Most of the topics covered on that can also be found in [28]. We also took a look
at the role of filters in the MP3 standard for compression of sound.

In signal processing literature, the assumption that vectors are periodic is
often not present, and filters are thus not defined as finite-dimensional operations.
With matrix notation they would then be viewed as infinite matrices which
have the Toeplitz structure (i.e. constant values on the diagonals), but with no
circulation. The circulation in the matrices, as well as the restriction to finite
vectors, come from the assumption of a periodic vector. There are, however, also
some books which view filters as circulant Toeplits matrices as we have done,
such as [13].

Chapter 4

Symmetric filters and the
DCT

In Chapter 1 we approximated a signal of finite duration with trigonometric
functions. Since these are all periodic, there are some undesirable e�ects near
the boundaries of the signal (at least when the values at the boundaries are
di�erent), and this resulted in a slowly converging Fourier series. This was
addressed by instead considering the symmetric extension of the function, for
which we obtained a more precise Fourier representation, as fewer Fourier basis
vectors were needed in order to get a precise approximation.

This chapter is dedicated to addressing these thoughts for vectors. We will
start by defining symmetric extensions of vectors, similarly to how we defined
these for functions. Just as the Fourier series of a symmetric function was a
cosine series, we will see that the symmetric extension can be viewed as a cosine
vector. This gives rise to a di�erent change of coordinates than the DFT, which
we will call the DCT, which enables us to express a symmetric vector as a sum
of cosine-vectors (instead of the non-symmetric complex exponentials). Since
a cosine also can be associated with a given frequency, the DCT is otherwise
similar to the DFT, in that it extracts the frequency information in the vector.
The advantage is that the DCT can give more precise frequency information
than the DFT, since it avoids the discontinuity problem of the Fourier series.
This makes the DCT very practical for applications, and we will explain some
of these applications. We will also show that the DCT has a a very e�cient
implementation, comparable with the FFT.

In this chapter we will also see that the DCT has a very similar role as the
DFT when it comes to filters: just as the DFT diagonalized filters, we will see
that symmetric filters can be diagonalized by the DCT, when we apply the filter
to the symmetric extension of the input. We will actually show that the filters
which preserve our symmetric extensions are exactly the symmetric filters.

132

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 133

4.1 Symmetric vectors and the DCT
As in Chapter 1, vectors can also be extended in a symmetric manner, besides
the simple periodic extension procedure from Figure 2.1. In Figure 4.1 we have
shown such an extension of a vector x. It has x as its first half, and a copy of x
in reverse order as its second half.

Figure 4.1: A vector and its symmetric extension.

We will call this the symmetric extension of x:

Definition 4.1. Symmetric extension of a vector.
By the symmetric extension
of x œ RN , we mean the symmetric vector x̆ œ R2N defined by

x̆k =
;

xk 0 Æ k < N
x

2N≠1≠k N Æ k < 2N ≠ 1 (4.1)

Clearly, the symmetric extension is symmetric around N ≠ 1/2. This is not
the only way to construct a symmetric extension, as we will return to later. As
shown in Figure 4.1, but not included in Definition 4.1, we also repeat x̆ œ R2N

in order to obtain a periodic vector. Creating a symmetric extension is thus a
two-step process:

• First, “mirror” the vector to obtain a vector in R2N ,

• repeat this periodically to obtain a periodic vector.

The result from the first step lies in an N -dimensional subspace of all vectors in
R2N , which we will call the space of symmetric vectors . To account for the fact
that a periodic vector can have a di�erent symmetry point than N ≠ 1/2, let us
make the following general definition:

Definition 4.2. Symmetric vector.
We say that a periodic vector x is symmetric if there exists a number d so

that xd+k = xd≠k for all k so that d + k and d ≠ k are integers. d is called the
symmetry point of x

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 134

Due to the inherent periodicity of x, it is clear that N must be an even
number for symmetric vectors to exist at all. d can take any value, and it may
not be an integer: It can also be an odd multiple of 1/2, because then both d + k
and d ≠ k are integers when k also is an odd multiple of 1/2. The symmetry
point in symmetric extensions as defined in Definition 4.1 was d = N ≠ 1/2.
This is very common in the literature, and this is why we concentrate on this in
this chapter. Later we will also consider symmetry around N ≠ 1, as this also is
much used.

We would like to find a basis for the N -dimensional space of symmetric
vectors, and we would like this basis to be similar to the Fourier basis. Since the
Fourier basis corresponds to the standard basis in the frequency domain, we are
lead to studying the DFT of a symmetric vector. If the symmetry point is an
integer, it is straightforward to prove the following:

Theorem 4.3. Symmetric vectors with integer symmetry points.
Let d be an integer. The following are equivalent

• x is real and symmetric with d as symmetry point.

• (‚
x)n = zne≠2fiidn/N where zn are real numbers so that zn = zN≠n.

Proof. Assume first that d = 0. It follows in this case from property 2(a) of
Theorem 2.18 that (‚

x)n is a real vector. Combining this with property 1 of
Theorem 2.18 we see that ‚

x, just as x, also must be a real vector symmetric about
0. Since the DFT is one-to-one, it follows that x is real and symmetric about 0
if and only if ‚

x is. From property 3 of Theorem 2.18it follows that, when d is
an integer, x is real and symmetric about d if and only if (‚

x)n = zne≠2fiidn/N ,
where zn is real and symmetric about 0. This completes the proof.

Symmetric extensions were here defined by having the non-integer symmetry
point N ≠ 1/2, however. For these we prove the following, which is slightly more
di�cult.

Theorem 4.4. Symmetric vectors with non-integer symmetry points.
Let d be an odd multiple of 1/2. The following are equivalent

• x is real and symmetric with d as symmetry point.

• (‚
x)n = zne≠2fiidn/N where zn are real numbers so that zN≠n = ≠zn.

Proof. When x is as stated we can write

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 135

(‚
x)n = 1Ô

N

N≠1ÿ

k=0

xke≠2fiikn/N

= 1Ô
N

Q

a
ÿ

sØ0

xd+se≠2fii(d+s)n/N +
ÿ

sØ0

xd≠se≠2fii(d≠s)n/N

R

b

= 1Ô
N

ÿ

sØ0

xd+s

1
e≠2fii(d+s)n/N + e≠2fii(d≠s)n/N

2

= 1Ô
N

e≠2fiidn/N
ÿ

sØ0

xd+s

1
e≠2fiisn/N + e2fiisn/N

2

= 1Ô
N

e≠2fiidn/N
ÿ

sØ0

2xd+s cos(2fisn/N).

Here s runs through odd multiples of 1/2. Since zn = 1Ô
N

q
sØ0

2xd+s cos(2fisn/N)
is a real number, we can write the result as zne≠2fiidn/N . Substituting N ≠ n
for n, we get

(‚
x)N≠n = 1Ô

N
e≠2fiid(N≠n)/N

ÿ

sØ0

2xd+s cos(2fis(N ≠ n)/N)

= 1Ô
N

e≠2fiid(N≠n)/N
ÿ

sØ0

2xd+s cos(≠2fisn/N + 2fis)

= ≠ 1Ô
N

e≠2fiid(N≠n)/N
ÿ

sØ0

2xd+s cos(2fisn/N) = ≠zne≠2fiid(N≠n)/N .

This shows that zN≠n = ≠zn, and this completes one way of the proof. The
other way, we can write

xk = 1Ô
N

N≠1ÿ

n=0

(‚
x)n e2fiikn/N

if (‚
x)n = zne≠2fiidn/N and (‚

x)N≠n = ≠zne≠2fiid(N≠n)/N , the sum of the n’th
term and the N ≠ n’th term in the sum is

zne≠2fiidn/N e2fiikn/N ≠ zne2≠fiid(N≠n)/N e2fiik(N≠n)/N

= zn(e2fii(k≠d)n/N ≠ e≠2fiid+2fiidn/N≠2fiikn/N)
= zn(e2fii(k≠d)n/N + e2fii(d≠k)n/N) = 2zn cos(2fi(k ≠ d)n/N).

This is real, so that all xk are real. If we set k = d + s, k = d ≠ s here we get

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 136

2zn cos(2fi((d + s) ≠ d)n/N) = 2zn cos(2fisn/N)
2zn cos(2fi((d ≠ s) ≠ d)n/N) = 2zn cos(≠2fisn/N) = 2zn cos(2fisn/N).

By adding terms together and comparing we must have that xd+s = xd≠s, and
the proof is done.

Now, let us specialize to symmetric extensions as defined in Definition 4.1,
i.e. where d = N ≠ 1/2. The following result gives us an orthonormal basis for
the symmetric extensions, which are very simple in the frequency domain:

Theorem 4.5. Orthonormal basis for symmetric vectors.
The set of all x symmetric around N ≠ 1/2 is a vector space of dimension N ,

and we have that
I
e

0

,

;
1Ô
2

1
efiin/(2N)

en + e≠fiin/(2N)

e

2N≠n

2<N≠1

n=1

J

is an orthonormal basis for ‚
x where x is symmetric around N ≠ 1/2.

Proof. For a vector x symmetric about d = N ≠ 1/2 we know that

(‚
x)n = zne≠2fii(N≠1/2)n/(2N),

and the only requirement on the vector z is the antisymmetry condition z
2N≠n =

≠zn. The vectors zi = 1Ô
2

(ei ≠ e

2N≠i), 1 Æ i Æ N ≠ 1, together with the vector
z

0

= e

0

, are clearly orthonormal and satisifes the antisymmetry condition. From
these we obtain that

I
e

0

,

;
1Ô
2

1
e≠2fii(N≠1/2)n/(2N)

en ≠ e≠2fii(N≠1/2)(2N≠n)/(2N)

e

2N≠n

2<N≠1

n=1

J

is an orthonormal basis for the ‚
x with x symmetric. We can write

1Ô
2

1
e≠2fii(N≠1/2)n/(2N)

en ≠ e≠2fii(N≠1/2)(2N≠n)/(2N)

e

2N≠n

2

= 1Ô
2

1
e≠fiinefiin/(2N)

en + efiine≠fiin/(2N)

e

2N≠n

2

= 1Ô
2

efiin
1

efiin/(2N)

en + e≠fiin/(2N)

e

2N≠n

2
.

This also means that
I
e

0

,

;
1Ô
2

1
efiin/(2N)

en + e≠fiin/(2N)

e

2N≠n

2<N≠1

n=1

J

is an orthonormal basis.

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 137

We immediately get the following result:

Theorem 4.6. Orthonormal basis for symmetric vectors.
We have that

I
1Ô
2N

cos
3

2fi
0

2N

3
k + 1

2

44
,

;
1Ô
N

cos
3

2fi
n

2N

3
k + 1

2

44<N≠1

n=1

J
(4.2)

is an orthonormal basis for the set of vectors symmetric around N ≠ 1/2 in R2N .
Moreover, the n’th vector in this basis has frequency contribution only from the
indices n and 2N ≠ n.

Proof. Since the IDFT is unitary, the IDFT applied to the vectors above gives
an orthonormal basis for the set of symmetric extensions. We get that

(F
2N)H(e

0

) =
3

1Ô
2N

,
1Ô
2N

, . . . ,
1Ô
2N

4
= 1Ô

2N
cos

3
2fi

0
2N

3
k + 1

2

44
.

We also get that

(F
2N)H

3
1Ô
2

1
efiin/(2N)

en + e≠fiin/(2N)

e

2N≠n

24

= 1Ô
2

3
efiin/(2N)

1Ô
2N

e2fiink/(2N) + e≠fiin/(2N)

1Ô
2N

e2fii(2N≠n)k/(2N)

4

= 1Ô
2

3
efiin/(2N)

1Ô
2N

e2fiink/(2N) + e≠fiin/(2N)

1Ô
2N

e≠2fiink/(2N)

4

= 1
2
Ô

N

1
e2fii(n/(2N))(k+1/2) + e≠2fii(n/(2N))(k+1/2)

2
= 1Ô

N
cos

3
2fi

n

2N

3
k + 1

2

44
.

Since F
2N is unitary, and thus preserves the scalar product, the given vectors

are orthonormal.

We need to address one final thing before we can define the DCT: The vector
x we start with is in RN , but the vectors above are in R2N . We would like
to have orthonormal vectors in RN , so that we can use them to decompose
x. It is possible to show with a direct argument that, when we restrict the
vectors above to the first N elements, they are still orthogonal. We will, however,
apply a more instructive argument to show this, which gives us some intuition
into the connection with symmetric filters. We start with the following result,
which shows that a filter preserves symmetric vectors if and only if the filter is
symmetric.

Theorem 4.7. Criteria for preserving symmetric vectors.
Let S be a filter. The following are equivalent

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 138

• S preserves symmetric vectors (i.e. Sx is a symmetric vector whenever x

is).

• The set of filter coe�cients of S is a symmetric vector.

Also, when S preserves symmetric vectors, the following hold:

• The vector of filter coe�cients has an integer symmetry point if and only
if the input and output have the same type (integer or non-integer) of
symmetry point.

• The input and output have the same symmetry point if and only if the
filter is symmetric.

Proof. Assume that the filter S maps a symmetric vector with symmetry at d
1

to another symmetric vector. Let x be the symmetric vector so that (‚
x)n =

e≠2fiid1n/N for n < N/2. Since the output is a symmetric vector, we must have
that

⁄S,ne≠2fiid1n/N = zne≠2fiid2n/N

for some d
2

, zn and for n < N/2. But this means that ⁄S,n = yne≠2fii(d2≠d1)n/N .
Similar reasoning applies for n > N/2, so that ⁄S,n clearly equals ‚s for some
symmetric vector s from Theorems 4.3 and 4.4. This vector equals (up to
multiplication with

Ô
N) the filter coe�cients of S, which therefore is a symmetric.

Moreover, it is clear that the filter coe�cients have an integer symmetry point if
and only if the input and output vector either both have an integer symmetry
point, or both a non-integer symmetry point.

Since the filter coe�cients of a filter which preserves symmetric vectors
also is a symmetric vector, this means that its frequency response takes the
form ⁄S,n = zne≠2fiidn/N , where z is a real vector. This means that the phase
(argument) of the freqency response is ≠2fidn/N or fi ≠ 2fidn/N , depending on
the sign of zn. In other words, the phase is linear in n. Filters which preserve
symmetric vectors are therefore also called linear phase filters

.
Note also that the case d = 0 or d = N ≠ 1/2 corresponds to symmetric

filters. An example of linear phase filters which are not symmetric are smoothing
filters where the coe�cients are taken from odd rows in Pascal’s triangle.

When S is symmetric, it preserves symmetric extensions, so that it makes
sense to restrict S to symmetric vectors. We therefore make the following
definition.

Definition 4.8. Symmetric restriction.
Assume that S : R2N æ R2N is a symmetric filter. We define Sr : RN æ RN

as the mapping which sends x œ RN to the first N components of the vector
Sx̆. Sr is also called the symmetric restriction of S.

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 139

Sr is clearly linear, and the restriction of S to vectors symmetric about
N ≠ 1/2 is characterized by Sr. We continue with the following result:

Theorem 4.9. Expression for Sr.
Assume that S : R2N æ R2N is a symmetric filter, and that S =

3
S

1

&S
2

S
3

&S
4

4
.

Then Sr is symmetric, and Sr = S
1

+ (S
2

)f , where (S
2

)f

is the matrix S
2

with the columns reversed.

Proof. With S as in the text of the theorem, we compute

Srx =
!
S

1

S
2

"

Q

cccccccca

x
0

...
xN≠1

xN≠1

...
x

0

R

ddddddddb

= S
1

Q

ca
x

0

...
xN≠1

R

db + S
2

Q

ca
xN≠1

...
x

0

R

db

= S
1

Q

ca
x

0

...
xN≠1

R

db + (S
2

)f

Q

ca
x

0

...
xN≠1

R

db = (S
1

+ (S
2

)f)x,

so that Sr = S
1

+ (S
2

)f . Since S is symmetric, S
1

is also symmetric. (S
2

)f is
also symmetric, since it is constant on anti-diagonals. It follows then that S is
also symmetric. This completes the proof.

Note that Sr is not a digital filter, since its matrix is not circulant. In
particular, its eigenvectors are not pure tones. In the block matrix factorization
of S, S

2

contains the circulant part of the matrix, and forming (S
2

)f means that
the circulant parts switch corners. With the help of Theorem 4.9 we can finally
establish the orthogonality of the cosine-vectors in RN .

Corollary 4.10. Basis of eigenvectors for Sr.
Let S be a symmetric filter, and let Sr be the mapping defined in Theorem 4.9.

Define

dn,N =

Y
]

[

Ò
1

N , n = 0Ò
2

N , 1 Æ n < N

and dn = dn,N cos
!
2fi n

2N

!
k + 1

2

""
for 0 Æ n Æ N ≠ 1, then {d

0

,d
1

, . . . ,dN≠1

}
is an orthonormal basis of eigenvectors for Sr.

Proof. Let S be a symmetric filter of length 2N . We know then that ⁄S,n =
⁄S,2N≠n, so that

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 140

S

3
cos

3
2fi

n

2N

3
k + 1

2

444

= S

3
1
2

1
e2fii(n/(2N))(k+1/2) + e≠2fii(n/(2N))(k+1/2)

24

= 1
2

1
efiin/(2N)S

1
e2fiink/(2N)

2
+ e≠fiin/(2N)S

1
e≠2fiink/(2N)

22

= 1
2

1
efiin/(2N)⁄S,ne2fiink/(2N) + e≠fiin/(2N)⁄S,2N≠ne≠2fiink/(2N)

2

= 1
2

1
⁄S,ne2fii(n/(2N))(k+1/2) + ⁄S,2N≠ne≠2fii(n/(2N))(k+1/2)

2

= ⁄S,n
1
2

1
e2fii(n/(2N))(k+1/2) + e≠2fii(n/(2N))(k+1/2)

2

= ⁄S,n cos
3

2fi
n

2N

3
k + 1

2

44
,

where we have used that e2fiink/(2N) is an eigenvector of S with eigenvalue
⁄S,n, and e≠2fiink/(2N) = e2fii(2N≠n)k/(2N) is an eigenvector of S with eigenvalue
⁄S,2N≠n. This shows that the vectors are eigenvectors for symmetric filters of
length 2N . It is also clear that the first half of the vectors must be eigenvectors
for Sr with the same eigenvalue, since when y = Sx = ⁄S,nx, we also have that

(y
0

, y
1

, . . . , yN≠1

) = Sr(x
0

, x
1

, . . . , xN≠1

) = ⁄S,n(x
0

, x
1

, . . . , xN≠1

).

To see why these vectors are orthogonal, choose at the outset a symmetric filter
where {⁄S,n}N≠1

n=0

are distinct. Then the cosine-vectors of length N are also
eigenvectors with distinct eigenvalues, and they must be orthogonal since Sr is
symmetric. Moreover, since

2N≠1ÿ

k=0

cos2

3
2fi

n

2N

3
k + 1

2

44

=
N≠1ÿ

k=0

cos2

3
2fi

n

2N

3
k + 1

2

44
+

2N≠1ÿ

k=N

cos2

3
2fi

n

2N

3
k + 1

2

44

=
N≠1ÿ

k=0

cos2

3
2fi

n

2N

3
k + 1

2

44
+

N≠1ÿ

k=0

cos2

3
2fi

n

2N

3
k + N + 1

2

44

=
N≠1ÿ

k=0

cos2

3
2fi

n

2N

3
k + 1

2

44
+ (≠1)2n

N≠1ÿ

k=0

cos2

3
2fi

n

2N

3
k + 1

2

44

= 2
N≠1ÿ

k=0

cos2

3
2fi

n

2N

3
k + 1

2

44
,

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 141

where we used that cos(x + nfi) = (≠1)n cos x. This means that

.....

;
cos

3
2fi

n

2N

3
k + 1

2

44<
2N≠1

k=0

..... =
Ô

2
.....

;
cos

3
2fi

n

2N

3
k + 1

2

44<N≠1

k=0

..... .

Thus, in order to make the vectors orthonormal when we consider the first N
elements instead of all 2N elements, we need to multiply with

Ô
2. This gives

us the vectors dn as defined in the text of the theorem. This completes the
proof.

We now clearly see the analogy between symmetric functions and vectors:
while the first can be written as a sum of cosine-functions, the second can be
written as a sum of cosine-vectors. The orthogonal basis we have found is given
its own name:

Definition 4.11. DCT basis.
We denote by DN the orthogonal basis {d

0

,d
1

, . . . ,dN≠1

}. We also call DN

the N -point DCT basis.

Using the DCT basis instead of the Fourier basis we can make the following
definitions, which parallel those for the DFT:

Definition 4.12. Discrete Cosine Transform.
The change of coordinates from the standard basis of RN to the DCT basis

DN is called the discrete cosine transform (or DCT). The N ◊ N matrix DCTN

that represents this change of basis is called the (N -point) DCT matrix.
If x is a vector in RN , its coordinates y = (y

0

, y
1

, . . . , yN≠1

) relative to the
DCT basis are called the DCT coe�cients of x (in other words, y = DCTNx).

Note that we can also write

DCTN =
Ú

2
N

Q

ccca

1/
Ô

2 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1

R

dddb
!
cos

!
2fi n

2N (k + 1/2)
""

. (4.3)

Since this matrix is orthogonal, it is immediate that

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 142

!
cos

!
2fi n

2N (k + 1/2)
""≠1 = 2

N

1
cos

1
2fi n+1/2

2N k
22

Q

ccca

1/2 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1

R

dddb
(4.4)

1
cos

1
2fi n+1/2

2N k
22≠1

= 2
N

Q

ccca

1/2 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1

R

dddb
!
cos

!
2fi n

2N (k + 1/2)
""

.

(4.5)

In other words, not only can DCTN be directly expressed in terms of a cosine-
matrix, but our developments helped us to express the inverse of a cosine
matrix in terms of other cosine-matrices. In the literature di�erent types of
cosine-matrices have been useful:

I Cosine-matrices with entries cos(2fink/(2(N ≠ 1))).

II Cosine-matrices with entries cos(2fin(k + 1/2)/(2N)).

III Cosine-matrices with entries cos(2fi(n + 1/2)k/(2N)).

IV Cosine-matrices with entries cos(2fi(n + 1/2)(k + 1/2)/(2N)).

We will call these type-I, type-II, type-III, and type-IV cosine-matrices, respec-
tively. What we did above handles the case of type-II cosine-matrices. It will
turn out that not all of these cosine-matrices are orthogonal, but that we in all
cases, as we did above for type-II cosine matrices, can express the inverse of a
cosine-matrix of one type in terms of a cosine-matrix of another type, and that
any cosine-matrix is easily expressed in terms of an orthogonal matrix. These
orthogonal matrices will be called DCT(I)

N , DCT(II)

N , DCT(III)

N , and DCT(IV)

N ,
respectively, and they are all called DCT-matrices. The DCTN we constructed
abobe is thus DCT(II)

N . The type-II DCT matrix is the most commonly used,
and the type is therefore often dropped when refering to these. We will consider
the other cases of cosine-matrices at di�erent places in this book: In Section 5.6
we will run into type-I cosine matrices, in connection with a di�erent extension
strategy used for wavelets. Type-IV cosine-matrices will be encountered in
exercises 4.4 and 4.5 at the end of this section.

As with the Fourier basis vectors, the DCT basis vectors are called synthesis
vectors, since we can write

x = y
0

d

0

+ y
1

d

1

+ · · · + yN≠1

dN≠1

(4.6)

in the same way as for the DFT. Following the same reasoning as for the DFT,
DCT≠1

N is the matrix where the dn are columns. But since these vectors are real
and orthonormal, DCTN must be the matrix where the dn are rows. Moreover,

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 143

since Theorem 4.9 also states that the same vectors are eigenvectors for filters
which preserve symmetric extensions, we can state the following:

Theorem 4.13. The DCT is orthogonal.
DCTN is the orthogonal matrix where the rows are dn. Moreover, for any

digital filter S which preserves symmetric extensions, (DCTN)T diagonalizes Sr,
i.e. Sr = DCTT

N DDCTN where D is a diagonal matrix.

Let us also make the following definition:

Definition 4.14. IDCT.
We will call x = (DCTN)T

y the inverse DCT or (IDCT) of x.

Example 4.15. Computing lower order DCTs.
As with Example 2.16, exact expressions for the DCT can be written down

just for a few specific cases. It turns out that the case N = 4 as considered in
Example 2.16 does not give the same type of nice, exact values, so let us instead
consider the case N = 2. We have that

DCT
4

=
3

1Ô
2

cos(0) 1Ô
2

cos(0)
cos

!
fi
2

!
0 + 1

2

""
cos

!
fi
2

!
1 + 1

2

""
4

=
A

1Ô
2

1Ô
2

1Ô
2

≠ 1Ô
2

B

The DCT of the same vector as in Example 2.16 can now be computed as:

DCT
2

3
1
2

4
=

A
3Ô
2

≠ 1Ô
2

B
.

Matlab’s functions for computing the DCT and IDCT are called dct, and
idct, respectively. These are defined exactly as they are here, contrary to the
case for the FFT (where a di�erent normalizing factor was used).

With these functions we can repeat examples 2.27- 2.29, by simply replacing
the calls to DFTImpl with calls to the DCT counterparts. You may not here
much improvements in these simple experiments, but in theory the DCT should
be able to approximate sound better.

Similarly to the DFT, one can think of the DCT as a least squares approx-
imation and the unique representation of a function having the same sample
values, but this time in terms of sinusoids instead of complex exponentials:

Theorem 4.16. Interpolation with the DCT basis.
Let f be a function defined on the interval [0, T], and let x be the sampled

vector given by

xk = f((2k + 1)T/(2N)) for k = 0, 1, . . . , N ≠ 1.

There is exactly one linear combination g(t) on the form

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 144

N≠1ÿ

n=0

yndn,N cos(2fi(n/2)t/T)

which satisfies the conditions

g((2k + 1)T/(2N)) = f((2k + 1)T/(2N)), k = 0, 1, . . . , N ≠ 1,

and its coe�cients are determined by y = DCTNx.

Proof. This follows by inserting t = (2k + 1)T/(2N) in the equation

g(t) =
N≠1ÿ

n=0

yndn,N cos(2fi(n/2)t/T)

to arrive at the equations

f(kT/N) =
N≠1ÿ

n=0

yndn,N cos
3

2fi
n

2N

3
k + 1

2

44
0 Æ k Æ N ≠ 1.

This gives us an equation system for finding the yn with the invertible DCT
matrix as coe�cient matrix, and the result follows.

Due to this there is a slight di�erence to how we applied the DFT, due to the
subtle change in the sample points, from kT/N for the DFT, to (2k + 1)T/(2N)
for the DCT. The sample points for the DCT are thus the midpoints on the
intervals in a uniform partition of [0, T] into N intervals, while they for the DFT
are the start points on the intervals. Also, the frequencies are divided by 2. In
Figure 4.2 we have plotted the sinusoids of Theorem 4.16 for T = 1, as well as
the sample points used in that theorem.

The sample points in the upper left plot correspond to the first column in the
DCT matrix, the sample points in the upper right plot to the second column of
the DCT matrix, and so on (up to normalization with dn,N). As n increases, the
functions oscillate more and more. As an example, y

5

says how much content of
maximum oscillation there is. In other words, the DCT of an audio signal shows
the proportion of the di�erent frequencies in the signal, and the two formulas
y = DCTNx and x = (DCTN)T

y allow us to switch back and forth between
the time domain representation and the frequency domain representation of the
sound. In other words, once we have computed y = DCTNx, we can analyse
the frequency content of x. If we want to reduce the bass we can decrease the
y-values with small indices and if we want to increase the treble we can increase
the y-values with large indices.

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 145

Figure 4.2: The 6 di�erent sinusoids used in DCT for N = 6, i.e. cos(2fi(n/2)t),
0 Æ n < 6. The plots also show piecewise linear functions (in red) between the
sample points 2k+1

2N 0 Æ k < 6, since only the values at these points are used in
Theorem 4.16.

Exercise 4.1: Computing eigenvalues
Consider the matrix

S = 1
3

Q

cccccca

2 1 0 0 0 0
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 2

R

ddddddb

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 146

a) Compute the eigenvalues and eigenvectors of S using the results of this
section. You should only need to perform one DFT or one DCT in order to
achieve this.

b) Use a computer to compute the eigenvectors and eigenvalues of S also. What
are the di�erences from what you found in a.?

c) Find a filter T so that S = Tr. What kind of filter is T?

Exercise 4.2: Writing down lower order Sr

Consider the averaging filter S = { 1

4

, 1

2

, 1

4

}. Write down the matrix Sr for the
case when N = 4.

Exercise 4.3: Writing down lower order DCTs
As in Example 4.15, state the exact cartesian form of the DCT matrix for the
case N = 3.

Exercise 4.4: DCT-IV

Show that the vectors
Ó

cos
1

2fi
n+

1
2

2N

!
k + 1

2

"2ÔN≠1

n=0

in RN are orthogonal, with

lengths

N/2. This means that the matrix with entries
Ò

2

N cos
1

2fi
n+

1
2

2N

!
k + 1

2

"2

is orthogonal. Since this matrix also is symmetric, it is its own inverse. This is
the DCT-IV, which we denote by DCT(IV)

N . Although we will not consider this,
the DCT-IV also has an e�cient implementation.

Hint. Compare with the orthogonal vectors dn, used in the DCT.

Exercise 4.5: MDCT
The MDCT is defined as the N◊(2N)-matrix M with elements Mn,k = cos(2fi(n+
1/2)(k + 1/2 + N/2)/(2N)). This exercise will take you through the details of
the transformation which corresponds to multiplication with this matrix. The
MDCT is very useful, and is also used in the MP3 standard and in more recent
standards.

a) Show that

M =
Ú

N

2 DCT(IV)

N

3
0 A
B 0

4

where A and B are the (N/2) ◊ N -matrices

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 147

A =

Q

ccca

· · · · · · 0 ≠1 ≠1 0 · · · · · ·
...

...
...

...
...

...
...

...
0 ≠1 · · · · · · · · · · · · ≠1 0

≠1 0 · · · · · · · · · · · · 0 ≠1

R

dddb
=

1
≠If

N/2

≠IN/2

2

B =

Q

ccca

1 0 · · · · · · · · · · · · 0 ≠1
0 1 · · · · · · · · · · · · ≠1 0
...

...
...

...
...

...
...

...
· · · · · · 0 1 ≠1 0 · · · · · ·

R

dddb
=

1
IN/2

≠If
N/2

2
.

Due to this expression, any algorihtm for the DCT-IV can be used to compute
the MDCT.

b) The MDCT is not invertible, since it is not a square matrix. We will show
here that it still can be used in connection with invertible transformations. We
first define the IMDCT as the matrix MT /N . Transposing the matrix expression
we obtained in a. gives

1Ô
2N

3
0 BT

AT 0

4
DCT(IV)

N

for the IMDCT, which thus also has an e�cient implementation. Show that if

x

0

= (x
0

, . . . , xN≠1

) x

1

= (xN , . . . , x
2N≠1

) x

2

= (x
2N , . . . , x

3N≠1

)

and

y0,1 = M

3
x

0

x

1

4
y1,2 = M

3
x

1

x

2

4

(i.e. we compute two MDCT’s where half of the data overlap), then

x

1

= {IMDCT(y0,1)}2N≠1

k=N + {IMDCT(y1,2)}N≠1

k=0

.

Even though the MDCT itself is not invertible, the input can still be recovered
from overlapping MDCT’s.

4.2 Improvements from using the DCT to inter-
polate functions and approximate analog fil-
ters

Recall that, in Section 3.2.1, we explained how to approximate an analog filter
from the samples. It turns out that, when an analog filter is symmetric, we can
use symmetric extensions to create a better approximation from the samples.

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 148

Assume that s is an analog filter, and that we apply it to a general function
f . Denote as before the symmetric extension of f by f̆ . We start with the
following observation, which follows from the continuity of s.

Observation 4.17. Using symmetric extensions for approximations.
Since (f̆)N is a better approximation to f̆ , compared to what fN is to f ,

s((f̆)N) is a better approximation to s(f̆), compared to what s(fN) is to s(f).

Since s(f̆) agrees with s(f) except near the boundaries, we can thus conclude
that s((f̆)N) is a better approximation to s(f) than what s(fN) is.

We have seen that the restriction of s to VM,T is equivalent to an N ◊ N
digital filter S, where N = 2M + 1. Let x be the samples of f , x̆ the samples of
f̆ . Turning around the fact that (f̆)N is a better approximation to f̆ , compared
to what fN is to f , the following is clear.

Observation 4.18. Using symmetric extensions for approximations.
The samples x̆ are a better approximation to the samples of (f̆)N , than the

samples x are to the samples of fN .

Now, let z = Sx, and z̆ = Sx̆. The following is also clear from the preceding
observation, due to continuity of the digital filter S.

Observation 4.19. Using symmetric extensions for approximations.
z̆ is a better approximation to S(samples of (f̆)N) = samples of s((f̆)N),

than z is to S(samples of fN) = samples of s(fN).

Since by Observation 4.17 s((f̆)N) is a better approximation to the output
s(f), we conclude that z̆ is a better approximation than z to the samples of the
output of the filter.

Observation 4.20. Using symmetric extensions for approximations.
Sx̆ is a better approximation to the samples of s(f) than Sx is (x are the

samples of f).

Now, let us also bring in the assumption that s is symmetric. Then the
corresponding digital filter S is also symmetric, and we know then that we can
view its restriction to symmetric extensions in R2N in terms of the mapping
Sr : RN æ RN . We can thus specialize Figure 3.5 to symmetric filters by adding
the step of creating the symmetric extension, and replacing S with Sr. We have
summarized these remarks in Figure 4.3. The DCT here appears, since we have
used Theorem 4.16 to interpolate with the DCT basis, instead of the Fourier
basis. Note that this also requires that the sampling is performed as required
in that theorem, i.e. the samples are the midpoints on all intervals. This new
sampling procedure is not indicated in Figure 4.3.

Figure 4.3 can be further simplified to that shown in Figure 4.4.
Note that the assumption that s is symmetric only helped us to implement

the approximation s(˜̆f) in a nore e�cient way, since Sr has N points and S has
2N points. s(˜̆f) can in any way be used as an approximation, even if s is not

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 149

f //

✏✏

s(˜̆f)

f̆

✏✏
x̆

✏✏
(x̆0, x̆1, . . . , x̆N�1)

Sr // (z̆0, z̆1, . . . , z̆N�1)
DCTN //

y

OO

Figure 4.3: The connections between the new mapping Sr, sampling, and
interpolation. The right vertical arrow represents interpolation with the DCT,
i.e. that we compute

qN≠1

n=0

yndn,N cos(2fi(n/2)t/T) for values of t.

f //

✏✏

s(˜̆f)

x

Sr //
z

DCTN //
y

OO

Figure 4.4: Simplification of Figure 4.3. The left vertical arrow represents
sampling as dictated by the DCT.

symmetric. But this approximation is actually even better when s is symmetric:
Since s is symmetric, s(f̆) is a symmetric function (since f̆ is a symmetric
function). The N ’th order Fourier series of s(f̆) is s((f̆)N) = (s(f̆))N , and this
is a better approximation to s(f̆) since s(f̆) is a symmetric function. Since
the procedure above obtained an approximation to (the samples of) (s(f̆))N , it
follows that the approximations are better when s is symmetric.

As mentioned in Section 3.2, interpolation of a function from its samples can
be seen as a special case. This can thus be illustrated as in Figure 4.5.

Note that the approximation lies in V
2M,2T (i.e. it is in a higher order Fourier

space), but the point is that the same number of samples is used.

4.2.1 Implementations of symmetric filters
Symmetric filters are also important for applications since they can be imple-
mented e�ciently. To see this, we can write

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 150

f //

✏✏

s(˜̆f)

x

DCTN //
y

OO

Figure 4.5: How we can approximate a function from its samples with the DCT.

(Sx)n =
N≠1ÿ

k=0

skx
(n≠k) mod N

= s
0

xn +
(N≠1)/2ÿ

k=1

skx
(n≠k) mod N +

N≠1ÿ

k=(N+1)/2

skx
(n≠k) mod N

= s
0

xn +
(N≠1)/2ÿ

k=1

skx
(n≠k) mod N +

(N≠1)/2ÿ

k=1

skx
(n≠(N≠k)) mod N

= s
0

xn +
(N≠1)/2ÿ

k=1

sk(x
(n≠k) mod N + x

(n+k) mod N). (4.7)

If we compare the first and last expressions here, we need the same number of
summations, but the number of multiplications needed in the latter expression
has been halved.

Observation 4.21. Reducing arithmetic operations for symmetric filters.
Assume that a symmetric filter has 2s+1 filter coe�cients. The filter applied

to a vector of length N can then be implemented using (s + 1)N multiplications
and 2sN additions. This gives a reduced number of arithmetic operations when
compared to a filter with the same number of coe�cients which is not symmetric,
where a direct implementations requires (2s + 1)N multiplications and 2sN
additions.

Similarly to as in Section 3.6.2, a symmetric filter can be factored into a
product of symmetric filters. To see how, note first that a real polynomial is
symmetric if and only if 1/a is a root whenever a is. If we pair together the
factors for the roots a, 1/a when a is real we get a component in the frequency
response of degree 2. If we pair the factors for the roots a, 1/a, a, 1/a when a is
complex, we get a component in the frequency response of degree 4. We thus
get the following idea:

Idea 4.22. Factorizing symmetric filters.
Let S be a symmetric filter with real coe�cients. There exist constants K,

a
1

, . . . , am, b
1

, c
1

, . . . , bn, cn so that

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 151

⁄S(Ê) =K(a
1

eiÊ + 1 + a
1

e≠iÊ) . . . (ameiÊ + 1 + ame≠iÊ)
◊ (b

1

e2iÊ + c
1

eiÊ + 1 + c
1

e≠iÊ + b
1

e≠2iÊ) . . .

◊ (bne2iÊ + cneiÊ + 1 + cne≠iÊ + bne≠2iÊ).

We can write S = KA
1

. . . AmB
1

. . . Bn, where Ai = {ai, 1, ai} and Bi =
{bi, ci, 1, ci, bi}.

In any case we see that the component filters have 3 and 5 filter coe�cients.

Exercise 4.6: Component expressions for a symmetric filter
Assume that S = t≠L, . . . , t

0

, . . . , tL is a symmetric filter. Use Equation (4.7)in
the compendium to show that zn = (Sx)n in this case can be split into the
following di�erent formulas, depending on n:

a) 0 Æ n < L:

zn = t
0

xn +
nÿ

k=1

tk(xn+k + xn≠k) +
Lÿ

k=n+1

tk(xn+k + xn≠k+N). (4.8)

b) L Æ n < N ≠ L:

zn = t
0

xn +
Lÿ

k=1

tk(xn+k + xn≠k). (4.9)

c) N ≠ L Æ n < N :

zn = t
0

xn +
N≠1≠nÿ

k=1

tk(xn+k + xn≠k) +
Lÿ

k=N≠1≠n+1

tk(xn+k≠N + xn≠k). (4.10)

The convolve function may not pick up this reduction in the number of
multiplications, since it does not assume that the filter is symmetric. We will
still use the convolve function in implementations, however, due to its heavy
optimization.

4.3 E�cient implementations of the DCT
When we defined the DCT in the preceding section, we considered symmetric
vectors of twice the length, and viewed these in the frequency domain. In order to
have a fast algorithm for the DCT, which are comparable to the FFT algorithms
we developed in Section 2.4, we need to address the fact that vectors of twice
the length seem to be involved. The following theorem addresses this. This

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 152

result is much used in practical implementations of DCT, and can also be used
for practical implementation of the DFT as we will see in Exercise 4.8. Note
that the result, and the following results in this section, are stated in terms
of the cosine matrix CN (where the entries are (CN)n,k = cos

!
2fi n

2N

!
k + 1

2

""
,

rather than the DCTN matrix (which uses the additional scaling factor dn,N

for the rows). The reason is that CN appears to me most practical for stating
algorithms. When computing the DCT, we simply need to scale with the dn,N

at the end, after using the statements below.

Theorem 4.23. DCT algorithm.
Let y = CNx. Then we have that

yn =
1

cos
1

fi
n

2N

2
Ÿ((DFTNx

(1))n) + sin
1

fi
n

2N

2
⁄((DFTNx

(1))n)
2

, (4.11)

where x

(1) œ RN is defined by

(x(1))k = x
2k for 0 Æ k Æ N/2 ≠ 1

(x(1))N≠k≠1

= x
2k+1

for 0 Æ k Æ N/2 ≠ 1,

Proof. Using the definition of CN , ans splitting the computation of y = CNx

into two sums, corresponding to the even and odd indices as follows:

yn =
N≠1ÿ

k=0

xk cos
3

2fi
n

2N

3
k + 1

2

44

=
N/2≠1ÿ

k=0

x
2k cos

3
2fi

n

2N

3
2k + 1

2

44
+

N/2≠1ÿ

k=0

x
2k+1

cos
3

2fi
n

2N

3
2k + 1 + 1

2

44
.

If we reverse the indices in the second sum, this sum becomes

N/2≠1ÿ

k=0

xN≠2k≠1

cos
3

2fi
n

2N

3
N ≠ 2k ≠ 1 + 1

2

44
.

If we then also shift the indices with N/2 in this sum, we get

N≠1ÿ

k=N/2

x
2N≠2k≠1

cos
3

2fi
n

2N

3
2N ≠ 2k ≠ 1 + 1

2

44

=
N≠1ÿ

k=N/2

x
2N≠2k≠1

cos
3

2fi
n

2N

3
2k + 1

2

44
,

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 153

where we used that cos is symmetric and periodic with period 2fi. We see that
we now have the same cos-terms in the two sums. If we thus define the vector
x

(1) as in the text of the theorem, we see that we can write

yn =
N≠1ÿ

k=0

(x(1))k cos
3

2fi
n

2N

3
2k + 1

2

44

= Ÿ
A

N≠1ÿ

k=0

(x(1))ke≠2fiin(2k+

1
2)/(2N)

B

= Ÿ
A

e≠fiin/(2N)

N≠1ÿ

k=0

(x(1))ke≠2fiink/N

B

= Ÿ
1

e≠fiin/(2N)(DFTNx

(1))n

2

=
1

cos
1

fi
n

2N

2
Ÿ((DFTNx

(1))n) + sin
1

fi
n

2N

2
⁄((DFTNx

(1))n)
2

,

where we have recognized the N -point DFT. This completes the proof.

With the result above we have avoided computing a DFT of double size. If we
in the proof above define the N ◊ N -diagonal matrix QN by Qn,n = e≠fiin/(2N),
the result can also be written on the more compact form

y = CNx = Ÿ
1

QN DFTNx

(1)

2
.

We will, however, not use this form, since there is complex arithmetic involved,
contrary to Equation(4.11). Code which uses Equation (4.11) to compute the
DCT, using the function FFTImpl from Section 2.4, can look as follows:

def DCTImpl(x):
"""
Compute the DCT of the vector x

x: a vector
"""
N = len(x)
if N > 1:

x1 = concatenate([x[0::2], x[-1:0:-2]]).astype(complex)
FFTImpl(x1, FFTKernelStandard)
cosvec = cos(pi*arange(float(N))/(2*N))
sinvec = sin(pi*arange(float(N))/(2*N))
if ndim(x) == 1:

x[:] = cosvec*real(x1) + sinvec*imag(x1)
else:

for s2 in xrange(shape(x)[1]):
x[:, s2] = cosvec*real(x1[:, s2]) \
+ sinvec*imag(x1[:, s2])

x[0] *= sqrt(1/float(N))
x[1:] *= sqrt(2/float(N))

In the code, the vector x

(1) is created first by rearranging the components, and
it is sent as input to FFTImpl. After this we take real parts and imaginary parts,
and multiply with the cos- and sin-terms in Equation (4.11).

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 154

4.3.1 E�cient implementations of the IDCT
As with the FFT, it is straightforward to modify the DCT implementation so
that it returns the IDCT. To see how we can do this, write from Theorem 4.23,
for n Ø 1

yn =
1

cos
1

fi
n

2N

2
Ÿ((DFTNx

(1))n) + sin
1

fi
n

2N

2
⁄((DFTNx

(1))n)
2

yN≠n =
3

cos
3

fi
N ≠ n

2N

4
Ÿ((DFTNx

(1))N≠n) + sin
3

fi
N ≠ n

2N

4
⁄((DFTNx

(1))N≠n)
4

=
1

sin
1

fi
n

2N

2
Ÿ((DFTNx

(1))n) ≠ cos
1

fi
n

2N

2
⁄((DFTNx

(1))n)
2

,

(4.12)

where we have used the symmetry of DFTN for real signals. These two equations
enable us to determine Ÿ((DFTNx

(1))n) and ⁄((DFTNx

(1))n) from yn and
yN≠n. We get

cos
1

fi
n

2N

2
yn + sin

1
fi

n

2N

2
yN≠n = Ÿ((DFTNx

(1))n)

sin
1

fi
n

2N

2
yn ≠ cos

1
fi

n

2N

2
yN≠n = ⁄((DFTNx

(1))n).

Adding we get

(DFTNx

(1))n = cos
1

fi
n

2N

2
yn + sin

1
fi

n

2N

2
yN≠n + i(sin

1
fi

n

2N

2
yn ≠ cos

1
fi

n

2N

2
yN≠n)

=(cos
1

fi
n

2N

2
+ i sin

1
fi

n

2N

2
)(yn ≠ iyN≠n) = efiin/(2N)(yn ≠ iyN≠n).

This means that (DFTNx

(1))n = efiin/(2N)(yn + iyN≠n) = (yn + iyN≠n)/Qn,n

for n Ø 1. Since ⁄((DFTNx

(1))
0

) = 0 we have that (DFTNx

(1))
0

= 1

d0,N
y

0

=
y

0

/Q
0,0. This means that x

(1) can be recovered by taking the IDFT of the
vector with component 0 being y

0

/Q
0,0, and the remaining components being

(yn ≠ iyN≠n)/Qn,n:

Theorem 4.24. IDCT algorithm.
Let x = (CN)≠1

y. and let z be the vector with component 0 being y
0

/Q
0,0,

and the remaining components being (yn ≠ iyN≠n)/Qn,n. Then we have that

x

(1) = IDFTNz,

where x

(1) is defined as in Theorem 4.23.

The implementation of IDCT can thus go as follows:

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 155

def IDCTImpl(y):
"""
Compute the IDCT of the vector y

y: a vector
"""
N = len(y)
if N > 1:

y[0] /= sqrt(1/float(N))
y[1:] /= sqrt(2/float(N))
Q = exp(-pi*1j*arange(float(N))/(2*N))
y1 = zeros_like(y).astype(complex)
y1[0] = y[0]/Q[0]
if ndim(y) == 1:

y1[1:] = (y[1:] - 1j*y[-1:0:-1])/Q[1:]
else:

for s2 in xrange(shape(y)[1]):
y1[1:, s2] = (y[1:, s2] - 1j*y[-1:0:-1, s2])/Q[1:]

FFTImpl(y1, FFTKernelStandard, 0)
y[0::2] = real(y1[0:(N/2)])
y[1::2] = real(y1[-1:(N/2-1):-1])

4.3.2 Reduction in the number of multiplications with the
DCT

Let us also state a result which confirms that the DCT and IDCT implementations
we have described give the same type of reductions in the number multiplications
as the FFT and IFFT:

Theorem 4.25. Number of multiplications required by the DCT and IDCT
algorithms.

The DCT and the IDCT can be implemented so that they use any FFT and
IFFT algorithms. Their operation counts then have the same order as these. In
particular, when the standard FFT algorithms of section 2.4 are used, i.e. their
operation counts are O(5N log

2

/2). In comparison, the operation count for a
direct implementation of the N -point DCT/IDCT is 2N2.

Note that we divide the previous operation counts by 2 since the DCT applies
an FFT to real input only, and the operation count for the FFT can be halved
when we adapt to real data, see exercise 2.27 in 2.4.

Proof. By Theorem 2.36, the number of multiplications required by the standard
FFT algorithm from Section 2.4 adapted to real data is O(N log

2

N), while
the number of additions is O(3N log

2

N/2). By Theorem 4.23, two additional
multiplications and one addition are required for each index (so that we have
2N extra real multiplications and N extra real additions in total), but this does
not a�ect the operation count, since O(N log

2

N + 2N) = O(N log
2

N). Since
the operation counts for the IFFT is the same as for the FFT, we only need
to count the additional multiplications needed in forming the vector z = (yn ≠
iyN≠n)/Qn,n. Clearly, this also does not a�ect the order of the algorithm.

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 156

Since the DCT and IDCT can be implemented using the FFT and IFFT,
it has the same advantages as the FFT when it comes to parallel computing.
Much literature is devoted to reducing the number of multiplications in the
DFT and the DCT even further than what we have done (see [18] for one of the
most recent developments). Another note on computational complexity is in
order: we have not counted the operations sin and cos in the DCT. The reason
is that these values can be precomputed, since we take the sine and cosine of
a specific set of values for each DCT or DFT of a given size. This is contrary
to to multiplication and addition, since these include the input values, which
are only known at runtime. We have, however, not written down that we use
precomputed arrays for sine and cosine in our algorithms: This is an issue to
include in more optimized algorithms.

Exercise 4.7: Trick for reducing the number of multiplica-
tions with the DCT
In this exercise we will take a look at a small trick which reduces the number of
additional multiplications we need for DCT algorithm from Theorem 4.23. This
exercise does not reduce the order of the DCT algorithms, but we will see in
Exercise 4.8 how the result can be used to achieve this.

a) Assume that x is a real signal. Equation (4.12)in the compendium, which
said that

yn = cos
1

fi
n

2N

2
Ÿ((DFTNx

(1))n) + sin
1

fi
n

2N

2
⁄((DFTNx

(1))n)

yN≠n = sin
1

fi
n

2N

2
Ÿ((DFTNx

(1))n) ≠ cos
1

fi
n

2N

2
⁄((DFTNx

(1))n)

for the n’th and N ≠ n’th coe�cient of the DCT. This can also be rewritten as

yn =
1

Ÿ((DFTNx

(1))n) + ⁄((DFTNx

(1))n)
2

cos
1

fi
n

2N

2

≠ ⁄((DFTNx

(1))n)(cos
1

fi
n

2N

2
≠ sin

1
fi

n

2N

2
)

yN≠n = ≠
1

Ÿ((DFTNx

(1))n) + ⁄((DFTNx

(1))n)
2

cos
1

fi
n

2N

2

+ Ÿ((DFTNx

(1))n)(sin
1

fi
n

2N

2
+ cos

1
fi

n

2N

2
).

Explain that the first two equations require 4 multiplications to compute yn and
yN≠n, and that the last two equations require 3 multiplications to compute yn

and yN≠n.

b) Explain why the trick in a. reduces the number of additional multiplications
in a DCT, from 2N to 3N/2.

c) Explain why the trick in a. can be used to reduce the number of additional
multiplications in an IDCT with the same number.

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 157

Hint. match the expression efiin/(2N)(yn ≠ iyN≠n) you encountered in the
IDCT with the rewriting you did in b.

d) Show that the penalty of the trick we here have used to reduce the number
of multiplications, is an increase in the number of additional additions from N
to 3N/2. Why can this trick still be useful?

Exercise 4.8: An e�cient joint implementation of the DCT
and the FFT
In this exercise we will explain another joint implementation of the DFT and
the DCT, which has the benefit of a low multiplication count, at the expense
of a higher addition count. It also has the benefit that it is specialized to real
vectors, with a very structured implementation (this is not always the case for
the quickest FFT implementations. Not surprisingly, one often sacrifices clarity
of code when one pursues higher computational speed). a. of this exercise can be
skipped, as it is di�cult and quite technical. For further details of the algorithm
the reader is refered to [38].

a) Let y = DFTNx be the N -point DFT of the real vector x. Show that

Ÿ(yn) =

Y
]

[

Ÿ((DFTN/2

x

(e))n) + (CN/4

z)n 0 Æ n Æ N/4 ≠ 1
Ÿ((DFTN/2

x

(e))n) n = N/4
Ÿ((DFTN/2

x

(e))n) ≠ (CN/4

z)N/2≠n N/4 + 1 Æ n Æ N/2 ≠ 1
(4.13)

⁄(yn) =

Y
]

[

⁄((DFTN/2

x

(e))n) n = 0
⁄((DFTN/2

x

(e))n) + (CN/4

w)N/4≠n 1 Æ n Æ N/4 ≠ 1
⁄((DFTN/2

x

(e))n) + (CN/4

w)n≠N/4

N/4 Æ n Æ N/2 ≠ 1
(4.14)

where x

(e) is as defined in Theorem 2.31, where z,w œ RN/4 defined by

zk = x
2k+1

+ xN≠2k≠1

0 Æ k Æ N/4 ≠ 1,

wk = (≠1)k(xN≠2k≠1

≠ x
2k+1

) 0 Æ k Æ N/4 ≠ 1,

Explain from this how you can make an algorithm which reduces an FFT of
length N to an FFT of length N/2 (on x

(e)), and two DCT’s of length N/4 (on
z and w). We will call this algorithm the revised FFT algorithm.

a. says nothing about the coe�cients yn for n > N
2

. These are obtained in
the same way as before through symmetry. a. also says nothing about yN/2

.
This can be obtained with the same formula as in Theorem 2.31.

Let us now compute the number of arithmetic operations our revised algorithm
needs. Denote by the number of real multiplications needed by the revised N -
point FFT algorithm

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 158

b) Explain from the algorithm in a. that

MN = 2(MN/4

+ 3N/8) + MN/2

AN = 2(AN/4

+ 3N/8) + AN/2

+ 3N/2
(4.15)

Hint. 3N/8 should come from the extra additions/multiplications (see Exer-
cise 4.7) you need to compute when you run the algorithm from Theorem 4.23
for CN/4

. Note also that the equations in a. require no extra multiplications,
but that there are xix equations involved, each needing N/4 additions, so that
we need 6N/4 = 3N/2 extra additions.

c) Explain why xr = M
2

r is the solution to the di�erence equation

xr+2

≠ xr+1

≠ 2xr = 3 ◊ 2r,

and that xr = A
2

r is the solution to

xr+2

≠ xr+1

≠ 2xr = 9 ◊ 2r.

and show that the general solution to these are xr = 1

2

r2r + C2r + D(≠1)r for
multiplications, and xr = 3

2

r2r + C2r + D(≠1)r for additions.

d) Explain why, regardless of initial conditions to the di�erence equations,
MN = O

!
1

2

N log
2

N
"

and AN = O
!

3

2

N log
2

N
"

both for the revised FFT and
the revised DCT. The total number of operations is thus O(2N log

2

N), i.e. half
the operation count of the split-radix algorithm. The orders of these algorithms
are thus the same, since we here have adapted to read data.

e) Explain that, if you had not employed the trick from Exercise 4.7, we would
instead have obtained MN = O

!
2

3

log
2

N
"
, and AN = O

!
4

3

log
2

N
"
, which

equal the orders for the number of multiplications/additions for the split-radix
algorithm. In particular, the order of the operation count remains the same,
but the trick from Exercise 4.7 turned a bigger percentage of the arithmetic
operations into additions.

The algorithm we here have developed thus is constructed from the beginning
to apply for real data only. Another advantage of the new algorithm is that it
can be used to compute both the DCT and the DFT.

Exercise 4.9: Implementation of the IFFT/IDCT
We did not write down corresponding algorithms for the revised IFFT and IDCT
algorithms. We will consider this in this exercise.

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 159

a) Using equations (4.14)in the compendium-(4.14)in the compendium, show
that

Ÿ(yn) ≠ Ÿ(yN/2≠n) = 2(CN/4

z)n

⁄(yn) + ⁄(yN/2≠n) = 2(CN/4

w)N/4≠n

for 1 Æ n Æ N/4 ≠ 1. Explain how one can compute z and w from this using
two IDCT’s of length N/4.

b) Using equations (4.14)in the compendium-(4.14)in the compendium, show
that

Ÿ(yn) + Ÿ(yN/2≠n) = Ÿ((DFTN/2

x

(e))n)
⁄(yn) ≠ ⁄(yN/2≠n) = ⁄((DFTN/2

x

(e))n),

and explain how one can compute x

(e) from this using an IFFT of length N/2.

4.4 Summary
We started this chapter by extending a previous result which had to do with that
the Fourier series of a symmetric function converged quicker. To build on this
we first needed to define symmetric extensions of vectors and symmetric vectors,
before we classified symmetric extensions in the frequency domain. From this
we could find a nice, orthonormal basis for the symmetric extensions, which
lead us to the definition of the DCT. We also saw a connection with symmetric
filters: These are exactly the filters which preserve symmetric extensions, and
we could characterize symmetric filters restricted to symmetric extension as an
N -dimensional mapping. We also showed that it is smart to replace the DFT
with the DCT when we work with filters which are known to be symmetric.
Among other things, this lead to a better way of approximating analog filters,
and better interpolation of functions.

We also showed how to obtain an e�cient implementation of the DCT, which
could reuse the FFT implementation. The DCT has an important role in the
MP3 standard . As we have explained, the MP3 standard applies several filters
to the sound, in order to split it into bands concentrating on di�erent frequency
ranges. In Section 8.3 we will look closer at how these filters can be implemented
and constructed. The implementation can use transforms similar to the MDCT,
as explained in Exercise 4.5. The MDCT is also used in the more advanced
version of the MP3 standard (layer III). Here it is applied to the filtered data to
obtain a higher spectral resolution of the sound. The MDCT is applied to groups
of 576 (in special circumstances 192) samples. The MP3 standard document [16]
does not dig into the theory for this, only representing what is needed in order to
make an implementation. It is somewhat di�cult to read this document, since it

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 160

is written in quite a di�erent language, familiar mainly to those working with
international standards.

The di�erent type of cosine-matrices can all be associated with some extension
strategy for the signal. [25] contains a review of these.

The DCT is particularly popular for processing sound data before they are
compressed with lossless techniques such as Hu�man coding or arithmetic coding.
The reason is, as mentioned, that the DCT provides a better approximation
from a low-dimensional space than the DFT does, and that it has a very e�cient
implementation. Libraries exist which goes into lengths to provide e�cient
implementation of the FFT and the DCT. FFTW, short for Fastest Fourier
Transform in the West [14], is perhaps the best known of these.

Signal processing literature often does not motivate digital filters in explaining
where they come from, and where the input to the filters come from. Using
analog filters to motivate this, and to argue for improvements in using the DCT
and symmeric extensions, is not that common. Much literature simply says that
the property of linear phase is good, without elaborating on this further.

