
Chapter 5

Motivation for wavelets and
some simple examples

In the first part of the book our focus was to approximate functions or vectors
with trigonometric functions. We saw that the Discrete Fourier transform could
be used to obtain a representation of a vector in terms of such functions, and
that computations could be done e�ciently with the FFT algorithm. This was
useful for analyzing, filtering, and compressing sound and other discrete data.
The approach with trigonometric functions has some limitations, however. One
of these is that, in a representation with trigonometric functions, the frequency
content is fixed over time. This is in contrast with most sound data, where
the characteristics are completely di�erent in di�erent parts. We have also
seen that, even if a sound has a simple representation in terms of trigonometric
functions on two di�erent parts, the representation of the entire sound may not
be simple. In particular, if the function is nonzero only on a very small interval,
a representation of it in terms of trigonometric functions is not so simple.

In this chapter we are going to introduce the basic properties of an alternative
to Fourier analysis for representing functions. This alternative is called wavelets.
Similar to Fourier analysis, wavelets are also based on the idea of expressing a
function in some basis. But in contrast to Fourier analysis, where the basis is
fixed, wavelets provide a general framework with many di�erent types of bases.
In this chapter we first give a motivation for wavelets, before we continue by
introducing some very simple wavelets. The first wavelet we look at can be
interpreted as an approximation scheme based on piecewise constant functions.
The next wavelet we look at is similar, but with piecewise linear functions used
instead. Following these examples we will establish a more general framework,
based on experiences from the simple wavelets. In the following chapters we will
interpret this framework in terms of filters, and use this connection to construct
even more interesting wavelets.

The examples in this and the next chapters can be run from the notebook
applinalgnbchap5.ipynb. Core functions are collected in a module called dwt.

161

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES162

5.1 Why wavelets?
The left image in Figure 5.1 shows a view of the entire Earth.

Figure 5.1: A view of Earth from space, together with versions of the image
where we have zoomed in.

The startup image in Google EarthTM, a program for viewing satellite images,
maps and other geographic information, is very similar to this. In the middle
image we have zoomed in on the Mexican Gul�, as marked with a rectangle in
the left image. Similarly, in the right image we have further zoomed in on Cuba
and a small portion of Florida, as marked with a rectangle in the middle image.
There is clearly an amazing amount of information available behind a program
like Google EarthTM, since we there can zoom further in, and obtain enough
detail to di�erentiate between buildings and even trees or cars all over the Earth.
So, when the Earth is spinning in the opening screen of Google EarthTM, all
the Earth’s buildings appear to be spinning with it! If this was the case the
Earth would not be spinning on the screen, since there would just be so much
information to process that a laptop would not be able to display a rotating
Earth.

There is a simple reason that the globe can be shown spinning in spite of
the huge amounts of information that need to be handled. We are going to see
later that a digital image is just a rectangular array of numbers that represent
the color at a dense set of points. As an example, the images in Figure 5.1 are
made up of a grid of 1064 ◊ 1064 points, which gives a total of 1 132 096 points.
The color at a point is represented by three eight-bit integers, which means that
the image files contain a total of 3 396 288 bytes each. So regardless of how
close to the surface of the Earth our viewpoint is, the resulting image always
contains the same number of points. This means that when we are far away
from the Earth we can use a very coarse model of the geographic information
that is being displayed, but as we zoom in, we need to display more details and
therefore need a more accurate model.

Observation 5.1. Images models.
When discrete information is displayed in an image, there is no need to use a

mathematical model that contains more detail than what is visible in the image.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES163

A consequence of Observation 5.1 is that for applications like Google EarthTM

we should use a mathematical model that makes it easy to switch between di�erent
levels of detail, or di�erent resolutions. Such models are called multiresolution
models, and wavelets are prominent examples of this kind of models. We will
see that multiresolution models also provide us with means of approximating
functions, just as Taylor series and Fourier series. Our new approximation scheme
di�ers from these in one important respect, however: When we approximate
with Taylor series and Fourier series, the error must be computed at the same
data points as well, so that the error contains just as much information as the
approximating function, and the function to be approximated. Multiresolution
models on the other hand will be defined in such a way that the error and the
“approximating function” each contain half of the information from the function
we approximate, i.e. their amount of data is reduced. This property makes
multiresolution models attractive for the problems at hand, when compared to
approaches such as Taylor series and Fourier series.

When we zoom in with Google EarthTM, it seems that this is done contin-
uously. The truth is probably that the program only has representations at
some given resolutions (since each representation requires memory), and that
one interpolates between these to give the impression of a continuous zoom. In
the coming chapters we will first look at how we can represent the information
at di�erent resolutions, so that only new information at each level is included.

We will now turn to how wavelets are defined more formally, and construct
the simplest wavelet we have. Its construction goes in the following steps: First
we introduce what we call resolution spaces, and the corresponding scaling
function. Then we introduce the detail spaces, and the corresponding mother
wavelet. These two functions will give rise to certain bases for these spaces,
and we will define the Discrete Wavelet Transform as a change of coordinates
between these bases.

5.2 A wavelet based on piecewise constant func-
tions

Our starting point will be the space of piecewise constant functions on an interval
[0, N). This will be called a resolution space.

Definition 5.2. The resolution space V
0

.
Let N be a natural number. The resolution space V

0

is defined as the space
of functions defined on the interval [0, N) that are constant on each subinterval
[n, n + 1) for n = 0, . . . , N ≠ 1.

Note that this also corresponds to piecewise constant functions which are
periodic with period N . We will, just as we did in Fourier analysis, identify a
function defined on [0, N) with its (period N) periodic extension. An example
of a function in V

0

for N = 10 is shown in Figure 5.2. It is easy to check that V
0

is a linear space, and for computations it is useful to know the dimension of the
space and have a basis.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES164

Figure 5.2: A piecewise constant function.

Lemma 5.3. The function „.
Define the function „(t) by

„(t) =
I

1, if 0 Æ t < 1;
0, otherwise;

(5.1)

and set „n(t) = „(t ≠ n) for any integer n. The space V
0

has dimension N , and
the N functions {„n}N≠1

n=0

form an orthonormal basis for V
0

with respect to the
standard inner product

Èf, gÍ =
⁄ N

0

f(t)g(t) dt. (5.2)

In particular, any f œ V
0

can be represented as

f(t) =
N≠1ÿ

n=0

cn„n(t) (5.3)

for suitable coe�cients (cn)N≠1

n=0

. The function „n is referred to as the character-
istic function of the interval [n, n + 1)

Note the small di�erence between the inner product we define here from the
inner product we used for functions previously: Here there is no scaling 1/T
involved. Also, for wavelets we will only consider real functions, and the inner
product will therefore not be defined for complex functions. Two examples of
the basis functions defined in Lemma 5.5 are shown in Figure 5.3.

Proof. Two functions „n1 and „n2 with n
1

”= n
2

clearly satisfy
s

„n1(t)„n2(t)dt =
0 since „n1(t)„n2(t) = 0 for all values of x. It is also easy to check that Î„nÎ = 1
for all n. Finally, any function in V

0

can be written as a linear combination the
functions „

0

, „
1

, . . . , „N≠1

, so the conclusion of the lemma follows.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES165

Figure 5.3: The basis functions „
2

and „
7

from �

0

.

Figure 5.4: Examples of functions from V
0

. The square wave in V
0

(left), and
an approximation to cos t from V

0

(right).

In our discussion of Fourier analysis, the starting point was the function
sin(2fit) that has frequency 1. We can think of the space V

0

as being analogous
to this function: The function

qN≠1

n=0

(≠1)n„n(t) is (part of the) square wave
that we discussed in Chapter 1, and which also oscillates regularly like the sine
function, see the left plot in Figure 5.4. The di�erence is that we have more
flexibility since we have a whole space at our disposal instead of just one function

— the right plot in Figure 5.4 shows another function in V
0

.
In Fourier analysis we obtained a linear space of possible approximations by

including sines of frequency 1, 2, 3, . . . , up to some maximum. We use a similar
approach for constructing wavelets, but we double the frequency each time and
label the spaces as V

0

, V
1

, V
2

, . . .

Definition 5.4. Refined resolution spaces.
The space Vm for the interval [0, N) is the space of piecewise linear functions

defined on [0, N) that are constant on each subinterval [n/2m, (n + 1)/2m) for
n = 0, 1, . . . , 2mN ≠ 1.

Some examples of functions in the spaces V
1

, V
2

and V
3

for the interval [0, 10]
are shown in Figure 5.5. As m increases, we can represent smaller details. In
particular, the function in the rightmost is a piecewise constant function that
oscillates like sin(2fi22t) on the interval [0, 10].

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES166

Figure 5.5: Piecewise constant approximations to cos t on the interval [0, 10] in
the spaces V

1

, V
2

, and V
3

. The lower right plot shows the square wave in V
2

.

It is easy to find a basis for Vm, we just use the characteristic functions of
each subinterval.
Lemma 5.5. Basis for Vm.

Let [0, N) be a given interval with N some positive integer. Then the
dimension of Vm is 2mN . The functions

„m,n(t) = 2m/2„(2mt ≠ n), for n = 0, 1, . . . , 2mN ≠ 1. (5.4)
{„m,n}2

mN≠1

n=0

form an orthonormal basis for Vm, which we will denote by �m.
Any function f œ Vm can thus be represented uniquely as

f(t) =
2

mN≠1ÿ

n=0

cm,n„m,n(t).

Proof. The functions given by Equation (5.4) are nonzero on the subintervals
[n/2m, (n+1)/2m) which we referred to in Definition 5.4, so that „m,n1„m,n2 = 0
when n

1

”= n
2

, since these intervals are disjoint. The only mysterious thing may
be the normalisation factor 2m/2. This comes from the fact that

⁄ N

0

„(2mt ≠ n)2 dt =
⁄

(n+1)/2

m

n/2

m

„(2mt ≠ n)2 dt = 2≠m

⁄
1

0

„(u)2 du = 2≠m.

The normalisation therefore thus ensures that Î„m,nÎ = 1 for all m.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES167

In the following we will always denote the coordinates in the basis �m by
cm,n. Note that our definition restricts the dimensions of the spaces we study
to be on the form N2m. In Chapter 6 we will explain how this restriction can
be dropped, but until then the dimensions will be assumed to be on this form.
In the theory of wavelets, the function „ is also called a scaling function. The
origin behind this name is that the scaled (and translated) functions „m,n of „
are used as basis functions for the refined resolution spaces. Later on we will see
that other scaling functions „ can be chosen, where the scaled versions „m,n will
be used to define similar resolution spaces, with slightly di�erent properties.

5.2.1 Function approximation property
Each time m is increased by 1, the dimension of Vm doubles, and the subinterval
on which the functions in Vm are constant are halved in size. It therefore seems
reasonable that, for most functions, we can find good approximations in Vm

provided m is big enough.

Theorem 5.6. Resolution spaces and approximation.
Let f be a given function that is continuous on the interval [0, N]. Given

‘ > 0, there exists an integer m Ø 0 and a function g œ Vm such that
--f(t) ≠ g(t)

-- Æ ‘

for all t in [0, N].

Proof. Since f is (uniformly) continuous on [0, N], we can find an integer m so
that

--f(t
1

)≠f(t
2

)
-- Æ ‘ for any two numbers t

1

and t
2

in [0, N] with |t
1

≠t
2

| Æ 2≠m.
Define the approximation g by

g(t) =
2

mN≠1ÿ

n=0

f
!
tm,n+1/2

"
„m,n(t),

where tm,n+1/2

is the midpoint of the subinterval
#
n2≠m, (n + 1)2≠m

"
,

tm,n+1/2

= (n + 1/2)2≠m.

For t in this subinterval we then obviously have |f(t) ≠ g(t)| Æ ‘, and since these
intervals cover [0, N], the conclusion holds for all t œ [0, N].

Theorem 5.6 does not tell us how to find the approximation g although the
proof makes use of an approximation that interpolates f at the midpoint of each
subinterval. Note that if we measure the error in the L2-norm, we have

Îf ≠ gÎ2 =
⁄ N

0

--f(t) ≠ g(t)
--2

dt Æ N‘2,

so Îf ≠ gÎ Æ ‘
Ô

N . We therefore have the following corollary.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES168

Corollary 5.7. Resolution spaces and approximation.
Let f be a given continuous function on the interval [0, N]. Then

lim
mæŒ

Îf ≠ projVm
(f)Î = 0.

Figure 5.6 illustrates how some of the approximations of the function f(x) =
x2 from the resolution spaces for the interval [0, 1] improve with increasing m.

Figure 5.6: Comparison of the function defined by f(t) = t2 on [0, 1] with the
projection onto V

2

, V
4

, and V
6

, respectively.

5.2.2 Detail spaces and wavelets
So far we have described a family of function spaces that allow us to determine
arbitrarily good approximations to a continuous function. The next step is to
introduce the so-called detail spaces and the wavelet functions. We start by
observing that since

[n, n + 1) = [2n/2, (2n + 1)/2) fi [(2n + 1)/2, (2n + 2)/2),

we have

„
0,n = 1Ô

2
„

1,2n + 1Ô
2

„
1,2n+1

.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES169

This provides a formal proof of the intuitive observation that V
0

µ V
1

, for if
g œ V

0

, we can write

g(t) =
N≠1ÿ

n=0

c
0,n„

0,n(t) =
N≠1ÿ

n=0

c
0,n

!
„

1,2n + „
1,2n+1

"
/
Ô

2,

and the right-hand side clearly lies in V
1

. Since also

„m≠1,n(t) = 2(m≠1)/2„(2m≠1t ≠ n) = 2(m≠1)/2„
0,n(2m≠1t)

= 2(m≠1)/2

1Ô
2

(„
1,2n(2m≠1t) + „

1,2n+1

(2m≠1t))

= 2(m≠1)/2(„(2mt ≠ 2n) + „(2mt ≠ (2n + 1))) = 1Ô
2

(„m,2n(t) + „m,2n+1

(t)),

we also have that

„m≠1,n = 1Ô
2

„m,2n + 1Ô
2

„m,2n+1

, (5.5)

so that also Vk µ Vk+1

for any integer k Ø 0.

Lemma 5.8. Resolution spaces are nested.
The spaces V

0

, V
1

, . . . , Vm, . . . are nested,

V
0

µ V
1

µ V
2

µ · · · µ Vm · · · .

This means that it is meaningful to project Vk+1

onto Vk. The next step is to
characterize the projection from V

1

onto V
0

, and onto the orthogonal complement
of V

0

in V
1

. Before we do this, let us make the following definitions.

Definition 5.9. Detail spaces.
The orthogonal complement of Vm≠1

in Vm is denoted Wm≠1

. All the spaces
Wk are also called detail spaces, or error spaces.

The name detail space is used since the projection from Vm onto Vm≠1

in
considered as a (low-resolution) approximation, and the error, which lies in
Wm≠1

, is the detail which is left out when we replace with this approximation.
We will also write gm = gm≠1

+ em≠1

when we split gm œ Vm into a sum of a
low-resolution approximation and a detail component. In the context of our
Google EarthTMexample, in Figure 5.1 you should interpret g

0

as the left image,
the middle image as an excerpt of g

1

, and e
0

as the additional details which are
needed to reproduce the middle image from the left image.

Since V
0

and W
0

are mutually orthogonal spaces they are also linearly
independent spaces. When U and V are two such linearly independent spaces,
we will write U ü V for the vector space consisting of all vectors of the form
u+ v, with u œ U , v œ V . U ü V is also called the direct sum of U and V . This
also makes sense if we have more than two vector spaces (such as U ü V ü W),

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES170

and the direct sum clearly obeys the associate law U ü (V ü W) = (U ü V) ü W .
Using the direct sum notation, we can first write

Vm = Vm≠1

ü Wm≠1

. (5.6)
Since Vm has dimension 2mN , it follows that also Wm has dimension 2mN . We
can continue the direct sum decomposition by also writing Vm≠1

as a direct sum,
then Vm≠2

as a direct sum, and so on, and end up with

Vm = V
0

ü W
0

ü W
1

ü · · · ü Wm≠1

, (5.7)
where the spaces on the right hand side have dimension N, N, 2N, . . . , 2m≠1N .
This decomposition wil be important for our purposes. It says that the resolution
space Vm acan be written as the sum of a lower order resolution space V

0

, and
m detail spaces W

0

, . . . , Wm≠1

. We will later interpret this splitting into a
low-resolution component and m detail components.

It turns out that the following function will play the same role for the detail
space Wk as the function „ plays for the resolution space Vk.

Definition 5.10. The function Â.
We define

Â(t) =
!
„

1,0(t) ≠ „
1,1(t)

"
/
Ô

2 = „(2t) ≠ „(2t ≠ 1), (5.8)
and

Âm,n(t) = 2m/2Â(2mt ≠ n), for n = 0, 1, . . . , 2mN ≠ 1. (5.9)

The functions „ and Â are shown in Figure 5.7.

Figure 5.7: The functions „ and Â we used to analyse the space of piecewise
constant functions.

As in the proof for Equation (5.5), it follows that

Âm≠1,n = 1Ô
2

„m,2n ≠ 1Ô
2

„m,2n+1

, (5.10)

Clearly Â is supported on [0, 1), and ÎÂÎ = 1. From this it follows as for �
0

that the {Â
0,n}N≠1

n=0

are orthonormal. In the same way as for �m, it follows

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES171

also that the {Âm,n}2

mN≠1

n=0

is orthonormal for any m. We will write m for
the orthonormal basis {Âm,n}2

mN≠1

n=0

, and we will always denote the coordinates
in the basis m by wm,n. The next result motivates the definition of Â, and
states how we can project from V

1

onto V
0

and W
0

, i.e. find the low-resolution
approximation and the detail component of g

1

œ V
1

.

Lemma 5.11. Orthonormal bases.
For 0 Æ n < N we have that

projV0(„
1,n) =

I
„

0,n/2

/
Ô

2, if n is even;
„

0,(n≠1)/2

/
Ô

2, if n is odd.
(5.11)

projW0(„
1,n) =

I
Â

0,n/2

/
Ô

2, if n is even;
≠Â

0,(n≠1)/2

/
Ô

2, if n is odd.
(5.12)

In particular,
0

is an orthonormal basis for W
0

. More generally, if g
1

=q
2N≠1

n=0

c
1,n„

1,n œ V
1

, then

projV0(g
1

) =
N≠1ÿ

n=0

c
0,n„

0,n, where c
0,n = c

1,2n + c
1,2n+1Ô

2
(5.13)

projW0(g
1

) =
N≠1ÿ

n=0

w
0,nÂ

0,n, where w
0,n = c

1,2n ≠ c
1,2n+1Ô

2
. (5.14)

Proof. We first observe that „
1,n(t) ”= 0 if and only if n/2 Æ t < (n + 1)/2.

Suppose that n is even. Then the intersection
5

n

2 ,
n + 1

2

4
fl [n

1

, n
1

+ 1) (5.15)

is nonempty only if n
1

= n
2

. Using the orthogonal decomposition formula we get

projV0(„
1,n) =

N≠1ÿ

k=0

È„
1,n, „

0,kÍ„
0,k = È„

1,n, „
0,n1Í„

0,n1

=
⁄

(n+1)/2

n/2

Ô
2 dt „

0,n/2

= 1Ô
2

„
0,n/2

.

Using this we also get

projW0(„
1,n) = „

1,n ≠ 1Ô
2

„
0,n/2

= „
1,n ≠ 1Ô

2

3
1Ô
2

„
1,n + 1Ô

2
„

1,n+1

4

= 1
2„

1,n ≠ 1
2„

1,n+1

= Â
0,n/2

/
Ô

2.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES172

This proves the expressions for both projections when n is even. When n is
odd, the intersection (5.15) is nonempty only if n

1

= (n ≠ 1)/2, which gives the
expressions for both projections when n is odd in the same way. In particular
we get

projW0(„
1,n) = „

1,n ≠ „
0,(n≠1)/2Ô

2
= „

1,n ≠ 1Ô
2

3
1Ô
2

„
1,n≠1

+ 1Ô
2

„
1,n

4

= 1
2„

1,n ≠ 1
2„

1,n≠1

= ≠Â
0,(n≠1)/2

/
Ô

2.

0

must be an orthonormal basis for W
0

since
0

is contained in W
0

, and both
have dimension N .

We project the function g
1

in V
1

using the formulas in (5.11). We first split
the sum into even and odd values of n,

g
1

=
2N≠1ÿ

n=0

c
1,n„

1,n =
N≠1ÿ

n=0

c
1,2n„

1,2n +
N≠1ÿ

n=0

c
1,2n+1

„
1,2n+1

. (5.16)

We can now apply the two formulas in (5.11),

projV0(g
1

) = projV0

A
N≠1ÿ

n=0

c
1,2n„

1,2n +
N≠1ÿ

n=0

c
1,2n+1

„
1,2n+1

B

=
N≠1ÿ

n=0

c
1,2n projV0(„

1,2n) +
N≠1ÿ

n=0

c
1,2n+1

projV0(„
1,2n+1

)

=
N≠1ÿ

n=0

c
1,2n„

0,n/
Ô

2 +
N≠1ÿ

n=0

c
1,2n+1

„
0,n/

Ô
2

=
N≠1ÿ

n=0

c
1,2n + c

1,2n+1Ô
2

„
0,n

which proves Equation (5.13). Equation (5.14) is proved similarly.

In Figure 5.8 we have used Lemma 5.11 to plot the projections of „
1,0 œ V

1

onto V
0

and W
0

. It is an interesting exercise to see from the plots why exactly
these functions should be least-squares approximations of „

1,n. It is also an
interesting exercise to prove the following from Lemma 5.11:

Proposition 5.12. Projections.
Let f(t) œ V

1

, and let fn,1 be the value f attains on [n, n + 1/2), and fn,2

the value f attains on [n + 1/2, n + 1). Then projV0(f) is the function in V
0

which equals (fn,1 + fn,2)/2 on the interval [n, n + 1). Moreover, projW0(f) is
the function in W

0

which is (fn,1 ≠ fn,2)/2 on [n, n + 1/2), and ≠(fn,1 ≠ fn,2)/2
on [n + 1/2, n + 1).

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES173

Figure 5.8: The projection of „
1,0 œ V

1

onto V
0

and W
0

.

In other words, the projection on V
0

is constructed by averaging on two
subintervals, while the projection on W

0

is constructed by taking the di�erence
from the mean. This sounds like a reasonable candidate for the least-squares
approximations. In the exercise we generalize these observations.

In the same way as in Lemma 5.11, it is possible to show that

projWm≠1(„m,n) =
I

Âm≠1,n/2

/
Ô

2, if n is even;
≠Âm≠1,(n≠1)/2

/
Ô

2, if n is odd.
(5.17)

From this it follows as before that m is an orthonormal basis for Wm. If {Bi}n
i=1

are mutually independent bases, we will in the following write (B
1

, B
2

, . . . , Bn)
for the basis where the basis vectors from Bi are included before Bj when i < j.
With this notation, the decomposition in Equation (5.7) can be restated as
follows

Theorem 5.13. Bases for Vm.
�m and (�

0

,
0

,
1

, · · · , m≠1

) are both bases for Vm.

The function Â thus has the property that its dilations and translations
together span the detail components. Later we will encounter other functions,
which also will be denoted by Â, and have similar properties. In the theory of
wavelets, such Â are called mother wavelets. There is one important property of
Â, which we will return to:

Observation 5.14. Vanishing moment.
We have that

s N

0

Â(t)dt = 0.

This can be seen directly from the plot in Figure 5.7, since the parts of
the graph above and below the x-axis cancel. In general we say that Â has k
vanishing moments if the integrals

s
tlÂ(t)dt = 0 for all 0 Æ l Æ k ≠ 1. Due to

Observation 5.14, Â has one vanishing moment. In Chapter 7 we will show that
mother wavelets with many vanishing moments are very desirable when it comes
to approximation of functions.

We now have all the tools needed to define the Discrete Wavelet Transform.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES174

Definition 5.15. Discrete Wavelet Transform.
The DWT (Discrete Wavelet Transform) is defined as the change of coordi-

nates from �

1

to (�
0

,
0

). More generally, the m-level DWT is defined as the
change of coordinates from �m to (�

0

,
0

,
1

, · · · , m≠1

). In an m-level DWT,
the change of coordinates from

(�m≠k+1

, m≠k+1

, m≠k+2

, · · · , m≠1

) to (�m≠k, m≠k, m≠k+1

, · · · , m≠1

)
(5.18)

is also called the k’th stage. The (m-level) IDWT (Inverse Discrete Wavelet
Transform) is defined as the change of coordinates the opposite way.

The DWT corresponds to replacing as many „-functions as we can with
Â-functions, i.e. replacing the original function with a sum of as much detail at
di�erent resolutions as possible. We now can state the following result.

Theorem 5.16. Expression for the DWT.
If gm = gm≠1

+ em≠1

with

gm =
2

mN≠1ÿ

n=0

cm,n„m,n œ Vm,

gm≠1

=
2

m≠1N≠1ÿ

n=0

cm≠1,n„m≠1,n œ Vm≠1

em≠1

=
2

m≠1N≠1ÿ

n=0

wm≠1,nÂm≠1,n œ Wm≠1

,

then the change of coordinates from �m to (�m≠1

, m≠1

) (i.e. first stage in a
DWT) is given by

3
cm≠1,n

wm≠1,n

4
=

3
1/

Ô
2 1/

Ô
2

1/
Ô

2 ≠1/
Ô

2

4 3
cm,2n

cm,2n+1

4
(5.19)

Conversely, the change of coordinates from (�m≠1

, m≠1

) to �m (i.e. the last
stage in an IDWT) is given by

3
cm,2n

cm,2n+1

4
=

3
1/

Ô
2 1/

Ô
2

1/
Ô

2 ≠1/
Ô

2

4 3
cm≠1,n

wm≠1,n

4
(5.20)

Proof. Equations (5.5) and (5.10) say that

„m≠1,n = „m,2n/
Ô

2 + „m,2n+1

/
Ô

2 Âm≠1,n = „m,2n/
Ô

2 ≠ „m,2n+1

/
Ô

2.

The change of coordinate matrix from the basis {„m≠1,n, Âm≠1,n} to {„m,2n, „m,2n+1

}
is thus

3
1/

Ô
2 1/

Ô
2

1/
Ô

2 ≠1/
Ô

2

4
. This proves Equation (5.20). Equation (5.19) follows

immediately since this matrix equals its inverse.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES175

Above we assumed that N is even. In Exercise 5.8 we will see how we can
handle the case when N is odd.

From Theorem 5.16, we see that, if we had defined

Cm = {„m≠1,0, Âm≠1,0, „m≠1,1, Âm≠1,1, · · · , „m≠1,2m≠1N≠1

, Âm≠1,2m≠1N≠1

}.
(5.21)

i.e. we have reordered the basis vectors in (�m≠1

, m≠1

) (the subscript m is used
since Cm is a basis for Vm), it is apparent from Equation (5.20) that G = P�mΩCm

is the matrix where
A

1Ô
2

1Ô
2

1Ô
2

≠ 1Ô
2

B

is repeated along the main diagonal 2m≠1N times. Also, from Equation (5.19) it
is apparent that H = PCmΩ�m

is the same matrix. Such matrices are called block
diagonal matrices. This particular block diagonal matrix is clearly orthogonal.
Let us make the following definition

Definition 5.17. DWT and IDWT kernel transformations.
The matrices H = PCmΩ�m

and G = P�mΩCm
are called the DWT and

IDWT kernel transformations. The DWT and the IDWT can be expressed in
terms of these kernel transformations by

DWT = P
(�m≠1, m≠1)ΩCm

H and IDWT = GPCmΩ(�m≠1, m≠1)

,

respectively, where

• P
(�m≠1, m≠1)ΩCm

is a permutation matrix which groups the even elements
first, then the odd elements,

• PCmΩ(�m≠1, m≠1)

is a permutation matrix which places the first half at
the even indices, the last half at the odd indices.

Clearly, the kernel transformations H and G also invert each other. The point
of using the kernel transformation is that they compute the output sequentially,
similarly to how a filter does. Clearly also the kernel transformations are very
similar to a filter, and we will return to this in the next chapter.

At each level in a DWT, Vk is split into one low-resolution component from
Vk≠1

, and one detail component from Wk≠1

. We have illustrated this in figure 5.9,
where the arrows represent changes of coordinates.

The detail component from Wk≠1

is not subject to further transformation.
This is seen in the figure since k≠1

is a leaf node, i.e. there are no arrows going
out from m≠1

. In a similar illustration for the IDWT, the arrows would go the
opposite way.

The Discrete Wavelet Transform is the analogue in a wavelet setting to the
Discrete Fourier transform. When applying the DFT to a vector of length N ,

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES176

�m
//

""

�m�1
//

##

�m�2
//

##

· · · //
�1

//

�0

 m�1 m�2 m�3 0

Figure 5.9: Illustration of a wavelet transform.

one starts by viewing this vector as coordinates relative to the standard basis.
When applying the DWT to a vector of length N , one instead views the vector
as coordinates relative to the basis �m. This makes sense in light of Exercise 5.1.

What you should have learned in this section.

• Definition of resolution spaces (Vm), detail spaces (Wm), scaling function
(„), and mother wavelet (Â) for the wavelet based on piecewise constant
functions.

• The nesting of resolution spaces, and how one can project from one reso-
lution space onto a lower order resolution space, and onto its orthogonal
complement.

• The definition of the Discrete Wavelet Transform as a change of coordinates,
and how this can be written down from relations between basis functions.

Exercise 5.1: Samples are the coordinate vector
Show that the coordinate vector for f œ V

0

in the basis {„
0,0, „

0,1, . . . , „
0,N≠1

}
is (f(0), f(1),f(N ≠ 1)).

Exercise 5.2: Proposition 5.12
Prove Proposition 5.12.

Exercise 5.3: Computing projections
In this exercise we will consider the two projections from V

1

onto V
0

and W
0

.

a) Consider the projection projV0 of V
1

onto V
0

. Use Lemma 5.11 to write down
the matrix for projV0 relative to the bases �

1

and �
0

.

b) Similarly, use Lemma 5.11 to write down the matrix for projW0 : V
1

æ W
0

relative to the bases �
1

and
0

.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES177

Exercise 5.4: Computing projections 2
Consider again the projection projV0 of V

1

onto V
0

.

a) Explain why projV0(„) = „ and projV0(Â) = 0.

b) Show that the matrix of projV0 relative to (�
0

,
0

) is given by the diagonal
matrix where the first half of the entries on the diagonal are 1, the second half 0.

c) Show in a similar way that the projection of V
1

onto W
0

has a matrix relative
to (�

0

,
0

) given by the diagonal matrix where the first half of the entries on
the diagonal are 0, the second half 1.

Exercise 5.5: Computing projections
Show that

projV0(f) =
N≠1ÿ

n=0

3⁄ n+1

n

f(t)dt

4
„

0,n(t) (5.22)

for any f . Show also that the first part of Proposition 5.12 follows from this.

Exercise 5.6: Finding the least squares error
Show that

Î
ÿ

n

3⁄ n+1

n

f(t)dt

4
„

0,n(t) ≠ fÎ2 = Èf, fÍ ≠
ÿ

n

3⁄ n+1

n

f(t)dt

4
2

.

This, together with the previous exercise, gives us an expression for the least-
squares error for f from V

0

(at least after taking square roots). 2DO: Generalize
to m

Exercise 5.7: Projecting on W
0

Show that

projW0(f) =
N≠1ÿ

n=0

A⁄ n+1/2

n

f(t)dt ≠
⁄ n+1

n+1/2

f(t)dt

B
Â

0,n(t) (5.23)

for any f . Show also that the second part of Proposition 5.12 follows from this.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES178

Exercise 5.8: When N is odd
When N is odd, the (first stage in a) DWT is defined as the change of coordinates
from („

1,0, „
1,1, . . . , „

1,N≠1

) to

(„
0,0, Â

0,0, „
0,1, Â

0,1, . . . , „
0,(N≠1)/2

, Â
(N≠1)/2

, „
0,(N+1)/2

).

Since all functions are assumed to have period N , we have that

„
0,(N+1)/2

= 1Ô
2

(„
1,N≠1

+ „
1,N) = 1Ô

2
(„

1,0 + „
1,N≠1

).

From this relation one can find the last column in the change of coordinate
matrix from �

0

to (�
1

,
1

), i.e. the IDWT matrix. In particular, when N is
odd, we see that the last column in the IDWT matrix circulates to the upper
right corner. In terms of coordinates, we thus have that

c
1,0 = 1Ô

2
(c

0,0 + w
0,0 + c

0,(N+1)/2

) c
1,N≠1

= 1Ô
2

c
0,(N+1)/2

. (5.24)

a) If N = 3, the DWT matrix equals 1Ô
2

Q

a
1&1 1

1 ≠1&0
0&0 1

R

b, and the inverse of

this is 1Ô
2

Q

a
1&1 ≠1

1 ≠1 ≠1
0&0 2

R

b. Explain from this that, when N is odd, the DWT

matrix can be constructed by adding a column on the form 1Ô
2

(≠1, ≠1, 0, . . . , 0, 2)
to the DWT matrices we had for N even (in the last row zeros are also added).
In terms of the coordinates, we thus have the additional formulas

c
0,0 = 1Ô

2
(c

1,0+c1,1≠c1,N≠1) w
0,0 = 1Ô

2
(c

1,0≠c1,1≠c1,N≠1) c
0,(N+1)/2

= 1Ô
2

2c
1,N≠1

.

(5.25)

b) Explain that the DWT matrix is orthogonal if and only if N is even. Also
explain that it is only the last column which spoils the orthogonality.

5.3 Implementation of the DWT and examples
The DWT is straightforward to implement: One simply needs to iterate Equation
(5.19) in the compendium for m, m≠1, . . . , 1. We will use a DWT kernel function
which takes as input the coordinates (cm,0, cm,1, . . .), and returns the coordinates
(cm≠1,0, wm≠1,0, cm≠1,1, wm≠1,1, . . .), i.e. computes one stage of the DWT. This is
a di�erent order for the coordinates than that given by the basis (�m, m). The
reason is that it is easier with this new order to compute the DWT in-place. As

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES179

an example, the kernel transformation for the Haar wavelet can be implemented
as follows. For simplicity this first version of the code assumes that N is even:

def DWTKernelHaar(x, symm, dual):
x /= sqrt(2)
for k in range(2,len(x) - 1,2):

a, b = x[k] + x[k+1], x[k] - x[k+1]
x[k], x[k+1] = a, b

Note that the code above accepts two-dimensional data, just as our function
FFTImpl did. Thus, the function may be applied simultaneously to all channels
in a sound. The mysterious parameters symm and dual will be explained in
Chapter 6. For now they have no role in the code, but will still appear several
places in the code in this section. When N is even, IDWTKernelHaar can be
implemented with the exact same code. When N is odd, we can use the results
from Exercise 5.8 (see also Exercise 5.24). The reason for using a general kernel
function will be apparent later, when we change to di�erent types of wavelets.

Since the code above does not give the coordinates in the same order as
(�m, m), an implementation of the DWT needs to organize the DWT coe�cients
in the right order, in addition to calling the kernel function for each stage, and
applying the kernel to the right coordinates. Clearly, the coordinates from �m

end up at indices k2m, where m represents the current stage, and k runs through
the indices. The following function, called DWTImpl, follows this procedure. It
takes as input the number of levels, nres, as well as the input vector x, runs
the DWT on x with the given number of resolutions, and returns the result:

def DWTImpl(x, nres, f, symm=True, dual=False):
for res in range(nres):

f(x[0::2**res], symm, dual)
reorganize_coefficients(x, nres, True)

Again note that the code is applied to all columns if the data is two-dimensional.
Note also that here the kernel function f is first invoked, one time for each
resolution. Finally, the coe�cients are reorganized so that the �m coordinates
come first, followed by the coordinates from the di�erent levels. We have provided
a function reorganize_coefficients which does this reorganization, and you
will be spared the details in this implementation. In Exercise 5.25 we go through
some aspects of this implementation. Note that, although the DWT requires this
reorganization, this reorganization may not be required in practice, as further
processing is needed, for which the coe�cients can be accessed where they have
been placed after the in-place operations. Note also the two last arguments,
symm and dual, which we have not commented on. We will return to these in
Chapter 6. This implementation is not recursive, as the for-loop runs through the
di�erent stages. Inside the loop we perform the change of coordinates from �k to
(�k≠1

, k≠1

) by applying Equation (5.19). This works on the first coordinates,
since the coordinates from �k are stored first in

(�k, k, k+1

, · · · , m≠2

, m≠1

).

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES180

Finally, the c-coordinates are stored before the w-coordinates. In this imple-
mentation, note that the first levels require the most multiplications, since the
latter levels leave an increasing part of the coordinates unchanged. Note also
that the change of coordinates matrix is a very sparse matrix: At each level a
coordinate can be computed from only two of the other coordinates, so that
this matrix has only two nonzero elements in each row/column. The algorithm
clearly shows that there is no need to perform a full matrix multiplication to
perform the change of coordinates.

The corresponding function for the IDWT, called IDWTImpl, goes as follows:

def IDWTImpl(x, nres, f, symm=True, dual=False):
reorganize_coefficients(x, nres, False)
for res in range(nres - 1, -1, -1):

f(x[0::2**res], symm, dual)

Here the steps are simply performed in the reverse order, and by iterating
Equation (5.20). You may be puzzled by the names DWTKernelHaar and
IDWTKernelHaar. In the next sections we will consider other cases, where
the underlying function „ may be a di�erent function, not necessarily piecewise
constant. It will turn out that much of the analysis we have done makes sense
for other functions „ as well, giving rise to other structures which we also will
refer to as wavelets. The wavelet resulting from piecewise constant functions
is thus simply one example out of many, and it is commonly referred to as the
Haar wavelet.

Let us round o� this section with some important examples.

Example 5.18. Computing the DWT by hand.
In some cases, the DWT can be computed by hand, keeping in mind its

definition as a change of coordinates. As an example, consider the simple vector
x of length 210 = 1024 defined by

xn =
I

1 for n < 512
0 for n Ø 512,

and let us compute the 10-level DWT of this vector by first visualizing the
function with these coordinates. Since m = 10 here, we should view x as
coordinates in the basis �

10

of a function f(t) œ V
10

. This is f(t) =
q

511

n=0

„
10,n,

and since „
10,n is supported on [2≠10n, 2≠10(n + 1)), the support of f has width

512 ◊ 2≠10 = 1/2 (512 translates, each with width 2≠10). Moreover, since „
10,n

is 210/2 = 25 = 32 on [2≠10n, 2≠10(n + 1)) and 0 elsewhere, it is clear that

f(t) =
I

32 for 0 Æ t < 1/2
0 for 0t Ø 1/2.

This is by definition a function in V
1

: f must in fact be a multiplum of „
1,0, since

this also is supported on [0, 1/2). We can thus write f(t) = c„
1,0(t) for some

c. We can find c by setting t = 0. This gives that 32 = 21/2c (since f(0) = 32,

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES181

„
1,0(0) = 21/2), so that c = 32/

Ô
2. This means that f(t) = 32Ô

2

„
1,0(t), f is in

V
1

, and with coordinates (32/
Ô

2, 0, . . . , 0) in �
1

.
When we run a 10-level DWT we make a change of coordinates from �

10

to
(�

0

,
0

, · · · ,
9

). The first 9 levels give us the coordinates in (�
1

,
1

,
2

, . . . ,
9

),
and these are (32/

Ô
2, 0, . . . , 0) from what we showed. It remains thus only to

perform the last level in the DWT, i.e. perform the change of coordinates from
�

1

to (�
0

,
0

). Since „
1,0 = 1Ô

2

(„
0,0 + Â

0,0), so that we get

f(t) = 32Ô
2

„
1,0(t) = 32Ô

2
1Ô
2

(„
0,0 + Â

0,0) = 16„
0,0 + 16Â

0,0.

From this we see that the coordinate vector of f in (�
0

,
0

, · · · ,
9

), i.e. the
10-level DWT of x, is (16, 16, 0, 0, . . . , 0). Note that here V

0

and W
0

are both
1-dimensional, since V

10

was assumed to be of dimension 210 (in particular,
N = 1).

It is straightforward to verify what we found using the algorithm above:

x = hstack([ones(512), zeros(512)])
DWTImpl(x, 10, DWTKernelHaar)
print x

The reason why the method from this example worked was that the vector we
started with had a simple representation in the wavelet basis, actually it equaled
the coordinates of a basis function in �

1

. Usually this is not the case, and our
only possibility then is to run the DWT on a computer.

Example 5.19. DWT and sound.
When you run a DWT you may be led to believe that coe�cients from

the lower order resolution spaces may correspond to lower frequencies. This
sounds reasonable, since the functions „(2mt ≠ n) œ Vm change more quickly
than „(t ≠ n) œ V

0

. However, the functions „m,n do not correspond to pure
tones in the setting of wavelets. But we can still listen to sound from the
di�erent resolution spaces. In Exercise 5.19 you will be asked to implement
a function which runs an m-level DWT on the first samples of the sound file
castanets.wav, extracts the coe�cients from the lower order resolution spaces
or the detail spaces, transforms the values back to sound samples with the
IDWT, and plays the result. When you listen to the result the sound is clearly
recognizable for lower values of m, but is degraded for higher values of m. The
explanation is that too much of the detail is omitted when you use a higher m.
To be more precise, when listening to the sound by throwing away everything
from the detail spaces W

0

, W
1

, . . . , Wm≠1

, we are left with a 2≠m share of the
data. Note that this procedure is mathematically not the same as setting some
DFT coe�cients to zero, since the DWT does not operate on pure tones.

It is of interest to plot the samples of our test audio file castanets.wav, and
compare it with the first order DWT coe�cients of the same samples. This is
shown in Figure 5.10. The first half part of the plot represents the low-resolution
approximation of the sound, the second half part represents the detail/error.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES182

We see that the detail is quite significant in this case. This means that the first
order wavelet approximation does not give a very good approximation to the
sound. In the exercises we will experiment more on this.

Figure 5.10: The 217 first sound samples (left) and the DWT coe�cients (right)
of the sound castanets.wav.

It is also interesting to plot only the detail/error in the sound, for di�erent
resolutions. For this, we must perform a DWT so that we get a representation
in the basis (�

0

,
0

,
1

, . . . , m≠1

), set the coe�cients from V
0

to zero, and
transform back with the IDWT. In figure 5.11 the error is shown for the test
audio file castanets.wav for m = 1, m = 2. This clearly shows that the error
is larger when two levels of the DWT are performed, as one would suspect. It is
also seen that the error is larger in the part of the file where there are bigger
variations. This also sounds reasonable.

Figure 5.11: The error (i.e. the contribution from W
0

ü W
1

ü · · · ü Wm≠1

) in
the sound file castanets.wav, for m = 1 and m = 2, respectively.

The previous example illustrates that wavelets as well may be used to perform
operations on sound. As we will see later, however, our main application for
wavelets will be images, where they have found a more important role than
for sound. Images typically display variations which are less abrupt than the
ones found in sound. Just as the functions above had smaller errors in the
corresponding resolution spaces than the sound had, images are thus more suited
for for use with wavelets. The main idea behind why wavelets are so useful

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES183

comes from the fact that the detail, i.e., wavelet coe�cients corresponding to the
spaces Wk, are often very small. After a DWT one is therefore often left with a
couple of significant coe�cients, while most of the coe�cients are small. The
approximation from V

0

can be viewed as a good approximation, even though
it contains much less information. This gives another reason why wavelets
are popular for images: Detailed images can be very large, but when they are
downloaded to a web browser, the browser can very early show a low-resolution of
the image, while waiting for the rest of the details in the image to be downloaded.
When we later look at how wavelets are applied to images, we will need to handle
one final hurdle, namely that images are two-dimensional.

Example 5.20. DWT on the samples of a mathematical function.
Above we plotted the DWT coe�cients of a sound, as well as the detail/error.

We can also experiment with samples generated from a mathematical function.
Figure 5.12 plots the error for di�erent functions, with N = 1024.

Figure 5.12: The error (i.e. the contribution from W
0

ü W
1

ü · · · ü Wm≠1

) for
N = 1024 when f is a square wave, the linear function f(t) = 1 ≠ 2|1/2 ≠ t/N |,
and the trigonometric function f(t) = 1/2 + cos(2fit/N)/2, respectively. The
detail is indicated for m = 6 and m = 8.

In these cases, we see that we require large m before the detail/error becomes
significant. We see also that there is no error for the square wave. The reason
is that the square wave is a piecewise constant function, so that it can be
represented exactly by the „-functions. For the other functions, however, this is
not the case, so we here get an error.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES184

Above we used the functions DWTImpl, IDWTImpl to plot the error. For the
functions we plotted in the previous example it is also possible to compute the
wavelet coe�cients, which we previously have denoted by wm,n, exactly. You
will be asked to do this in exercises 5.21 and 5.22. The following example shows
the general procedure which can be used for this:

Example 5.21. Computing the wavelet coe�cients.
Let us consider the function f(t) = 1 ≠ t/N . This function decreases linearly

from 1 to 0 on [0, N], so that it is not piecewise constant, and does not lie in any
of the spaces Vm. We can instead consider projVm

f œ Vm, and apply the DWT
to this. Let us compute the m-coordinates wm,n of projVm

f in the orthonormal
basis (�

0

,
0

,
1

, . . . , m≠1

). The orthogonal decomposition theorem says that

wm,n = Èf, Âm,nÍ =
⁄ N

0

f(t)Âm,n(t)dt =
⁄ N

0

(1 ≠ t/N)Âm,n(t)dt.

Using the definition of Âm,n we see that this can also be written as

2m/2

⁄ N

0

(1 ≠ t/N)Â(2mt ≠ n)dt = 2m/2

A⁄ N

0

Â(2mt ≠ n)dt ≠
⁄ N

0

t

N
Â(2mt ≠ n)dt

B
.

Using Observation 5.14 we get that
s N

0

Â(2mt ≠ n)dt = 0, so that the first term
above vanishes. Moreover, Âm,n is nonzero only on [2≠mn, 2≠m(n + 1)), and is 1
on [2≠mn, 2≠m(n + 1/2)), and ≠1 on [2≠m(n + 1/2), 2≠m(n + 1)). We therefore
get

wm,n = ≠2m/2

A⁄
2

≠m
(n+1/2)

2

≠mn

t

N
dt ≠

⁄
2

≠m
(n+1)

2

≠m
(n+1/2)

t

N
dt

B

= ≠2m/2

A5
t2

2N

6
2

≠m
(n+1/2)

2

≠mn

≠
5

t2

2N

6
2

≠m
(n+1)

2

≠m
(n+1/2)

B

= ≠2m/2

33
2≠2m(n + 1/2)2

2N
≠ 2≠2mn2

2N

4
≠

3
2≠2m(n + 1)2

2N
≠ 2≠2m(n + 1/2)2

2N

44

= ≠2m/2

3
≠2≠2mn2

2N
+ 2≠2m(n + 1/2)2

N
≠ 2≠2m(n + 1)2

2N

4

= ≠2≠3m/2

2N

!≠n2 + 2(n + 1/2)2 ≠ (n + 1)2

"
= 1

N22+3m/2

.

We see in particular that wm,n æ 0 when m æ Œ. Also, all coordinates were
equal, i.e. wm,0 = wm,1 = wm,2 = · · · . It is not too hard to convince oneself
that this equality has to do with the fact that f is linear. We see also that
there were a lot of computations even in this very simple example. For most
functions we therefore usually do not compute wm,n symbolically, but instead
run implementations like DWTImpl, IDWTImpl on a computer.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES185

What you should have learned in this section.

• Definition of the m-level Discrete Wavelet Transform.

• Implementation of the Haar wavelet transform and its inverse.

• Experimentation with wavelets on sound.

Exercise 5.9: Implement IDWT for The Haar wavelet
Write a function IDWTKernelHaar which uses the formulas (5.24) in the com-
pendium to implement the IDWT, similarly to how the function DWTKernelHaar
implemented the DWT using the formulas (5.25) in the compendium.

Exercise 5.10: Computing projections
Generalize Exercise 5.4 to the projections from Vm+1

onto Vm and Wm.

Exercise 5.11: Scaling a function
Show that f(t) œ Vm if and only if g(t) = f(2t) œ Vm+1

.

Exercise 5.12: Direct sums
Let C

1

, C
2

. . . , Cn be independent vector spaces, and let Ti : Ci æ Ci be linear
transformations. The direct sum of T

1

, T
2

,. . . ,Tn, written as T
1

ü T
2

ü . . . ü Tn,
denotes the linear transformation from C

1

ü C
2

ü · · · ü Cn to itself defined by

T
1

ü T
2

ü . . . ü Tn(c
1

+ c

2

+ · · · + cn) = T
1

(c
1

) + T
2

(c
2

) + · · · + Tn(cn)

when c

1

œ C
1

, c
2

œ C
2

, . . . , cn œ Cn. Similarly, when A
1

, A
2

, . . . , An are square
matrices, A

1

ü A
2

ü · · · ü An is defined as the block matrix where the blocks
along the diagonal are A

1

, A
2

, . . . , An, and where all other blocks are 0. Show
that, if Bi is a basis for Ci then

[T
1

ü T
2

ü . . . ü Tn]
(B1,B2,...,Bn)

= [T
1

]B1 ü [T
2

]B2 ü · · · ü [Tn]Bn ,

Here two new concepts are used: a direct sum of matrices, and a direct sum of
linear transformations.

Exercise 5.13: Eigenvectors of direct sums
Assume that T

1

and T
2

are matrices, and that the eigenvalues of T
1

are equal
to those of T

2

. What are the eigenvalues of T
1

ü T
2

? Can you express the
eigenvectors of T

1

ü T
2

in terms of those of T
1

and T
2

?

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES186

Exercise 5.14: Invertibility of direct sums
Assume that A and B are square matrices which are invertible. Show that AüB
is invertible, and that (A ü B)≠1 = A≠1 ü B≠1.

Exercise 5.15: Multiplying direct sums
Let A, B, C, D be square matrices of the same dimensions. Show that (A ü
B)(C ü D) = (AC) ü (BD).

Exercise 5.16: Finding N

Assume that you run an m-level DWT on a vector of length r. What value of
N does this correspond to? Note that an m-level DWT performs a change of
coordinates from �m to (�

0

,
0

,
1

, . . . , m≠2

, m≠1

).

Exercise 5.17: Di�erent DWTs for similar vectors
In Figure 5.13 we have plotted the DWT’s of two vectors x

1

and x

2

. In both
vectors we have 16 ones followed by 16 zeros, and this pattern repeats cyclically
so that the length of both vectors is 256. The only di�erence is that the second
vector is obtained by delaying the first vector with one element.

Figure 5.13: 2 vectors x

1

and x

2

which seem equal, but where the DWT’s are
very di�erent.

You see that the two DWT’s are very di�erent: For the first vector we see
that there is much detail present (the second part of the plot), while for the
second vector there is no detail present. Attempt to explain why this is the case.
Based on your answer, also attempt to explain what can happen if you change
the point of discontinuity for the piecewise constant function in Figure 5.20(a)
to something else.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES187

Exercise 5.18: Plotting the DWT on a sound
Run a 2-level DWT on the first 217 sound samples of the audio file castanets.wav,
and plot the values of the resulting DWT-coe�cients. Compare the values of
the coe�cients from V

0

with those from W
0

and W
1

.

Exercise 5.19: Zeroing out DWT coe�cients
In this exercise we will experiment with applying an m-level DWT to a sound
file.

a) Write a function playDWT which takes m, a DWT kernel f, an IDWT kernel
invf, and a variable lowres as input, and

• reads the audio file castanets.wav,

• performs an m-level DWT to the first 217 sound samples of x using the
function DWTImpl with DWT kernel f,

• sets all wavelet coe�cients representing detail to zero if lowres is true
(i.e. keep only the coordinates from �

0

in the basis (�
0

,
0

,
1

, . . . , m≠2

, m≠1

)),

• sets all low-resolution coe�cients to zero if lowres is false (i.e. zero out
the coordinates from �

0

and keep the others),

• performs an IDWT on the resulting coe�cients using the function IDWTImpl
with IDWT kernel invf,

• plays the resulting sound.

b) Do the sound samples returned by playDWT lie in [≠1, 1]?

c) Run the function playDWT with DWTKernelHaar and IDWTKernelHaar as
inputs, and for di�erent values of m, with ‘lowres‘ set to true (i.e. with the
low-resolution approximation chosen). For which m can you hear that the sound
gets degraded? How does it get degraded? Compare with what you heard
through the function playDFT in Example 2.27, where you performed a DFT on
the sound sample instead, and set some of the DFT coe�cients to zero.

d) Repeat the listening experiment from c., but this time with lowres set to
false (i.e. keep only the detail from W

0

, W
1

, What kind of sound do you
hear? Can you recognize the original sound in what you hear?

Exercise 5.20: Construct a sound
Attempt to construct a (nonzero) sound where the function playDWT form the
previous exercise does not change the sound for m = 1, 2.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES188

Exercise 5.21: Exact computation of wavelet coe�cients 1
Compute the wavelet detail coe�cients analytically for the functions in Exam-
ple 5.20, i.e. compute the quantities wm,n =

s N

0

f(t)Âm,n(t)dt similarly to how
this was done in Example 5.21.

Exercise 5.22: Exact compution of wavelet coe�cients 2
Compute the wavelet detail coe�cients analytically for the functions f(t) =

!
t

N

"k,
i.e. compute the quantities wm,n =

s N

0

!
t

N

"k
Âm,n(t)dt similarly to how this was

done in Example 5.21. How do these compare with the coe�cients from the
Exercise 5.21?

Exercise 5.23: Computing the DWT of a simple vector
Suppose that we have the vector x with length 210 = 1024, defined by xn = 1
for n even, xn = ≠1 for n odd. What will be the result if you run a 10-level
DWT on x? Use the function DWTImpl to verify what you have found.

Hint. We defined Â by Â(t) = („
1,0(t) ≠ „

1,1(t))/
Ô

2. From this connection it
follows that Â

9,n = („
10,2n ≠„

10,2n+1

)/
Ô

2, and thus „
10,2n ≠„

10,2n+1

=
Ô

2Â
9,n.

Try to couple this identity with the alternating sign you see in x.

Exercise 5.24: The Haar wavelet when N is odd
Use the results from Exercise 5.8 to rewrite the implementations DWTKernelHaar
and IDWTKernelHaar so that they also work in the case when N is odd.

Exercise 5.25: in-place DWT
Show that the coordinates in �m after an in-place m-level DWT end up at
indices k2m, k = 0, 1, 2, Show similarly that the coordinates in m after an
in-place m-level DWT end up at indices 2m≠1 + k2m, k = 0, 1, 2, Find these
indices in the code for the function reorganize_coefficients.

5.4 A wavelet based on piecewise linear func-
tions

Unfortutately, piecewise constant functions are too simple to provide good
approximations. In this section we are going to extend the construction of
wavelets to piecewise linear functions. The advantage is that piecewise linear
functions are better for approximating smooth functions and data than piecewise
constants, which should translate into smaller components (errors) in the detail
spaces in many practical situations. As an example, this would be useful if we
are interested in compression. In this new setting it turns out that we loose the

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES189

orthonormality we had for the Haar wavelet. On the other hand, we will see
that the new scaling functions and mother wavelets are symmetric functions.
We will later see that this implies that the corresponding DWT and IDWT have
simple implementations with higher precision. Our experience from deriving
Haar wavelets will guide us in the construction of piecewise linear wavelets. The
first task is to define the new resolution spaces.

Definition 5.22. Resolution spaces of piecewise linear functions.
The space Vm is the subspace of continuous functions on R which are periodic

with period N , and linear on each subinterval of the form [n2≠m, (n + 1)2≠m).

Figure 5.14: A piecewise linear function and the two functions „(t) and „(t ≠ 3).

Any f œ Vm is uniquely determined by its values in the points {2≠mn}2

mN≠1

n=0

.
The linear mapping which sends f to these samples is thus an isomorphism from
Vm onto RN2

m , so that the dimension of Vm is N2m. The lft plot in Figure 5.14
shows an example of a piecewise linear function in V

0

on the interval [0, 10]. We
note that a piecewise linear function in V

0

is completely determined by its value
at the integers, so the functions that are 1 at one integer and 0 at all others are
particularly simple and therefore interesting, see the right plot in Figure 5.14.
These simple functions are all translates of each other and can therefore be built
from one scaling function, as is required for a multiresolution analysis.

Lemma 5.23. The function „.
Let the function „ be defined by

„(t) =
I

1 ≠ |t|, if ≠1 Æ t Æ 1;
0, otherwise;

(5.26)

and for any m Ø 0 set

„m,n(t) = 2m/2„(2mt ≠ n) for n = 0, 1, . . . , 2mN ≠ 1,

and �m = {„m,n}2

mN≠1

n=0

. �m is a basis for Vm, and „
0,n(t) is the function in V

0

with smallest support that is nonzero at t = n.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES190

Proof. It is clear that „m,n œ Vm, and

„m,nÕ(n2≠m) = 2m/2„(2m(2≠mn) ≠ nÕ) = 2m/2„(n ≠ nÕ).
Since „ is zero at all nonzero integers, and „(0) = 1, we see that „m,nÕ(n2≠m) =
2m/2 when nÕ = n, and 0 if nÕ ”= n. Let Lm : Vm æ RN2

m be the isomorphism
mentioned above which sends f œ Vm to the samples in the points {2≠mn}2

mN≠1

n=0

.
Our calculation shows that Lm(„m,n) = 2m/2en. Since Lm is an isomorphism it
follows that �m = {„m,n}2

mN≠1

n=0

is a basis for Vm.
Suppose that the function g œ V

0

has smaller support than „
0,n, but is

nonzero at t = n. We must have that L
0

(g) = cen for some c, since g is zero on
the integers di�erent from n. But then g is a multiple of „

0,n, so that it is the
function in V

0

with smallest support that is nonzero at t = n.

The function „ and its translates and dilates are often referred to as hat
functions for obvious reasons. Note that the new function „ is nonzero for small
negative x-values, contrary to the „ we defined in Chapter 5. If we plotted the
function on [0, N), we would see the nonzero parts at the beginning and end of
this interval, due to the period N , but we will mostly plot on an interval around
zero, since such an interval captures the entire support of the function. Also for
the piecewise linear wavelet the coordinates of a basis function is given by the
samples:

Lemma 5.24. Writing in terms of the samples.
A function f œ Vm may be written as

f(t) =
2

mN≠1ÿ

n=0

f(n/2m)2≠m/2„m,n(t). (5.27)

An essential property also here is that the spaces are nested.

Lemma 5.25. Resolution spaces are nested.
The piecewise linear resolution spaces are nested,

V
0

µ V
1

µ · · · µ Vm µ · · · .

Proof. We only need to prove that V
0

µ V
1

since the other inclusions are similar.
But this is immediate since any function in V

0

is continuous, and linear on any
subinterval in the form [n/2, (n + 1)/2).

In the piecewise constant case, we saw in Lemma 5.5 that the scaling functions
were automatically orthogonal since their supports did not overlap. This is not
the case in the linear case, but we could orthogonalise the basis �m with the
Gram-Schmidt process from linear algebra. The disadvantage is that we lose the
nice local behaviour of the scaling functions and end up with basis functions
that are nonzero over all of [0, N]. And for most applications, orthogonality is
not essential; we just need a basis. The next step in the derivation of wavelets is
to find formulas that let us express a function given in the basis �

0

for V
0

in
terms of the basis �

1

for V
1

.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES191

Lemma 5.26. The two-scale equation.
The functions „

0,n satisfy the relation

„
0,n = 1Ô

2

3
1
2„

1,2n≠1

+ „
1,2n + 1

2„
1,2n+1

4
. (5.28)

Figure 5.15: How „(t) can be decomposed as a linear combination of „
1,≠1

,
„

1,0, and „
1,1.

Proof. Since „
0,n is in V

0

it may be expressed in the basis �
1

with formula
(5.27),

„
0,n(t) = 2≠1/2

2N≠1ÿ

k=0

„
0,n(k/2)„

1,k(t).

The relation (5.28) now follows since

„
0,n

!
(2n ≠ 1)/2

"
= „

0,n

!
(2n + 1)/2

"
= 1/2, „

0,n(2n/2) = 1,

and „
0,n(k/2) = 0 for all other values of k.

The relationship given by Equation (5.28) is shown in Figure 5.15.

5.4.1 Detail spaces and wavelets
The next step in our derivation of wavelets for piecewise linear functions is
the definition of the detail spaces. We need to determine a space W

0

that is
linearly independent from V

0

, and so that V
1

= V
0

ü W
0

. In the case of piecewise
constant functions we started with a function g

1

in V
1

, computed the least
squares approximation g

0

in V
0

, and then defined the error function e
0

= g
1

≠ g
0

,
with e

0

œ W
0

and W
0

as the orthogonal complement of V
0

in V
1

.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES192

It turns out that this strategy is less appealing in the case of piecewise linear
functions. The reason is that the functions „

0,n are not orthogonal anymore
(see Exercise 5.26). Due to this we have no simple, orthogonal basis for the
set of piecewise linear functions, so that the orthogonal decomposition theorem
fails to give us the projection onto V

0

in a simple way. It is therefore no reason
to use the orthogonal complement of V

0

in V
1

as our error space, since it is
hard to write a piecewise linear function as a sum of two other piecewise linear
functions which are orthogonal. Instead of using projections to find low-resolution
approximations, and orthogonal complements to find error functions, we will
attempt the following simple approximation method:
Definition 5.27. Alternative projection.

Let g
1

be a function in V
1

given by

g
1

=
2N≠1ÿ

n=0

c
1,n„

1,n. (5.29)

The approximation g
0

= P (g
1

) in V
0

is defined as the unique function in V
0

which has the same values as g
1

at the integers, i.e.

g
0

(n) = g
1

(n), n = 0, 1, . . . , N ≠ 1. (5.30)
It is easy to show that P (g

1

) actually is di�erent from the projection of g
1

onto V
0

: If g
1

= „
1,1, then g

1

is zero at the integers, and then clearly P (g
1

) = 0.
But in Exercise 5.27 you will be asked to compute the projection onto V

0

using
di�erent means than the orthogonal decomposition theorem, and the result will
be seen to be nonzero. It is also very easy to see that the coordinates of g

0

in �
0

can be obtained by dropping every second coordinate of g
0

in �
1

. To be more
precise, the following holds:
Lemma 5.28. Expression for the alternative projection.

We have that

P („
1,n) =

IÔ
2„

0,n/2

, if n is an even integer;
0, otherwise.

Once this approximation method is determined, it is straightforward to
determine the detail space as the space of error functions.
Lemma 5.29. Resolution spaces.

Define

W
0

= {f œ V
1

| f(n) = 0, for n = 0, 1, . . . , N ≠ 1},

and

Â(t) = 1Ô
2

„
1,1(t) Âm,n(t) = 2m/2Â(2mt ≠ n). (5.31)

Suppose that g
1

œ V
1

and that g
0

= P (g
1

). Then

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES193

• the error e
0

= g
1

≠ g
0

lies in W
0

,

•
0

= {Â
0,n}N≠1

n=0

is a basis for W
0

.

• V
0

and W
0

are linearly independent, and V
1

= V
0

ü W
0

.

Proof. Since g
0

(n) = g
1

(n) for all integers n, e
0

(n) = (g
1

≠ g
0

)(n) = 0, so that
e

0

œ W
0

. This proves the first statement.
For the second statement, note first that

Â
0,n(t) = Â(t ≠ n) = 1Ô

2
„

1,1(t ≠ n) = „(2(t ≠ n) ≠ 1) = „(2t ≠ (2n + 1)) = 1Ô
2

„
1,2n+1

(t).

(5.32)

0

is thus a linearly independent set of dimension N , since it corresponds to a
subset of �

1

. Since „
1,2n+1

is nonzero only on (n, n + 1), it follows that all of
0

lies in W
0

. Clearly then
0

is also a basis for W
0

, since W
0

also has dimension
N (its image under L

1

consists of points where every second component is zero).
Consider finally a linear combination from �

0

and
0

which gives zero:

N≠1ÿ

n=0

an„
0,n +

N≠1ÿ

n=0

bnÂ
0,n = 0.

If we evaluate this at t = k, we see that Â
0,n(k) = 0, „

0,n(k) = 0 when n ”= k,
and „

0,k(k) = 1. When we evaluate at k we thus get ak, which must be zero. If
we then evaluate at t = k + 1/2 we get in a similar way that all bn = 0, and it
follows that V

0

and W
0

are linearly independent. That V
1

= V
0

ü W
0

follows
from the fact that V

1

has dimension 2N , and V
0

and W
0

both have dimension
N .

We can define Wm in a similar way for m > 0, and generalize the lemma
to Wm. We can thus state the following analog to Theorem 5.16 for writing
gm œ Vm as a sum of a low-resolution approximation gm≠1

œ Vm≠1

, and a
detail/error component em≠1

œ Wm≠1

.

Theorem 5.30. Decomposing Vm.
The space Vm can be decomposed as the direct sum Vm = Vm≠1

ü Wm≠1

where

Wm≠1

= {f œ Vm | f(n/2m≠1) = 0, for n = 0, 1, . . . , 2m≠1N ≠ 1}.

Wm has the base m = {Âm,n}2

mN≠1

n=0

, and Vm has the two bases

�m = {„m,n}2

mN≠1

n=0

, and (�m≠1

, m≠1

) =
!{„m≠1,n}2

m≠1N≠1

n=0

, {Âm≠1,n}2

m≠1N≠1

n=0

"
.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES194

With this result we can define the DWT and the IDWT with their stages
as before, but the matrices thesemselves are now di�erent. For the IDWT
(i.e. P�1Ω(�0, 0)

), the columns in the matrix can be found from equations (5.28)
and (5.32), i.e.

„
0,n = 1Ô

2

3
1
2„

1,2n≠1

+ „
1,2n + 1

2„
1,2n+1

4

Â
0,n = 1Ô

2
„

1,2n+1

. (5.33)

For the DWT we can find the columns in the matrix by rewriting these equations
to

1Ô
2

„
1,2n = „

0,n ≠ 1
2
Ô

2
„

1,2n≠1

≠ 1
2
Ô

2
„

1,2n+1

1Ô
2

„
1,2n+1

= Â
0,n,

so that

„
1,2n =

Ô
2„

0,n ≠ 1
2„

1,2n≠1

≠ 1
2„

1,2n+1

= ≠
Ô

2
2 Â

0,n≠1

+
Ô

2„
0,n ≠

Ô
2

2 Â
0,n

(5.34)
„

1,2n+1

=
Ô

2Â
0,n. (5.35)

Example 5.31. DWT on sound.
Later we will write algorithms which performs the DWT/IDWT for the

piecewise linear wavelet, similarly to how we implemented the Haar wavelet
transformation in the previous chapter. This gives us new kernel transformations,
which we will call DWTKernelpwl0, IDWTKernelpwl0 (The 0 stands for 0 vanishing
moments. We defined vanishing moments after Observation 5.14. We will have
more to say about vanishing moments later). Using these new kernels, let us plot
the detail/error in the test audio file castanets.wav for di�erent resolutions, as
we did in Example 5.19. The result is shown in Figure 5.16. When comparing
with Figure 5.11 we see much of the same, but it seems here that the error is
bigger than before. In the next section we will try to explain why this is the
case, and construct another wavelet based on piecewise linear functions which
remedies this.

Example 5.32. DWT on the samples of a mathematical function.
Let us also repeat Exercise 5.20, where we plotted the detail/error at di�erent

resolutions, for the samples of a mathematical function. Figure 5.17 shows the
new plot.

With the square wave we see now that there is an error. The reason is that
a piecewise constant function can not be represented exactly by piecewise linear

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES195

Figure 5.16: The error (i.e. the contribution from W
0

ü W
1

ü · · · ü Wm≠1

) in
the sound file castanets.wav, for m = 1 and m = 2, respectively.

Figure 5.17: The error (i.e. the contribution from W
0

ü W
1

ü · · · ü Wm≠1

) for
N = 1025 when f is a square wave, the linear function f(t) = 1 ≠ 2|1/2 ≠ t/N |,
and the trigonometric function f(t) = 1/2 + cos(2fit/N)/2, respectivey. The
detail is indicated for m = 6 and m = 8.

functions, due to discontinuity. For the second function we see that there is no
error. The reason is that this function is piecewise linear, so there is no error
when we represent the function from the space V

0

. With the third function,
hoewever, we see an error.

What you should have learned in this section.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES196

• Definition of scaling function, mother wavelet, resolution spaces, and detail
spaces for the wavelet of piecewise linear functions.

Exercise 5.26: The sample values are coordinates
Show that, for f œ V

0

we have that [f]�0 = (f(0), f(1), . . . , f(N ≠ 1)). This
generalizes the result for piecewise constant functions.

Exercise 5.27: Computing projections
In this exercise we will show how the projection of „

1,1 onto V
0

can be computed.
We will see from this that it is nonzero, and that its support is the entire [0, N].
Let f = projV0„

1,1, and let xn = f(n) for 0 Æ n < N . This means that, on
(n, n + 1), f(t) = xn + (xn+1

≠ xn)(t ≠ n).

a) Show that
s n+1

n
f(t)2dt = (x2

n + xnxn+1

+ x2

n+1

)/3.

b) Show that

⁄
1/2

0

(x
0

+ (x
1

≠ x
0

)t)„
1,1(t)dt = 2

Ô
2

3
1
12x

0

+ 1
24x

1

4

⁄
1

1/2

(x
0

+ (x
1

≠ x
0

)t)„
1,1(t)dt = 2

Ô
2

3
1
24x

0

+ 1
12x

1

4
.

c) Use the fact that

⁄ N

0

(„
1,1(t) ≠

N≠1ÿ

n=0

xn„
0,n(t))2dt

=
⁄

1

0

„
1,1(t)2dt ≠ 2

⁄
1/2

0

(x
0

+ (x
1

≠ x
0

)t)„
1,1(t)dt ≠ 2

⁄
1

1/2

(x
0

+ (x
1

≠ x
0

)t)„
1,1(t)dt

+
N≠1ÿ

n=0

⁄ n+1

n

(xn + (xn≠1

≠ xn)t)2dt

and a) and b) to find an expression for Î„
1,1(t) ≠ qN≠1

n=0

xn„
0,n(t)Î2.

d) To find the minimum least squares error, we can set the gradient of the
expression in c. to zero, and thus find the expression for the projection of „

1,1

onto V
0

. Show that the values {xn}N≠1

n=0

can be found by solving the equation
Sx = b, where S = 1

3

{1, 4, 1} is an N ◊ N symmetric filter, and b is the vector
with components b

0

= b
1

=
Ô

2/2, and bk = 0 for k Ø 2.

e) Solve the system in d. for some values of N to verify that the projection of
„

1,1 onto V
0

is nonzero, and that its support covers the entire [0, N].

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES197

Exercise 5.28: Non-orthogonality for the piecewise linear
wavelet
Show that

È„
0,n, „

0,nÍ = 2
3 È„

0,n, „
0,n±1

Í = 1
6 È„

0,n, „
0,n±kÍ = 0 for k > 1.

As a consequence, the {„
0,n}n are neither orthogonal, nor have norm 1.

Exercise 5.29: Wavelets based on polynomials
The convolution of two functions defined on (≠Œ, Œ) is defined by

(f ú g)(x) =
⁄ Œ

≠Œ
f(t)g(x ≠ t)dt.

Show that we can obtain the piecewise linear „ we have defined as „ = ‰
[≠1/2,1/2)

ú
‰

[≠1/2,1/2)

(recall that ‰
[≠1/2,1/2)

is the function which is 1 on [≠1/2, 1/2) and
0 elsewhere). This gives us a nice connection between the piecewise constant
scaling function (which is similar to ‰

[≠1/2,1/2)

) and the piecewise linear scaling
function in terms of convolution.

5.5 Alternative wavelet based on piecewise lin-
ear functions

For the scaling function used for piecewise linear functions, {„(t≠n)}
0Æn<N were

not orthogonal anymore, contrary to the case for piecewise constant functions. We
were still able to construct what we could call resolution spaces and detail spaces.
We also mentioned that having many vanishing moments is desirable for a mother
wavelet, and that the scaling function used for piecewise constant functions had
one vanishing moment. It is easily checked, however, that the mother wavelet
we now introduced for piecewise linear functions (i.e. Â(t) = 1Ô

2

„
1,1(t)) has no

vanishing moments. Therefore, this is not a very good choice of mother wavelet.
We will attempt the following adjustment strategy to construct an alternative
mother wavelet Â̂ which has two vanishing moments, i.e. one more than the Haar
wavelet.

Idea 5.33. Adjusting the wavelet construction.
Adjust the wavelet construction in Theorem 5.30 to

Â̂ = Â ≠ –„
0,0 ≠ —„

0,1 (5.36)

and choose –, — so that
⁄ N

0

Â̂(t) dt =
⁄ N

0

tÂ̂(t) dt = 0, (5.37)

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES198

and define m = {Â̂m,n}N2

m≠1

n=0

, and Wm as the space spanned by m.

We thus have two free variables –, — in Equation (5.36), to enforce the two
conditions in Equation (5.37). In Exercise 5.30 you are taken through the details
of solving this as two linear equations in the two unknowns – and —, and this
gives the following result:

Lemma 5.34. The new function Â.
The function

Â̂(t) = Â(t) ≠ 1
4

!
„

0,0(t) + „
0,1(t)

"
(5.38)

satisfies the conditions (5.37).

Using Equation (5.28), which stated that

„
0,n = 1Ô

2

3
1
2„

1,2n≠1

+ „
1,2n + 1

2„
1,2n+1

4
, (5.39)

we get

Â̂
0,n = Â

0,n ≠ 1
4

!
„

0,n + „
0,n+1

"

= 1Ô
2

„
1,2n+1

≠ 1
4

1Ô
2

3
1
2„

1,2n≠1

+ „
1,2n + 1

2„
1,2n+1

4

≠ 1
4

1Ô
2

3
1
2„

1,2n+1

+ „
1,2n+2

+ 1
2„

1,2n+3

4

= 1Ô
2

3
≠1

8„
1,2n≠1

≠ 1
4„

1,2n + 3
4„

1,2n+1

≠ 1
4„

1,2n+2

≠ 1
8„

1,2n+3

4
(5.40)

Note that what we did here is equivalent to finding the coordinates of Â̂ in the
basis �

1

: Equation (5.38) says that

[Â̂]
(�0, 0)

= (≠1/4, ≠1/4, 0, . . . , 0) ü (1, 0, . . . , 0). (5.41)
Since the IDWT is the change of coordinates from (�

0

,
0

) to �
1

, we could also
have computed [Â̂]�1 by taking the IDWT of (≠1/4, ≠1/4, 0, . . . , 0)ü(1, 0, . . . , 0).
In the next section we will consider more general implementations of the DWT
and the IDWT, which we thus can use instead of performing the computation
above.

In summary we have

„
0,n = 1Ô

2
(1
2„

1,2n≠1

+ „
1,2n + 1

2„
1,2n+1

)

Â̂
0,n = 1Ô

2

3
≠1

8„
1,2n≠1

≠ 1
4„

1,2n + 3
4„

1,2n+1

≠ 1
4„

1,2n+2

≠ 1
8„

1,2n+3

4
,

(5.42)

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES199

which gives us the change of coordinate matrix P�1Ω(�0, 0)

. The new function
Â̂ is plotted in Figure 5.18.

Figure 5.18: The function Â̂ we constructed as an alternative wavelet for
piecewise linear functions.

We see that Â̂ has support (≠1, 2), and consist of four linear segments glued
together. This is in contrast with the old Â, which was simpler in that it had the
shorther support (0, 1), and consisted of only two linear segments glued together.
It may therefore seem surprising that Â̂ is better suited for approximating
functions than Â. This is indeed a more complex fact, which may not be deduced
by simply looking at plots of the functions.

Example 5.35. DWT on sound.
Also in this case we will see later how to write kernel transformations

for the alternative piecewise wavelet. We will call these DWTKernelpwl2 and
IDWTKernelpwl2 (2 stands for 2 vanishing moments). Using these we can plot
the detail/error in the test audio file castanets.wav for di�erent resolutions
for our alternative wavelet, as we did in Example 5.19. The result is shown in
Figure 5.19. Again, when comparing with Figure 5.11 we see much of the same.
It is di�cult to see an improvement from this figure. However, this figure also
clearly shows a smaller error than the wavelet of the preceding section. A partial
explanation is that the wavelet we now have constructed has two vanishing
moments, while the previous one had not.

Example 5.36. DWT on the samples of a mathematical function.
Let us also repeat Exercise 5.20 for our alternative wavelet, where we plotted

the detail/error at di�erent resolutions, for the samples of a mathematical
function. Figure 5.20 shows the new plot.

Again for the square wave there is an error, which seems to be slightly lower
than for the previous wavelet. For the second function we see that there is no
error, as before. The reason is the same as before, since the function is piecewise

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES200

Figure 5.19: The error (i.e. the contribution from W
0

ü W
1

ü · · · ü Wm≠1

) in
the sound file castanets.wav, for m = 1 and m = 2, respectively.

Figure 5.20: The error (i.e. the contribution from W
0

ü W
1

ü · · · ü Wm≠1

) for
N = 1025 when f is a square wave, the linear function f(t) = 1 ≠ 2|1/2 ≠ t/N |,
and the trigonometric function f(t) = 1/2 + cos(2fit/N)/2, respectivey. The
detail is indicated for m = 6 and m = 8.

linear. With the third function there is an error. The error seems to be slightly
lower than for the previous wavelet, which fits well with tha fact that this new
wavelet has a bigger number of vanishing moments.

Example 5.37. Playing sound.
In Exercise 5.19 we implemented a function playDWT which could play the

low resolution part in a sound, and we tested this for the Haar wavelet. Let
us now also test this for the two piecewise linear wavelets we have constructed,

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES201

and the new wavelet kernels we have implemented. Code which plays the low
resolution part for all three wavelet kernels can look as follows:

playDWT(m, DWTKernelHaar, IDWTKernelHaar, True)
playDWT(m, DWTKernelpwl0, IDWTKernelpwl0, True)
playDWT(m, DWTKernelpwl2, IDWTKernelpwl2, True)

The first call to playDWT plays the low-resolution part using the Haar wavelet.
The code then moves on to the two piecewise linear wavelets. We clearly hear
di�erent sounds when we run this code for di�erent m, so that the three wavelets
act di�erently on the sound (if you want, you can here write a for-loop around
the code, running through di�erent m). Perhaps the alternative piecewise wavelet
gives a bit better quality.

What you should have learned in this section.

• How one alters the mother wavelet for piecewise linear functions, in order
to add a vanishing moment.

Exercise 5.30: Two vanishing moments
In this exercise we will show that there is a unique function on the form fiven by
Equation (5.36) in the compendium which has two vanishing moments.

a) Show that, when Â̂ is defined by Equation (5.36) in the compendium, we
have that

Â̂(t) =

Y
______]

______[

≠–t ≠ – for ≠ 1 Æ t < 0
(2 + – ≠ —)t ≠ – for 0 Æ t < 1/2
(– ≠ — ≠ 2)t ≠ – + 2 for 1/2 Æ t < 1
—t ≠ 2— for 1 Æ t < 2
0 for all other t

b) Show that

⁄ N

0

Â̂(t)dt = 1
2 ≠ – ≠ —,

⁄ N

0

tÂ̂(t)dt = 1
4 ≠ —.

c) Explain why there is a unique function on the form given by Equation (5.36)
in the compendium which has two vanishing moments, and that this function is
given by Equation (5.38) in the compendium.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES202

Exercise 5.31: Implement finding Â with vanishing mo-
ments
In the previous exercise we ended up with a lot of calculations to find –, — in
Equation (5.36) in the compendium. Let us try to make a program which does
this for us, and which also makes us able to generalize the result.

a) Define

ak =
⁄

1

≠1

tk(1 ≠ |t|)dt, bk =
⁄

2

0

tk(1 ≠ |t ≠ 1|)dt, ek =
⁄

1

0

tk(1 ≠ 2|t ≠ 1/2|)dt,

for k Ø 0. Explain why finding –, — so that we have two vanishing moments
in Equation (5.36) in the compendium is equivalent to solving the following
equation:

3
a

0

b
0

a
1

b
1

4 3
–
—

4
=

3
e

0

e
1

4

Write a program which sets up and solves this system of equations, and use this
program to verify the values for –, — we previously have found.

Hint. you can integrate functions in Python with the function quad in the
package scipy.integrate. As an example, the function „(t), which is nonzero
only on [≠1, 1], can be integrated as follows:

res, err = quad(lambda t: t**k*(1-abs(t)), -1, 1)

b) The procedure where we set up a matrix equation in a) allows for generaliza-
tion to more vanishing moments. Define

Â̂ = Â
0,0 ≠ –„

0,0 ≠ —„
0,1 ≠ “„

0,≠1

≠ ”„
0,2. (5.43)

We would like to choose –, —, “, ” so that we have 4 vanishing moments. Define
also

gk =
⁄

0

≠2

tk(1 ≠ |t + 1|)dt, dk =
⁄

3

1

tk(1 ≠ |t ≠ 2|)dt

for k Ø 0. Show that –, —, “, ” must solve the equation
Q

cca

a
0

b
0

g
0

d
0

a
1

b
1

g
1

d
1

a
2

b
2

g
2

d
2

a
3

b
3

g
3

d
3

R

ddb

Q

cca

–
—
“
”

R

ddb =

Q

cca

e
0

e
1

e
2

e
3

R

ddb ,

and solve this with your computer.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES203

c) Plot the function defined by (5.43) in the compendium, which you found in
b.

Hint. If t is the vector of t-values, and you write

(t >= 0)*(t <= 1)*(1-2*abs(t-0.5))

you get the points „
1,1(t).

d) Explain why the coordinate vector of Â̂ in the basis (�
0

,
0

) is

[Â̂]
(�0, 0)

= (≠–, ≠—, ≠”, 0, . . . , 0 ≠ “) ü (1, 0, . . . , 0).

Hint. You can also compare with Equation (5.41) in the compendium here.
The placement of ≠“ may seem a bit strange here, and has to with that „

0,≠1

is
not one of the basis functions {„

0,n}N≠1

n=0

. However, we have that „
0,≠1

= „
0,N≠1

,
i.e. „(t + 1) = „(t ≠ N + 1), since we always assume that the functions we work
with have period N .

e) Sketch a more general procedure than the one you found in b., which can be
used to find wavelet bases where we have even more vanishing moments.

Exercise 5.32: Â for the Haar wavelet with two vanishing
moments
Let „(t) be the function we used when we defined the Haar-wavelet.

a) Compute projV0(f(t)), where f(t) = t2, and where f is defined on [0, N).

b) Find constants –, — so that Â̂(t) = Â(t)≠–„
0,0(t)≠—„

0,1(t) has two vanishing
moments, i.e. so that ÈÂ̂, 1Í = 0, and ÈÂ̂, tÍ = 0. Plot also the function Â̂.

Hint. Start with computing the integrals
s

Â(t)dt,
s

tÂ(t)dt,
s

„
0,0(t)dt,

s
„

0,1(t)dt,
and

s
t„

0,0(t)dt,
s

t„
0,1(t)dt.

c) Express „ and Â̂ with the help of functions from �

1

, and use this to write
down the change of coordinate matrix from (�

0

, ̂
0

) to �
1

.

Exercise 5.33: More vanishing moments for the Haar wavelet
It is also possible to add more vanishing moments to the Haar wavelet. Define

Â̂ = Â
0,0 ≠ a

0

„
0,0 ≠ · · · ≠ ak≠1

„
0,k≠1

.

Define also cr,l =
s l+1

l
trdt, and er =

s
1

0

trÂ(t)dt.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES204

a) Show that Â̂ has k vanishing moments if and only if a
0

, . . . , ak≠1

solves the
equation

Q

ccca

c
0,0 c

0,1 · · · c
0,k≠1

c
1,0 c

1,1 · · · c
1,k≠1

...
...

...
...

ck≠1,0 ck≠1,1 · · · ck≠1,k≠1

R

dddb

Q

ccca

a
0

a
1

...
ak≠1

R

dddb
=

Q

ccca

e
0

e
1

...
ek≠1

R

dddb
(5.44)

b) Write a function vanishingmomshaar which takes k as input, solves Equation
(5.44) in the compendium, and returns the vector a = (a

0

, a
1

, . . . , ak≠1

).

Exercise 5.34: Listening experiments
Run the function playDWT for di�erent m for the Haar wavelet, the piecewise
linear wavelet, and the alternative piecewise linear wavelet, but listen to the
detail components W

0

ü W
1

ü · · · ü Wm≠1

instead. Describe the sounds you hear
for di�erent m, and try to explain why the sound seems to get louder when you
increase m.

5.6 Multiresolution analysis: A generalization
Let us summarize the properties of the spaces Vm. In both our examples we
showed that they were nested, i.e.

V
0

µ V
1

µ V
2

µ · · · µ Vm µ · · · .

We also showed that continuous functions could be approximated arbitrarily
well from Vm, as long as m was chosen large enough. Moreover, the space V

0

is
closed under all translates, at least if we view the functions in V

0

as periodic
with period N . In the following we will always identify a function with this
periodic extension, just as we did in Fourier analysis. When performing this
identification, we also saw that f(t) œ Vm if and only if g(t) = f(2t) œ Vm+1

.
We have therefore shown that the scaling functions we have considered fit into
the following general framework.

Definition 5.38. Multiresolution analysis.
A Multiresolution analysis, or MRA, is a nested sequence of function spaces

V
0

µ V
1

µ V
2

µ · · · µ Vm µ · · · , (5.45)

called resolution spaces, so that
Any function can be approximated arbitrarily well from Vm, as long as m is
large enough,
f(t) œ V

0

if and only if f(2mt) œ Vm,
f(t) œ V

0

if and only if f(t ≠ n) œ V
0

for all n.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES205

There is a function „, called a scaling function, so that � = {„(t ≠ n)}
0Æn<N is

a basis for V
0

.
When � is an orthonormal basis we say that the MRA is orthonormal.

The wavelet of piecewise constant functions was an orthonormal MRA, while
the wavelets for piecewise linear functions were not. Although the definition
above states that any function can be approximated with MRA’s, in practice
one needs to restrict to certain functions: Certain pathological functions may be
di�cult to approximate. In the literature one typically requires that the function
is in L2(R), and also that the scaling function and the spaces Vm are in L2(R).
MRA’s are much used, and one can find a wide variety of functions „, not only
piecewise constant functions, which give rise to MRA’s.

In the examples we have considered we also chose a mother wavelet. The
term wavelet is used in very general terms. However, the term mother wavelet
is quite concrete, and is what gives rise to the theory of wavelets. This was
necessary in order to e�ciently decompose the gm œ Vm into a low resolution
approximation gm≠1

œ Vm≠1

, and a detail/error em≠1

in a detail space we called
Wm≠1

. We have freedom in how we define these detail spaces, as well as how we
define a mother wavelet whose translates span the detail space (in general we
choose a mother wavelet which simplifies the computation of the decomposition
gm = gm≠1

+ em≠1

, but we will see later that it also is desirable to choose a
Â with other properties). Once we agree on the detail spaces and the mother
wavelet, we can perform a change of coordinates to find detail and low resolution
approximations. We thus have the following general recipe.

Idea 5.39. Recipe for constructing wavelets.
In order to construct MRA’s which are useful for practical purposes, we need

to do the following:

• Find a function „ which can serve as the scaling function for an MRA,

• Find a function Â so that = {Â(t≠n)}
0Æn<N and � = {„(t≠n)}

0Æn<N

together form an orthonormal basis for V
1

. The function Â is also called a
mother wavelet.

With V
0

the space spanned by � = {„(t ≠ n)}
0Æn<N , and W

0

the space spanned
by = {Â(t ≠ n)}

0Æn<N , „ and Â should be chosen so that we easily can
compute the decomposition of g

1

œ V
1

into g
0

+ e
0

, where g
0

œ V
0

and e
0

œ W
0

.
If we can achieve this, the Discrete Wavelet Transform is defined as the change
of coordinates from �

1

to (�
0

,
0

).

More generally, if

f(t) =
ÿ

n

cm,n„m,n =
ÿ

n

c
0,n„

0,n +
ÿ

mÕ<m,n

wmÕ,nÂmÕ,n,

then the m-level DWT is defined by DWT(cm) = (c
0

,w
0

, . . . ,wm≠1

). It is
useful to interpret m as frequency, n as time, and wm,n as the contribution

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES206

at frequency m and time n. In this sense, wavelets provide a time-frequency
representation of signals. This is what can make them more useful than Fourier
analysis, which only provides frequency representations.

While there are in general many possible choices of detail spaces, in the
case of an orthonormal wavelet we saw that it was natural to choose the detail
space Wm≠1

as the orthogonal complement of Vm≠1

in Vm, and obtain the
mother wavelet by projecting the scaling function onto the detail space. Thus,
for orthonormal MRA’s, the low-resolution approximation and the detail can be
obtained by computing projections, and the least squares approximation of f
from Vm can be computed as

projVm
(f) =

ÿ

n

Èf, „m,nÍ„m,n(t).

5.6.1 Working with the samples of f instead of f

In the MRA-setting it helps to think about the continuous-time function f(t)
as the model for an image, which is the object under study. f itself may not
be in any Vm, however (this corresponds to that detail is present in the image
for infinitely many m), and increasing m corresponds to that we also include
the detail we see when we zoom in on the image. But how can we obtain useful
approximations to f from Vm? In case of an orthonormal MRA we can compute
the least squares approximation as above, but we then need to compute the
integrals Èf, „m,nÍ, so that all function values are needed. However, as before
we have only access to some samples f(2≠mn), 0 Æ n < 2mN . These are called
pixel values in the context of images, so that we can only hope to obtain a good
approximation to f (m) (and thus f) from the pixel values. The following result
explains how we can obtain this.

Theorem 5.40. Using the samples.
If f is continuous, and „ has compact support, we have that, for all t,

f(t) = lim
mæŒ

2

mN≠1ÿ

n=0

2≠m

s N

0

„m,0(t)dt
f(n/2m)„m,n(t).

Proof. We have that

2≠m
2

mN≠1ÿ

n=0

„m,n =
2

mN≠1ÿ

n=0

2≠m„m,0(t ≠ 2≠mn).

We recognize this as a Riemann sum for the integral
s N

0

„m,0(t)dt. Therefore,

lim
mæŒ

2

mN≠1ÿ

n=0

2≠m„m,n =
⁄ N

0

„m,0(t)dt.

Also, finitely many n contribute in this sum since „ has compact support. We
now get that

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES207

2

mN≠1ÿ

n=0

2≠mf(n/2m)„m,n(t) =
ÿ

n so that 2

≠mn¥t

2≠mf(n/2m)„m,n(t)

¥
ÿ

n so that 2

≠mn¥t

2≠mf(t)„m,n(t)

= f(t)
ÿ

n so that 2

≠mn¥t

2≠m„m,n(t) ¥ f(t)
⁄ N

0

„m,0(t)dt.

where we have used the continuity of f and that

lim
mæŒ

2

mN≠1ÿ

n=0

2≠m„m,n =
⁄ N

0

„m,0(t)dt.

The result follows. Note that here we have not used the requirement that
{„(t ≠ n)}n are orthogonal.

The coordinate vector x =
3

2

≠ms N

0
„m,0(t)dt

f(n/2m)
4

2

mN≠1

n=0

in �m is therefore

a candidate to an approximation of both f and f (m) from Vm, using only the
pixel values. Normally one drops the leading constant 2

≠ms N

0
„m,0(t)dt

, so that one

simply considers the sample values f(n/2m) as a coordinate vector in �m. This
is used as the input to the DWT.

5.6.2 Increasing the precision of the DWT
Even though the samples of f give a good approximation to f as above, the
approximation and f are still di�erent, so that we obtain di�erent output from
the DWT. In Section 7.1 we will argue that the output from the DWT is
equivalent to sampling the output from certain analog filters. We would like the
di�erence in the output from these analog filters to be as small as possible. If the
functions „, Â are symmetric around 0, we will also see that the analog filters are
symmetric (a filter is symmetric if and only if the convolution kernel is symmetric
around 0), in which case we know that such a high precision implementation is
possible using the simple technique of symmetric extension. Let us summarize
this as the following idea.

Idea 5.41. Symmetric wavelets.
If the functions „, Â in a wavelet are symmetric around 0, then we can

obtain an implementation of the DWT with higher precision when we consider
symmetric extensions of the input.

Unfortunately, the piecewise constant scaling function we encountered was
not symmetric. However, the piecewise linear scaling function was, and so are
also many other interesting scaling functions we will encounter later. For a

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES208

symmetric function, denote as before the symmetric extension of the input f
with f̆ . If the input x to the DWT are the samples (f(n/2m))2

mN≠1

n=0

, we create
a vector x̆ representing the samples of f̆ . It is clear that this vector should be

x̆ =
3

(f(n/2m))2

mN≠1

n=0

, lim
tæN≠

f(t), (f((2mN ≠ n)/2m))2

mN≠1

n=1

4
.

In this vector there is symmetry around entry 2mN , so that the vector is
determined from the 2mN +1 first elements. Also the boundary is not duplicated,
contrary to the previous symmetric extension given by Definition 4.1. We are
thus lead to define a symmetric extension in the following way instead:

Definition 5.42. Symmetric extension of a vector.
By the symmetric extension of x œ RN , we mean x̆ œ R2N≠2 defined by

x̆k =
;

xk 0 Æ k < N
x

2N≠2≠k N Æ k < 2N ≠ 3 (5.46)

With this notation, N ≠ 1 is the symmetry point in all symmetric extensions.
This is illustrated in Figure 5.21

Figure 5.21: A vector and its symmetric extension. Note that the period of the
vector is now 2N ≠ 2, while it was 2N for the vector shown in Figure 4.1.

From Chapter 4 it follows that symmetric filters preserve the symmetry
around N ≠ 1 when applied to such vectors. We can now define the symmetric
restriction Sr as before, with the definition of symmetric extension replaced with
the above. We now have the following analog to Theorem 4.9. The proof of this
is left as an exercise.

Theorem 5.43. Expression for Sr.
With S =

3
S

1

&S
2

S
3

&S
4

4
œ R2N≠2 ◊ R2N≠2 a symmetric filter, with S

1

œ
RN ◊ RN , S

2

œ RN ◊ RN≠2, we have that Sr = S
1

+
!
0 (S

2

)f &0
"
.

With the Haar wavelet we succeeded in finding a function Â which could be
used in the recipe above. Note, however, that there may be many other ways to

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES209

define a function Â which can be used in the recipe. In the next chapter we will
follow the recipe in order to contruct other wavelets, and we will try to express
which pairs of function „, Â are most interesting, and which resolution spaces
are most interesting.

What you should have learned in this section.

• Definition of a multiresolution analysis.

Exercise 5.35: Prove expression for Sr

Prove Theorem 5.43. Use the proof of Theorem 4.9 as a guide.

Exercise 5.36: Orthonormal basis for the symmetric exten-
sions
In this exercise we will establish an orthonormal basis for the symmetric exten-
sions, as defined by Definition 5.42. This parallels Theorem 4.6.

a) Explain why, if x œ R2N≠2 is a symmetric extension (according to Def-
inition 4.1), then (‚

x)n = zne≠fiin, where z is a real vectors which satisfies
zn = z

2N≠2≠n

b) Show that
I
e

0

,

;
1Ô
2

(ei + e

2N≠2≠i)
<N≠2

n=1

, eN≠1

J
(5.47)

is an orthonormal basis for the vectors on the form ‚
x with x œ R2N≠2 a

symmetric extension.

c) Show that

1Ô
2N ≠ 2

cos
3

2fi
0

2N ≠ 2k

4

;
1Ô

N ≠ 1
cos

3
2fi

n

2N ≠ 2k

4<N≠2

n=1

1Ô
2N ≠ 2

cos
3

2fi
N ≠ 1
2N ≠ 2k

4
(5.48)

is an orthonormal basis for the symmetric extensions in R2N≠2.

d) Assume that S is symmetric. Show that the vectors listed in (5.48) in the
compendium are eigenvectors for Sr, when the vectors are viewed as vectors in
RN , and that they are linearly independent. This shows that Sr is diagonalizable.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES210

Exercise 5.37: Diagonalizing Sr

Let us explain how the matrix Sr can be diagonalized, similarly to how we
previously diagonalized using the DCT. In Exercise 5.36 we showed that the
vectors

;
cos

3
2fi

n

2N ≠ 2k

4<N≠1

n=0

(5.49)

in RN is a basis of eigenvectors for Sr when S is symmetric. Sr itself is not
symmetric, however, so that this basis can not possibly be orthogonal (S is
symmetric if and only if it is orthogonally digonalizable). However, when the
vectors are viewed in R2N≠2 we showed in Exercise 5.36c) an orthogonality
statement which can be written as

2N≠3ÿ

k=0

cos
3

2fi
n

1

2N ≠ 2k

4
cos

3
2fi

n
2

2N ≠ 2k

4
= (N ≠ 1) ◊

Y
_]

_[

2 if n
1

= n
2

œ {0, N ≠ 1}
1 if n

1

= n
2

”œ {0, N ≠ 1}
0 if n

1

”= n
2

.

(5.50)

a) Show that

(N ≠ 1) ◊

Y
_]

_[

1 if n
1

= n
2

œ {0, N ≠ 1}
1

2

if n
1

= n
2

”œ {0, N ≠ 1}
0 if n

1

”= n
2

= 1Ô
2

cos
3

2fi
n

1

2N ≠ 2 · 0
4

1Ô
2

cos
3

2fi
n

2

2N ≠ 2 · 0
4

+
N≠2ÿ

k=1

cos
3

2fi
n

1

2N ≠ 2k

4
cos

3
2fi

n
2

2N ≠ 2k

4

+ 1Ô
2

cos
3

2fi
n

1

2N ≠ 2(N ≠ 1)
4

1Ô
2

cos
3

2fi
n

2

2N ≠ 2(N ≠ 1)
4

.

Hint. Use that cos x = cos(2fi ≠ x) to pair the summands k and 2N ≠ 2 ≠ k.
Now, define the vector d

(I)

n as

dn,N

A
1Ô
2

cos
3

2fi
n

2N ≠ 2 · 0
4

,

;
cos

3
2fi

n

2N ≠ 2k

4<N≠2

k=1

,
1Ô
2

cos
3

2fi
n

2N ≠ 2(N ≠ 1)
4B

,

and define d(I)

0,N = d(I)

N≠1,N = 1/
Ô

N ≠ 1, and d(I)

n,N =


2/(N ≠ 1) when n > 1.
The orthogonal N ◊ N matrix where the rows are d

(I)

n is called the DCT-I,

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES211

and we will denote it by D(I)

N . DCT-I is also much used, just as the DCT-II of
Chapter 4. The main di�erence from the previous cosine vectors is that 2N has
been replaced by 2N ≠ 2.

b) Explain that the vectors d

(I)

n are orthonormal, and that the matrix

Ú
2

N ≠ 1

Q

ccccca

1/
Ô

2 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/

Ô
2

R

dddddb

1
cos

1
2fi n

2N≠2

k
22

Q

ccccca

1/
Ô

2 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/

Ô
2

R

dddddb

is orthogonal.

c) Explain from b. that
1

cos
1

2fi n
2N≠2

k
22≠1

can be written as

2
N ≠ 1

Q

ccccca

1/2 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/2

R

dddddb

1
cos

1
2fi n

2N≠2

k
22

Q

ccccca

1/2 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/2

R

dddddb

With the expression we found in c., Sr can now be diagonalized as
1

cos
1

2fi n
2N≠2

k
22

D
1

cos
1

2fi n
2N≠2

k
22≠1

.

5.7 Summary
We started this chapter by motivating the theory of wavelets as a di�erent
function approximation scheme, which solved some of the shortcomings of Fourier
series. While one approximates functions with trigonometric functions in Fourier
theory, with wavelets one instead approximates a function in several stages,
where one at each stage attempts to capture information at a given resolution,
using a function prototype. This prototype is localized in time, contrary to
the Fourier basis functions, and this makes the theory of wavelets suitable for
time-frequency representations of signals. We used an example based on Google
Earth to illustrate that the wavelet-based scheme can represent an image at
di�erent resolutions in a scalable way, so that passing from one resolution to
another simply mounts to adding some detail information to the lower resolution
version of the image. This also made wavelets useful for compression, since the
images at di�erent resolutions can serve as compressed versions of the image.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES212

We defined the simplest wavelet, the Haar wavelet, which is a function
approximation scheme based on piecewise constant functions, and deduced its
properties. We defined the Discrete Wavelet Transform (DWT) as a change of
coordinates corresponding to the function spaces we defined. This transform is
the crucial object to study when it comes to more general wavelets also, since
it is the object which makes wavelets useful for computation. In the following
chapters, we will see that reordering of the source and target bases of the
DWT will aid in expressing connections between wavelets and filters, and in
constructing optimized implementations of the DWT.

We then defined another wavelet, which corresponded to a function approxi-
mation scheme based on piecewise linear functions, instead of piecewise constant
functions. There were several di�erences with the new wavelet when compared
to the previous one. First of all, the basis functions were not orthonormal, and
we did not attempt to make them orthonormal. The resolution spaces we now
defined were not defined in terms of orthogonal bases, and we had some freedom
on how we defined the detail spaces, since they are not defined as orthogonal
complements anymore. Similarly, we had some freedom on how we define the
mother wavelet, and we mentioned that we could define it so that it is more
suitable for approximation of functions, by adding what we called vanishing
moments.

From these examples of wavelets and their properties we made a generalization
to what we called a multiresolution analysis (MRA). In an MRA we construct
successively refined spaces of functions that may be used to approximate functions
arbitrarily well. We will continue in the next chapter to construct even more
general wavelets, within the MRA framework.

The book [21] goes through developments for wavelets in detail. While
wavelets have been recognized for quite some time, it was with the important
work of Daubechies [8, 9] that they found new arenas in the 80’s. Since then
they found important applications. The main application we will focus on in
later chapters is image processing.

Chapter 6

The filter representation of
wavelets

Previously we saw that analog filters restricted to the Fourier spaces gave rise to
digital filters. These digital filters sent the samples of the input function to the
samples of the output function, and are easily implementable, in contrast to the
analog filters. We have also seen that wavelets give rise to analog filters. This
leads us to believe that the DWT also can be implemented in terms of digital
filters. In this chapter we will prove that this is in fact the case.

There are some di�erences between the Fourier and wavelet settings, however:

• The DWT is not constructed by looking at the samples of a function, but
rather by looking at coordinates in a given basis.

• The function spaces we work in (i.e. Vm) are di�erent from the Fourier
spaces.

• The DWT gave rise to two di�erent types of analog filters: The filter
defined by Equation (7.16) for obtaining cm,n, and the filter defined by
Equation (7.17) for obtaining wm,n. We want both to correspond to digital
filters.

Due to these di�erences, the way we realize the DWT in terms of filters will
be a bit di�erent. Despite the di�erences, this chapter will make it clear
that the output of a DWT can be interpreted as the combined output of two
di�erent filters, and each filter will have an interpretation in terms of frequency
representations. We will also see that the IDWT has a similar interpretation in
terms of filters.

In this chapter we will also see that expressing the DWT in terms of filters
will also enable us to define more general transforms, where even more filters
are used. It is fruitful to think about each filter as concentrating on a particular
frequency range, and that these transforms thus simply splits the input into
di�erent frequency bands. Such transforms have important applications to the

213

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 214

processing and compression of sound, and we will show that the much used MP3
standard for compression of sound takes use of such transforms.

6.1 The filters of a wavelet transformation
We will make the connection with digital filters by looking again at the di�erent
examples of wavelet bases we have seen: The ones for piecewise constant and
piecewise linear functions. For the Haar wavelet we have noted that G and

H are block-diagonal with
A

1Ô
2

1Ô
2

1Ô
2

≠ 1Ô
2

B
repeated along the diagonal. For the

piecewise linear wavelet, Equation (5.33) gives that the first two columns in
G = P�mΩCm take the form

1Ô
2

Q

ccccccca

1 0
1/2 1
0 0
...

...
0 0

1/2 0

R

dddddddb

. (6.1)

The remaining columns are obtained by shifting this, as in a circulant Toeplitz
matrix. Similarly, Equation (5.35) gives that the first two columns in H =
PCmΩ�m take the form

Ô
2

Q

ccccccca

1 0
≠1/2 1

0 0
...

...
0 0

≠1/2 0

R

dddddddb

. (6.2)

Also here, the remaining columns are obtained by shifting this, as in a circulant
Toeplitz matrix. For the alternative piecewise linear wavelet, Equation (5.42)
give all columns in the change of coordinate matrix G = P�mΩCm

also. In
particular, the first two columns in this matrix are

1Ô
2

Q

ccccccccccca

1 ≠1/4
1/2 3/4
0 ≠1/4
0 ≠1/8
0 0
...

...
0 0

1/2 ≠1/8

R

dddddddddddb

. (6.3)

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 215

The first column is the same as before, since there was no change in the definition
of „. The remaining columns are obtained by shifting this, as in a circulant
Toeplitz matrix. We will explain later how the change of coordinate matrix
H = PCmΩ�m

also can be computed.
In each case above it turned out that the kernel transformations G = P�mΩCm

,
H = PCmΩ�m

had a special structure: They were obtained by repeating the first
two columns in a circulant way, similarly to how we did in a circulant Toeplitz
matrix. The matrices were not exactly circulant Toeplitz matrices, however, since
there are two di�erent columns repeating. The change of coordinate matrices
occuring in the stages in a DWT are thus not digital filters, but they seem to be
related. Let us start by giving these new matrices names:

Definition 6.1. MRA-matrices.
An N ◊ N -matrix T , with N even, is called an MRA-matrix if the columns

are translates of the first two columns in alternating order, in the same way as
the columns of a circulant Toeplitz matrix.

From our previous calculations it is clear that, once „ and Â are given
through an MRA, the corresponding change of coordinate matrices will always
be MRA-matrices. The MRA-matrices is our connection between filters and
wavelets. Let us make the following definition:

Definition 6.2. H
0

and H
1

.
We denote by H

0

the (unique) filter with the same first row as H, and by H
1

the (unique) filter with the same second row as H. H
0

and H
1

are also called
the DWT filter components.

Using this definition it is clear that

(Hcm)k =
I

(H
0

cm)k when k is even
(H

1

cm)k when k is odd,

since the left hand side depends only on row k in the matrix H, and this is equal
to row k in H

0

(when k is even) or row k in H
1

(when k is odd). This means
that Hcm can be computed with the help of H

0

and H
1

as follows:

Theorem 6.3. DWT expressed in terms of filters.
Let cm be the coordinates in �m, and let H

0

, H
1

be defined as above. Any
stage in a DWT can ble implemented in terms of filters as follows:

• Compute H
0

cm. The even-indexed entries in the result are the cordinates
cm≠1

in �m≠1

.

• Compute H
1

cm. The odd-indexed entries in the result are the coordinates
wm≠1

in m≠1

.

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 216

This gives an important connection between wavelets and filters: The DWT
corresponds to applying two filters, H

0

and H
1

, and the result from the DWT
is produced by assembling half of the coordinates from each. Keeping only
every second coordinate is called downsampling (with a factor of two). Had
we not performed downsampling, we would have ended up with twice as many
coordinates as we started with. Downsampling with a factor of two means that
we end up with the same number of samples as we started with. We also say that
the output of the two filters is critically sampled. Due to the critical sampling, it
is ine�cient to compute the full application of the filters. We will return to the
issue of making e�cient implementations of critically sampled filter banks later.

We can now complement Figure 5.9 by giving names to the arrows as follows:

�m

H0 //

H1

""

�m�1
H0 //

H1

##

�m�2
H0 //

H1

##

· · · H0 //
�1

H0 //

H1

�0

 m�1 m�2 m�3 0

Figure 6.1: Detailed illustration of a wavelet transform.

Let us make a similar anlysis for the IDWT, and let us first make the following
definition:

Definition 6.4. G
0

and G
1

.
We denote by G

0

the (unique) filter with the same first column as G, and by
G

1

the (unique) filter with the same second column as G. G
0

and G
1

are also
called the IDWT filter components.

These filters are uniquely determined, since any filter is uniquely determined
from one of its columns. We can now write

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 217

cm = G

Q

cccccccca

cm≠1,0

wm≠1,0

cm≠1,1

wm≠1,1

· · ·
cm≠1,2m≠1N≠1

wm≠1,2m≠1N≠1

R

ddddddddb

= G

Q

cccccccca

Q

cccccccca

cm≠1,0

0
cm≠1,1

0
· · ·

cm≠1,2m≠1N≠1

0

R

ddddddddb

+

Q

cccccccca

0
wm≠1,0

0
wm≠1,1

· · ·
0

wm≠1,2m≠1N≠1

R

ddddddddb

R

ddddddddb

= G

Q

cccccccca

cm≠1,0

0
cm≠1,1

0
· · ·

cm≠1,2m≠1N≠1

0

R

ddddddddb

+ G

Q

cccccccca

0
wm≠1,0

0
wm≠1,1

· · ·
0

wm≠1,2m≠1N≠1

R

ddddddddb

= G
0

Q

cccccccca

cm≠1,0

0
cm≠1,1

0
· · ·

cm≠1,2m≠1N≠1

0

R

ddddddddb

+ G
1

Q

cccccccca

0
wm≠1,0

0
wm≠1,1

· · ·
0

wm≠1,2m≠1N≠1

R

ddddddddb

.

Here we have split a vector into its even-indexed and odd-indexed elements,
which correspond to the coe�cients from �m≠1

and m≠1

, respectively. In
the last equation, we replaced with G

0

, G
1

, since the multiplications with G
depend only on the even and odd columns in that matrix (due to the zeros
inserted), and these columns are equal in G

0

, G
1

. We can now state the following
characterization of the inverse Discrete Wavelet transform:

Theorem 6.5. IDWT expressed in terms of filters.
Let G

0

, G
1

be defined as above. Any stage in an IDWT can be implemented
in terms of filters as follows:

cm = G
0

Q

cccccccca

cm≠1,0

0
cm≠1,1

0
· · ·

cm≠1,2m≠1N≠1

0

R

ddddddddb

+ G
1

Q

cccccccca

0
wm≠1,0

0
wm≠1,1

· · ·
0

wm≠1,2m≠1N≠1

R

ddddddddb

. (6.4)

Making a new vector where zeroes have been inserted in this way is also called
upsampling (with a factor of two). We can now also complement Figure 5.9 for
the IDWT with named arrows. This has bee done in Figure 6.2

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 218

�m �m�1G0

oo
�m�2G0

oo · · ·
G0

oo
�1G0

oo
�0G0

oo

 m�1

G1

bb

 m�2

G1

cc

 m�3

G1

cc

 0

G1

``

Figure 6.2: Detailed illustration of an IDWT.

Note that the filters G
0

, G
1

were defined in terms of the columns of G, while
the filters H

0

, H
1

were defined in terms of the rows of H. This di�erence is seen
from the computations above to come from that the change of coordinates one
way splits the coordinates into two parts, while the inverse change of coordinates
performs the opposite. Let us summarize what we have found as follows.

Fact 6.6. Computing DWT/IDWT through filters.
The DWT can be computed with the help of two filters H

0

, H
1

, as explained
in Theorem 6.3. Any linear transformation computed from two filters H

0

, H
1

in
this way is called a forward filter bank transform. The IDWT can be computed
with the help of two filters G

0

, G
1

as explained in Theorem 6.5. Any linear
transformation computed from two filters G

0

, G
1

in this way is called a reverse
filter bank transform.

In Chapter 8 we will go through how any forward and reverse filter bank
transform can be implemented, once we have the filters H

0

, H
1

, G
0

, and G
1

.
When we are in a wavelet setting, the filter coe�cients in these four filters can
be found from the relations between the bases �

1

and (�
0

,
0

). The filters
H

0

, H
1

, G
0

, G
1

can also be constructed from outside a wavelet setting, i.e. that
they do not originate from change of coordinate matrices between certain function
bases. The important point is that the matrices invert each other, but in a signal
processing setting it may also be meaningful to allow for the reverse transform
not to invert the forward transform exactly. This corresponds to some loss of
information when we attempt to reconstruct the original signal using the reverse
transform. A small such loss can, as we will see at the end of this chapter, be
acceptable.

That the reverse transform inverts the forward transform means that GH = I.
If we transpose this expression we get that HT GT = I. Clearly HT is a reverse
filter bank transform with filters (H

0

)T , (H
1

)T , and GT is a forward filter bank
transform with filters (G

0

)T , (G
1

)T . Due to their usefulness, these transforms
have their own name:

Definition 6.7. Dual filter bank transforms.
Assume that H

0

, H
1

are the filters of a forward filter bank transform, and that
G

0

, G
1

are the filters of a reverse filter bank transform. By the dual transforms
we mean the forward filter bank transform with filters (G

0

)T , (G
1

)T , and the
reverse filter bank transform with filters (H

0

)T , (H
1

)T .

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 219

In Section 5.3 we used a parameter dual in our call to the DWT amd IDWT
kernel functions. This parameter can now be explained as follows:

Fact 6.8. The dual-parameter in DWT kernel functions..

• If the dual parameter is false, the DWT is computed as the forward filter
bank transform with filters H

0

, H
1

, and the IDWT is computed as the
reverse filter bank transform with filters G

0

, G
1

.

• If the dual parameter is true, the DWT is computed as the forward filter
bank transform with filters (G

0

)T , (G
1

)T , and the IDWT is computed as
the reverse filter bank transform with filters (H

0

)T , (H
1

)T .

Note that, even though the reverse filter bank transform G can be associated
with certain function bases, it is not clear if the reverse filter bank transform
HT also can be associated with such bases. We will see in the next chapter that
such bases can in many cases be found. We will also denote these bases as dual
bases.

Note that Figure 6.1 and 6.2 do not indicate the additional downsampling and
upsampling steps described in Theorem 6.3 and 6.5. If we indicate downsampling
with ¿

2

, and upsampling with ø
2

, the algorithms given in Theorem 6.3 and 6.5
can be summarized as in Figure 6.3.

H0c1
// #2 //

c0
// "2 // (cm�1,0, 0, cm�1,1, 0, · · ·)

G0

✏✏
c1

OO

✏✏

�

H1c1
// #2 //

w0
// "2 // (0, wm�1,0, 0, wm�1,1, · · ·)

G1

OO

Figure 6.3: Detailed illustration of a DWT.

Here ü represents summing the elements which point inwards to the plus
sign. In this figure, the left side represents the DWT, the right side the IDWT.
In the literature, wavelet transforms are more often illustrated in this way using
filters, since it makes alle steps involved in the process more clear. This type of
figure also opens for generalization. We will shortly look into this.

There are several reasons why it is smart to express a wavelet transformation
in terms of filters. First of all, it enables us to reuse theoretical results from
the world of filters in the world of wavelets, and to give useful interpretations
of the wavelet transform in terms of frequencies. Secondly, and perhaps most
important, it enables us to reuse e�cient implementations of filters in order
to compute wavelet transformations. A lot of work has been done in order to
establish e�cient implementations of filters, due to their importance.

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 220

In Example 5.19 we argued that the elements in Vm≠1

correspond to frequen-
cies at lower frequencies than those in Vm, since V

0

= Span({„
0,n}n) should be

interpreted as content of lower frequency than the „
1,n, with W

0

= Span({Â
0,n}n)

the remaining high frequency detail. To elaborate more on this, we have that

„(t) =
2N≠1ÿ

n=0

(G
0

)n,0„
1,n(t) (6.5)

Â(t) =
2N≠1ÿ

n=0

(G
1

)n,1„
1,n(t)., (6.6)

where (Gk)i,j are the entries in the matrix Gk. Similar equations are true for
„(t ≠ k), Â(t ≠ k). Due to Equation (6.5), the filter G

0

should have lowpass
characteristics, since it extracts the information at lower frequencies. Similarly,
G

1

should have highpass characteristics due to Equation (6.6).
Let us verify these lowpass/highpass characteristics of G

0

and G
1

for the
wavelets we have considered up to now by plotting their frequency responses. In
order to do this we should make a final remark on how these frequency responses
can be plotted. For all wavelets we look at the filter coe�cients are computed,
so that the frequency responses can be easily calculated. However, when we use
a wavelet for computation, we applied it by means of a kernel transformation.
We will later see that the most e�cient such kernel transformations do not apply
the filter coe�cients directly, but rather a factorization into smaller components
(but see Exercise 6.12 on how we can produce kernel transformations which
use the filter coe�cients directly). So how can we find and plot the frequency
response when only the kernel transformation is known? First of all, since the
first column of G is identical to the first column of G

0

, the first column of G
0

can be obtained by applying the IDWT kernel to the vector e
0

. We can then use
Theorem 3.14 to find the vector frequency response of the filter (i.e. applying
an FFT), and then Theorem 3.21 to find the values of the continuous frequency
response in the points 2fin/N for 0 Æ n < N . The following code can thus be
used to plot the frequency response of G

0

, when only the IDWT kernel (called
idwtkernel below) is known.

omega = 2*pi*arange(0,N)/float(N)
g0 = concatenate([[1], zeros(N - 1)]) # Creates e_0
idwtkernel(g0, 0, 0) # Find the first column of G_0
plot(omega, abs(fft.fft(g0)))

A similar procedure can be applied in order to plot the frequency response of G
1

(just replace e

0

with e

1

in order o exract the second column of G instead). The
frequency responses of H

0

and H
1

can be found by considering a dual wavelet
transform, since the reverse transform for the dual wavelet has filters (H

0

)T and
(H

1

)T . In most of the following examples in this book this procedure will be
applied to plot all frequency responses. We start with the Haar wavelet.

Example 6.9. The Haar wavelet.

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 221

For the Haar wavelet we saw that, in G, the matrix
A

1Ô
2

1Ô
2

1Ô
2

≠ 1Ô
2

B
(6.7)

repeated along the diagonal. The filters G
0

and G
1

can be found directly from
these columns:

G
0

= {1/
Ô

2, 1/
Ô

2}
G

1

= {1/
Ô

2, ≠1/
Ô

2}.

We have seen these filters previously: G
0

is a movinge average filter of two
elements (up to multiplication with a constant). This is a lowpass filter. G

1

is
a bass-reducing filter, which is a highpass filter. Up to a constant, this is also
an approximation to the derivative. Since G

1

is constructed from G
0

by adding
an alternating sign to the filter coe�cients, we know from before that G

1

is
the highpass filter corresponding to the lowpass filter G

0

, so that the frequency
response of the second is given by a shift of frequency with fi in the first. The
frequency responses are

⁄G0(Ê) = 1Ô
2

+ 1Ô
2

e≠iÊ =
Ô

2e≠iÊ/2 cos(Ê/2)

⁄G1(Ê) = 1Ô
2

eiÊ ≠ 1Ô
2

=
Ô

2ieiÊ/2 sin(Ê/2).

The magnitude of these are plotted in Figure 6.4, where the lowpass/highpass
characteristics are clearly seen.

Figure 6.4: The frequency responses ⁄G0(Ê) (left) and ⁄G1(Ê) (right) for the
Haar wavelet.

By considering the filters where the rows in Equation (6.7), it is clear that

H
0

= {1/
Ô

2, 1/
Ô

2}
H

1

= {≠1/
Ô

2, 1/
Ô

2},

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 222

so that the frequency responses for the DWT have the same lowpass/highpass
characteristics.

It turns out that this connection between G
0

and G
1

as lowpass and highpass
filters corresponding to each other can be found in all orthonormal wavelets. We
will prove this in the next chapter.

Example 6.10. Wavelet for piecewise linear functions.
For the wavelet for piecewise linear functions we looked at in the previous

section, Equation (6.1) gives that

G
0

= 1Ô
2

{1/2, 1, 1/2}

G
1

= 1Ô
2

{1}. (6.8)

G
0

is again a filter we have seen before: Up to multiplication with a constant, it
is the treble-reducing filter with values from row 2 of Pascal’s triangle. We see
something di�erent here when compared to the Haar wavelet, in that the filter
G

1

is not the highpass filter corresponding to G
0

. The frequency responses are
now

⁄G0(Ê) = 1
2
Ô

2
eiÊ + 1Ô

2
+ 1

2
Ô

2
e≠iÊ = 1Ô

2
(cos Ê + 1)

⁄G1(Ê) = 1Ô
2

.

⁄G1(Ê) thus has magnitude 1Ô
2

at all points. The magnitude of ⁄G0(Ê) is plotted
in Figure 6.5.

Comparing with Figure 6.4 we see that here also the frequency response has
a zero at fi. The frequency response seems also to be flatter around fi. For the
DWT, Equation (6.2) gives us

H
0

=
Ô

2{1}
H

1

=
Ô

2{≠1/2, 1, ≠1/2}. (6.9)

Even though G
1

was not the highpass filter corresponding to G
0

, we see that,
up to a constant, H

1

is (it is a bass-reducing filter with values taken from row 2
of Pascals triangle).

Note that the role of H
1

as the highpass filter corresponding to G
0

is the case
in both previous examples. We will prove in the next chapter that this is a much
more general result which holds for all wavelets, not only for the orthonormal
ones.

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 223

Figure 6.5: The frequency response ⁄G0(Ê) for the first choice of wavelet for
piecewise linear functions.

For the alternative wavelet for piecewise linear functions, we are only able
to find expressions for the filters G

0

, G
1

at this stage (these can be extracted
from Equation (6.3)). In the next chapter we will learn a general technique
of computing the transformations the opposite way from these, so this will be
handled in the next chapter.

6.1.1 The support of the scaling function and the mother
wavelet

The scaling functions and mother wavelets we encounter will turn out to always
be functions with compact support. An interesting consequence of equations
(6.5) and (6.6) is that we can find the size of these supports from the number of
filter coe�cients in G

0

and G
1

:

Theorem 6.11. Support size.
Assume that the filters G

0

, G
1

have N
0

, N
1

nonzero filter coe�cients, respec-
tively, and that „ and Â have compact support. Then the support size of „ is
N

0

≠ 1, and the support size of Â is (N
0

+ N
1

)/2 ≠ 1. Moreover, when all the
filters are symmetric, the support of „ is symmetric around 0, and the support
of Â is symmetric around 1/2.

Proof. Let q be the support size of „. Then the functions „
1,n all have support

size q/2. On the right hand side of Equation (6.5) we thus add N
0

functions, all
with support size q/2. These functions are translated with 1/2 with respect to
oneanother, so that the sum has support size q/2 + (N

0

≠ 1)/2. Comparing with
the support of the left hand side we get the equation q = q/2 + (N

0

≠ 1)/2, so
that q = N

0

≠ 1. Similarly, with Equation (6.6), the function on the right hand
side has support size q/2 + (N

1

≠ 1)/2 = (N
0

+ N
1

)/2 ≠ 1, which thus is the
support of Â.

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 224

Assume now also that all filters are symmetric, so that the nonzero filter
coe�cients of G

0

have indices ≠(N
0

≠ 1)/2, . . . , (N
0

≠ 1)/2. If „ has support
[q

1

, q
2

], „
1,n has support [(q

1

+ n)/2, (q
2

+ n)/2]. It follows that the right hand
side of Equation (6.5) has support [(q

1

≠ (N
0

≠ 1)/2)/2, (q
2

+ (N
0

≠ 1)/2)/2], so
that we obtain the equations

q
1

= (q
1

≠ (N
0

≠ 1)/2)/2, and q
2

= (q
2

+ (N
0

≠ 1)/2)/2.

Solving these we obtain that q
1

= ≠(N
0

≠ 1)/2, q
2

= (N
0

≠ 1)/2, so that the
support of „ is symmetric around 0. Similarly, the right hand side of Equation
(6.6) has support

C
q

1

≠ N1≠3

2

2 ,
q

2

+ N1+1

2

2

D
=

C
≠ N0≠1

2

≠ N1≠3

2

2 ,
N0≠1

2

+ N1+1

2

2

D

=
C

≠
N0+N1

2

≠ 1
2 ,

N0+N1
2

≠ 1
2

D
+ 1.

From this it is clear that Â has support symmetric around 1/2.

Let us use this theorem to verify the supports for the scaling functions and
mother wavelets we have already encountered:

• For the Haar wavelet, we know that both filters have 2 coe�cients. From
Theorem 6.11 it follows that both „ and Â have support size 1, which
clearly is true.

• For the the piecewise linear wavelet, the filters were symmetric. G
0

has 3
filter coe�cients so that „ has support size 3 ≠ 1 = 2. G

1

has one filter
coe�cient, so that the support size of Â is (3 + 1)/2 ≠ 1 = 1. We should
thus have that supp(„) = [≠1, 1], and supp(Â) = [0, 1]. This is clearly true
from our previous plots of these functions.

• From Equation (6.3) we see that, for the alternative piecewise linear wavelet,
G

0

and G
1

have 3 and 5 filter coe�cients, respectively. Â has thus support
size (3 + 5)/2 ≠ 1 = 3, so that the support is [≠1, 2], which also can be
seen to be the case from Figure 5.18.

6.1.2 Wavelets and symmetric extensions
In practice we want to apply the wavelet transform to a symmetric extension,
since then symmetric filters can give a better approximation to the underlying
analog filters. In order to achieve this, the following result says that we only
need to replace the filters H

0

, H
1

, G
0

, and G
1

in the wavelet transform with
(H

0

)r, (H
1

)r, (G
0

)r, and (G
1

)r.

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 225

Theorem 6.12. Symmetric filters and symmetric extensions.
If the filters H

0

, H
1

, G
0

, and G
1

in a wavelet transform are symmetric, then
the DWT/IDWT preserve symmetric extensions (as defined in Definition 5.42).
Also, applying the filters H

0

, H
1

, G
0

, and G
1

to x̆ œ R2N≠2 in the DWT/IDWT
is equivalent to applying (H

0

)r, (H
1

)r, (G
0

)r, and (G
1

)r to x œ RN in the same
way.

Proof. Since H
0

and H
1

are symmetric, their output from x̆ is also a symmetric
vector, and by assembling their outputs as the even- and odd-indexed entries, we
see that the output (c

0

, w
0

, c
1

, w
1

, . . .) of the MRA-matrix H also is a symmetric
vector. The same then applies for the matrix G, since it inverts the first. This
proves the first part.

Now, assume that x œ RN . By definition of (Hi)r, (Hix̆)n = ((Hi)rx)n

for 0 Æ n Æ N ≠ 1. This means that we get the same first N output ele-
ments in a wavelet transform if we repace H

0

, H
1

with (H
0

)r, (H
1

)r. Since the
vectors (c

0

, 0, c
1

, 0, . . .) and (0, w
0

, 0, w
1

, . . .) also are symmetric vectors when
(c

0

, w
0

, c
1

, w
1

, . . .) is, it follows that (G
0

)r, (G
1

)r will reproduce the same first
N elements as G

0

, G
1

also. In conclusion, for symmetric vectors, the wavelet
transform restricted to the first N elements produces the same result when we
replace H

0

, H
1

, G
0

, and G
1

with (H
0

)r, (H
1

)r, (G
0

)r, and (G
1

)r. This proves
the result.

As in Chapter 4, it follows that when the filters of a wavelet are symmetric,
applying (H

0

)r, (H
1

)r, (G
0

)r, and (G
1

)r to the input better approximates an
underlying analog filter.

In Section 5.3 we used a parameter symm in our call to the DWT amd IDWT
kernel functions. This parameter can now also be explained:

idxDWT kernel parameter symm

Fact 6.13. The symm-parameter in DWT kernel functions.
Assume that the filters H

0

, H
1

, G
0

, and G
1

are symmetric. If the symm
parameter is true, the symmetric versions (H

0

)r, (H
1

)r, (G
0

)r, and (G
1

)r should
be applied in the DWT and IDWT, rather than the filters H

0

, H
1

, G
0

, and G
1

themselves. If symm is false, the filters H
0

, H
1

, G
0

, and G
1

are applied

In Chapter 8 we will also see how the symmetric versions (H
0

)r, (H
1

)r, (G
0

)r

can be implemented.

What you should have learned in this section.

• How one can find the filters of a wavelet transformation by considering its
matrix and its inverse.

• Forward and reverse filter bank transforms.

• How one can implement the DWT and the IDWT with the help of the
filters.

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 226

• Plot of the frequency responses for the filters of the wavelets we have
considered, and their interpretation as lowpass and highpass filters.

Exercise 6.1: Compute filters and frequency responses 1
Write down the corresponding filters G

0

og G
1

for Exercise 5.32. Plot their
frequency responses, and characterize the filters as lowpass- or highpass filters.

Exercise 6.2: Symmetry of MRA matrices vs. symmetry of
filters 1
Find two symmetric filters, so that the corresponding MRA-matrix, constructed
with alternating rows from these two filters, is not a symmetric matrix.

Exercise 6.3: Symmetry of MRA matrices vs. symmetry of
filters 2
Assume that an MRA-matrix is symmetric. Are the corresponding filters H

0

,
H

1

, G
0

, G
1

also symmetric? If not, find a counterexample.

Exercise 6.4: Finding H
0

, H
1

from the H

Assume that one stage in a DWT is given by the MRA-matrix

H =

Q

ccccca

1/5 1/5 1/5 0 0 0 · · · 0 1/5 1/5
≠1/3 1/3 ≠1/3 0 0 0 · · · 0 0 0
1/5 1/5 1/5 1/5 1/5 0 · · · 0 0 0
0 0 ≠1/3 1/3 ≠1/3 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...

R

dddddb

Write down the compact form for the corresponding filters H
0

, H
1

, and compute
and plot the frequency responses. Are the filters symmetric?

Exercise 6.5: Finding G
0

, G
1

from the G

Assume that one stage in the IDWT is given by the MRA-matrix

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 227

G =

Q

ccccccccccccccca

1/2 ≠1/4 0 0 · · ·
1/4 3/8 1/4 1/16 · · ·
0 ≠1/4 1/2 ≠1/4 · · ·
0 1/16 1/4 3/8 · · ·
0 0 0 ≠1/4 · · ·
0 0 0 1/16 · · ·
0 0 0 0 · · ·
...

...
...

...
...

0 0 0 0 · · ·
1/4 1/16 0 0 · · ·

R

dddddddddddddddb

Write down the compact form for the filters G
0

, G
1

, and compute and plot the
frequency responses. Are the filters symmetric?

Exercise 6.6: Finding H from H
0

, H
1

Assume that H
0

= {1/16, 1/4, 3/8, 1/4, 1/16}, and H
1

= {≠1/4, 1/2, ≠1/4}.
Plot the frequency responses of H

0

and H
1

, and verify that H
0

is a lowpass
filter, and that H

1

is a highpass filter. Also write down the change of coordinate
matrix PC1Ω�1 for the wavelet corresponding to these filters.

Exercise 6.7: Finding G from G
0

, G
1

Assume that G
0

= 1

3

{1, 1, 1}, and G
1

= 1

5

{1, ≠1, 1, ≠1, 1}. Plot the frequency
responses of G

0

and G
1

, and verify that G
0

is a lowpass filter, and that G
1

is a
highpass filter. Also write down the change of coordinate matrix P�1ΩC1 for the
wavelet corresponding to these filters.

Exercise 6.8: Computing by hand
In Exercise 5.17 we computed the DWT of two very simple vectors x

1

and x

2

,
using the Haar wavelet.

a) Compute H
0

x

1

, H
1

x

1

, H
0

x

2

, and H
1

x

2

, where H
0

and H
1

are the filters
used by the Haar wavelet.

b) Compare the odd-indexed elements in H
1

x

1

with the odd-indexed elements
in H

1

x

2

. From this comparison, attempt to find an explanation to why the two
vectors have very di�erent detail components.

Exercise 6.9: Comment code
Suppose that we run the following algorithm on the sound represented by the
vector x:

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 228

c = (x[0::2] + x[1::2])/sqrt(2)
w = (x[0::2] - x[1::2])/sqrt(2)

newx = concatenate([c, w])
newx /= abs(newx).max()
play(newx,44100)

a) Comment the code and explain what happens. Which wavelet is used? What
do the vectors c and w represent? Describe the sound you believe you will hear.

b) Assume that we add lines in the code above which sets the elements in the
vector w to 0 before we compute the inverse operation. What will you hear if
you play the new sound you then get?

Exercise 6.10: Computing filters and frequency responses
1
Let us return to the piecewise linear wavelet from Exercise 5.31.

a) With Â̂ as defined as in Exercise 5.31b), compute the coordinates of Â̂ in the
basis �

1

(i.e. [Â̂]�1) with N = 8, i.e. compute the IDWT of

[Â̂]
(�0, 0)

= (≠–, ≠—, ≠”, 0, 0, 0, 0, ≠“) ü (1, 0, 0, 0, 0, 0, 0, 0),

which is the coordinate vector you computed in Exercise 5.31d). For this, you
should use the function IDWTImpl, with the kernel of the piecewise linear wavelet
without symmetric extension as input. Explain that this gives you the filter
coe�cients of G

1

.

b) Plot the frequency response of G
1

.

Exercise 6.11: Computing filters and frequency responses
2
Repeat the previous exercise for the Haar wavelet as in Exercise 5.33, and plot
the corresponding frequency responses for k = 2, 4, 6.

Exercise 6.12: Implementing with symmetric extension
In Exercise 3.6 we implemented a symmetric filter applied to a vector, i.e. when a
periodic extension is assumed. The corresponding function was called filterS(t,
x), and used the function numpy.convolve.

a) Reimplement the function filterS so that it also takes a third parameter
symm. If symm is false a periodic extension of x should be performed (i.e. filtering
as we have defined it, and as the previous version of filterS performs it). If
symm is true, symmetric extensions should be used (as given by Definition 5.42).

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 229

b) Implement functions DWTKernelFilters(H0, H1, G0, G1, x, symm, dual)
and IDWTKernelFilters(H0, H1, G0, G1, x, symm, dual) which compute
the DWT and IDWT kernels using theorems 6.3 and 6.5, respectively. This
function thus bases itself on that the filters of the wavelet are known. The
functions should call the function filterS from a). Recall also the definition of
the parameter dual from this section.

With the functions defined in b. you can now define standard DWT and
IDWT kernels in the following way, once the filters are known.

f = lambda x, symm, dual: DWTKernelFilters(H0,H1,G0,G1,x,symm,dual)
invf = lambda x, symm, dual: IDWTKernelFilters(H0,H1,G0,G1,x,symm,dual)

6.2 Properties of the filter bank transforms of a
wavelet

We have now described the DWT/IDWT as linear transformations G, H so
that GH = I, and where two filters G

0

, G
1

characterize G, two filters H
0

, H
1

characterize H. G and H are not Toeplitz matrices, however, so they are not
filters. Since filters produce the same output frequency from an input frequency,
we must have that G and H produce other (undesired) frequencies in the output
than those that are present in the input. We will call this phenomenon aliasing.
In order for GH = I, the undesired frequencies must cancel each other, so that
we end up with what we started with. Thus, GH must have what we will refer to
as alias cancellation. This is the same as saying that GH is a filter. In order for
GH = I, alias cancellation is not enough: We also need that the amount at the
given frequency is unchanged, i.e. that GH„n = „n for any Fourier basis vector
„n. We then say that we have perfect reconstruction. Perfect reconstruction
is always the case for wavelets by construction, but in signal processing many
interesting examples (G

0

, G
1

, H
0

, H
1

) exist, for which we do not have perfect
reconstruction. Historically, forward and reverse filter bank transforms have
been around long before they appeared in a wavelet context. Operations where
GH„n = cn„n for all n may also be useful, in particular when cn is close to 1
for all n. If cn is real for all n, we say that we have no phase distortion. If we
have no phase distortion, the output from GH has the same phase, even if we
do not have perfect reconstruction. Such “near-perfect reconstruction systems"
have also been around long before many perfect reconstruction wavelet systems
were designed. In signal processing, these transforms also exist in more general
variants, and we will define these later. Let us summarize as follows.
Definition 6.14. Alias cancellation, phase distortion, and perfect reconstruction.

We say that we have alias cancellation if, for any n,

GH„n = cn„n,

for some constant cn (i.e. GH is a filter). If all cn are real, we say that we
no phase distortion. If GH = I (i.e. cn = 1 for all n) we say that we have

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 230

perfect reconstruction. If all cn are close to 1, we say that we have near-perfect
reconstruction.

In signal processing, one also says that we have perfect- or near-perfect
reconstruction when GH equals Ed, or is close to Ed (i.e. the overall result is a
delay). The reason why a delay occurs has to do with that the transforms are
used in real-time processing, for which we may not be able to compute the output
at a given time instance before we know some of the following samples. Clearly
the delay is unproblematic, since one can still can reconstruct the input from
the output. We will encounter a useful example of near-perfect reconstruction
soon in the MP3 standard.

Let us now find a criterium for alias cancellation: When do we have that
GHe2fiirk/N is a multiplum of e2fiirk/N , for any r? We first remark that

H(e2fiirk/N) =
I

⁄H0,re2fiirk/N k even
⁄H1,re2fiirk/N k odd.

The frequency response of H(e2fiirk/N) is

N/2≠1ÿ

k=0

⁄H0,re2fiir(2k)/N e≠2fii(2k)n/N +
N/2≠1ÿ

k=0

⁄H1,re2fiir(2k+1)/N e≠2fii(2k+1)n/N

=
N/2≠1ÿ

k=0

⁄H0,re2fii(r≠n)(2k)/N +
N/2≠1ÿ

k=0

⁄H1,re2fii(r≠n)(2k+1)/N

= (⁄H0,r + ⁄H1,re2fii(r≠n)/N)
N/2≠1ÿ

k=0

e2fii(r≠n)k/(N/2).

Clearly,
qN/2≠1

k=0

e2fii(r≠n)k/(N/2) = N/2 if n = r or n = r + N/2, and 0 else.
The frequency response is thus the vector

N

2 (⁄H0,r + ⁄H1,r)er + N

2 (⁄H0,r ≠ ⁄H1,r)er+N/2

,

so that

H(e2fiirk/N) = 1
2(⁄H0,r + ⁄H1,r)e2fiirk/N + 1

2(⁄H0,r ≠ ⁄H1,r)e2fii(r+N/2)k/N .

(6.10)
Let us now turn to the reverse filter bank transform. We can write

(e2fiir·0/N , 0, e2fiir·2/N , 0, . . . , e2fiir(N≠2)/N , 0) = 1
2(e2fiirk/N + e2fii(r+N/2)k/N)

(0, e2fiir·1/N , 0, e2fiir·3/N , . . . , 0, e2fiir(N≠1)/N) = 1
2(e2fiirk/N ≠ e2fii(r+N/2)k/N).

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 231

This means that

G(e2fiirk/N) = G
0

3
1
2

1
e2fiirk/N + e2fii(r+N/2)k/N

24
+ G

1

3
1
2

1
e2fiirk/N ≠ e2fii(r+N/2)k/N

24

=1
2(⁄G0,re2fiirk/N + ⁄G0,r+N/2

e2fii(r+N/2)k/N) + 1
2(⁄G1,re2fiirk/N ≠ ⁄G1,r+N/2

e2fii(r+N/2)k/N)

=1
2(⁄G0,r + ⁄G1,r)e2fiirk/N + 1

2(⁄G0,r+N/2

≠ ⁄G1,r+N/2

)e2fii(r+N/2)k/N . (6.11)

Now, if we combine equations (6.10) and (6.11), we get

GH(e2fiirk/N)

= 1
2(⁄H0,r + ⁄H1,r)G(e2fiirk/N) + 1

2(⁄H0,r ≠ ⁄H1,r)G(e2fii(r+N/2)k/N)

= 1
2(⁄H0,r + ⁄H1,r)

3
1
2(⁄G0,r + ⁄G1,r)e2fiirk/N + 1

2(⁄G0,r+N/2

≠ ⁄G1,r+N/2

)e2fii(r+N/2)k/N)
4

+ 1
2(⁄H0,r ≠ ⁄H1,r)

3
1
2(⁄G0,r+N/2

+ ⁄G1,r+N/2

)e2fii(r+N/2)k/N + 1
2(⁄G0,r ≠ ⁄G1,r)e2fiirk/N)

4

= 1
4 ((⁄H0,r + ⁄H1,r)(⁄G0,r + ⁄G1,r) + (⁄H0,r ≠ ⁄H1,r)(⁄G0,r ≠ ⁄G1,r)) e2fiirk/N

+ 1
4

!
(⁄H0,r + ⁄H1,r)(⁄G0,r+N/2

≠ ⁄G1,r+N/2

) + (⁄H0,r ≠ ⁄H1,r)(⁄G0,r+N/2

+ ⁄G1,r+N/2

)
"

e2fii(r+N/2)k/N

= 1
2(⁄H0,r⁄G0,r + ⁄H1,r⁄G1,r)e2fiirk/N + 1

2(⁄H0,r⁄G0,r+N/2

≠ ⁄H1,r⁄G1,r+N/2

)e2fii(r+N/2)k/N .

If we also replace with the continuous frequency response, we obtain the following:

Theorem 6.15. Expression for aliasing.
We have that

GH(e2fiirk/N) =1
2(⁄H0,r⁄G0,r + ⁄H1,r⁄G1,r)e2fiirk/N

+ 1
2(⁄H0,r⁄G0,r+N/2

≠ ⁄H1,r⁄G1,r+N/2

)e2fii(r+N/2)k/N .

(6.12)

In particular, we have alias cancellation if and only if

⁄H0(Ê)⁄G0(Ê + fi) = ⁄H1(Ê)⁄G1(Ê + fi). (6.13)
We will refer to this as the alias cancellation condition. If in addition

⁄H0(Ê)⁄G0(Ê) + ⁄H1(Ê)⁄G1(Ê) = 2, (6.14)
we also have perfect reconstruction. We will refer to as the condition for perfect
reconstruction.

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 232

No phase distortion means that we have alias cancellation, and that

⁄H0(Ê)⁄G0(Ê) + ⁄H1(Ê)⁄G1(Ê) is real.

Now let us turn to how we can construct wavelets/perfect reconstruction systems
from FIR-filters (recall from Chapter 3 that FIR filters where filters with a finite
number of filter coe�cients). We will have use for some theorems which allow us
to construct wavelets from prototype filters. In particular we show that, when
G

0

and H
0

are given lowpass filters which satisfy a certain common property,
we can define unique (up to a constant) highpass filters H

1

and G
1

so that the
collection of these four filters can be used to implement a wavelet. We first state
the following general theorem.

Theorem 6.16. Criteria for perfect reconstruction.
The following statements are equivalent for FIR filters H

0

, H
1

, G
0

, G
1

:

• H
0

, H
1

, G
0

, G
1

give perfect reconstruction,

• there exist – œ R and d œ Z so that

(H
1

)n = (≠1)n–≠1(G
0

)n≠2d (6.15)
(G

1

)n = (≠1)n–(H
0

)n+2d (6.16)
2 = ⁄H0,n⁄G0,n + ⁄H0,n+N/2

⁄G0,n+N/2

(6.17)

Let us translate this to continuous frequency responses. We first have that

⁄H1(Ê) =
ÿ

k

(H
1

)ke≠ikÊ =
ÿ

k

(≠1)k–≠1(G
0

)k≠2de≠ikÊ

= –≠1

ÿ

k

(≠1)k(G
0

)ke≠i(k+2d)Ê = –≠1e≠2idÊ
ÿ

k

(G
0

)ke≠ik(Ê+fi)

= –≠1e≠2idÊ⁄G0(Ê + fi).

We have a similar computation for ⁄G1(Ê). We can thus state the following:

Theorem 6.17. Criteria for perfect reconstruction.
The following statements are equivalent for FIR filters H

0

, H
1

, G
0

, G
1

:

• H
0

, H
1

, G
0

, G
1

give perfect reconstruction,

• there exist – œ R and d œ Z so that

⁄H1(Ê) = –≠1e≠2idÊ⁄G0(Ê + fi) (6.18)
⁄G1(Ê) = –e2idÊ⁄H0(Ê + fi) (6.19)

2 = ⁄H0(Ê)⁄G0(Ê) + ⁄H0(Ê + fi)⁄G0(Ê + fi) (6.20)

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 233

Proof. Let us prove first that equations (6.18)- (6.20) for a FIR filter implies
that we have perfect reconstruction. Equations (6.18)-(6.19) mean that the alias
cancellation condition (6.13) is satisfied, since

⁄H1(Ê)⁄G1(Ê + fi) =–≠1e≠2idÊ⁄G0(Ê + fi)(–)e2id(Ê+fi⁄H0(Ê)
=⁄H0(Ê)⁄G0(Ê + fi).

Inserting this in the perfect reconstruction condition (6.20), we get

2 = ⁄H0(Ê)⁄G0(Ê) + ⁄G0(Ê + fi)⁄H0(Ê + fi)
= ⁄H0(Ê)⁄G0(Ê) + –≠1e≠2idÊ⁄G0(Ê + fi)–e2idÊ⁄H0(Ê + fi)
= ⁄H0(Ê)⁄G0(Ê) + ⁄H1(Ê)⁄G1(Ê),

which is Equation (6.14), so that equations (6.18)- (6.20) imply perfect recon-
struction. We therefore only need to prove that any set of FIR filters which give
perfect reconstruction, also satisfy these equations. Due to the calculation above,
it is enough to prove that equations (6.18)-(6.19) are satisfied. The proof of this
will wait till Section 8.1, since it uses some techniques we have not introduced
yet.

Note that, even though conditions (6.18) and (6.19) together ensure that the
alias cancellation condition is satisfied, alias cancellation can occur also if these
conditions are not satisfied. Conditions (6.18) and (6.19) thus give a stronger
requirement than alias cancellation. We will be particularly concerned with
wavelets where the filters are symmetric, for which we can state the following
corollary.

Corollary 6.18. Criteria for perfect reconstruction .
The following statements are equivalent:

• H
0

, H
1

, G
0

, G
1

are the filters of a symmetric wavelet,

• ⁄H0(Ê), ⁄H1(Ê), ⁄G0(Ê), ⁄G1(Ê) are real functions, and

⁄H1(Ê) = –≠1⁄G0(Ê + fi) (6.21)
⁄G1(Ê) = –⁄H0(Ê + fi) (6.22)

2 = ⁄H0(Ê)⁄G0(Ê) + ⁄H0(Ê + fi)⁄G0(Ê + fi). (6.23)

Thw delay d is thus 0 for symmetric wavelets.

Proof. Since H
0

is symmetric, (H
0

)n = (H
0

)≠n, and from equations (6.15) and
(6.16) it follows that

(G
1

)n≠2d = (≠1)n≠2d–(H
0

)n = (≠1)n–≠1(H
0

)≠n

= (≠1)(≠n≠2d)–≠1(H
0

)
(≠n≠2d)+2d = (G

1

)≠n≠2d

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 234

This shows that G
1

is symmetric about both ≠2d, in addition to being symmetric
about 0 (by assumption). We must thus have that d = 0, so that (H

1

)n =
(≠1)n–(G

0

)n and (G
1

)n = (≠1)n–≠1(H
0

)n. We now get that

⁄H1(Ê) =
ÿ

k

(H
1

)ke≠ikÊ = –≠1

ÿ

k

(≠1)k(G
0

)ke≠ikÊ

= –≠1

ÿ

k

e≠ikfi(G
0

)ke≠ikÊ = –≠1

ÿ

k

(G
0

)ke≠ik(Ê+fi)

= –≠1⁄G0(Ê + fi),

which proves Equation (6.21). Equation (6.21) follows similarly.

When constructing a wavelet it may be that we know one of the two pairs
(G

0

, G
1

), (H
0

, H
1

), and that we would like to construct the other two. This can
be achieved if we can find the constants d and – from above. If the filters are
symmetric we just saw that d = 0. If G

0

, G
1

are known, it follows from from
equations (6.15) and(6.16) that

1 =
ÿ

n

(G
1

)n(H
1

)n =
ÿ

n

(G
1

)n–≠1(≠1)n(G
0

)n = –≠1

ÿ

n

(≠1)n(G
0

)n(G
1

)n,

so that – =
q

n(≠1)n(G
0

)n(G
1

)n. On the other hand, if H
0

, H
1

are known
instead, we must have that

1 =
ÿ

n

(G
1

)n(H
1

)n =
ÿ

n

–(≠1)n(H
0

)n(H
1

)n = –
ÿ

n

(≠1)n(H
0

)n(H
1

)n,

so that – = 1/(
q

n(≠1)n(H
0

)n(H
1

)n). Let us use these observations to state
the filters for the alternative wavelet of piecewise linear functions, which is the
only wavelet we have gone through we have not computed the filters and the
frequency response for.

Example 6.19. The alternative piecewise linear wavelet.
In Equation (6.3) we wrote down the first two columns in P�mΩCm

for the
alternative piecewise linear wavelet. This gives us that the filters G

0

ans G
1

are

G
0

= 1Ô
2

{1/2, 1, 1/2}

G
1

= 1Ô
2

{≠1/8, ≠1/4, 3/4, ≠1/4, ≠1/8}. (6.24)

Here G
0

was as for the wavelet of piecewise linear functions since we use the
same scaling function. G

1

was changed, however. Let us use Theorem 6.17 and
the remark above to compute the two remaining filters H

0

and H
1

. These filters

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 235

are also symmetric, since G
0

, G
1

were. From the simple computation above we
get that

– =
ÿ

n

(≠1)n(G
0

)n(G
1

)n = 1
2

3
≠1

2

3
≠1

4

4
+ 1 · 3

4 ≠ 1
2

3
≠1

4

44
= 1

2 .

Theorem 6.17 now gives

(H
0

)n = –≠1(≠1)n(G
1

)n = 2(≠1)n(G
1

)n

(H
1

)n = –≠1(≠1)n(G
0

)n = 2(≠1)n(G
0

)n, (6.25)

so that

H
0

=
Ô

2{≠1/8, 1/4, 3/4, 1/4, ≠1/8}
H

1

=
Ô

2{≠1/2, 1, ≠1/2}. (6.26)

We now have that

⁄G1(Ê) = ≠1/(8
Ô

2)e2iÊ ≠ 1/(4
Ô

2)eiÊ + 3/(4
Ô

2) ≠ 1/(4
Ô

2)e≠iÊ ≠ 1/(8
Ô

2)e≠2iÊ

= ≠ 1
4
Ô

2
cos(2Ê) ≠ 1

2
Ô

2
cos Ê + 3

4
Ô

2
.

The magnitude of ⁄G1(Ê) is plotted in Figure 6.6. Clearly, G
1

now has highpass
characteristics, while the lowpass characteristic of G

0

has been preserved.

Figure 6.6: The frequency response ⁄G1(Ê) for the alternative wavelet for
piecewise linear functions.

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 236

The filters G
0

, G
1

, H
0

, H
1

are particularly important in applications: Apart
from the scaling factors 1/

Ô
2,

Ô
2 in front, we see that the filter coe�cients are

all dyadic fractions, i.e. they are on the form —/2j . Arithmetic operations with
dyadic fractions can be carried out exactly on a computer, due to representations
as binary numbers in computers. These filters are thus important in applications,
since they can be used as transformations for lossless coding. The same argument
can be made for the Haar wavelet, but this wavelet had one less vanishing moment.

In the literature, two particular cases of filter banks have been important.
They are both refered to as Quadrature Mirror Filter banks, or QMF filter
banks, and some confusion exist between the two. Let us therefore make precise
definitions of the two.

Definition 6.20. Classical QMF filter banks.
In the classical definition of a QMF filter banks it is required that G

0

= H
0

and G
1

= H
1

(i.e. the filters in the forward and reverse transforms are equal),
and that

⁄H1(Ê) = ⁄H0(Ê + fi). (6.27)

It is straightforward to check that, for a classical QMF filter bank, the
forward and reverse transforms are equal (i.e. G = H). It is easily checked that
conditions (6.18) and (6.19) are satisfied with – = 1, d = 0 for a classical QMF
filter bank. In particular, the alias cancellation condition is satisfied. The perfect
recontruction condition can be written as

2 = ⁄H0(Ê)⁄G0(Ê) + ⁄H1(Ê)⁄G1(Ê) = ⁄H0(Ê)2 + ⁄H0(Ê + fi)2. (6.28)

Unfortunately, it is impossible to find non-trivial FIR-filters which satisfy this
quadrature formula (Exercise 6.13). Therefore, classical QMF filter banks which
give perfect reconstruction do not exist. Nevertheless, one can construct such
filter banks which give close to perfect reconstruction [19], and this together
with the fulfillment of the alias cancellation condition still make them useful. In
fact, we will see in Section 8.3 that the MP3 standard take use of such filters,
and this explains our previous observation that the MP3 standard does not give
perfect reconstruction. Note, however, that if the filters in a classical QMF filter
bank are symmetric (so that ⁄H0(Ê) is real), we have no phase distortion.

The second type of QMF filter bank is defined as follows.

Definition 6.21. Alternative QMF filter banks.
In the alternative definition of a QMF filter bank it is required that G

0

=
(H

0

)T and G
1

= (H
1

)T (i.e. the filter coe�cients in the forward and reverse
transforms are reverse of oneanother), and that

⁄H1(Ê) = ⁄H0(Ê + fi). (6.29)

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 237

The perfect reconstruction condition for an alternative QMF filter bank can
be written as

2 = ⁄H0(Ê)⁄G0(Ê) + ⁄H1(Ê)⁄G1(Ê) = ⁄H0(Ê)⁄H0(Ê) + ⁄H0(Ê + fi)⁄H0(Ê + fi)
= |⁄H0(Ê)|2 + |⁄H0(Ê + fi)|2.

We see that the perfect reconstruction property of the two definitions of QMF
filter banks only di�er in that the latter take absolute values. It turns out that
the latter also has many interesting solutions, as we will see in Chapter 7. If we
in in condition (6.18) substitute G

0

= (H
0

)T we get

⁄H1(Ê) = –≠1e≠2idÊ⁄G0(Ê + fi) = –≠1e≠2idÊ⁄H0(Ê + fi).

If we set – = 1, d = 0, we get equality here. A similar computation follows for
Condition (6.19). In other words, also alternative QMF filter banks satisfy the
alias cancellation condition. In the literature, a wavelet is called orthonormal if
G

0

= (H
0

)T , G
1

= (H
1

)T . From our little computation it follows that alternative
QMF filter banks with perfect reconstruction are examples of orthonormal
wavelets, and correpond to orthonormal wavelets which satisfy – = 1, d = 0.

For the Haar wavelet it is easily checked that G
0

= (H
0

)T , G
1

= (H
1

)T , but
it does not satisfy the relation ⁄H1(Ê) = ⁄H0(Ê + fi). Instead it satsifies the
relation ⁄H1(Ê) = ≠⁄H0(Ê + fi). In other words, the Haar wavelet is not an
alternative QMF filter bankthe way we have defined them. The di�erence lies
only in a sign, however. This is the reason why the Haar wavelet is still listed as
an alternative QMF filter bank in the literature. The additional sign leads to
orthonormnal wavelets which satisfy – = ≠1, d = 0 instead.

The following is clear for orthonormal wavelets.

Theorem 6.22. Orthogonality og the DWT matrix.
A DWT matrix is orthogonal (i.e. the IDWT equals the transpose of the

DWT) if and only if the filters satisfy G
0

= (H
0

)T , G
1

= (H
1

)T , i.e. if and only
if the MRA equals the dual MRA.

This can be proved simply by observing that, if we transpose the DWT-matrix,
Theorem 6.25 says that we get an IDWT matrix with filters (H

0

)T , (H
1

)T , and
this is equal to the IDWT if and only if G

0

= (H
0

)T , G
1

= (H
1

)T . It follows that
QMF filter banks with perfect reconstruction give rise to orthonormal wavelets.

Exercise 6.13: Finding FIR filters
Show that it is impossible to find a non-trivial FIR-filter which satisfies Equation
(6.28) in the compendium.

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 238

Exercise 6.14: The Haar wavelet as an alternative QMF
filter bank
Show that the Haar wavelet satisfies ⁄H1(Ê) = ≠⁄H0(Ê + fi), and G

0

= (H
0

)T ,
G

1

= (H
1

)T . The Haar wavelet can thus be considered as an alternative QMF
filter bank.

6.3 A generalization of the filter representation,
and its use in audio coding

It turns out that the filter representation, which we now have used for an
alternative representation of a wavelet transformation, can be generalized in
such a way that it also is useful for audio coding. In this section we will first
define this generalization. We will then state how the MP3 standard encodes
and decodes audio, and see how our generalization is connected to this. Much
literature fails to elaborate on this connection. We will call our generalizations
filter bank transforms, or simply filter banks. Just as for wavelets, filters are
applied di�erently for the forward and reverse transforms. The code for this
section can be found in a module called mp3funcs.

We start by defining the forward filter bank transform and its filters.

Definition 6.23. Forward filter bank transform.
Let H

0

, H
1

, . . . , HM≠1

be N ◊ N -filters. A forward filter bank transform H
produces output z œ RN from the input x œ RN in the following way:

• ziM = (H
0

x)iM for any i so that 0 Æ iM < N .

• ziM+1

= (H
1

x)iM+1

for any i so that 0 Æ iM + 1 < N .

• . . .

• ziM+(M≠1)

= (HM≠1

x)iM+(M≠1)

for any i so that 0 Æ iM + (M ≠ 1) < N .

In other words, the output of a forward filter bank transform is computed
by applying filters H

0

, H
1

, . . . , HM≠1

to the input, and by downsampling and
assembling these so that we obtain the same number of output samples as
input samples (also in this more general setting this is called critical sampling).
H

0

, H
1

, . . . , HM≠1

are also called analysis filter components, the output of filter
Hi is called channel i channel, and M is called the number of channels. The
output samples ziM+k are also called the subband samples of channel k.

Clearly this definition generalizes the DWT and its analysis filters, since
these can be obtained by setting M = 2. The DWT is thus a 2-channel forward
filter bank transform. While the DWT produces the output

3
cm≠1

wm≠1

4
from the

input cm, an M -channel forward filter bank transform splits the output into
M components, instead of 2. Clearly, in the matrix of a forward filter bank

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 239

transform the rows repeat cyclically with period M , similarly to MRA-matrices.
In practice, the filters in a forward filter bank transform are chosen so that
they concentrate on specific frequency ranges. This parallels what we saw for
the filters of a wavelet, where one concentrated on high frequencies, one on low
frequencies. Using a filter bank to split a signal into frequency components is
also called subband coding. But the filters in a filter bank are usually not ideal
bandpass filters. There exist a variety of di�erent filter banks, for many di�erent
purposes [37, 30]. In Chapter 7 we will say more on how one can construct filter
banks which can be used for subband coding.

Let us now turn to reverse filter bank transforms.

Definition 6.24. Reverse filter bank transforms.
Let G

0

, G
1

, . . . , GM≠1

be N ◊ N -filters. An reverse filter bank transform G
produces x œ RN from z œ RN in the following way:

• Define zkRN as the vector where (zk)iM+k = ziM+k for all i so that
0 Æ iM + k < N , and (zk)s = 0 for all other s.

x = G
0

z

0

+ G
1

z

1

+ . . . + GM≠1

zM≠1

. (6.30)

G
0

, G
1

, . . . , GM≠1

are also called synthesis filter components.

Again, this generalizes the IDWT and its synthesis filters, and the IDWT
can be seen as a 2-channel reverse filter bank transform. Also, in the matrix of
a reverse filter bank transform, the columns repeat cyclically with period M ,
similarly to MRA-matrices. Also in this more general setting the filters Gi are
in general di�erent from the filters Hi. But we will see that, just as we saw
for the Haar wavelet, there are important special cases where the analysis and
synthesis filters are equal, and where their frequency responses are simply shifts
of oneanother. It is clear that definitions 6.23 and 6.24 give the diagram for
computing forward and reverse filter bank transforms shown in Figure 6.7:

Here ¿M and øM means that we extract every M ’th element in the vector,
and add M ≠ 1 zeros between the elements, respectively, similarly to how we
previously defined ¿

2

and ø
2

. Comparing Figure 6.3 with Figure 6.7 makes the
similarities between wavelet transformations and the transformation used in
the MP3 standard very visible: Although the filters used are di�erent, they are
subject to the same kind of processing, and can therefore be subject to the same
implementations.

In general it may be that the synthesis filters do not invert exactly the
analysis filters. If the synthesis system exactly inverts the analysis system, we
say that we have a perfect reconstruction filter bank. Since the analysis system
introduces undesired frequencies in the di�erent channels, these have to cancel
in the inverse transform, in order to reconstruct the input exactly.

We will have use for the following simple connection between forward and
reverse filter bank transforms, which follows imemdiately from the definitions.

Theorem 6.25. Connection between forward and reverse filter bank transforms.

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 240

H0x
#M // ziM

"M //
z0

G0

⇠⇠

H1x
#M // ziM+1

"M //
z1

G1

x

==

EE

!!

⇡⇡

...
...

... � //
x

HM�2x
#M // ziM+(M�2)

"M //
zM�2

GM�2

>>

HM�1x
#M // ziM+(M�1)

"M //
zM�1

GM�1

FF

Figure 6.7: Illustration of forward and reverse filter bank transforms.

Assume that H is a forward filter bank transform with filters H
0

, . . . , HN≠1

.
Then HT is a reverse filter bank transform with filters G

0

= (H
0

)T , . . . , GN≠1

=
(HN≠1

)T .

6.3.1 Forward filter bank transform used for encoding in
the MP3 standard

Now, let us turn to the MP3 standard. The MP3 standard document states
that it applies a filter bank, and explains the following procedure for applying
this filter bank, see p. 67 of the standard document (the procedure is slightly
modified with mathematical terminology adapted to this book):

• Input 32 audio samples at a time.

• Build an input sample vector X œ R512, where the 32 new samples are
placed first, all other samples are delayed with 32 elements. In particular
the 32 last samples are taken out.

• Multiply X componentwise with a vector C (this vector is defined through
a table in the standard), to obtain a vector Z œ R512. The standard calls
this windowing.

• Compute the vector Y œ R64 where Yi =
q

7

j=0

Zi+64j . The standard calls
this a partical calculation.

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 241

• Calculate S = MY œ R32, where M is the 32 ◊ 64- matrix where Mik =
cos((2i + 1)(k ≠ 16)fi/64). S is called the vector of output samples, or
output subband samples. The standard calls this matrixing.

The standard does not motivate these steps, and does not put them into the
filter bank transform framework which we have established. Also, the standard
does not explain how the values in the vector C have been constructed.

Let us start by proving that the steps above really corresponds to applying a
forward filter bank transform, and let us state the corresponding filters of this
transform. The procedure computes 32 outputs in each iteration, and each of
them is associated with a subband. Therefore, from the standard we would guess
that we have M = 32 channels, and we would like to find the corresponding 32
filters H

0

, H
1

, . . . , H
31

.
It may seem strange to use the name matrixing here, for something which

obviously is matrix multiplication. The reason for this name must be that the
at the origin of the procedure come from outside a linear algebra framework.
The name windowing is a bit strange, too. This really does not correspond to
applying a window to the sound samples as we explained in Section 3.3.1. We
will see that it rather corresponds to applying a filter coe�cient to a sound
sample. A third and final thing which seems a bit strange is that the order of the
input samples is reversed, since we are used to having the first sound samples
in time with lowest index. This is perhaps more usual to do in an engineering
context, and not so usual in a mathematical context. FIFO.

Clearly, the procedure above defines a linear transformation, and we need to
show that this linear transformation coincides with the procedure we defined for a
forward filter bank transform, for a set of 32 filters. The input to the transforma-
tion are the audio samples, which we will denote by a vector x. At iteration s of
the procedure above the input audio samples are x

32s≠512

, x
32s≠510

, . . . , x
32s≠1

,
and Xi = x

32s≠i≠1

due to the reversal of the input samples. The output to the
transformation at iteration s of the procedure are the S

0

, . . . , S
31

. We assem-
ble these into a vector z, so that the output at iteration s are z

32(s≠1)

= S
0

,
z

32(s≠1)+1

= S
1

,. . . ,z
32(s≠1)+31

= S
31

.
We will have use for the following cosine-properties, which are easily verified:

cos (2fi(n + 1/2)(k + 2Nr)/(2N)) = (≠1)r cos (2fi(n + 1/2)k/(2N)) (6.31)
cos (2fi(n + 1/2)(2N ≠ k)/(2N)) = ≠ cos (2fi(n + 1/2)k/(2N)) . (6.32)

With the terminology above and using Property (6.31) the transformation can
be written as

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 242

z
32(s≠1)+n =

63ÿ

k=0

cos((2n + 1)(k ≠ 16)fi/64)Yk =
63ÿ

k=0

cos((2n + 1)(k ≠ 16)fi/64)
7ÿ

j=0

Zk+64j

=
63ÿ

k=0

7ÿ

j=0

(≠1)j cos((2n + 1)(k + 64j ≠ 16)fi/64)Zk+64j

=
63ÿ

k=0

7ÿ

j=0

cos((2n + 1)(k + 64j ≠ 16)fi/64)(≠1)jCk+64jXk+64j

=
63ÿ

k=0

7ÿ

j=0

cos((2n + 1)(k + 64j ≠ 16)fi/64)(≠1)jCk+64jx
32s≠(k+64j)≠1

.

Now, if we define {hr}511

r=0

by hk+64j = (≠1)jCk+64j , 0 Æ j < 8, 0 Æ k < 64, and
h(n) as the filter with coe�cients {cos((2n + 1)(k ≠ 16)fi/64)hk}511

k=0

, the above
can be simplified as

z
32(s≠1)+n =

511ÿ

k=0

cos((2n + 1)(k ≠ 16)fi/64)hkx
32s≠k≠1

=
511ÿ

k=0

(h(n))kx
32s≠k≠1

= (h(n)

x)
32s≠1

= (En≠31

h(n)

x)
32(s≠1)+n.

This means that the output of the procedure stated in the MP3 standard can
be computed as a forward filter bank transform, and that we can choose the
analysis filters as Hn = En≠31

h(n).

Theorem 6.26. Forward filter bank transform for the MP3 standard.
Define {hr}511

r=0

by hk+64j = (≠1)jCk+64j , 0 Æ j < 8, 0 Æ k < 64, and h(n)

as the filter with coe�cients {cos((2n + 1)(k ≠ 16)fi/64)hk}511

k=0

. If we define
Hn = En≠31

h(n), the procedure stated in the MP3 standard corresponds to
applying the corresponding forward filter bank transform.

The filters Hn were shown in Example 3.37 as examples of filters which
concentrate on specific frequency ranges. The hk are the filter coe�cients of
what is called a prototype filter. This kind of filter bank is also called a cosine-
modulated filter. The multiplication with cos (2fi(n + 1/2)(k ≠ 16)/(2N)) hk,
modulated the filter coe�cients so that the new filter has a frequency response
which is simply shifted in frequency in a symmetric manner: In Exercise 3.30,
we saw that, by multiplying with a cosine, we could contruct new filters with
real filter coe�cients, which also corresponded to shifting a prototype filter in
frequency. Of course, multiplication with a complex exponential would also shift
the frequency response (such filter banks are called DFT-modulated filter banks),
but the problem with this is that the new filter has complex coe�cients: It will
turn out that cosine-modulated filter banks can also be constructed so that they
are invertible, and that one can find such filter banks where the inverse is easily
found.

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 243

The e�ect of the delay in the definition of Hn is that, for each n, the
multiplications with the vector x are “aligned”, so that we can save a lot of
multiplications by performing this multiplication first, and summing these. We
actually save even more multiplications in the sum where j goes from 0 to 7, since
we here multiply with the same cosines. The steps defined in the MP3 standard
are clearly motivated by the desire to reduce the number of multiplications due
to these facts. A simple arithmetic count illutrates these savings: For every 32
output samples, we have the following number of multiplications:

• The first step computes 512 multiplications.

• The second step computes 64 sums of 8 elements each, i.e. a total of
7 ◊ 64 = 448 additions (note that q = 512/64 = 8).

The standard says nothing about how the matrix multiplication in the third
step can be implemented. A direct multiplication would yield 32 ◊ 64 = 2048
multiplications, leaving a total number of multiplications at 2560. In a direct
implementation of the forward filter bank transform, the computation of 32
samples would need 32 ◊ 512 = 16384 multiplications, so that the procedure
sketched in the standard gives a big reduction.

The standard does not mention all possibilities for saving multiplications,
however: We can reduce the number of multiplications even further, since clearly
a DCT-type implementation can be used for the matrixing operation. We already
have an e�cient implementation for multiplication with a 32 ◊ 32 type-III cosine
matrix (this is simply the IDCT). We have seen that this implementation can
be chosen to reduce the number of multiplications to N log

2

N/2 = 80, so that
the total number of multiplications is 512 + 80 = 592. Clearly then, when we
use the DCT, the first step is the computationally most intensive part.

6.3.2 Reverse filter bank transform used for decoding in
the MP3 standard

Let us now turn to how decoding is specified in the MP3 standard, and see that
we can associate this with a reverse filter bank transform. The MP3 standard
also states the following procedure for decoding:

• Input 32 new subband samples as the vector S.

• Change vector V œ R512, so that all elements are delayed with 64 elements.
In particular the 64 last elements are taken out.

• Set the first 64 elements of V as NS œ R64, where N is the 64 ◊ 32-
matrix where Nik = cos((16 + i)(2k + 1)fi/64). The standard also calls
this matrixing.

• Build the vector U œ R512 from V from the formulas U
64i+j = V

128i+j ,
U

64i+32+j = V
128i+96+j for 0 Æ i Æ 7 and 0 Æ j Æ 31, i.e. U is the vector

where V is first split into segments of length 132, and U is constructed by
assembling the first and last 32 elements of each of these segments.

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 244

• Multiply U componentwise with a vector D (this vector is defined in the
standard), to obtain a vector W œ R512. The standard also calls this
windowing.

• Compute the 32 next sound samples as
q

15

i=0

W
32i+j .

To interpret this also in terms of filters, rewrite first steps 4 to 6 as

x
32(s≠1)+j =

15ÿ

i=0

W
32i+j =

15ÿ

i=0

D
32i+jU

32i+j

=
7ÿ

i=0

D
64i+jU

64i+j +
7ÿ

i=0

D
64i+32+jU

64i+32+j

=
7ÿ

i=0

D
64i+jV

128i+j +
7ÿ

i=0

D
64i+32+jV

128i+96+j . (6.33)

The elements in V are obtained by “matrixing” di�erent segments of the vector
z. More precisely, at iteration s we have that

Q

ccca

V
64r

V
64r+1

...
V

64r+63

R

dddb
= N

Q

ccca

z
32(s≠r≠1)

z
32(s≠r≠1)+1

...
z

32(s≠r≠1)+31

R

dddb
,

so that

V
64r+j =

31ÿ

k=0

cos((16 + j)(2k + 1)fi/64)z
32(s≠r≠1)+k

for 0 Æ j Æ 63. Since also

V
128i+j = V

64(2i)+j V
128i+96+j = V

64(2i+1)+j+32

,

we can rewrite Equation (6.33) as

7ÿ

i=0

D
64i+j

31ÿ

k=0

cos((16 + j)(2k + 1)fi/64)z
32(s≠2i≠1)+k

+
7ÿ

i=0

D
64i+32+j

31ÿ

k=0

cos((16 + j + 32)(2k + 1)fi/64)z
32(s≠2i≠2))+k.

Again using Relation (6.31), this can be written as

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 245

31ÿ

k=0

7ÿ

i=0

(≠1)iD
64i+j cos((16 + 64i + j)(2k + 1)fi/64)z

32(s≠2i≠1)+k

+
31ÿ

k=0

7ÿ

i=0

(≠1)iD
64i+32+j cos((16 + 64i + j + 32)(2k + 1)fi/64)z

32(s≠2i≠2)+k.

Now, if we define {gr}511

r=0

by g
64i+s = (≠1)iC

64i+s, 0 Æ i < 8, 0 Æ s < 64, and
g(k) as the filter with coe�cients {cos((r + 16)(2k + 1)fi/64)gr}511

r=0

, the above
can be simplified as

31ÿ

k=0

7ÿ

i=0

(g(k))
64i+jz

32(s≠2i≠1)+k +
31ÿ

k=0

7ÿ

i=0

(g(k))
64i+j+32

z
32(s≠2i≠2)+k

=
31ÿ

k=0

A
7ÿ

i=0

(g(k))
32(2i)+jz

32(s≠2i≠1)+k +
7ÿ

i=0

(g(k))
32(2i+1)+jz

32(s≠2i≠2)+k

B

=
31ÿ

k=0

15ÿ

r=0

(g(k))
32r+jz

32(s≠r≠1)+k,

where we observed that 2i and 2i + 1 together run through the values from 0 to
15 when i runs from 0 to 7. Since z has the same values as zk on the indices
32(s ≠ r ≠ 1) + k, this can be written as

=
31ÿ

k=0

15ÿ

r=0

(g(k))
32r+j(zk)

32(s≠r≠1)+k

=
31ÿ

k=0

(g(k)

zk)
32(s≠1)+j+k =

31ÿ

k=0

((E≠kg(k))zk)
32(s≠1)+j .

By substituting a general s and j we see that x =
q

31

k=0

(E≠kg(k))zk. We have
thus proved the following.

Theorem 6.27. Reverse filter bank transform for the MP3 standard.
Define {gr}511

r=0

by g
64i+s = (≠1)iC

64i+s, 0 Æ i < 8, 0 Æ s < 64, and g(k)

as the filter with coe�cients {cos((r + 16)(2k + 1)fi/64)gr}511

r=0

. If we define
Gk = E≠kg(k), the procedure stated in the MP3 standard corresponds to applying
the corresponding reverse filter bank transform.

In other words, both procedures for encoding and decoding stated in the
MP3 standard both correspond to filter banks: A forward filter bank transform
for the encoding, and a reverse filter bank transform for the decoding. Moreover,
both filter banks can be constructed by cosine-modulating prototype filters, and
the coe�cients of these prototype filters are stated in the MP3 standard (up to

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 246

multiplication with an alternating sign). Note, however, that the two prototype
filters may be di�erent. When we compare the two tables for these coe�cients in
the standard they do indeed seem to be di�erent. At closer inspection, however,
one sees a connection: If you multiply the values in the D-table with 32, and
reverse them, you get the values in the C-table. This indicates that the analysis
and synthesis prototype filters are the same, up to multiplication with a scalar.
This connection will be explained in Section 8.3.

While the steps defined in the MP3 standard for decoding seem a bit more
complex than the steps for encoding, they are clearly also motivated by the
desire to reduce the number of multiplications. In both cases (encoding and
decoding), the window tables (C and D) are in direct connection with the filter
coe�cients of the prototype filter: one simply adds a sign which alternates for
every 64 elements. The standard document does not mention this connection,
and it is perhaps not so simple to find this connection in the literature (but see
[26]).

The forward and reverse filter bank transforms are clearly very related. The
following result clarifies this.

Theorem 6.28. Connection between the forward and reverse filter bank trans-
forms in the MP3 standard.

Assume that a forward filter bank transform has filters on the form Hi =
Ei≠31

h(i) for a prototype filter h. Then G = E
481

HT is a reverse filter bank
transform with filters on the form Gk = E≠kg(k), where g is a prototype filter
where the elements equal the reverse of those in h. Vice versa, H = E

481

GT .

Proof. From Theorem 6.25 we know that HT is a reverse filter bank transform
with filters

(Hi)T = (Ei≠31

h(i))T = E
31≠i(h(i))T .

(h(i))T has filter coe�cients cos((2i + 1)(≠k ≠ 16)fi/64))h≠k. If we delay all
(Hi)T with 481 = 512 ≠ 31 elements as in the theorem, we get a total delay of
512 ≠ 31 + 31 ≠ i = 512 ≠ i elements, so that we get the filter

E
512≠i{cos((2i + 1)(≠k ≠ 16)fi/64))h≠k}k

= E≠i{cos((2i + 1)(≠(k ≠ 512) ≠ 16)fi/64))h≠(k≠512)

}k

= E≠i{cos((2i + 1)(k + 16)fi/64))h≠(k≠512)

}k.

Now, we define the prototype filter g with elements gk = h≠(k≠512)

. This has,
just as h, its support on [1, 511], and consists of the elements from h in reverse
order. If we define g(i) as the filter with coe�cients cos((2i + 1)(k + 16)fi/64))gk,
we see that E

481

HT is a reverse filter bank transform with filters E≠ig(i). Since
g(k) now has been defined as for the MP3 standard, and its elements are the
reverse of those in h, the result follows.

We will have use for this result in Section 8.3, when we find conditions on
the protototype filter in order for the reverse transform to invert the forward

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 247

transform. Preferably, the reverse filter bank transform inverts exactly the
forward filter bank transform. In Exercise 6.16 we construct examples which
show that this is not the case. In the same exercise we also find many examples
where the reverse transform does what we would expect. These examples will
also be explained in Section 8.3, where we also will see how one can get around
this so that we obtain a system with perfect reconstruction. It may seem strange
that the MP3 standard does not do this.

In the MP3 standard, the output from the forward filter bank transform is
processed further, before the result is compressed using a lossless compression
method.

Exercise 6.15: Plotting frequency responses
The values Cq, Dq can be found by calling the functions mp3ctable, mp3dtable
which can be found on the book’s webpage.

a) Use your computer to verify the connection we stated between the tables C
and D, i.e. that Di = 32Ci for all i.

b) Plot the frequency responses of the corresponding prototype filters, and verify
that they both are lowpass filters. Use the connection from Theorem (6.26) to
find the prototype filter coe�cients from the Cq.

Exercise 6.16: Implementing forward and reverse filter bank
transforms
It is not too di�cult to make implementations of the forward and reverse steps
as explained in the MP3 standard. In this exercise we will experiment with this.
In your code you can for simplicity assume that the input and output vectors to
your methods all have lengths which are multiples of 32. Also, use the functions
mp3ctable, mp3dtable mentioned in the previous exercise.

a) Write a function mp3forwardfbt which implements the steps in the forward
direction of the MP3 standard.

b) Write also a function mp3reversefbt which implements the steps in the
reverse direction.

6.4 Summary
We started this chapter by noting that, by reordering the target base of the
DWT, the change of coordinate matrix took a particular form. From this form
we understood that the DWT could be realized in terms of two filters H

0

and
H

1

, and that the IDWT could be realized in a similar way in terms of two filters
G

0

and G
1

. This gave rise to what we called the filter representation of wavelets.
The filter representation gives an entirely di�erent view on wavelets: instead of
constructing function spaces with certain properties and deducing corresponding

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 248

filters from these, we can instead construct filters with certain properties (such
as alias cancellation and perfect reconstruction), and attempt to construct
corresponding mother wavelets, scaling functions, and function spaces. This
strategy, which replaces problems from function theory with discrete problems,
will be the subject of the next chapter. In practice this is what is done.

We stated what is required for filter bank matrices to invert each other: The
frequency responses of the lowpass filters needed to satisfy a certain equation,
and once this is satsified the highpass filters can easily be obtained in the same
way we previously obtained highpass filters from lowpass filters. We will return
to this equation in the next chapter.

A useful consequence of the filter representation was that we could reuse
existing implementations of filters to implement the DWT and the IDWT, and
reuse existing theory, such as symmetric extensions. For wavelets, symmetric
extensions are applied in a slightly di�erent way, when compared to the develop-
ments which lead to the DCT. We looked at the frequency responses of the filters
for the wavelets we have encountered upto now. From these we saw that G

0

, H
0

were lowpass filters, and that G
1

, H
1

were highpass filters, and we argued why
this is typically the case for other wavelets as well. The filter reprersentation
was also easily generalized from 2 to M > 2 filters, and such transformations
had a similar interpretation in terms of splitting the input into a uniform set of
frequencies. Such transforms were generally called filter bank transforms, and
we saw that the processing performed by the MP3 standard could be interpreted
as a certain filter bank transform, called a cosine-modulated filter bank. This
is just one of many possible filter banks. In fact, the filter bank of the MP3
standard is largely outdated, since it is too simple, and as we will see it does not
even give perfect reconstruction (only alias cancellation and no phase distortion).
It is merely chosen here since it is the simplest to present theoretically, and
since it is perhaps the best known standard for compression of sound. Other
filters banks with better properties have been constructed, and they are used in
more recent standards. In many of these filter banks, the filters do not partition
frequencies uniformly, and have been adapted to the way the human auditory
system handles the di�erent frequencies. Di�erent contruction methods are used
to construct such filter banks. The motivation behind filter bank transforms is
that their output is more suitable for further processing, such as compression, or
playback in an audio system, and that they have e�cient implementations.

We mentioned that the MP3 standard does not say how the prototype filters
were chosen. We will have more to say on what dictates their choice in Section 8.3.

There are several di�erences between the use of wavelet transformations
in wavelet theory, and the use of filter bank transforms in signal processing
theory One is that wavelet transforms are typically applied in stages, while filter
bank transforms often are not. Nevertheless, such use of filter banks also has
theoretical importance, and this gives rise to what is called tree-structured filter
banks [37]. Another di�erence lies in the use of the term perfect reconstruction
system. In wavelet theory this is a direct consequence of the wavelet construction,
since the DWT and the IDWT correspond to change of coordinates to and from
the same bases. The alternative QMF filter bank was used as an example

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 249

of a filter bank which stems from signal processing, and which also shows
up in wavelet transformation. In signal processing theory, one has a wider
perspective, since one can design many useful systems with fast implementations
when one replaces the perfect reconstruction requirement with a near perfect
reconstruction requirement. One instead requires that the reverse transform
gives alias cancellation. The classical QMF filter banks were an example of this.
The original definition of classical QMF filter banks are from [7], and di�er only
in a sign from how they are defined here.

All filters we encounter in wavelets and filter banks in this book are FIR.
This is just done to limit the exposition. Much useful theory has been developed
using IIR-filters.

