Chapter 5

Motivation for wavelets and
some simple examples

In the first part of the book our focus was to approximate functions or vectors
with trigonometric functions. We saw that the Discrete Fourier transform could
be used to obtain a representation of a vector in terms of such functions, and
that computations could be done efficiently with the FFT algorithm. This was
useful for analyzing, filtering, and compressing sound and other discrete data.
The approach with trigonometric functions has some limitations, however. One
of these is that, in a representation with trigonometric functions, the frequency
content is fixed over time. This is in contrast with most sound data, where
the characteristics are completely different in different parts. We have also
seen that, even if a sound has a simple representation in terms of trigonometric
functions on two different parts, the representation of the entire sound may not
be simple. In particular, if the function is nonzero only on a very small interval,
a representation of it in terms of trigonometric functions is not so simple.

In this chapter we are going to introduce the basic properties of an alternative
to Fourier analysis for representing functions. This alternative is called wavelets.
Similar to Fourier analysis, wavelets are also based on the idea of expressing a
function in some basis. But in contrast to Fourier analysis, where the basis is
fixed, wavelets provide a general framework with many different types of bases.
In this chapter we first give a motivation for wavelets, before we continue by
introducing some very simple wavelets. The first wavelet we look at can be
interpreted as an approximation scheme based on piecewise constant functions.
The next wavelet we look at is similar, but with piecewise linear functions used
instead. Following these examples we will establish a more general framework,
based on experiences from the simple wavelets. In the following chapters we will
interpret this framework in terms of filters, and use this connection to construct
even more interesting wavelets.

The examples in this and the next chapters can be run from the notebook
applinalgnbchap5.ipynb. Core functions are collected in a module called dwt.
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5.1 Why wavelets?

The left image in Figure 5.1 shows a view of the entire Earth.

Figure 5.1: A view of Earth from space, together with versions of the image
where we have zoomed in.

The startup image in Google Earth™ a program for viewing satellite images,
maps and other geographic information, is very similar to this. In the middle
image we have zoomed in on the Mexican Gulff, as marked with a rectangle in
the left image. Similarly, in the right image we have further zoomed in on Cuba
and a small portion of Florida, as marked with a rectangle in the middle image.
There is clearly an amazing amount of information available behind a program
like Google Earth™ | since we there can zoom further in, and obtain enough
detail to differentiate between buildings and even trees or cars all over the Earth.
So, when the Earth is spinning in the opening screen of Google Earth™ all
the Earth’s buildings appear to be spinning with it! If this was the case the
Earth would not be spinning on the screen, since there would just be so much
information to process that a laptop would not be able to display a rotating
Earth.

There is a simple reason that the globe can be shown spinning in spite of
the huge amounts of information that need to be handled. We are going to see
later that a digital image is just a rectangular array of numbers that represent
the color at a dense set of points. As an example, the images in Figure 5.1 are
made up of a grid of 1064 x 1064 points, which gives a total of 1 132 096 points.
The color at a point is represented by three eight-bit integers, which means that
the image files contain a total of 3 396 288 bytes each. So regardless of how
close to the surface of the Earth our viewpoint is, the resulting image always
contains the same number of points. This means that when we are far away
from the Earth we can use a very coarse model of the geographic information
that is being displayed, but as we zoom in, we need to display more details and
therefore need a more accurate model.

Observation 5.1. Images models.
When discrete information is displayed in an image, there is no need to use a
mathematical model that contains more detail than what is visible in the image.
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A consequence of Observation 5.1 is that for applications like Google Earth™
we should use a mathematical model that makes it easy to switch between different
levels of detail, or different resolutions. Such models are called multiresolution
models, and wavelets are prominent examples of this kind of models. We will
see that multiresolution models also provide us with means of approximating
functions, just as Taylor series and Fourier series. Our new approximation scheme
differs from these in one important respect, however: When we approximate
with Taylor series and Fourier series, the error must be computed at the same
data points as well, so that the error contains just as much information as the
approximating function, and the function to be approximated. Multiresolution
models on the other hand will be defined in such a way that the error and the
“approximating function” each contain half of the information from the function
we approximate, i.e. their amount of data is reduced. This property makes
multiresolution models attractive for the problems at hand, when compared to
approaches such as Taylor series and Fourier series.

When we zoom in with Google Earth™ it seems that this is done contin-
uously. The truth is probably that the program only has representations at
some given resolutions (since each representation requires memory), and that
one interpolates between these to give the impression of a continuous zoom. In
the coming chapters we will first look at how we can represent the information
at different resolutions, so that only new information at each level is included.

We will now turn to how wavelets are defined more formally, and construct
the simplest wavelet we have. Its construction goes in the following steps: First
we introduce what we call resolution spaces, and the corresponding scaling
function. Then we introduce the detail spaces, and the corresponding mother
wavelet. These two functions will give rise to certain bases for these spaces,
and we will define the Discrete Wavelet Transform as a change of coordinates
between these bases.

5.2 A wavelet based on piecewise constant func-
tions

Our starting point will be the space of piecewise constant functions on an interval
[0, N). This will be called a resolution space.

Definition 5.2. The resolution space V.

Let N be a natural number. The resolution space Vj is defined as the space
of functions defined on the interval [0, N) that are constant on each subinterval
[n,n+1)forn=0,..., N—1.

Note that this also corresponds to piecewise constant functions which are
periodic with period N. We will, just as we did in Fourier analysis, identify a
function defined on [0, V) with its (period N) periodic extension. An example
of a function in Vj for N = 10 is shown in Figure 5.2. It is easy to check that Vj
is a linear space, and for computations it is useful to know the dimension of the
space and have a basis.
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Figure 5.2: A piecewise constant function.

Lemma 5.3. The function ¢.
Define the function ¢(t) by

1 fo<t<l;
t)y=1q" - ’ 5.1
o(t) {0, otherwise; (5-1)

and set ¢, (t) = ¢(t — n) for any integer n. The space V; has dimension N, and
the N functions {qsn}ﬁgol form an orthonormal basis for V with respect to the
standard inner product

N
(o) = [ fadr (52)
0
In particular, any f € V; can be represented as
N-1
f@t) = Z Cn®n(t) (5.3)
n=0

for suitable coefficients (c,,L)ﬁgol. The function ¢, is referred to as the character-

istic function of the interval [n,n + 1)

Note the small difference between the inner product we define here from the
inner product we used for functions previously: Here there is no scaling 1/7
involved. Also, for wavelets we will only consider real functions, and the inner
product will therefore not be defined for complex functions. Two examples of
the basis functions defined in Lemma 5.5 are shown in Figure 5.3.

Proof. Two functions ¢,,, and ¢,,, with ny # ns clearly satisty [ ¢y, (¢)¢n, (£)dt =
0 since @p, (t)dn, (t) = 0 for all values of x. It is also easy to check that ||, || =1
for all n. Finally, any function in V;, can be written as a linear combination the
functions ¢g, @1, ..., dn_1, so the conclusion of the lemma follows. O
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Figure 5.3: The basis functions ¢2 and ¢ from ¢y.
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Figure 5.4: Examples of functions from V. The square wave in Vj (left), and
an approximation to cost from Vj (right).

In our discussion of Fourier analysis, the starting point was the function
sin(27t) that has frequency 1. We can think of the space Vj as being analogous
to this function: The function Ziv;ol(—l)”gbn(t) is (part of the) square wave
that we discussed in Chapter 1, and which also oscillates regularly like the sine
function, see the left plot in Figure 5.4. The difference is that we have more
flexibility since we have a whole space at our disposal instead of just one function
— the right plot in Figure 5.4 shows another function in Vj.

In Fourier analysis we obtained a linear space of possible approximations by
including sines of frequency 1, 2, 3, ..., up to some maximum. We use a similar
approach for constructing wavelets, but we double the frequency each time and
label the spaces as Vg, Vi, Vo, ...

Definition 5.4. Refined resolution spaces.

The space V,,, for the interval [0, V) is the space of piecewise linear functions
defined on [0, N) that are constant on each subinterval [n/2™, (n + 1)/2™) for
n=0,1,...,2"N — 1.

Some examples of functions in the spaces Vi, V4 and V3 for the interval [0, 10]
are shown in Figure 5.5. As m increases, we can represent smaller details. In
particular, the function in the rightmost is a piecewise constant function that
oscillates like sin(2722t) on the interval [0, 10].
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Figure 5.5: Piecewise constant approximations to cost on the interval [0, 10] in
the spaces Vi, V, and V3. The lower right plot shows the square wave in Va.

It is easy to find a basis for V,,,, we just use the characteristic functions of
each subinterval.

Lemma 5.5. Basis for V,,.
Let [0, N) be a given interval with N some positive integer. Then the
dimension of V,,, is 2™ N. The functions

Gmn(t) =2"2p(2"t —n), forn=0,1,...,2"N —1. (5.4)

{¢7n,n}37‘7:6\[71 form an orthonormal basis for V;,,, which we will denote by ¢,,.

Any function f € V,, can thus be represented uniquely as
2mN -1
f(t) = Z cm,7z¢m,n(t)-

n=0

Proof. The functions given by Equation (5.4) are nonzero on the subintervals
[n/2™, (n+1)/2™) which we referred to in Definition 5.4, so that ¢m, n, Pm.n, =0
when ny # ng, since these intervals are disjoint. The only mysterious thing may
be the normalisation factor 2™/2. This comes from the fact that

N (n+1)/2™ 1
/ H(2™t —n)?dt = / é(2™t —n)%dt = 2—’"/ du) du=2"".
0 n 0

/ om

The normalisation therefore thus ensures that ||, | = 1 for all m. O
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In the following we will always denote the coordinates in the basis ¢,, by
Cm,n- Note that our definition restricts the dimensions of the spaces we study
to be on the form N2™. In Chapter 6 we will explain how this restriction can
be dropped, but until then the dimensions will be assumed to be on this form.
In the theory of wavelets, the function ¢ is also called a scaling function. The
origin behind this name is that the scaled (and translated) functions ¢, , of ¢
are used as basis functions for the refined resolution spaces. Later on we will see
that other scaling functions ¢ can be chosen, where the scaled versions ¢, ,, will
be used to define similar resolution spaces, with slightly different properties.

5.2.1 Function approximation property

Each time m is increased by 1, the dimension of V,,, doubles, and the subinterval
on which the functions in V;,, are constant are halved in size. It therefore seems
reasonable that, for most functions, we can find good approximations in V,,
provided m is big enough.

Theorem 5.6. Resolution spaces and approximation.
Let f be a given function that is continuous on the interval [0, N]. Given
€ > 0, there exists an integer m > 0 and a function g € V,,, such that

[f(t) —g(t)] < e
for all ¢ in [0, N].

Proof. Since f is (uniformly) continuous on [0, N], we can find an integer m so
that |f(t1)—f(t2)| < e for any two numbers ¢; and ¢ in [0, N] with |t; —t2] < 27™.
Define the approximation g by

2MN—1
g(t) = Z f(tm,n+1/2)¢m,n(t)7
n=0
where ¢, n11/2 is the midpoint of the subinterval [nZ*’”, (n+ 1)2*’”),

tm,n+l/2 = (TL + 1/2)2—777,

For t in this subinterval we then obviously have |f(t) — ¢g(t)| < ¢, and since these
intervals cover [0, N], the conclusion holds for all ¢ € [0, N]. O

Theorem 5.6 does not tell us how to find the approximation g although the
proof makes use of an approximation that interpolates f at the midpoint of each
subinterval. Note that if we measure the error in the L?-norm, we have

||f—g|\2:/0 1£(t) — g(t)[2 dt < N,

so ||f — g|l < ev/N. We therefore have the following corollary.
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Corollary 5.7. Resolution spaces and approximation.
Let f be a given continuous function on the interval [0, N]. Then

Tim_ £~ projy, (/)] = 0.

Figure 5.6 illustrates how some of the approximations of the function f(z) =
22 from the resolution spaces for the interval [0, 1] improve with increasing m.
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Figure 5.6: Comparison of the function defined by f(¢) = ¢? on [0, 1] with the
projection onto V5, V4, and Vg, respectively.

5.2.2 Detail spaces and wavelets

So far we have described a family of function spaces that allow us to determine
arbitrarily good approximations to a continuous function. The next step is to
introduce the so-called detail spaces and the wavelet functions. We start by
observing that since

[n,n+1)=[2n/2,2n+1)/2) U[(2n+1)/2,(2n+2)/2),
we have
1

¢0,n = \@

1
d1,on + ﬁ¢172n+1'
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This provides a formal proof of the intuitive observation that Vi C Vi, for if
g € Vo, we can write

N-1 N-1
g(t) = Z conPon(t) = Z com(B1.2n + Pr2n41)/V2,
n=0 n=0

and the right-hand side clearly lies in V;. Since also

Srm—1,n(t) = 207D/ (21 — ) = 2(m=D/2g | (omy)

_ 1 m— e
= o(m 1)/2ﬁ(¢1,2n(2 )+ p12n1(2771))

= 20m=U/2(g(2m¢ — 2n) + (2™t — (2n + 1)) =

— %((ﬁm"(t) + bm,2n+1(1)),

we also have that

1 1
m—1n = —=Pm,2n + —=Pm,2n+1, 5.5
Pm—1, \/?i) 2 \/§¢ 2n41 (5.5)

so that also Vi, C Vi for any integer k£ > 0.

Lemma 5.8. Resolution spaces are nested.
The spaces Vg, V1, ..., Vi, ...are nested,

VocVicVocC---CVyeoe.

This means that it is meaningful to project Vi11 onto Vi. The next step is to
characterize the projection from V3 onto Vj, and onto the orthogonal complement
of Vg in V;. Before we do this, let us make the following definitions.

Definition 5.9. Detail spaces.
The orthogonal complement of V,,,_; in V,,, is denoted W,,_1. All the spaces
W) are also called detail spaces, or error spaces.

The name detail space is used since the projection from V,, onto V,,_1 in
considered as a (low-resolution) approximation, and the error, which lies in
Win—1, is the detail which is left out when we replace with this approximation.
We will also write g, = gm—1 + €m—1 when we split g,, € V,,, into a sum of a
low-resolution approximation and a detail component. In the context of our
Google Earth™example, in Figure 5.1 you should interpret gy as the left image,
the middle image as an excerpt of g1, and ey as the additional details which are
needed to reproduce the middle image from the left image.

Since Vp and W, are mutually orthogonal spaces they are also linearly
independent spaces. When U and V are two such linearly independent spaces,
we will write U @ V' for the vector space consisting of all vectors of the form
u+wv, withueU,veV. UV is also called the direct sum of U and V. This
also makes sense if we have more than two vector spaces (such as U & V @ W),
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and the direct sum clearly obeys the associate law U@ (Ve W)= (UaV)eW.
Using the direct sum notation, we can first write

Vm — Vm—1 ©® Wm71~ (56)

Since V,,, has dimension 2" N, it follows that also W,,, has dimension 2™ N. We
can continue the direct sum decomposition by also writing V,,,_1 as a direct sum,
then V,,,_» as a direct sum, and so on, and end up with

Vm:%®WO@W1@"'@Wm_1, (57)

where the spaces on the right hand side have dimension N, N,2N,...,2m ' N.
This decomposition wil be important for our purposes. It says that the resolution
space V;, acan be written as the sum of a lower order resolution space Vj, and
m detail spaces Wy,...,W,,_1. We will later interpret this splitting into a
low-resolution component and m detail components.

It turns out that the following function will play the same role for the detail
space W}, as the function ¢ plays for the resolution space V.

Definition 5.10. The function 1.
We define

P(t) = (dro(t) — d1.1(1)) /V2 = ¢(2t) — p(2t — 1), (5.8)

and

Vmon(t) =222t —n), forn=0,1,...,2mN —1. (5.9)

The functions ¢ and v are shown in Figure 5.7.
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Figure 5.7: The functions ¢ and ¢ we used to analyse the space of piecewise
constant functions.

As in the proof for Equation (5.5), it follows that
1 1
ﬁd)mﬂn - ﬁ¢m,2n+17

Clearly # is supported on [0, 1), and |[¢)| = 1. From this it follows as for ¢¢
that the {wo,n}ﬁgol are orthonormal. In the same way as for ¢,,, it follows

d}m—l,n = (510)
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also that the {¢,, n}n o is orthonormal for any m. We will write 4, for
the orthonormal basis {wm,n f;f)v ~1, and we will always denote the coordinates
in the basis ¥, by wpm . The next result motivates the definition of ¢, and
states how we can project from V; onto V) and Wy, i.e. find the low-resolution

approximation and the detail component of g; € V.

Lemma 5.11. Orthonormal bases.
For 0 < n < N we have that

. Go.ns2/V2, if n is even;
n) =9 5.11
projvy (91.0) {¢0,(n—1)/2/\/§, if n is odd. ( )
: Yons2/V2, if n is even;
Projiy, (¢10) =9 2/ L (5.12)
=0, (n—1)/2/V2, if nis odd.

In particular, 1 is an orthonormal basis for Wy. More generally, if ¢ =
IN-1
>orly C1nd1n € Vi, then

N-1
C1,2n T C1,2n+1
projy, (91) = Co.no.n, Where cop, = % (5.13)
n=0
N-1 R
projyy, (91) Z Wo,nY0,n, Where wo , = Shen T Cl2ndl (5.14)

n=0 \/5

Proof. We first observe that ¢q,(t) # 0 if and only if n/2 < ¢t < (n + 1)/2.
Suppose that n is even. Then the intersection

n n+1
27 2

) n [7117711 + 1) (515)

is nonempty only if ny = 5. Using the orthogonal decomposition formula we get

N-1
projy, (¢1,n) Z P1,n, Po,k) G0,k = (D1,n, Po,ny ) Po,n,y

/(n+1)/2 /s 1
= 2dt¢ n/2 — 7¢ n/2-
/2 0,n/2 \/§ 0,n/2

Using this we also get

1

Projyy, (#1.n) = P10 — %%,n/z = P10 — 7 (%Qﬁm + %dﬁ,n-kl)
= %le,n - %¢1,n+1 = wO,n/2/\/§'
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This proves the expressions for both projections when n is even. When n is
odd, the intersection (5.15) is nonempty only if ny = (n — 1)/2, which gives the
expressions for both projections when n is odd in the same way. In particular
we get

Po,(n-1)/2 1

1 1
rOj n) = n_— = — n— =\ —F#&= n—-1+t —=01.n
Projyy, (d1,n) = ¢1, NG ¢1, 7 (\/59151, 1 \/§¢1’ >
1 1
= §¢1,n - §¢l,n—l = _wO,(n—l)/Q/\/i'

1o must be an orthonormal basis for Wy since 1 is contained in Wy, and both
have dimension N.

We project the function g1 in V4 using the formulas in (5.11). We first split
the sum into even and odd values of n,

aN—1 N-1 N-1
g1 = Z Cln®1n = Z c1,2n®1,2n + Z €1,2n4191,2n+1- (5.16)
n=0 n=0 n=0

We can now apply the two formulas in (5.11),

N-1 N-1
projy; (91) = projy, <Z C1,2nP1,2n + Z Cl,2n+1¢1,2n+1)

n=0 n=0
N-1
¢1,2n PYOjy, (d1.20) + D €1.2n41 PrOjy; ($1.2n41)
n=0
N-1
131,2719150,71/\/i + Z 1 2n+100n/ V2

n=0

Il
ngZ

Il
<)

=z 3

C1,2n T C1,2n+1

¢ V2

which proves Equation (5.13). Equation (5.14) is proved similarly. O

¢0,n

n

In Figure 5.8 we have used Lemma 5.11 to plot the projections of ¢1 9 € V3
onto Vy and Wy. It is an interesting exercise to see from the plots why exactly
these functions should be least-squares approximations of ¢ ,. It is also an
interesting exercise to prove the following from Lemma 5.11:

Proposition 5.12. Projections.

Let f(t) € V4, and let f, 1 be the value f attains on [n,n + 1/2), and f,, 2
the value f attains on [n + 1/2,n + 1). Then projy, (f) is the function in Vg
which equals (fn,1 + fn,2)/2 on the interval [n,n + 1). Moreover, projy, (f) is
the function in Wy which is (fn,1 — fn,2)/2 on [n,n+1/2), and —(fn1 — fn,2)/2
on[n+1/2,n+1).
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Figure 5.8: The projection of ¢; g € V7 onto V and Wy.

In other words, the projection on Vj is constructed by averaging on two
subintervals, while the projection on Wy is constructed by taking the difference
from the mean. This sounds like a reasonable candidate for the least-squares
approximations. In the exercise we generalize these observations.

In the same way as in Lemma 5.11, it is possible to show that

Vm—1,n/2/V?2, if n is even;

5.17
*1/)m717(n,1)/2/\@, if n is odd. ( )

From this it follows as before that 1),, is an orthonormal basis for W,. If {B;}7,
are mutually independent bases, we will in the following write (By, Ba, ..., By,)
for the basis where the basis vectors from B; are included before B; when i < j.
With this notation, the decomposition in Equation (5.7) can be restated as
follows

Theorem 5.13. Bases for V,,.
ém and (o, Yo, Y1, -+ ,1Pm_1) are both bases for V.

The function 1 thus has the property that its dilations and translations
together span the detail components. Later we will encounter other functions,
which also will be denoted by v, and have similar properties. In the theory of
wavelets, such ¢ are called mother wavelets. There is one important property of
1, which we will return to:

Observation 5.14. Vanishing moment.
We have that fON P(t)dt = 0.

This can be seen directly from the plot in Figure 5.7, since the parts of
the graph above and below the z-axis cancel. In general we say that ¢ has k
vanishing moments if the integrals f thp(t)dt =0 for all 0 <1 < k — 1. Due to
Observation 5.14, 1 has one vanishing moment. In Chapter 7 we will show that
mother wavelets with many vanishing moments are very desirable when it comes
to approximation of functions.

We now have all the tools needed to define the Discrete Wavelet Transform.



CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES174

Definition 5.15. Discrete Wavelet Transform.

The DWT (Discrete Wavelet Transform) is defined as the change of coordi-
nates from ¢ to (¢o, o). More generally, the m-level DWT is defined as the
change of coordinates from ¢,, to (¢o, %o, %1, ,¥m—1). In an m-level DWT,
the change of coordinates from

(¢m—k+1: wm—k-&-l» ’l/)m—k+27 e 7¢m—1) to (¢m—k7 wm—kv wm—k‘-&-ly e 7"1bm—1)
(5.18)

is also called the k’th stage. The (m-level) IDWT (Inverse Discrete Wavelet
Transform) is defined as the change of coordinates the opposite way.

The DWT corresponds to replacing as many ¢-functions as we can with
1-functions, i.e. replacing the original function with a sum of as much detail at
different resolutions as possible. We now can state the following result.

Theorem 5.16. Ezxpression for the DWT.
If Im = gm—1 + €m—1 with

2MN—1
Im = § Cm,n¢m,n € Vi,
n=0
om—1pn_1 om—1pn_1
Im—-1 = § Cmfl.,nqﬁmfl,n S mel Em—1 = § wmfl,nwnzfl,n € W'm,fh
n=0 n=0

then the change of coordinates from ¢,, to (¢m—1,¥m—1) (i-e. first stage in a
DWT) is given by

<Cm—1,n> _ (1/\/§ 1/\/§ > ( Cm,2n ) (5 19)
wmfl,n 1/\/E _1/\/5 Cm,2n+1 ’
Conversely, the change of coordinates from (¢,,—1,%¥m—1) to ¢, (i.e. the last
stage in an IDWT) is given by

()= (03 DB (o) o

Proof. Equations (5.5) and (5.10) say that

¢m—l,n = ¢m72n/\/§ + ¢m,2n+l/\/§ wm—l,n = ¢m72n/\/§ - ¢m,2n+l/\/§~

The change of coordinate matrix from the basis {¢m—1.n, Um—1,n} t0 {Om.2n, Pm.2n+1}
. 1/vV2 1/V2
is thus (1/\/5 _1/\/5

immediately since this matrix equals its inverse. O

). This proves Equation (5.20). Equation (5.19) follows
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Above we assumed that NV is even. In Exercise 5.8 we will see how we can
handle the case when N is odd.
From Theorem 5.16, we see that, if we had defined

Crn = {dm=1,00Vm—1,0, Pm—1,1, Ym—1,1," "+ Pm—1,2m=1 N1, Vp—1,2m—1 N1}
(5.21)
i.e. we have reordered the basis vectors in (¢, —1, P¥m—1) (the subscript m is used
since C,, is a basis for V,,,), it is apparent from Equation (5.20) that G = Py, c,,

is the matrix where
1 1
Vo4 e
V2 V2

is repeated along the main diagonal 2™ 1N times. Also, from Equation (5.19) it
is apparent that H = P¢, ¢, is the same matrix. Such matrices are called block
diagonal matrices. This particular block diagonal matrix is clearly orthogonal.
Let us make the following definition

Definition 5.17. DWT and IDWT kernel transformations.

The matrices H = F¢, ¢, and G = Py, ¢, are called the DWT and
IDWT kernel transformations. The DWT and the IDWT can be expressed in
terms of these kernel transformations by

DWT = Py, 1 pn1)eCpntl and IDWT = GFe,, (401 1)
respectively, where

® P4, 1 abm_1)C, 15 a permutation matrix which groups the even elements
first, then the odd elements,

® I, (¢m_1hm_1) 18 @ permutation matrix which places the first half at
the even indices, the last half at the odd indices.

Clearly, the kernel transformations H and G also invert each other. The point
of using the kernel transformation is that they compute the output sequentially,
similarly to how a filter does. Clearly also the kernel transformations are very
similar to a filter, and we will return to this in the next chapter.

At each level in a DWT, V}, is split into one low-resolution component from
Vi—1, and one detail component from Wj,_;. We have illustrated this in figure 5.9,
where the arrows represent changes of coordinates.

The detail component from Wjy_; is not subject to further transformation.
This is seen in the figure since 1,_1 is a leaf node, i.e. there are no arrows going
out from ¥,,—1. In a similar illustration for the IDWT, the arrows would go the
opposite way.

The Discrete Wavelet Transform is the analogue in a wavelet setting to the
Discrete Fourier transform. When applying the DFT to a vector of length N,
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D _>¢m 1_>¢m2 o} ¢0

NN\

’d)m—l ¢m—2 ¢m—3 "7[)0

Figure 5.9: Illustration of a wavelet transform.

one starts by viewing this vector as coordinates relative to the standard basis.
When applying the DWT to a vector of length N, one instead views the vector
as coordinates relative to the basis ¢,,. This makes sense in light of Exercise 5.1.

What you should have learned in this section.

e Definition of resolution spaces (V;,), detail spaces (W), scaling function
(¢), and mother wavelet (¢) for the wavelet based on piecewise constant
functions.

e The nesting of resolution spaces, and how one can project from one reso-
lution space onto a lower order resolution space, and onto its orthogonal
complement.

e The definition of the Discrete Wavelet Transform as a change of coordinates,
and how this can be written down from relations between basis functions.

Exercise 5.1: Samples are the coordinate vector
Show that the coordinate vector for f € V; in the basis {¢0,0, ¢0.1,---,%o,N—1}
Exercise 5.2: Proposition 5.12

Prove Proposition 5.12.

Exercise 5.3: Computing projections
In this exercise we will consider the two projections from Vi onto Vy and Wy.

a) Consider the projection projy, of V1 onto V. Use Lemma 5.11 to write down
the matrix for projy, relative to the bases ¢; and ¢q.

b) Similarly, use Lemma 5.11 to write down the matrix for PIOjyy, : Vi— Wy
relative to the bases ¢; and 1.
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Exercise 5.4: Computing projections 2
Consider again the projection projy, of Vi onto Vp.
a) Explain why projy, (¢) = ¢ and projy; (+) = 0.

b) Show that the matrix of projy, relative to (¢, o) is given by the diagonal
matrix where the first half of the entries on the diagonal are 1, the second half 0.

c) Show in a similar way that the projection of V4 onto Wy has a matrix relative
to (¢po, ¥o) given by the diagonal matrix where the first half of the entries on
the diagonal are 0, the second half 1.

Exercise 5.5: Computing projections

Show that

projy, (f) = ( / " f(t)dt> Bt (5.22)

for any f. Show also that the first part of Proposition 5.12 follows from this.

Exercise 5.6: Finding the least squares error

Show that

n+1 2

IS ([ o) oot -1 =0 -5 (]

n n

f(t)dt)

This, together with the previous exercise, gives us an expression for the least-
squares error for f from Vj (at least after taking square roots). 2DO: Generalize
tom

Exercise 5.7: Projecting on

Show that

N-1 n+1/2 n+1
proju, (f) = ( / F()dt — / f(t)dt) Von(t) (5.23)

0 +1/2

3
Il

for any f. Show also that the second part of Proposition 5.12 follows from this.
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Exercise 5.8: When N is odd

When N is odd, the (first stage in a) DWT is defined as the change of coordinates
from (¢1,0,$1,1,---,¢1,8-1) to

(¢0,0,%0,0, 90,1, %015 - - - » Po,(N=1)/2> V(N =1) /25 Po,(N+1)/2)-

Since all functions are assumed to have period N, we have that

bo,(N+1)/2 = %((pl,N—l +d1n) = %(dﬁ,o + ¢1.n-1)-

From this relation one can find the last column in the change of coordinate
matrix from ¢ to (¢1,1), i.e. the IDWT matrix. In particular, when N is
odd, we see that the last column in the IDWT matrix circulates to the upper
right corner. In terms of coordinates, we thus have that

1 1
c10 = E(CO,O + wo,0 + Co,(N4+1)/2) CLN-1= 500, (N41) /2 (5.24)

1&1 1
a) If N = 3, the DWT matrix equals % 1 —1&0 |, and the inverse of
0&0 1
1&1 -1
this is % 1 -1 —1]. Explain from this that, when N is odd, the DWT
0&0 2
matrix can be constructed by adding a column on the form %(—1, -1,0,...,0,2)
to the DWT matrices we had for N even (in the last row zeros are also added).
In terms of the coordinates, we thus have the additional formulas

1 1
co,0 = %(01,04-(:1,1—@”,1) wo,0 = E(CLO—CM—CLN,J Co,(N+1)/2 = ﬁ2CI,N—1-

(5.25)

b) Explain that the DWT matrix is orthogonal if and only if N is even. Also
explain that it is only the last column which spoils the orthogonality.

5.3 Implementation of the DWT and examples

The DWT is straightforward to implement: One simply needs to iterate Equation
(5.19) in the compendium for m,m—1,...,1. We will use a DWT kernel function
which takes as