
Exercises from Linear algebra, signal
processing, and wavelets. A unified

approach.
Matlab version

Øyvind Ryan

Feb 19, 2016

Preface

2

Chapter 1

Sound and Fourier series

Exercise 1.1: The Krakatoa explosion
Compute the loudness of the Krakatoa explosion on the decibel scale, assuming
that the variation in air pressure peaked at 100 000 Pa.

Solution. Setting pref=0.00002 Pa and p=100 000 Pa in the decibel expression
we get

20 log10

(
p

pref

)
= 20 log10

(
100000
0.00002

)
= 20 log10

(
105

2× 10−5

)
= 20 log10

(
1010

2

)
= 20 (10− log10 2) ≈ 194db.

Exercise 1.2: Sum of two pure tones
Consider a sum of two pure tones, f(t) = A1 sin(2πν1t) + A2 sin(2πν2t). For
which values of A1, A2, ν1, ν2 is f periodic? What is the period of f when it is
periodic?

Solution. sin(2πν1t) has period 1/ν1, while sin(2πν2t) has period 1/ν2. The
period is not unique, however. The first one also has period n/ν1, and the
second also n/ν2, for any n. The sum is periodic if there exist n1, n2 so that
n1/ν1 = n2/ν2, i.e. so that there exists a common period between the two. This
common period will also be a period of f . This amounts to that ν1/ν2 = n1/n2,
i.e. that ν1/ν2 is a rational number.

3

CHAPTER 1. SOUND AND FOURIER SERIES 4

Exercise 1.3: Riemann-integrable functions which are not
square-integrable
Find a function f which is Riemann-integrable on [0, T], and so that

∫ T
0 f(t)2dt

is infinite.

Solution. The function f(t) = 1√
t

= t−1/2 can be used since it has the
properties

∫ T

0
f(t)dt = lim

x→0+

∫ T

x

t−1/2dt = lim
x→0+

[
2t1/2

]T
x

= lim
x→0+

(2T 1/2 − 2x1/2) = 2T 1/2∫ T

0
f(t)2dt = lim

x→0+

∫ T

x

t−1dt = lim
x→0+

[ln t]Tx

= lnT − lim
x→0+

ln x =∞.

Exercise 1.4: When are Fourier spaces included in each
other?
Given the two Fourier spaces VN1,T1 , VN2,T2 . Find necessary and sufficient
conditions in order for VN1,T1 ⊂ VN2,T2 .

Solution. The space VN1,T1 is spanned by pure tones with frequencies 1/T1, . . . , N1/T1,
while VN2,T2 is spanned by pure tones with frequencies 1/T2, . . . , N2/T2. We
must have that the first set of frequencies is contained in the second. This is
achieved if and only if 1/T1 = k/T2 for some integer k, and also N1/T1 ≤ N2/T2.
In other words, T2/T1 must be an integer, and T2/T1 ≤ N2/N1.

Exercise 1.5: antisymmetric functions are sine-series
Prove the second part of Theorem 1.20 in the compendium, i.e. show that if
f is antisymmetric about 0 (i.e. f(−t) = −f(t) for all t), then an = 0, i.e. the
Fourier series is actually a sine-series.

Exercise 1.6: Fourier series for low-degree polynomials
Find the Fourier series coefficients of the periodic functions with period T defined
by being f(t) = t, f(t) = t2, and f(t) = t3, on [0, T].

Solution. For f(t) = t we get that a0 = 1
T

∫ T
0 tdt = T

2 . We also get

CHAPTER 1. SOUND AND FOURIER SERIES 5

an = 2
T

∫ T

0
t cos(2πnt/T)dt

= 2
T

([
T

2πnt sin(2πnt/T)
]T

0
− T

2πn

∫ T

0
sin(2πnt/T)dt

)
= 0

bn = 2
T

∫ T

0
t sin(2πnt/T)dt

= 2
T

([
− T

2πnt cos(2πnt/T)
]T

0
+ T

2πn

∫ T

0
cos(2πnt/T)dt

)
= − T

πn
.

The Fourier series is thus

T

2 −
∑
n≥1

T

πn
sin(2πnt/T).

Note that this is almost a sine series, since it has a constant term, but no other
cosine terms. If we had subtracted T/2 we would have obtained a function which
is antisymmetric, and thus a pure sine series.

For f(t) = t2 we get that a0 = 1
T

∫ T
0 t2dt = T 2

3 . We also get

an = 2
T

∫ T

0
t2 cos(2πnt/T)dt

= 2
T

([
T

2πnt
2 sin(2πnt/T)

]T
0
− T

πn

∫ T

0
t sin(2πnt/T)dt

)

=
(
− T

πn

)(
− T

πn

)
= T 2

π2n2

bn = 2
T

∫ T

0
t2 sin(2πnt/T)dt

= 2
T

([
− T

2πnt
2 cos(2πnt/T)

]T
0

+ T

πn

∫ T

0
t cos(2πnt/T)dt

)

= −T
2

πn
.

Here we see that we could use the expressions for the Fourier coefficients of
f(t) = t to save some work. The Fourier series is thus

T 2

3 +
∑
n≥1

(
T 2

π2n2 cos(2πnt/T)− T 2

πn
sin(2πnt/T)

)
.

For f(t) = t3 we get that a0 = 1
T

∫ T
0 t3dt = T 3

4 . We also get

CHAPTER 1. SOUND AND FOURIER SERIES 6

an = 2
T

∫ T

0
t3 cos(2πnt/T)dt

= 2
T

([
T

2πnt
3 sin(2πnt/T)

]T
0
− 3T

2πn

∫ T

0
t2 sin(2πnt/T)dt

)

=
(
− 3T

2πn

)(
−T

2

πn

)
= 3T 3

2π2n2

bn = 2
T

∫ T

0
t3 sin(2πnt/T)dt

= 2
T

([
− T

2πnt
3 cos(2πnt/T)

]T
0

+ 3T
2πn

∫ T

0
t2 cos(2πnt/T)dt

)

= −T
3

πn
+ 3T

2πn
T 2

π2n2 = −T
3

πn
+ 3T 3

2π3n3 .

Also here we saved some work, by reusing the expressions for the Fourier
coefficients of f(t) = t2. The Fourier series is thus

T 3

4 +
∑
n≥1

(
3T 3

2π2n2 cos(2πnt/T) +
(
−T

3

πn
+ 3T 3

2π3n3

)
sin(2πnt/T)

)
.

We see that all three Fourier series converge slowly. This is connected to the
fact that none of the functions are continuous at the borders of the periods.

Exercise 1.7: Fourier series for polynomials
Write down difference equations for finding the Fourier coefficients of f(t) = tk+1

from those of f(t) = tk, and write a program which uses this recursion. Use the
program to verify what you computed in Exercise 1.6.

Solution. Let us define an,k, bn,k as the Fourier coefficients of tk. When k > 0
and n > 0, integration by parts gives us the following difference equations:

CHAPTER 1. SOUND AND FOURIER SERIES 7

an,k = 2
T

∫ T

0
tk cos(2πnt/T)dt

= 2
T

([
T

2πnt
k sin(2πnt/T)

]T
0
− kT

2πn

∫ T

0
tk−1 sin(2πnt/T)dt

)

= − kT

2πnbn,k−1

bn,k = 2
T

∫ T

0
tk sin(2πnt/T)dt

= 2
T

([
− T

2πnt
k cos(2πnt/T)

]T
0

+ kT

2πn

∫ T

0
tk−1 cos(2πnt/T)dt

)

= −T
k

πn
+ kT

2πnan,k−1.

When n > 0, these can be used to express an,k, bn,k in terms of an,0, bn,0, for
which we clearly have an,0 = bn,0 = 0. For n = 0 we have that a0,k = Tk

k+1 for all
k. The following program computes an,k, bn,k recursively when n > 0.

function [ank,bnk] = findfouriercoeffs(n, k, T)
ank=0; bnk=0;
if k > 0

[ankprev,bnkprev] = findfouriercoeffs(n, k-1, T)
ank = -k*T*bnkprev/(2*pi*n);
bnk = -T^k/(pi*n) + k*T*ankprev/(2*pi*n);

end

Exercise 1.8: Fourier series of a given polynomial
Use the previous exercise to find the Fourier series for f(x) = − 1

3x
3+ 1

2x
2− 3

16x+1
on the interval [0, 1]. Plot the 9th order Fourier series for this function. You
should obtain the plots from Figure 1.5 in the compendium.

Exercise 1.9: Orthonormality of Complex Fourier basis
Show that the complex functions e2πint/T are orthonormal.

Solution. For n1 6= n2 we have that

〈e2πin1t/T , e2πin2t/T 〉 = 1
T

∫ T

0
e2πin1t/T e−2πin2t/T dt = 1

T

∫ T

0
e2πi(n1−n2)t/T dt

=
[

T

2πi(n1 − n2)e
2πi(n1−n2)t/T

]T
0

= T

2πi(n1 − n2) −
T

2πi(n1 − n2) = 0.

CHAPTER 1. SOUND AND FOURIER SERIES 8

When n1 = n2 the integrand computes to 1, so that ‖e2πint/T ‖ = 1.

Exercise 1.10: Complex Fourier series of f(t) = sin2(2πt/T)
Compute the complex Fourier series of the function f(t) = sin2(2πt/T).

Solution. We have that

f(t) = sin2(2πt/T) =
(

1
2i (e

2πit/T − e−2πit/T
)2

= −1
4(e2πi2t/T − 2 + e−2πi2t/T) = −1

4e
2πi2t/T + 1

2 −
1
4e
−2πi2t/T .

This gives the Fourier series of the function (with y2 = y−2 = −1/4, y0 = 1/2).
This could also have been shown by using the trigonometric identity sin2 x =
1
2 (1− cos(2x)) first, or by computing the integral 1

T

∫ T
0 f(t)e−2πint/T dt (but this

is rather cumbersome).

Exercise 1.11: Complex Fourier series of polynomials
Repeat Exercise 1.6, computing the complex Fourier series instead of the real
Fourier series.

Exercise 1.12: Complex Fourier series and Pascals triangle
In this exercise we will find a connection with certain Fourier series and the rows
in Pascal’s triangle.

a) Show that both cosn(t) and sinn(t) are in VN,2π for 1 ≤ n ≤ N .

Solution. We have that

cosn(t) =
(

1
2(eit + e−it)

)n
sinn(t) =

(
1
2i (e

it − e−it)
)n

If we multiply out here, we get a sum of terms of the form eikt, where −n ≤ k ≤ n.
As long as n ≤ N it is clear that this is in VN,2π.

b) Write down the N ’th order complex Fourier series for f1(t) = cos t, f2(t) =
cos2 t, og f3(t) = cos3 t.

CHAPTER 1. SOUND AND FOURIER SERIES 9

Solution. We have that

cos(t) = 1
2(eit + e−it)

cos2(t) = 1
4(eit + e−it)2 = 1

4e
2it + 1

2 + 1
4e
−2it

cos3(t) = 1
8(eit + e−it)3 = 1

8e
3it + 3

8e
it + 3

8e
−it + 1

8e
−3it.

Therefore, for the first function the nonzero Fourier coefficients are y−1 = 1/2,
y1 = 1/2, for the second function y−2 = 1/4, y0 = 1/2, y2 = 1/4, for the third
function y−3 = 1/8, y−1 = 3/8, y1 = 3/8, y3 = 1/8.

c) In (b) you should be able to see a connection between the Fourier coefficients
and the three first rows in Pascal’s triangle. Formulate and prove a general
relationship between row n in Pascal’s triangle and the Fourier coefficients of
fn(t) = cosn t.

Solution. In order to find the Fourier coefficients of cosn(t) we have to multiply
out the expression 1

2n (eit + e−it)n. The coefficients we get after this can alos be
obtained from Pascal’s triangle.

Exercise 1.13: Complex Fourier coefficients of the square
wave
Compute the complex Fourier coefficients of the square wave using Equation
(1.22) in the compendium, i.e. repeat the calculations from Example 1.17 in the
compendium for the complex case. Use Theorem 1.26 in the compendium to
verify your result.

Solution. We obtain that

yn = 1
T

∫ T/2

0
e−2πint/T dt− 1

T

∫ T

T/2
e−2πint/T dt

= − 1
T

[
T

2πine
−2πint/T

]T/2

0
+ 1
T

[
T

2πine
−2πint/T

]T
T/2

= 1
2πin

(
−e−πin + 1 + 1− e−πin+

)
= 1
πin

(
1− e−πin

)
=
{

0, if n is even;
2/(πin), if n is odd.

.

Instead using Theorem 1.26 in the compendium together with the coefficients
bn = 2(1−cos(nπ)

nπ we computed in Example 1.17 in the compendium, we obtain

CHAPTER 1. SOUND AND FOURIER SERIES 10

yn = 1
2(an − ibn) = −1

2 i
{

0, if n is even;
4/(nπ), if n is odd.

=
{

0, if n is even;
2/(πin), if n is odd.

when n > 0. The case n < 0 follows similarly.

Exercise 1.14: Complex Fourier coefficients of the triangle
wave
Repeat Exercise 1.13 for the triangle wave.

Exercise 1.15: Complex Fourier coefficients of low-degree
polynomials
Use Equation (1.22) in the compendium to compute the complex Fourier coeffi-
cients of the periodic functions with period T defined by, respectively, f(t) = t,
f(t) = t2, and f(t) = t3, on [0, T]. Use Theorem 1.26 in the compendium to
verify your calculations from Exercise 1.6.

Solution. For f(t) = t we get

yn = 1
T

∫ T

0
te−2πint/T dt = 1

T

([
− T

2πinte
−2πint/T

]T
0

+
∫ T

0

T

2πine
−2πint/T dt

)

= − T

2πin = T

2πni.

From Exercise 1.6 we had bn = − T
πn , for which Theorem 1.26 in the compendium

gives yn = T
2πn i for n > 0, which coincides with the expression we obtained. The

case n < 0 follows similarly.
For f(t) = t2 we get

yn = 1
T

∫ T

0
t2e−2πint/T dt = 1

T

([
− T

2πint
2e−2πint/T

]T
0

+ 2
∫ T

0

T

2πinte
−2πint/T dt

)

= − T 2

2πin + T 2

2π2n2 = T 2

2π2n2 + T 2

2πni.

From Exercise 1.6 we had an = T 2

π2n2 and bn = −T
2

πn , for which Theorem 1.26
in the compendium gives yn = 1

2

(
T 2

π2n2 + iT
2

πn

)
for n > 0, which also is seen to

coincide with what we obtained. The case n < 0 follows similarly.
For f(t) = t3 we get

CHAPTER 1. SOUND AND FOURIER SERIES 11

yn = 1
T

∫ T

0
t3e−2πint/T dt = 1

T

([
− T

2πint
3e−2πint/T

]T
0

+ 3
∫ T

0

T

2πint
2e−2πint/T dt

)

= − T 3

2πin + 3 T

2πin (T 2

2π2n2 + T 2

2πni) = 3 T 3

4π2n2 +
(
T 3

2πn − 3 T 3

4π3n3

)
i =

From Exercise 1.6 we had an = 3T 3

2π2n2 and bn = −T
3

πn + 3T 3

2π3n3 for which Theo-
rem 1.26 in the compendium gives

yn = 1
2

(
3T 3

2π2n2 + i

(
T 3

πn
− 3T 3

2π3n3

))
= 3T 3

4π2n2 +
(
T 3

2πn −
3T 3

4π3n3

)
i

for n > 0, which also is seen to coincide with what we obtained. The case n < 0
follows similarly.

Exercise 1.16: Complex Fourier coefficients for symmetric
and antisymmetric functions
In this exercise we will prove a version of Theorem 1.20 in the compendium for
complex Fourier coefficients.

a) If f is symmetric about 0, show that yn is real, and that y−n = yn.

Solution. If f is symmetric about 0 we have that bn = 0. Theorem 1.26 in
the compendium then gives that yn = 1

2an, which is real. The same theorem
gives that y−n = 1

2an = yn.

b) If f is antisymmetric about 0, show that the yn are purely imaginary, y0 = 0,
and that y−n = −yn.

Solution. If f is antisymmetric about 0 we have that an = 0. Theorem 1.26
in the compendium then gives that yn = − 1

2bn, which is purely imaginary. The
same theorem gives that y−n = 1

2bn = −yn.

c) Show that
∑N
n=−N yne

2πint/T is symmetric when y−n = yn for all n, and
rewrite it as a cosine-series.

Solution. When yn = y−n we can write

y−ne
2πi(−n)t/T + yne

2πint/T = yn(e2πint/T + e−2πint/T) = 2yn cos(2πnt/T)

This is clearly symmetric, but then also
∑N
n=−N yne

2πint/T is symmetric since
it is a sum of symmetric functions.

CHAPTER 1. SOUND AND FOURIER SERIES 12

d) Show that
∑N
n=−N yne

2πint/T is antisymmetric when y0 = 0 and y−n = −yn
for all n, and rewrite it as a sine-series.

Solution. When yn = −y−n we can write

y−ne
2πi(−n)t/T + yne

2πint/T = yn(−e2πint/T + e2πint/T) = 2iyn sin(2πnt/T)

This is clearly antisymmetric, but then also
∑N
n=−N yne

2πint/T is antisymmetric
since it is a sum of antisymmetric functions, and since y0 = 0.

Exercise 1.17: Fourier series of a delayed square wave
Define the function f with period T on [−T/2, T/2) by

f(t) =
{

1, if −T/4 ≤ t < T/4;
−1, if T/4 ≤ |t| < T/2.

f is just the square wave, delayed with d = −T/4. Compute the Fourier
coefficients of f directly, and use Property 4 in Theorem 1.28 in the compendium
to verify your result.

Solution. We obtain that

yn = 1
T

∫ T/4

−T/4
e−2πint/T dt− 1

T

∫ −T/4

−T/2
e−2πint/T dt− 1

T

∫ T/2

T/4
e−2πint/T dt

= −
[

1
2πine

−2πint/T
]T/4

−T/4
+
[

1
2πine

−2πint/T
]−T/4

−T/2
+
[

1
2πine

−2πint/T
]T/2

T/4

= 1
2πin

(
−e−πin/2 + eπin/2 + eπin/2 − eπin + e−πin − e−πin/2

)
= 1
πn

(2 sin(πn/2)− sin(πn)) = 2
πn

sin(πn/2).

The square wave defined in this exercise can be obtained by delaying our original
square wave with −T/4. Using Property 3 in Theorem 1.28 in the compendium
with d = −T/4 on the complex Fourier coefficients

yn =
{

0, if n is even;
2/(πin), if n is odd,

which we obtained for the square wave in Exercise 1.13, we obtain the Fourier
coefficients

CHAPTER 1. SOUND AND FOURIER SERIES 13

e2πin(T/4)/T

{
0, if n is even;
2/(πin), if n is odd.

=
{

0, if n is even;
2i sin(πn/2)

πin , if n is odd.

=
{

0, if n is even;
2
πn sin(πn/2), if n is odd.

.

This verifies the result.

Exercise 1.18: Find function from its Fourier series
Find a function f which has the complex Fourier series∑

n odd

4
π(n+ 4)e

2πint/T .

Hint. Attempt to use one of the properties in Theorem 1.28 in the compendium
on the Fourier series of the square wave.

Solution. Since the real Fourier series of the square wave is∑
n≥1,n odd

4
πn

sin(2πnt/T),

Theorem 1.26 in the compendium gives us that the complex Fourier coefficients
are yn = − 1

2 i
4
πn = − 2i

πn , and y−n = 1
2 i

4
πn = 2i

πn for n > 0. This means that
yn = − 2i

πn for all n, so that the complex Fourier series of the square wave is

−
∑
n odd

2i
πn

e2πint/T .

Using Property 4 in Theorem 1.28 in the compendium we get that the e−2πi4t/T

(i.e. set d = −4) times the square wave has its n’th Fourier coefficient equal to
− 2i
π(n+4) . Using linearity, this means that 2ie−2πi4t/T times the square wave has

its n’th Fourier coefficient equal to 4
π(n+4) . We thus have that the function

f(t) =
{

2ie−2πi4t/T , 0 ≤ t < T/2
−2ie−2πi4t/T , T/2 ≤ t < T

has the desired Fourier series.

Exercise 1.19: Relation between complex Fourier coeffi-
cients of f and cosine-coefficients of f̆
Show that the complex Fourier coefficients yn of f , and the cosine-coefficients
an of f̆ are related by a2n = yn + y−n. This result is not enough to obtain the
entire Fourier series of f̆ , but at least it gives us half of it.

CHAPTER 1. SOUND AND FOURIER SERIES 14

Solution. The 2nth complex Fourier coefficient of f̆ is

1
2T

∫ 2T

0
f̆(t)e−2πi2nt/(2T)dt

= 1
2T

∫ T

0
f(t)e−2πint/T dt+ 1

2T

∫ 2T

T

f(2T − t)e−2πint/T dt.

Substituting u = 2T − t in the second integral we see that this is

= 1
2T

∫ T

0
f(t)e−2πint/T dt− 1

2T

∫ 0

T

f(u)e2πinu/T du

= 1
2T

∫ T

0
f(t)e−2πint/T dt+ 1

2T

∫ T

0
f(t)e2πint/T dt

= 1
2yn + 1

2y−n.

Therefore we have a2n = yn − y−n.

Chapter 2

Digital sound and Discrete
Fourier analysis

Exercise 2.1: Sound with increasing loudness
Define the following sound signal

f(t) =

 0 0 ≤ t ≤ 4/440
2 440t−4

8 sin(2π440t) 4/440 ≤ t ≤ 12/440
2 sin(2π440t) 12/440 ≤ t ≤ 20/440

This corresponds to the sound in the left plot of Figure 1.1 in the compendium,
where the sound is unaudible in the beginning, and increases linearly in loudness
over time with a given frequency until maximum loudness is avchieved. Write a
function which generates this sound, and listen to it.

Solution. The code for playing the sound can look like this:

t1 = 0:(1/fs):(4/440);
t2 = (4/440):(1/fs):(12/440);
t3 = (12/440):(1/fs):(20/440);

f1 = 0*t1; % The first part of f
f2 = 2*((440*t2-4)/8).*sin(2*pi*440*t2); % The second part of f
f3 = 2*sin(2*pi*440*t3); % The third part of f
x = [f1 f2 f3];

x = x/max(abs(x));
playerobj=audioplayer(x, fs);
playblocking(playerobj);

Note that the sound has duration less than 0.05s, so you should only hear a very
short beep. You also need to scale the values to be within -1 and 1, since some
of the listed values are outside this range.

15

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS16

Exercise 2.2: Sum of two pure tones
Find two constant a and b so that the function f(t) = a sin(2π440t)+b sin(2π4400t)
resembles the right plot of Figure 1.1 in the compendium as closely as possible.
Generate the samples of this sound, and listen to it.

Solution. The important thing to note here is that there are two oscillations
present in Figure 1.1(b) in the compendium: One slow oscillation with a higher
amplitude, and one faster oscillation, with a lower amplitude. We see that there
are 10 periods of the smaller oscillation within one period of the larger oscillation,
so that we should be able to reconstruct the figure by using frequencies where
one is 10 times the other, such as 440Hz and 4400Hz. Also, we see from the
figure that the amplitude of the larger oscillation is close to 1, and close to 0.3
for the smaller oscillation. A good choice therefore seems to be a = 1, b = 0.3.
The code can look this:

t = 0:(1/fs):3;
x = sin(2*pi*440*t) + 0.3*sin(2*pi*4400*t);
x = x/max(abs(x));
playerobj = audioplayer(x, fs);
playblocking(playerobj);

Exercise 2.3: Playing general pure tones.
Let us write some code so that we can experiment with different pure sounds

a) Write a function play_pure_sound(f) which generates the samples over a
period of 3 seconds for a pure tone with frequency f , with sampling frequency
fs = 2.5f (we will explain this value later).

Solution. The code can look like this:

function play_pure_sound(f)
fs=2.5*f;
t=0:(1/fs):3;
x=sin(2*pi*f*t);
playerobj=audioplayer(x,fs);
playblocking(playerobj)

b) Use the function play_pure_sound to listen to pure sounds of frequency
440Hz and 1500Hz, and verify that they are the same as the sounds you already
have listened to in this section.

c) How high frequencies are you able to hear with the function play_pure_sound?
How low frequencies are you able to hear?

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS17

Exercise 2.4: Playing the square- and triangle waves
Write functions play_square and play_triangle which take T as input, and
which play the square wave of Example 1.10 in the compendium and the triangle
wave of Example 1.11 in the compendium, respectively. In your code, let the
samples of the waves be taken at a frequency of 44100 samples per second. Verify
that you generate the same sounds as you played in these examples when you
set T = 1

440 .

Solution. The code can look like this:

function play_square(T)
% Play a square wave with period T over 3 seconds
fs = 44100;
numsec = 3;
samplesperperiod = round(fs*T);
oneperiod=[ones(1, round(samplesperperiod/2)) ...

-ones(1, round(samplesperperiod/2))];
numperiods = floor(numsec/T);
x=repmat(oneperiod, 1, numperiods);
playerobj=audioplayer(x, fs);
playblocking(playerobj)

function play_triangle(T)
% Play a triangle wave with period T over 3 seconds
fs = 44100;
numsec = 3;
samplesperperiod = round(fs*T);
oneperiod=[linspace(-1, 1, round(samplesperperiod/2)) ...

linspace(1, -1, round(samplesperperiod/2))];
numperiods = floor(numsec/T);
x = repmat(oneperiod, 1, numperiods);
playerobj=audioplayer(x, fs);
playblocking(playerobj)

Exercise 2.5: Playing Fourier series of the square- and tri-
angle waves
Let us write programs so that we can listen to the Fourier approximations of
the square wave and the triangle wave.

a) Write functions play_square_fourier and play_triangle_fourier which
take T and N as input, and which play the order N Fourier approximation of the
square wave and the triangle wave, respectively, for three seconds. Verify that
you can generate the sounds you played in examples 1.11 in the compendium
and 1.18 in the compendium.

Solution. The code can look like this:

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS18

function play_square_fourier(T,N)
fs=44100;
t=0:(1/fs):3;
x=zeros(1,length(t));
n=1;
while n<=N

x = x + (4/(n*pi))*sin(2*pi*n*t/T);
n=n+2;

end
x=x/max(abs(x));
playerobj=audioplayer(x,fs);
playblocking(playerobj)

function play_triangle_fourier(T,N)
fs=44100;
t=0:(1/fs):3;
x=zeros(1,length(t));
n=1;
while n<=N

x = x - (8/(n^2*pi^2))*cos(2*pi*n*t/T);
n=n+2;

end
x=x/max(abs(x));
playerobj=audioplayer(x,fs);
playblocking(playerobj)

b) For these Fourier approximations, how high must you choose N for them to
be indistuingishable from the square/triangle waves themselves? Also describe
how the characteristics of the sound changes when n increases.

Exercise 2.6: Playing with different sample rates
Write a function play_with_different_fs which takes the sound samples x
and a sampling rate fs as input, and plays the sound samples with the same
sample rate as the original file, then with twice the sample rate, and then half the
sample rate. You should start with reading the file into a matrix (as explained
in this section). When applied to the sample audio file, are the sounds the same
as those you heard in Example 2.5 in the compendium?

Solution. The code can look like this:

function play_with_different_fs(x,fs)
playerobj=audioplayer(x,fs);
playblocking(playerobj);
playerobj=audioplayer(x,2*fs);
playblocking(playerobj);
playerobj=audioplayer(x,fs/2);
playblocking(playerobj);

Exercise 2.7: Playing the reverse sound
Let us also experiment with reversing the samples in a sound file.

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS19

a) Write a function play_reverse which takes sound data and a sample rate as
input, and plays the sound samples backwards. When you run the code on our
sample audio file, is the sound the same as the one you heard in Example 2.6 in
the compendium?

Solution. The code can look like this:

function play_reverse(x,fs)
N = size(x,1);
playerobj=audioplayer(x(N:(-1):1, :), fs);
playblocking(playerobj);

b) Write the new sound samples from a) to a new wav-file, as described in this
section, and listen to it with your favourite mediaplayer.

Exercise 2.8: Play sound with added noise
In this exercise, we will experiment with adding noise to a signal.

a) Write a function play_with_noise which takes sound data, sampling rate,
and the damping constant c as input, and plays the sound samples with noise
added as described above. Your code should add noise to both channels of the
sound, and scale the sound samples so that they are between −1 and 1.

Solution. The code can look like this:

function play_with_noise(x, fs, c)
z = x + c*(2*rand(size(x)) - 1);
z = z/max(max(abs(z)));
playerobj=audioplayer(z, fs);
playblocking(playerobj);

b) With your program, generate the two sounds played in Example 2.7 in the
compendium, and verify that they are the same as those you heard.

c) Listen to the sound samples with noise added for different values of c. For
which range of c is the noise audible?

Exercise 2.9: Computing the DFT by hand
Compute F4x when x = (2, 3, 4, 5).

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS20

Solution. As in Example 2.16 in the compendium we get

F4


2
3
4
5

 = 1
2


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




2
3
4
5



= 1
2


2 + 3 + 4 + 5

2− 3i− 4 + 5i
2− 3 + 4− 5

2 + 3i− 4− 5i

 =


7

−1 + i
−1
−1− i

 .

Exercise 2.10: Exact form of low-order DFT matrix
As in Example 2.16 in the compendium, state the exact cartesian form of the
Fourier matrix for the cases N = 6, N = 8, and N = 12.

Solution. For N = 6 the entries are on the form 1√
6e
−2πink/6 = 1√

6e
−πink/3.

This means that the entries in the Fourier matrix are the numbers 1√
6e
−πi/3 =

1√
6 (1/2 − i

√
3/2), 1√

6e
−2πi/3 = 1√

6 (−1/2 − i
√

3/2), and so on. The matrix is
thus

F6 = 1√
6



1 1 1 1 1 1
1 1/2− i

√
3/2 −1/2− i

√
3/2 −1 −1/2 + i

√
3/2 1/2 + i

√
2/2

1 −1/2− i
√

3/2 −1/2 + i
√

3/2 1 −1/2− i
√

3/2 +1/2− i
√

3/2
1 −1 1 −1 1 −1
1 −1/2 + i

√
3/2 −1/2− i

√
3/2 1 −1/2 + i

√
3/2 −1/2− i

√
3/2

1 1/2 + i
√

2/2 −1/2 + i
√

3/2 −1 −1/2− i
√

3/2 1/2− i
√

3/2


The cases N = 8 and N = 12 follow similarly, but are even more tedious. For
N = 8 the entries are 1√

8e
πink/4, which can be expressed exactly since we can

express exactly any sines and cosines of a multiple of π/4. For N = 12 we get
the base angle π/6, for which we also have exact values for sines and cosines for
all multiples.

Exercise 2.11: DFT of a delayed vector
We have a real vector x with length N , and define the vector z by delaying
all elements in x with 5 cyclically, i.e. z5 = x0, z6 = x1,. . . ,zN−1 = xN−6,
and z0 = xN−5,. . . ,z4 = xN−1. For a given n, if |(FNx)n| = 2, what is then
|(FNz)n|? Justify the answer.

Solution. z is the vector x delayed with d = 5 samples, and then Property 3
of Theorem 2.18 in the compendium gives us that (FNz)n = e−2πi5k/N (FNx)n.
In particular |(FNz)n| = |(FNx)n| = 2, since |e−2πi5k/N | = 1.

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS21

Exercise 2.12: Using symmetry property
Given a real vector x of length 8 where (F8(x))2 = 2− i, what is (F8(x))6?

Solution. By Theorem 2.18 in the compendium we know that (FN (x))N−n =
(FN (x))n when x is a real vector. If we set N = 8 and n = 2 we get that
(F8(x))6 = (F8(x))2 = 2− i = 2 + i.

Exercise 2.13: DFT of cos2(2πk/N)
Let x be the vector of length N where xk = cos2(2πk/N). What is then FNx?

Solution. The idea is to express x as a linear combination of the Fourier basis
vectors φn, and use that FNφn = en. We have that

cos2(2πk/N) =
(

1
2

(
e2πik/N + e−2πikn/N

))2

= 1
4e

2πi2k/N + 1
2 + 1

4e
−2πi2k/N = 1

4e
2πi2k/N + 1

2 + 1
4e

2πi(N−2)k/N

=
√
N

(
1
4φ2 + 1

2φ0 + 1
4φN−2

)
.

We here used the periodicity of e2πikn/N , i.e. that e−2πi2k/N = e2πi(N−2)k/N .
Since FN is linear and FN (φn) = en, we have that

FN (x) =
√
N

(
1
4e2 + 1

2e0 + 1
4eN−2

)
=
√
N (1/2, 0, 1/4, 0, . . . , 0, 1/4, 0) .

Exercise 2.14: DFT of ckx

Let x be the vector with entries xk = ck. Show that the DFT of x is given by
the vector with components

yn = 1− cN

1− ce−2πin/N

for n = 0, . . . , N − 1.

Solution. We get

yn =
N−1∑
k=0

cke−2πink/N =
N−1∑
k=0

(ce−2πin/N)k

= 1− (ce−2πin/N)N

1− ce−2πin/N = 1− cN

1− ce−2πin/N .

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS22

Exercise 2.15: Rewrite a complex DFT as real DFT’s
If x is complex, Write the DFT in terms of the DFT on real sequences.

Hint. Split into real and imaginary parts, and use linearity of the DFT.

Exercise 2.16: DFT implementation
Extend the code for the function DFTImpl in Example 2.17 in the compendium
so that

• The function also takes a second parameter called forward. If this is true
the DFT is applied. If it is false, the IDFT is applied. If this parameter is
not present, then the forward transform should be assumed.

• If the input x is two-dimensional (i.e. a matrix), the DFT/IDFT should be
applied to each column of x. This ensures that, in the case of sound, the
FFT is applied to each channel in the sound when the enrire sound is used
as input, as we are used to when applying different operations to sound.

Also, write documentation for the code.

Solution. The code can look like this:

function y = DFTImpl(x, forward)
sign = -1;
if nargin >= 2 & forward == 0

sign = 1;
end
N = size(x, 1);
y = zeros(size(x));
for n = 1:N

D = exp(-sign*2*pi*1i*(n-1)*(0:(N-1))/N);
for s2 = 1:size(x,2)

y(n, s2) = dot(D, x(:, s2));
end

end
if sign == 1

y = y/N;
end

Exercise 2.17: Symmetry
Assume that N is even.

a) Show that, if xk+N/2 = xk for all 0 ≤ k < N/2, then yn = 0 when n is odd.

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS23

Solution. We have that

yn = 1√
N

N/2−1∑
k=0

xke
−2πikn/N +

N−1∑
k=N/2

xke
−2πikn/N


= 1√

N

N/2−1∑
k=0

xke
−2πikn/N +

N/2−1∑
k=0

xke
−2πi(k+N/2)n/N


= 1√

N

N/2−1∑
k=0

xk(e−2πikn/N + (−1)ne−2πikn/N)

= (1 + (−1)n) 1√
N

N/2−1∑
k=0

xke
−2πikn/N

If n is odd, we see that yn = 0.

b) Show that, if xk+N/2 = −xk for all 0 ≤ k < N/2, then yn = 0 when n is
even.

Solution. The proof is the same as in a), except for a sign change.

c) Show also the converse statements in a) and b).

Solution. Clearly the set of vectors which satisfies xk+N/2 = ±xk is a vector
space V of dimension N/2. The set of vectors where every second component is
zero is also a vector space of dimension N/2, let us denote this by W . We have
shown that FN (V) ⊂ W , but since FN is unitary, FN (V) also has dimension
N/2, so that FN (V) = W . This shows that when every second yn is 0, we must
have that xk+N/2 = ±xk, and the proof is done.

d) Also show the following:

• xn = 0 for all odd n if and only if yk+N/2 = yk for all 0 ≤ k < N/2.

• xn = 0 for all even n if and only if yk+N/2 = −yk for all 0 ≤ k < N/2.

Solution. In the proofs above, compute the IDFT instead.

Exercise 2.18: DFT on complex and real data
Let x1,x2 be real vectors, and set x = x1 + ix2. Use Theorem 2.18 in the
compendium to show that

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS24

(FN (x1))k = 1
2

(
(FN (x))k + (FN (x))N−k

)
(FN (x2))k = 1

2i

(
(FN (x))k − (FN (x))N−k

)
This shows that we can compute two DFT’s on real data from one DFT on
complex data, and 2N extra additions.

Solution. We have that

(FN (x))k = (FN (x1 + ix2))k = (FN (x1))k + i(FN (x2))k
(FN (x))N−k = (FN (x1))N−k + i(FN (x2))N−k = (FN (x1))k + i(FN (x2))k,

where we have used Property 1 of Theorem 2.18 in the compendium. If we take
the complex conjugate in the last equation, we are left with the two equations

(FN (x))k = (FN (x1))k + i(FN (x2))k
(FN (x))N−k = (FN (x1))k − i(FN (x2))k.

If we add these we get

(FN (x1))k = 1
2

(
(FN (x))k + (FN (x))N−k

)
,

which is the first equation. If we instead subtract the equations we get

(FN (x2))k = 1
2i

(
(FN (x))k − (FN (x))N−k

)
,

which is the second equation

Exercise 2.19: Comment code
Explain what the code below does, line by line:

[x, fs] = audioread(’sounds/castanets.wav’);
N = size(x, 1);
y = fft(x);
y((round(N/4)+1):(round(N/4)+N/2), :) = 0;
newx = abs(ifft(y));
newx = newx/max(max(newx));
playerobj = audioplayer(newx,fs);
playblocking(playerobj)

Comment in particular why we adjust the sound samples by dividing with the
maximum value of the sound samples. What changes in the sound do you expect
to hear?

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS25

Solution. First a sound file is read. We then restrict to the first 212 sound
samples, perform a DFT, zero out the frequencies which correspond to DFT-
indices between 210 and 212 − 210 − 1, and perform an IDFT. Finally we scale
the sound samples so that these lie between −1 and 1, which is the range we
demand for the sound samples, and play the new sound.

Exercise 2.20: Which frequency is changed?
In the code from the previous exercise it turns out that fs = 44100Hz, and that
the number of sound samples is N = 292570. Which frequencies in the sound
file will be changed on the line where we zero out some of the DFT coefficients?

Solution. As we have seen, DFT index n corresponds to frequency ν = nfs/N .
Above N = 217, so that we get the connection ν = nfs/N = n × 44100/217.
We zeroed the DFT indices above n = 215, so that frequencies above ν =
215 × 44100/217 = 11025Hz are affected.

Exercise 2.21: Implement interpolant
Implement code where you do the following:

• at the top you define the function f(x) = cos6(x), and M = 3,

• compute the unique interpolant from VM,T (i.e. by taking N = 2M +
1 samples over one period), as guaranteed by Proposition 2.21 in the
compendium,

• plot the interpolant against f over one period.

Finally run the code also for M = 4, M = 5, and M = 6. Explain why the plots
coincide for M = 6, but not for M < 6. Does increasing M above M = 6 have
any effect on the plots?

Solution. The code can look as follows.

f = @(t)cos(t).^6;
M = 5;
T = 2*pi;
N = 2*M + 1;
t = (linspace(0, T, 100))’;
x = f((linspace(0, T - T/N, N))’);
y = fft(x)/N;
s = y(1)*ones(length(t),1);
for k=1:((N-1)/2)

s = s + 2*real(y(k+1)*exp(2*pi*1i*k*t/T));
end
plot(t,s,’r’,t,f(t),’g’);
legend(’Interpolant from V_{M,T}’,’f’)

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS26

Exercise 2.22: Extend implementation
Recall that, in Exercise 2.16, we extended the direct DFT implementation so
that it accepted a second parameter telling us if the forward or reverse transform
should be applied. Extend the general function and the standard kernel in the
same way. Again, the forward transform should be used if the forward parameter
is not present. Assume also that the kernel accepts only one-dimensional data,
and that the general function applies the kernel to each column in the input if
the input is two-dimensional (so that the FFT can be applied to all channels
in a sound with only one call). The signatures for our methods should thus be
changed as follows:

function y = FFTImpl(x, FFTKernel, forward)
function y = FFTKernelStandard(x, forward)

It should be straightforward to make the modifications for the reverse transform
by consulting the second part of Theorem 2.33 in the compendium. For simplicity,
let FFTImpl take care of the additional division with N we need to do in case
of the IDFT. In the following we will assume these signatures for the FFT
implementation and the corresponding kernels.

Solution. The functions can be implemented as follows:

function y = FFTImpl(x, FFTKernel, forward)
fwd = 1;
if nargin >= 3

fwd = forward;
end
x = bitreverse(x);
[N, n] = size(x);
y = zeros(N, n);
for s2 = 1:size(x, 2)

y(:, s2) = FFTKernel(x(:,s2), fwd);
end
if ~fwd

y = y/N;
end

% Compute the DFT of the column vector x using the FFT algorithm
function y = FFTKernelStandard(x, forward)

N = size(x, 1);
sign = -1;
if ~forward

sign = 1;
end
if N == 1

y = x;
else

xe = FFTKernelStandard(x(1:(N/2)), forward);
xo = FFTKernelStandard(x((N/2+1):N), forward);
D = exp(sign*2*pi*1j*(0:(N/2-1))’/N);
xo = xo.*D;
y = [xe + xo; xe - xo];

end

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS27

Exercise 2.23: Compare execution time
In this exercise we will compare execution times for the different methods for
computing the DFT.

a) Write code which compares the execution times for an N -point DFT for the
following three cases: Direct implementation of the DFT (as in Example 2.17 in
the compendium), the FFT implementation used in this chapter, and the built-in
fft-function. Your code should use the sample audio file castanets.wav, apply
the different DFT implementations to the first N = 2r samples of the file for
r = 3 to r = 15, store the execution times in a vector, and plot these. You can
use the functions tic and toc to measure the execution time.

b) A problem for large N is that there is such a big difference in the execution
times between the two implementations. We can address this by using a loglog-
plot instead. Plot N against execution times using the function loglog. How
should the fact that the number of arithmetic operations are 8N2 and 5N log2 N
be reflected in the plot?

Solution. The two different curves you see should have a derivative approxi-
mately equal to one and two, respectively.

c) It seems that the built-in FFT is much faster than our own FFT implemen-
tation, even though they may use similar algorithms. Try to explain what can
be the cause of this.

Solution. There may be several reasons for this. One is that Matlab code runs
slowly when compared to native code, which is much used in the built-in FFT.
Also, the built-in fft has been subject to much more optimization than we have
covered here. Another reason is that Matlab functions copy the parameters each
time a function is called. When the vectors are large, this leads to extensive
copying, also since the recursion depth is big.

Solution. The code can look as follows.

[x0, fs] = audioread(’sounds/castanets.wav’);

kvals = 3:15;
slowtime=zeros(1,length(kvals));
fasttime = slowtime; fastesttime = slowtime;
N = 2.^kvals;
for k = kvals

x = x0(1:2^k,1);

tic;
y = DFTImpl(x);
slowtime(k-2) = toc;

tic;
y = FFTImpl(x, @FFTKernelStandard);
fasttime(k-2) = toc;

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS28

tic;
y = fft(x);
fastesttime(k-2) = toc;

end

% a.
plot(kvals, slowtime, ’r’, ...

kvals, fasttime, ’g’, ...
kvals, fastesttime, ’b’)

grid on
title(’time usage of the DFT methods’)
legend(’DFT’, ’Standard FFT’, ’Built-in FFT’)
xlabel(’log_2 N’)
ylabel(’time used [s]’)

% b.
figure(2)
loglog(N, slowtime, ’r’, N, fasttime, ’g’, N, fastesttime, ’b’)
axis equal
legend(’DFT’, ’Standard FFT’, ’Built-in FFT’)

Exercise 2.24: Combine two FFT’s
Let x1 = (1, 3, 5, 7) and x2 = (2, 4, 6, 8). Compute DFT4x1 and DFT4x2. Ex-
plain how you can compute DFT8(1, 2, 3, 4, 5, 6, 7, 8) based on these computations
(you don’t need to perform the actual computation). What are the benefits of
this approach?

Solution. We get

DFT4x1 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




1
3
5
7

 =


16

−4 + 4i
−4

−4− 4i



DFT4x2 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




2
4
6
8

 =


20

−4 + 4i
−4

−4− 4i


In the FFT-algorithm we split the computation of DFT4(x) into the computation
of DFT2(x(e)) and DFT2(x(o)), where x(e) and x(o) are vectors of length 4 with
even-indexed and odd-indexed components, respectively. In this case we have
x(e) = (1, 3, 5, 7) and x(o) = (2, 4, 6, 8). In other words, the FFT-algorithm uses
the FFT-computations we first made, so that we can save computation. The
benefit of using the FFT-algorithm is that we save computations, so that we end
up with O(5N log2 N) real arithmetic operations.

Exercise 2.25: Composite FFT
When N is composite, there are a couple of results we can state regarding
polyphase components.

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS29

a) Assume that N = N1N2, and that x ∈ RN satisfies xk+rN1 = xk for all k, r,
i.e. x has period N1. Show that yn = 0 for all n which are not a multiplum of
N2.

Solution. We have that x(p) is a constant vector of length N2 for 0 ≤ p < N1.
But then the DFT of all the x(p) has zero outside entry zero. Multiplying with
e−2πikn/N does not affect this. The last N2 − 1 rows are thus zero before the
final DFT is applied, so that these rows are zero also after this final DFT. After
assembling the polyphase components again we have that yrN2 are the only
nonzero DFT-coefficients.

b) Assume that N = N1N2, and that x(p) = 0 for p 6= 0. Show that the
polyphase components y(p) of y = DFTNx are constant vectors for all p.

Exercise 2.26: FFT operation count
When we wrote down the difference equation for the number of multiplications in
the FFT algorithm, you could argue that some multiplications were not counted.
Which multiplications in the FFT algorithm were not counted when writing down
this difference equation? Do you have a suggestion to why these multiplications
were not counted?

Solution. When we compute e−2πin/N , we do some multiplications/divisions
in the exponent. These are not counted because they do not depend on x, and
may therefore be precomputed.

Exercise 2.27: Adapting the FFT algorithm to real data
In this exercise we will look at an approach to how we can adapt an FFT
algorithm to real input x. We will now instead rewrite Equation (2.13) in the
compendium for indices n and N/2− n as

yn = (DFTN/2x
(e))n + e−2πin/N (DFTN/2x

(o))n
yN/2−n = (DFTN/2x

(e))N/2−n + e−2πi(N/2−n)/N (DFTN/2x
(o))N/2−n

= (DFTN/2x
(e))N/2−n − e2πin/N (DFTN/2x(o))n

= (DFTN/2x(e))n − e−2πin/N (DFTN/2x(o))n.

We see here that, if we have computed the terms in yn (which needs an additional 4
real multiplications, since e−2πin/N and (DFTN/2x

(o))n are complex), no further
multiplications are needed in order to compute yN/2−n, since its compression
simply conjugates these terms before adding them. Again yN/2 must be handled
explicitly with this approach. For this we can use the formula

yN/2 = (DFTN/2x
(e))0 − (DN/2DFTN/2x

(o))0

instead.

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS30

a) Conclude from this that an FFT algorithm adapted to real data at each
step requires N/4 complex additions and N/2 additions. Conclude from this
as before that an algorithm based on real data requires MN = O(N log2 N)
multiplications and AN = O

(3
2N log2 N

)
additions (i.e. again we obtain half

the operation count of complex input).

b) Find an IFFT algorithm adapted to vectors y which have conjugate symmetry,
which has the same operation count we found above.

Hint. Consider the vectors yn + yN/2−n and e2πin/N (yn − yN/2−n). From the
equations above, how can these be used in an IFFT?

Exercise 2.28: Non-recursive FFT algorithm
Use the factorization in (2.18) in the compendium to write a kernel function
FFTKernelNonrec for a non-recursive FFT implementation. In your code, per-
form the matrix multiplications in Equation (2.18) in the compendium from
right to left in an (outer) for-loop. For each matrix loop through the different
blocks on the diagonal in an (inner) for-loop. Make sure you have the right
number of blocks on the diagonal, each block being on the form(

I DN/2k

I −DN/2k

)
.

It may be a good idea to start by implementing multiplication with such a simple
matrix first as these are the building blocks in the algorithm (also attempt to do
this so that everything is computed in-place). Also compare the execution times
with our original FFT algorithm, as we did in Exercise 2.23, and try to explain
what you see in this comparison.

Solution. The algorithm for the non-recursive FFT can look as follows

function y = FFTKernelNonrec(x, forward)
N = size(x, 1);
sign = -1;
if ~forward

sign = 1;
end
D = exp(sign*2*pi*1i*(0:(N/2 - 1))’/N);
nextN = 1;
while nextN < N

k = 1;
while k <= N

xe = x(k:(k + nextN - 1));
xo = x((k + nextN):(k + 2*nextN - 1));
xo = xo.*D(1:(N/(2*nextN)):(N/2));
x(k:(k + 2*nextN - 1)) = [xe + xo; xe - xo];
k = k + 2*nextN;

end
nextN = nextN*2;

end
y = x;

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS31

If you add the non-recursive algorithm to the code from Exercise 2.23, you
will see that the non-recursive algorithm performs much better. There may
be several reasons for this. First of all, there are no recursive function calls.
Secondly, the values in the matrices DN/2 are constructed once and for all with
the non-recursive algorithm. Code which compares execution times for the
original FFT algorithm, our non-recursive implementation, and the split-radix
algorithm of the next exercise, can look as follows:

[x0, fs] = audioread(’sounds/castanets.wav’);

kvals = 3:15;
slowtime = zeros(1,length(kvals));
fasttime = slowtime; fastesttime = slowtime;
N = 2.^(kvals);
for k = kvals

x = x0(1:2^k,1);

tic;
y = FFTImpl(x, @FFTKernelStandard);
slowtime(k-2) = toc;

tic;
y = FFTImpl(x, @FFTKernelNonrec);
fasttime(k-2) = toc;

tic;
y = FFTImpl(x, @FFTKernelSplitradix);
fastesttime(k-2) = toc;

end

plot(kvals, slowtime, ’ro-’)
hold on
plot(kvals,fasttime, ’bo-’)
plot(kvals,fastesttime, ’go-’)
grid on
title(’time usage of the DFT methods’)
legend(’Standard FFT algorithm’, ...

’Non-recursive FFT’, ...
’Split radix FFT’)

xlabel(’log_2 N’)
ylabel(’time used [s]’)

Exercise 2.29: The Split-radix FFT algorithm
In this exercise we will develop a variant of the FFT algorithm called the split-
radix FFT algorithm, which until recently held the record for the lowest operation
count for any FFT algorithm.

We start by splitting the rightmost DFTN/2 in Equation (2.17) in the com-
pendium by using this equation again, to obtain

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS32

DFTNx =

DFTN/2 DN/2

(
DFTN/4 DN/4DFTN/4
DFTN/4 −DN/4DFTN/4

)
DFTN/2 −DN/2

(
DFTN/4 DN/4DFTN/4
DFTN/4 −DN/4DFTN/4

)

 x(e)

x(oe)

x(oo)

 .

(2.1)
The term radix describes how an FFT is split into FFT’s of smaller sizes, i.e. how
the sum in an FFT is split into smaller sums. The FFT algorithm we started
this section with is called a radix 2 algorithm, since it splits an FFT of length
N into FFT’s of length N/2. If an algorithm instead splits into FFT’s of length
N/4, it is called a radix 4 FFT algorithm. The algorithm we go through here is
called the split radix algorithm, since it uses FFT’s of both length N/2 and N/4.

a) Let GN/4 be the (N/4)×(N/4) diagonal matrix with e−2πin/N on the diagonal.

Show that DN/2 =
(
GN/4 0
0 −iGN/4

)
.

b) Let HN/4 be the (N/4) × (N/4) diagonal matrix GD/4DN/4. Verify the
following rewriting of Equation (2.1):

DFTNx =

DFTN/2

(
GN/4DFTN/4 HN/4DFTN/4
−iGN/4DFTN/4 iHN/4DFTN/4

)
DFTN/2

(
−GN/4DFTN/4 −HN/4DFTN/4
iGN/4DFTN/4 −iHN/4DFTN/4

)

 x(e)

x(oe)

x(oo)



=


I 0 GN/4 HN/4
0 I −iGN/4 iHN/4
I 0 −GN/4 −HN/4
0 I iGN/4 −iHN/4


DFTN/2 0 0

0 DFTN/4 0
0 0 DFTN/4

 x(e)

x(oe)

x(oo)



=

I
(
GN/4 HN/4
−iGN/4 iHN/4

)
I −

(
GN/4 HN/4
−iGN/4 iHN/4

)

DFTN/2x

(e)

DFTN/4x
(oe)

DFTN/4x
(oo)



=

DFTN/2x
(e) +

(
GN/4DFTN/4x

(oe) +HN/4DFTN/4x
(oo)

−i
(
GN/4DFTN/4x

(oe) −HN/4DFTN/4x
(oo)))

DFTN/2x
(e) −

(
GN/4DFTN/4x

(oe) +HN/4DFTN/4x
(oo)

−i
(
GN/4DFTN/4x

(oe) −HN/4DFTN/4x
(oo)))


c) Explain from the above expression why, once the three FFT’s above have
been computed, the rest can be computed with N/2 complex multiplications,
and 2 × N/4 + N = 3N/2 complex additions. This is equivalent to 2N real
multiplications and N + 3N = 4N real additions.

Hint. It is important that GN/4DFTN/4x
(oe) and HN/4DFTN/4x

(oo) are com-
puted first, and the sum and difference of these two afterwards.

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS33

d) Due to what we just showed, our new algorithm leads to real multiplication
and addition counts which satisfy

MN = MN/2 + 2MN/4 + 2N AN = AN/2 + 2AN/4 + 4N

Find the general solutions to these difference equations and conclude from these
that MN = O

(4
3N log2 N

)
, and AN = O

(8
3N log2 N

)
. The operation count is

thus O (4N log2 N), which is a reduction of N log2 N from the FFT algorithm.

e) Write an FFT kernel function FFTKernelSplitradix for the split-radix
algorithm (again this should handle both the forward and reverse transforms).
Are there more or less recursive function calls in this function than in the
original FFT algorithm? Also compare the execution times with our original
FFT algorithm, as we did in Exercise 2.23. Try to explain what you see in this
comparison.

Solution. If you add the split-radix FFT algorithm also to the code from
Exercise 2.23, you will see that it performs better than the FFT algorithm,
but worse than the non-recursive algorithm. That it performs better than the
FFT algorithm is as expected, since it has a reduced number of arithmetic
operations, and also a smaller number of recursive calls. It is not surprising
that the non-recursive function performs better, since only that function omits
recursive calls, and computes the values in the diagonal matrices once and for
all.

By carefully examining the algorithm we have developed, one can reduce
the operation count to 4N log2 N − 6N + 8. This does not reduce the order of
the algorithm, but for small N (which often is the case in applications) this
reduces the number of operations considerably, since 6N is large compared to
4N log2 N for small N . In addition to having a lower number of operations than
the FFT algorithm of Theorem 2.31 in the compendium, a bigger percentage
of the operations are additions for our new algorithm: there are now twice as
many additions than multiplications. Since multiplications may be more time-
consuming than additions (depending on how the CPU computes floating-point
arithmetic), this can be a big advantage.

Solution. The code for the split-radix algorithm can look as follows

function y = FFTKernelSplitradix(x, forward)
N = size(x, 1);
sign = -1;
if ~forward

sign = 1;
end
if N == 1

y = x;
elseif N == 2

y = [x(1) + x(2); x(1) - x(2)];
else

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS34

xe = FFTKernelSplitradix(x(1:(N/2)), forward);
xo1 = FFTKernelSplitradix(x((N/2 + 1):(3*N/4)), forward);
xo2 = FFTKernelSplitradix(x((3*N/4 + 1):N), forward);
G = exp(sign*2*pi*1j*(0:(N/4-1))’/N);
H = G.*exp(sign*2*pi*1j*(0:(N/4-1))’/(N/2));
xo1 = G.*xo1;
xo2 = H.*xo2;
xo = [xo1 + xo2; -sign*1i*(xo2 - xo1)];
y = [xe + xo; xe - xo];

end

Exercise 2.30: Bit-reversal
In this exercise we will make some considerations which will help us explain the
code for bit-reversal. This is perhaps not a mathematically challenging exercise,
but nevertheless a good exercise in how to think when developing an efficient
algorithm. We will use the notation i for an index, and j for its bit-reverse. If
we bit-reverse k bits, we will write N = 2k for the number of possible indices.

a) Consider the following code

j = 0;
for i = 0:(N-1)

j
m = N/2;
while (m >= 1 && j >= m)

j = j - m;
m = m/2;

end
j = j + m;

end

Explain that the code prints all numbers in [0, N−1] in bit-reversed order (i.e. j).
Verify this by running the program, and writing down the bits for all numbers
for, say N = 16. In particular explain the decrements and increments made to
the variable j. The code above thus produces pairs of numbers (i, j), where j is
the bit-reverse of i. As can be seen, bitreverse applies similar code, and then
swaps the values xi and xj in x, as it should.

Solution. Note that, if the bit representation of i ends with 0 1 . . . 1︸ ︷︷ ︸
n

, then

i+ 1 has a bit representation which ends with 1 0 . . . 0︸ ︷︷ ︸
n

, with the remaining first

bits unaltered. Clearly the bit-reverse of i then starts with 1 . . . 1︸ ︷︷ ︸
n

0 and the

bit-reverse of i+ 1 starts with 1 0 . . . 0︸ ︷︷ ︸
n

. We see that the bit reverse of i+ 1 can

be obtained from the bit-reverse of i by replacing the first consecutive set of ones
by zeros, and the following zero by one. This is performed by the line above
where j is decreased by m: Decreasing j by N/2 when j ≥ N/2 changes the first
bit from 1 to 0, and similarly for the next n bits. The line where j is increased
with m changes bit number n+ 1 from 0 to 1.

CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS35

Since bit-reverse is its own inverse (i.e. P 2 = I), it can be performed by
swapping elements i and j. One way to secure that bit-reverse is done only once,
is to perform it only when j > i. You see that bitreverse includes this check.

b) Explain that N − j − 1 is the bit-reverse of N − i − 1. Due to this, when
i, j < N/2, we have that N − i− 1, N − j − l ≥ N/2, and that bitreversal can
swap them. Moreover, all swaps where i, j ≥ N/2 can be performed immediately
when pairs where i, j < N/2 are encountered. Explain also that j < N/2
if and only if i is even. In the code you can see that the swaps (i, j) and
(N − i− 1, N − j − 1) are performed together when i is even, due to this.

Solution. Clearly N − i − 1 has a bit representation obtained by changing
every bit in i. That N − j − 1 is the bit-reverse of N − i− 1 follows immediately
from this. If i is even, the least significant bit is 0. After bit-reversal, this
becomes the most significant bit, and the most significant bit of j is 0 which is
the case if and only if j < N/2.

c) Assume that i < N/2 is odd. Explain that j ≥ N/2, so that j > i. This says
that when i < N/2 is odd, we can always swap i and j (this is the last swap
performed in the code). All swaps where 0 ≤ j < N/2 and N/2 ≤ j < N can be
performed in this way.

Solution. If i < N/2 is odd, then the least significant bit is 1. This means
that the most significant bit of j is 1, so that j ≥ N/2, so that j > i.

In bitreversal, you can see that the bit-reversal of 2r and 2r+1 are handled
together (i.e. i is increased with 2 in the for-loop). The effect of this is that the
number of if-tests can be reduced, due to the observations from b) and c).

Chapter 3

Operations on digital sound:
digital filters

Exercise 3.1: Finding the filter coefficients and the matrix
Assume that the filter S is defined by the formula

zn = 1
4xn+1 + 1

4xn + 1
4xn−1 + 1

4xn−2.

Write down the filter coefficients tk, and the matrix for S when N = 8.

Solution. Here we have that t−1 = 1/4, t0 = 1/4, t1 = 1/4, and t2 = 1/4. We
now get that s0 = t0 = 1/4, s1 = t1 = 1/4, and s2 = t2 = 1/4 (first formula),
and sN−1 = s7 = t−1 = 1/4 (second formula). This means that the matrix of S
is

S = 1
4



1 1 0 0 0 0 1 1
1 1 1 0 0 0 0 1
1 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0
0 0 1 1 1 1 0 0
0 0 0 1 1 1 1 0
0 0 0 0 1 1 1 1
1 0 0 0 0 1 1 1


.

Exercise 3.2: Finding the filter coefficients from the matrix
Given the circulant Toeplitz matrix

S =


1 2 0 0
0 1 2 0
0 0 1 2
2 0 0 1

 ,

36

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS37

write down the filter coefficients tk.

Exercise 3.3: Convolution and polynomials
Compute the convolution of {1, 2, 1} with itself. interpret the result in terms of
two polynomials.

Exercise 3.4: Implementation of convolution
Implement code which computes t ∗ x in the two ways described after Equation
(3.3) in the compendium, i.e. as a double for loop, and as a simple for loop in
k, with n vectorized. As your t, take k randomly generated numbers. Compare
execution times for these two methods and the conv function, for different values
of k. Present the result as a plot where k runs along the x-axis, and execution
times run along the y-axis. Your result will depend on how Matlab performs
vectorization.

Solution. The code can look as follows.

[x, fs] = audioread(’sounds/castanets.wav’);
x = x(:,1);
N= length(x);

kmax=100;
vals1 = zeros(1, kmax/10);
vals2 = zeros(1, kmax/10);
vals3 = zeros(1, kmax/10);
ind = 1;
for k=10:10:kmax

t = rand(k, 1);
tic;
conv(t, x);
vals1(ind) = toc;

z = zeros(N, 1);
tic;
for s = 1:k

z(k:N) = z(k:N) + t(s)*x((k-s+1):(N-s+1));
end
vals2(ind)=toc;

z = zeros(N, 1);
tic;
for n=k:N

for s = 1:k
z(n) = z(n) + t(s)*x(n-s+1);

end
end
vals3(ind)=toc;
ind = ind+1;

end
plot(10:10:kmax,log(vals1),10:10:kmax,log(vals2), 10:10:kmax, log(vals3));
legend(’conv’,’simple for’,’double for’)

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS38

Exercise 3.5: Filters with a different number of coefficients
with positive and negative indices
Assume that S = {t−E , . . . , t0, . . . , tF }. Formulate a generalization of Proposi-
tion 3.8 in the compendium for such filters, i.e. to filters where there may be
a different number of filter coefficients with positive and negative indices. You
should only need to make some small changes to the proof of Proposition 3.8 in
the compendium to achieve this.

Exercise 3.6: Implementing filtering with convolution
Implement a function filterS which uses Proposition 3.8 in the compendium
and the conv function Sx when S = {t−L, . . . , t0, . . . , tL} The function should
take the vectors (t−L, . . . , t0, . . . , tL) and x as input.

Solution. The code can look like this:

function y=filterS(t, x)
L = (length(t) - 1)/2;
N = length(x);
y = [x((N - L + 1):N); x; x(1:L)];
y = conv(t, y);
y = y((2*L+1):(length(y)-2*L));

Exercise 3.7: Time reversal is not a filter
In Example 2.6 in the compendium we looked at time reversal as an operation
on digital sound. In RN this can be defined as the linear mapping which sends
the vector ek to eN−1−k for all 0 ≤ k ≤ N − 1.

a) Write down the matrix for the time reversal linear mapping, and explain
from this why time reversal is not a digital filter.

Solution. The matrix for time reversal is the matrix
0 0 · · · 0 1
0 0 · · · 1 0
...

...
...

...
...

0 1 · · · 0 0
1 0 · · · 0 0


This is not a circulant Toeplitz matrix, since all diagonals assume the values 0
and 1, so that they are not constant on each diagonal. Time reversal is thus not
a digital filter.

b) Prove directly that time reversal is not a time-invariant operation.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS39

Solution. Let S denote time reversal. Clearly Se1 = eN−2. If S was time-
invariant we would have that Se0 = eN−3, where we have delayed the input and
output. But this clearly is not the case, since by definition Se0 = eN−1.

Exercise 3.8: When is a filter symmetric?
Let S be a digital filter. Show that S is symmetric if and only if the frequency
response satisfies λS,n = λS,N−n for all n.

Exercise 3.9: Eigenvectors and eigenvalues
Consider the matrix

S =


4 1 3 1
1 4 1 3
3 1 4 1
1 3 1 4

 .

a) Compute the eigenvalues and eigenvectors of S using the results of this
section. You should only need to perform one DFT in order to achieve this.

Solution. The eigenvalues of S are 1, 5, 9, and are found by computing a DFT
of the first column (and multiplying by

√
N = 2). The eigenvectors are the

Fourier basis vectors. 1 has multiplicity 2.

b) Verify the result from a) by computing the eigenvectors and eigenvalues the
way you taught in your first course in linear algebra. This should be a much
more tedious task.

c) Use a computer to compute the eigenvectors and eigenvalues of S also. For
some reason some of the eigenvectors seem to be different from the Fourier basis
vectors, which you would expect from the theory in this section. Try to find an
explanation for this.

Solution. The computer uses some numeric algorithm to find the eigenvectors.
However, eigenvectors may not be unique, so you have no control on which
eigenvectors it actually selects. In particular, here the eigenspace for λ = 1 has
dimension 2, so that any linear combination of the two eigenvectors from this
eigenspace also is an eigenvector. Here it seems that a linear combination is
chosen which is different from a Fourier basis vector.

Exercise 3.10: Composing filters
Assume that S1 and S2 are two circulant Toeplitz matrices.

a) How can you express the eigenvalues of S1 + S2 in terms of the eigenvalues
of S1 and S2?

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS40

Solution. If we write S1 = FHN D1FN and S2 = FHN D2FN we get

S1 + S2 = FHN (D1 +D2)FN S1S2 = FHN D1FNF
H
N D2FN = FHN D1D2FN

This means that the eigenvalues of S1 + S2 are the sum of the eigenvalues of S1
and S2. The actual eigenvalues which are added are dictated by the index of the
frequency response, i.e. λS1+S2,n = λS1,n + λS2,n.

b) How can you express the eigenvalues of S1S2 in terms of the eigenvalues of
S1 and S2?

Solution. As above we have that S1S2 = FHN D1FNF
H
N D2FN = FHN D1D2FN ,

and the same reasoning gives that the eigenvalues of S1S2 are the product of
the eigenvalues of S1 and S2. The actual eigenvalues which are multiplied are
dictated by the index of the frequency response, i.e. λS1S2,n = λS1,nλS2,n.

c) If A and B are general matrices, can you find a formula which expresses the
eigenvalues of A+B and AB in terms of those of A and B? If not, can you find
a counterexample to what you found in a) and b)?

Solution. In general there is no reason to believe that there is a formula for
the eigenvalues for the sum or product of two matrices, based on eigenvalues of
the individual matrices. However, the same type of argument as for filters can
be used in all cases where the eigenvectors are equal.

Exercise 3.11: Keeping every second component
Consider the linear mapping S which keeps every second component in RN ,
i.e. S(e2k) = e2k, and S(e2k−1) = 0. Is S a digital filter?

Solution. The matrix for the operation which keeps every second component
is 

1 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 0

 ,

where 1 and 0 are repeated in alternating order along the main diagonal. Since
the matrix is not constant on the main diagonal, it is not a circulant Toeplitz
matrix, and hence not a filter.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS41

Exercise 3.12: Plotting a simple frequency response
Let again S be the filter defined by the equation

zn = 1
4xn+1 + 1

4xn + 1
4xn−1 + 1

4xn−2,

as in Exercise 3.1. Compute and plot (the magnitude of) λS(ω).

Solution. The frequency response is

λS(ω) = 1
4(eiω + 1 + e−iω + e−2iω) = eiω(1− e−4iω)

4(1− e−iω) = 1
4e
−iω/2 sin(2ω)

sin(ω/2) .

Exercise 3.13: Low-pass and high-pass filters
A filter S is defined by the equation

zn = 1
3(xn + 3xn−1 + 3xn−2 + xn−3).

a) Compute and plot the (magnitude of the continuous) frequency response of
the filter, i.e. |λS(ω)|. Is the filter a low-pass filter or a high-pass filter?

Solution. The filter coefficients are t0 = t3 = 1/3, t1 = t2 = 1. We have that

λS(ω) =
∑
k

tke
−ikω = 1

3(1 + 3e−iω + 3e−2iω + e−3iω)

= 2
3e
−3iω/2 1

2(e3iω/2 + 3eiω/2 + 3e−iω/2 + e−3iω/2)

= 2
3e
−3iω/2(cos(3ω/2) + 3 cos(ω/2)).

From this expression it is easy to plot the frequency response, but since this is
complex, we have to plot the magnitude, i.e. |λS(ω)| = 2

3 | cos(3ω/2)+3 cos(ω/2)|.
We also see that λS(0) = 2

3 , and that λS(π) = 0, so that the filter is a low-pass
filter.

b) Find an expression for the vector frequency response λS,2. What is Sx when
x is the vector of length N with components e2πi2k/N?

Solution. If we use the connection between the vector frequency response and
the continuous frequency response we get

λS,2 = λS(2π2/N) = 2
3e
−6πi/N (cos(6π/N) + 3 cos(2π/N)).

Alternatively you can here compute that the first column in the circulant Toeplitz
matrix for S is given by s0 = t1, s2 = t2, s3 = t3, and s4 = t4, and insert this in

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS42

the definition of the vector frequency response, λS,2 =
∑N−1
k=0 ske

−2πi2k/N . We
know that e2πi2k/N is an eigenvector for S since S is a filter, and that λS,2 is
the corresponding eigenvalue. We therefore get that

Sx = λS,2x = 2
3e
−6πi/N (cos(6π/N) + 3 cos(2π/N))x.

Exercise 3.14: Circulant matrices
A filter S1 is defined by the equation

zn = 1
16(xn+2 + 4xn+1 + 6xn + 4xn−1 + xn−2).

a) Write down an 8× 8 circulant Toeplitz matrix which corresponds to applying
S1 on a periodic signal with period N = 8.

Solution. Since clearly t−2 = t2 = 1/16, t−1 = t1 = 1/4, and t0 = 6/16,
the first column s in the circulant Toeplitz matrix is given by s0 = t0 = 6/16,
s1 = t1 = 4/16, s2 = t2 = 1/16, sN−2 = t−2 = 1/16, sN−1 = t−1 = 4/16. An
8× 8 circulant Toeplitz matrix which corresponds to applying S1 to a periodic
signal of length N = 8 is therefore

1
16



6 4 1 0 0 0 1 4
4 6 4 1 0 0 0 1
1 4 6 4 1 0 0 0
0 1 4 6 4 1 0 0
0 0 1 4 6 4 1 0
0 0 0 1 4 6 4 1
1 0 0 0 1 4 6 4
4 1 0 0 0 1 4 6


.

b) Compute and plot (the continuous) frequency response of the filter. Is the
filter a low-pass filter or a high-pass filter?

Solution. The frequency response is

λS1(ω) = 1
16(e2iω+4eiω+6+4e−iω+e−2iω) =

(
1
2(eiω/2 + e−iω/2)

)4
= cos4(ω/2),

where we recognized (1, 4, 6, 4, 1) as a row in Pascal’s triangle, so that we could
write the expression as a power. From this expression it is easy to plot the
frequency response, and it is clear that the filter is a low-pass filter, since
λS1(0) = 1, λS1(π) = 0.

c) Another filter S2 has (continuous) frequency response λS2(ω) = (eiω + 2 +
e−iω)/4. Write down the filter coefficients for the filter S1S2.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS43

Solution. We have that

λS2(ω) = (eiω + 2 + e−iω)/4 =
(

1
2(eiω/2 + e−iω/2)

)2
= cos2(ω/2).

We then get that

λS1S2(ω) = λS1(ω)λS2(ω) = cos4(ω/2) cos2(ω/2) = cos6(ω/2)

=
(

1
2(eiω/2 + e−iω/2)

)6

= 1
64(e3iω + 6e2iω + 15eiω + 20 + 15e−iω + 6e−2iω + e−3iω),

where we have used that, since we have a sixth power, the values can be obtained
from fra a row in Pascal’s triangle also here. It is now clear that

S1S2 = 1
64{1, 6, 15, 20, 15, 6, 1}.

You could also argue here by taking the convolution of 1
16 (1, 4, 6, 4, 1) with

1
4 (1, 2, 1).

Exercise 3.15: Composite filters
Assume that the filters S1 and S2 have the frequency responses λS1(ω) =
2 + 4 cos(ω), λS2(ω) = 3 sin(2ω).

a) Compute and plot the frequency response of the filter S1S2.

b) Write down the filter coefficients tk and the impulse response s for the filter
S1S2.

Exercise 3.16: Maximum and minimum
Compute and plot the continuous frequency response of the filter S = {1/4, 1/2, 1/4}.
Where does the frequency response achieve its maximum and minimum value,
and what are these values?

Solution. We have that λS(ω) = 1
2 (1 + cosω). This clearly has the maximum

point (0, 1), and the minimum point (π, 0).

Exercise 3.17: Plotting a simple frequency response
Plot the continuous frequency response of the filter T = {1/4,−1/2, 1/4}. Where
does the frequency response achieve its maximum and minimum value, and what
are these values? Can you write down a connection between this frequency
response and that from Exercise 3.16?

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS44

Solution. We have that |λT (ω)| = 1
2 (1−cosω). This clearly has the maximum

point (π, 1), and the minimum point (0, 0). The connection between the frequency
responses is that λT (ω) = λS(ω + π).

Exercise 3.18: Continuous- and vector frequency responses
Define the filter S by S = {1, 2, 3, 4, 5, 6}. Write down the matrix for S when
N = 8. Plot (the magnitude of) λS(ω), and indicate the values λS,n for N = 8
in this plot.

Solution. Here we have that s0 = t0 = 3, s1 = t1 = 4, s2 = t2 = 5, and
s3 = t3 = 6 (first formula), and sN−2 = t−2 = 1, sN−1 = t−1 = 2 (second
formula). This means that the matrix of S is

S =



3 2 1 0 0 6 5 4
4 3 2 1 0 0 6 5
5 4 3 2 1 0 0 6
6 5 4 3 2 1 0 0
0 6 5 4 3 2 1 0
0 0 6 5 4 3 2 1
1 0 0 6 5 4 3 2
2 1 0 0 6 5 4 3


The frequency response is

λS(ω) = e2iω + 2eiω + 3 + 4e−iω + 5e−2iω + 6e−3iω.

Exercise 3.19: Starting with circulant matrices
Given the circulant Toeplitz matrix

S = 1
5



1 1 1 · · · 1
1 1 1 · · · 0
0 1 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
1 0 0 · · · 1
1 1 0 · · · 1
1 1 1 · · · 1


Write down the compact notation for this filter. Compute and plot (the magni-
tude) of λS(ω).

Solution. The filter coefficients are t0 = s0 = 1/5, t1 = s1 = 1/5 (first
formula), and t−1 = sN−1 = 1/5, t−2 = sN−2 = 1/5, t−3 = sN−3 = 1/5 (second
formula). All other tk are zero. This means that the filter can be written as
1
5{1, 1, 1, 1, 1}, using our compact notation.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS45

Exercise 3.20: When the filter coefficients are powers
Assume that S = {1, c, c2, . . . , ck}. Compute and plot λS(ω) when k = 4 and
k = 8. How does the choice of k influence the frequency response? How does
the choice of c influence the frequency response?

Solution. The frequency response is

k∑
s=0

cse−isω = 1− ck+1e−i(k+1)ω

1− ce−iω .

It is straightforward to compute the limit as ω → 0 as ck(k + 1). This means
that as we increase k or c, this limit also increases. The value of k also dictates
oscillations in the frequency response, since the numerator oscillates fastest.
When c = 1, k dictates how often the frequency response hits 0.

Exercise 3.21: The Hanning window
The Hanning window is defined by wn = 1−cos(2πn/(N−1)). Compute and plot
the window coefficients and the continuous frequency response of this window for
N = 32, and compare with the window coefficients and the frequency responses
for the rectangular- and the Hamming window.

Exercise 3.22: Composing time delay filters
Let Ed1 and Ed2 be two time delay filters. Show that Ed1Ed2 = Ed1+d2 (i.e. that
the composition of two time delays again is a time delay) in two different ways:

a) Give a direct argument which uses no computations.

b) By using Property 3 in Theorem 2.18 in the compendium, i.e. by using a
property for the Discrete Fourier Transform.

Exercise 3.23: Adding echo
In this exercise, we will experiment with adding echo to a signal.

a) Write a function play_with_echo which takes the sound samples, the sample
rate, a damping constant c, and a delay d as input, and plays the sound samples
with an echo added, as described in Example 3.32 in the compendium. Recall
that you have to ensure that the sound samples lie in [−1, 1].

Solution. The code can look like this:

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS46

function play_with_echo(x,fs,c,d)
[N,nchannels] = size(x);
z = zeros(N,nchannels);
z(1:d,:) = x(1:d,:);
z((d+1):N,:) = x((d+1):N,:)+c*x(1:(N-d),:); % Add echo
z = z/max(max(abs(z))); % Scale so that sound values are within [-1,1].
playerobj=audioplayer(z,fs);
playblocking(playerobj);

b) Generate the sound from Example 3.32 in the compendium, and verify that
it is the same as the one you heard there.

c) Listen to the sound samples for different values of d and c. For which range
of d is the echo distinguisible from the sound itself? How low can you choose c
in order to still hear the echo?

Exercise 3.24: Adding echo filters
Consider the two filters S1 = {1, 0, . . . , 0, c} and S2 = {1, 0, . . . , 0,−c}. Both of
these can be interpreted as filters which add an echo. Show that 1

2 (S1 + S2) = I.
What is the interpretation of this relation in terms of echos?

Solution. The sum of two digital filters is again a digital filter, and the first
column in the sum can be obtained by summing the first columns in the two
matrices. This means that the filter coefficients in 1

2 (S1 + S2) can be obtained
by summing the filter coefficients of S1 and S2, and we obtain

1
2 ({1, 0, . . . , 0, c}+ {1, 0, . . . , 0,−c}) = {1}.

This means that 1
2 (S1 + S2) = I, since I is the unique filter with e0 as first

column. The interpretation in terms of echos is that the echo from S2 cancels
that from S1.

Exercise 3.25: Reducing bass and treble
In this exercise, we will experiment with increasing and reducing the treble
and bass in a signal as in examples 3.32 in the compendium and 3.41 in the
compendium.

a) Write functions play_with_reduced_treble and play_with_reduced_bass
which take a data vector, sampling rate, and k as input, and which reduce bass
and treble, respectively, in the ways described above, and plays the result, when
row number 2k in Pascal’ triangle is used to construct the filters. Use the
function conv to help you to find the values in Pascal’s triangle. You can use
the conv function also to compute the output of the filter, but note that this
disregards the circularity of the filter. If you solved Exercise 3.6, you can also use
the function filterS you implemented there, since row 2k in Pascal’s triangle
has an odd number of values, and thus corresponds to a symmetric filter.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS47

Solution. The code can look like this. We have used the conv function:

function play_with_reduced_bass(x, fs, k)
t = [1];
for kval=1:k

t = conv(t,[1/2 -1/2]);
end
z = conv(t, x(:, 1));
z = 20*z;
playerobj = audioplayer(z, fs);
playblocking(playerobj);

function play_with_reduced_treble(x,fs,k)
t = [1];
for kval=1:k

t = conv(t,[1/2 1/2]);
end
z = conv(t, x(:, 1));
playerobj=audioplayer(z,fs);
playblocking(playerobj);

b) Generate the sounds you heard in examples 3.32 in the compendium and 3.41
in the compendium, and verify that they are the same.

c) In your code, it will not be necessary to scale the values after reducing the
treble, i.e. the values are already between −1 and 1. Explain why this is the
case.

d) How high must k be in order for you to hear difference from the actual sound?
How high can you choose k and still recognize the sound at all?

Exercise 3.26: Constructing a highpass filter
Consider again Example 3.35 in the compendium. Find an expression for a filter
so that only frequencies so that |ω − π| < ωc are kept, i.e. the filter should only
keep angular frequencies close to π (i.e. here we construct a highpass filter).

Exercise 3.27: Combining lowpass and highpass filters
In this exercise we will investigate how we can combine lowpass and highpass
filters to produce other filters

a) Assume that S1 and S2 are lowpass filters. What kind of filter is S1S2?
What if both S1 and S2 are highpass filters?

b) Assume that one of S1, S2 is a highpass filter, and that the other is a lowpass
filter. What kind of filter S1S2 in this case?

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS48

Exercise 3.28: Composing filters
A filter S1 has the frequency response 1

2 (1 + cosω), and another filter has the
frequency response 1

2 (1 + cos(2ω)).

a) Is S1S2 a lowpass filter, or a highpass filter?

b) What does the filter S1S2 do with angular frequencies close to ω = π/2.

c) Find the filter coefficients of S1S2.

Hint. Use Theorem 3.26 in the compendium to compute the frequency response
of S1S2 first.

d) Write down the matrix of the filter S1S2 for N = 8.

Exercise 3.29: Composing filters
An operation describing some transfer of data in a system is defined as the
composition of the following three filters:

• First a time delay filter with delay d1 = 2, due to internal transfer of data
in the system,

• then the treble-reducing filter T = {1/4, 1/2, 1/4},

• finally a time delay filter with delay d2 = 4 due to internal transfer of the
filtered data.

We denote by T2 = Ed2TEd1 = E4TE2 the operation which applies these filters
in succession.

a) Explain why T2 also is a digital filter. What is (the magnitude of) the
frequency response of Ed1? What is the connection between (the magnitude of)
the frequency response of T and T2?

b) Show that T2 = {0, 0, 0, 0, 0, 1/4, 1/2, 1/4}.

Hint. Use the expressions (Ed1x)n = xn−d1 , (Tx)n = 1
4xn+1 + 1

2xn + 1
4xn−1,

(Ed2x)n = xn−d2 , and compute first (Ed1x)n, then (TEd1x)n, and finally
(T2x)n = (Ed2TEd1x)n. From the last expression you should be able to read
out the filter coefficients.

c) Assume that N = 8. Write down the 8× 8-circulant Toeplitz matrix for the
filter T2.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS49

Exercise 3.30: Filters in the MP3 standard
In Example 3.37 in the compendium, we mentioned that the filters used in the
MP3-standard were constructed from a lowpass prototype filter by multiplying
the filter coefficients with a complex exponential. Clearly this means that the
new frequency response is a shift of the old one. The disadvantage is, however,
that the new filter coefficients are complex. It is possible to address this problem
as follows. Assume that tk are the filter coefficients of a filter S1, and that S2 is
the filter with filter coefficients cos(2πkn/N)tk, where n ∈ N. Show that

λS2(ω) = 1
2(λS1(ω − 2πn/N) + λS1(ω + 2πn/N)).

In other words, when we multiply (modulate) the filter coefficients with a cosine,
the new frequency response can be obtained by shifting the old frequency response
with 2πn/N in both directions, and taking the average of the two.

Solution. We have that

λS2(ω) =
∑
k

cos(2πkn/N)tke−ikω = 1
2
∑
k

(e2πikn/N + e−2πikn/N)tke−ikω

= 1
2

(∑
k

tke
−ik(ω−2πn/N) +

∑
k

tke
−ik(ω+2πn/N)

)

= 1
2(λS1(ω − 2πn/N) + λS1(ω + 2πn/N)).

Exercise 3.31: Explain code
a) Explain what the code below does, line by line.

[x, fs] = audioread(’sounds/castanets.wav’);
[N, nchannels] = size(x);
z = zeros(N, nchannels);
for n=2:(N-1)

z(n,:) = 2*x(n+1,:) + 4*x(n,:) + 2*x(n-1,:);
end
z(1,:) = 2*x(2,:) + 4*x(1,:) + 2*x(N,:);
z(N,:) = 2*x(1,:) + 4*x(N,:) + 2*x(N-1,:);
z = z/max(abs(z));
playerobj=audioplayer(z, fs);
playblocking(playerobj)

Comment in particular on what happens in the three lines directly after the
for-loop, and why we do this. What kind of changes in the sound do you expect
to hear?

Solution. In the code a filter is run on the sound samples from the file
castanets.wav. Finally the new sound is played. In the first two lines after the
for-loop, the first and the last sound samples in the filtered sound are computed,

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS50

under the assumption that the sound has been extended to a periodic sound
with period N. After this, the sound is normalized so that the sound samples lie
in the range between −1 and 1. In this case the filter is a lowpass-filter (as we
show in b.), so that we can expect that that the treble in the sound is reduced.

b) Write down the compact filter notation for the filter which is used in the
code, and write down a 5 × 5 circulant Toeplitz matrix which corresponds to
this filter. Plot the (continuous) frequency response. Is the filter a lowpass- or a
highpass filter?

Solution. Compact filter notation for the filter which is run is {2, 4, 2}. A
5× 5 circulant Toeplitz matrix becomes

4 2 0 0 2
2 4 2 0 0
0 2 4 2 0
0 0 2 4 2
2 0 0 2 4

 .

The frequency response is λS(ω) = 2eiω + 4 + 2e−iω = 4 + 4 cosω. It is clear
that this gives a lowpass filter.

c) Another filter is given by the circulant Toeplitz matrix
4 −2 0 0 −2
−2 4 −2 0 0

0 −2 4 −2 0
0 0 −2 4 −2
−2 0 0 −2 4

 .

Express a connection between the frequency responses of this filter and the filter
from b. Is the new filter a lowpass- or a highpass filter?

Solution. The frequency response for the new filter is

−2eiω + 4− 2e−iω = 4− 4 cosω = 4 + 4 cos(ω + π) = λS(ω + π),

where S is the filter from the first part of the exercise. The new filter therefore
becomes a highpass filter, since to add π to ω corresponds to swapping the
frequencies 0 and π. We could also here refered to Observation 3.40 in the
compendium, where we stated that adding an alternating sign in the filter
coefficients turns a lowpass filter into a highpass filter and vice versa.

Exercise 3.32: A concrete IIR filter
A filter is defined by demanding that zn+2 − zn+1 + zn = xn+1 − xn.

a) Compute and plot the frequency response of the filter.

CHAPTER 3. OPERATIONS ON DIGITAL SOUND: DIGITAL FILTERS51

b) Use a computer to compute the output when the input vector is x =
(1, 2, . . . , 10). In order to do this you should write down two 10× 10-circulant
Toeplitz matrices.

Exercise 3.33: Implementing the factorization
Write a function filterdftimpl, which takes the filter coefficients t and the
value k0 from this section, computes the optimal M , and implements the filter
as here.

Exercise 3.34: Factoring concrete filter
Factor the filter S = {1, 5, 10, 6} into a product of two filters, one with two filter
coefficients, and one with three filter coefficients.

Chapter 4

Symmetric filters and the
DCT

Exercise 4.1: Computing eigenvalues
Consider the matrix

S = 1
3


2 1 0 0 0 0
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 2


a) Compute the eigenvalues and eigenvectors of S using the results of this
section. You should only need to perform one DFT or one DCT in order to
achieve this.

b) Use a computer to compute the eigenvectors and eigenvalues of S also. What
are the differences from what you found in a)?

c) Find a filter T so that S = Tr. What kind of filter is T?

Exercise 4.2: Writing down lower order Sr

Consider the averaging filter S = { 1
4 ,

1
2 ,

1
4}. Write down the matrix Sr for the

case when N = 4.

Solution. First we obtain the matrix S as

52

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 53



1
2

1
4 0 0 0 0 0 1

41
4

1
2

1
4 0 0 0 0 0

0 1
4

1
2

1
4 0 0 0 0

0 0 1
4

1
2

1
4 0 0 0

0 0 0 1
4

1
2

1
4 0 0

0 0 0 0 1
4

1
2

1
4 0

0 0 0 0 0 1
4

1
2

1
41

4 0 0 0 0 0 1
4

1
2


where we have drawn the boundaries between the blocks S1, S2, S3, S4. From
this we see that

S1 =


1
2

1
4 0 0

1
4

1
2

1
4 0

0 1
4

1
2

1
4

0 0 1
4

1
2

 S2 =


0 0 0 1

4
0 0 0 0
0 0 0 0
1
4 0 0 0

 (S2)f =


1
4 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

4

 .

From this we get

Sr = S1 + (S2)f =


3
4

1
4 0 0

1
4

1
2

1
4 0

0 1
4

1
2

1
4

0 0 1
4

3
4

 .

Exercise 4.3: Writing down lower order DCTs
As in Example 4.15 in the compendium, state the exact cartesian form of the
DCT matrix for the case N = 3.

Solution. We first see that d0,3 =
√

1
3 and dk,3 =

√
2
3 for k = 1, 2. We also

have that

cos
(

2π n

2N

(
k + 1

2

))
= cos

(
π
n

3

(
k + 1

2

))
,

so that the DCT matrix can be written as

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 54

DCT3 =


√

1
3

√
1
3

√
1
3√

2
3 cos

(
π
3

1
2
) √

2
3 cos

(
π
3

3
2
) √

2
3 cos

(
π
3

5
2
)√

2
3 cos

(2π
3

1
2
) √

2
3 cos

(2π
3

3
2
) √

2
3 cos

(2π
3

5
2
)


=


√

1
3

√
1
3

√
1
3√

2
3 cos(π/6)

√
2
3 cos(π/2)

√
2
3 cos(5π/6)√

2
3 cos(π/3)

√
2
3 cos(π)

√
2
3 cos(5π/3)



=


√

1
3

√
1
3

√
1
3√

2
3 (
√

3/2 + i/2) 0
√

2
3 (−
√

3/2 + i/2)√
2
3 (1/2 +

√
3i/2) −

√
2
3

√
2
3 (1/2−

√
3i/2)


Exercise 4.4: DCT-IV

Show that the vectors
{

cos
(

2π n+ 1
2

2N
(
k + 1

2
))}N−1

n=0
in RN are orthogonal, with

lengths
√
N/2. This means that the matrix with entries

√
2
N cos

(
2π n+ 1

2
2N

(
k + 1

2
))

is orthogonal. Since this matrix also is symmetric, it is its own inverse. This is
the DCT-IV, which we denote by DCT(IV)

N . Although we will not consider this,
the DCT-IV also has an efficient implementation.

Hint. Compare with the orthogonal vectors dn, used in the DCT.

Solution. We can write

cos
(

2π
n+ 1

2
2N

(
k + 1

2

))
= cos

(
2π 2n+ 1

4N

(
k + 1

2

))
.

If we consider these as vectors of length 2N , we recognize these as the unit vectors
d2n+1 in the 2N -dimensional DCT, divided by the factor dn =

√
2/(2N) =√

1/N , so that these vectors have length
√
N . To see that these vectors are

orthogonal when we restrict to the first N elements we use Equation (6.32) in
the compendium as follows:

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 55

Nδn1,n2 =
2N−1∑
k=0

cos
(

2π
n1 + 1

2
2N

(
k + 1

2

))
cos
(

2π
n2 + 1

2
2N

(
k + 1

2

))

=
N−1∑
k=0

cos
(

2π
n1 + 1

2
2N

(
k + 1

2

))
cos
(

2π
n2 + 1

2
2N

(
k + 1

2

))

+
2N−1∑
k=N

cos
(

2π
n1 + 1

2
2N

(
k + 1

2

))
cos
(

2π
n2 + 1

2
2N

(
k + 1

2

))

=
N−1∑
k=0

cos
(

2π
n1 + 1

2
2N

(
k + 1

2

))
cos
(

2π
n2 + 1

2
2N

(
k + 1

2

))

+
N−1∑
k=0

cos
(

2π
n1 + 1

2
2N

(
k + 1

2

))
cos
(

2π
n2 + 1

2
2N

(
k + 1

2

))

=2
N−1∑
k=0

cos
(

2π
n1 + 1

2
2N

(
k + 1

2

))
cos
(

2π
n2 + 1

2
2N

(
k + 1

2

))
.

This shows that

N−1∑
k=0

cos
(

2π
n1 + 1

2
2N

(
k + 1

2

))
cos
(

2π
n2 + 1

2
2N

(
k + 1

2

))
= N

2 δn1,n2 ,

so that the vectors are orthogonal with lengths
√
N/2.

Exercise 4.5: MDCT
The MDCT is defined as theN×(2N)-matrixM with elementsMn,k = cos(2π(n+
1/2)(k + 1/2 +N/2)/(2N)). This exercise will take you through the details of
the transformation which corresponds to multiplication with this matrix. The
MDCT is very useful, and is also used in the MP3 standard and in more recent
standards.

a) Show that

M =
√
N

2 DCT(IV)
N

(
0 A
B 0

)
where A and B are the (N/2)×N -matrices

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 56

A =


· · · · · · 0 −1 −1 0 · · · · · ·
...

...
...

...
...

...
...

...
0 −1 · · · · · · · · · · · · −1 0
−1 0 · · · · · · · · · · · · 0 −1

 =
(
−IfN/2 −IN/2

)

B =


1 0 · · · · · · · · · · · · 0 −1
0 1 · · · · · · · · · · · · −1 0
...

...
...

...
...

...
...

...
· · · · · · 0 1 −1 0 · · · · · ·

 =
(
IN/2 −IfN/2

)
.

Due to this expression, any algorihtm for the DCT-IV can be used to compute
the MDCT.

Solution. Clearly, columns 0, . . . , N/2−1 of the MDCT are columnsN/2, . . . , N−
1 of the DCT-IV. For the remaining columns, note first that, for 0 ≤ k < N , the
properties

cos(2π(n+ 1/2)((2N − 1− k) + 1/2)/(2N)) = − cos(2π(n+ 1/2)(k + 1/2)/(2N))
cos(2π(n+ 1/2)((k + 2N) + 1/2)/(2N)) = − cos(2π(n+ 1/2)(k + 1/2)/(2N))

are easy to verify. From the first property it follows that columnsN/2, . . . , 3N/2−
1 of the MDCT are columns N − 1, N − 2, . . . , 0 of the DCT-IV, with a sign
change (they occur in opposite order). From the second property, it follows
that columns 3N/2, . . . , 2N − 1 of the MDCT are columns 0, . . . , N/2− 1 of the
DCT-IV, with a sign change. This means that, if y is a vector of length 2N , the
MDCT of y can be written as

√
N

2 DCT(IV)
N



−y3N/2 − y3N/2−1
−y3N/2+1 − y3N/2−2

...
−y2N−1 − yN
y0 − yN−1
y1 − yN/2+1

...
yN/2−1 − yN/2


.

The factor
√

N
2 was added since

√
2
N was added in front of the cosine-matrix

in order to make DCT(IV)
N orthogonal. The result now follows by noting that

we can write
(
0 A
B 0

)
y for the vector on the right hand side, with A and B as

defined in the text of the exercise.

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 57

b) The MDCT is not invertible, since it is not a square matrix. We will show
here that it still can be used in connection with invertible transformations. We
first define the IMDCT as the matrix MT /N . Transposing the matrix expression
we obtained in a) gives

1√
2N

(
0 BT

AT 0

)
DCT(IV)

N

for the IMDCT, which thus also has an efficient implementation. Show that if

x0 = (x0, . . . , xN−1) x1 = (xN , . . . , x2N−1) x2 = (x2N , . . . , x3N−1)

and

y0,1 = M

(
x0
x1

)
y1,2 = M

(
x1
x2

)
(i.e. we compute two MDCT’s where half of the data overlap), then

x1 = {IMDCT(y0,1)}2N−1
k=N + {IMDCT(y1,2)}N−1

k=0 .

Even though the MDCT itself is not invertible, the input can still be recovered
from overlapping MDCT’s.

Solution. Applying the MDCT first, and then the IMDCT, gives us the matrix

1
2

(
0 BT

AT 0

)(
0 A
B 0

)
= 1

2

(
BTB 0
0 ATA

)
Note that

ATA =
(
IN/2 IfN/2
IfN/2 IN/2

)
BTB =

(
IN/2 −IfN/2
−IfN/2 IN/2

)
.

Inserting this in the above gives

1
2


IN/2 −IfN/2 0 0

−IfN/2 IN/2 0 0

0 0 IN/2 IfN/2
0 0 IfN/2 IN/2

 = 1
2

(
IN − IfN 0

0 IN + IfN

)
.

Assume now that we have computed the MDCT of
(
x0
x1

)
= (x0, . . . , x2N−1),

and of
(
x1
x2

)
= (xN , . . . , x3N−1). Performing the IMDCT on these two thus

gives

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 58

1
2

(
x0 − xrev

0
x1 + xrev

1

)
and 1

2

(
x1 − xrev

1
x2 + xrev

2

)
Adding the second component of the first and the first component of the second
gives x1, which proves the result.

Exercise 4.6: Component expressions for a symmetric filter
Assume that S = t−L, . . . , t0, . . . , tL is a symmetric filter. Use Equation (4.7)
in the compendium to show that zn = (Sx)n in this case can be split into the
following different formulas, depending on n:

a) 0 ≤ n < L:

zn = t0xn +
n∑
k=1

tk(xn+k + xn−k) +
L∑

k=n+1
tk(xn+k + xn−k+N). (4.1)

b) L ≤ n < N − L:

zn = t0xn +
L∑
k=1

tk(xn+k + xn−k). (4.2)

c) N − L ≤ n < N :

zn = t0xn +
N−1−n∑
k=1

tk(xn+k + xn−k) +
L∑

k=N−1−n+1
tk(xn+k−N + xn−k). (4.3)

The conv function may not pick up this reduction in the number of multipli-
cations, since it does not assume that the filter is symmetric. We will still use
the conv function in implementations, however, due to its heavy optimization.

Exercise 4.7: Trick for reducing the number of multiplica-
tions with the DCT
In this exercise we will take a look at a small trick which reduces the number of
additional multiplications we need for DCT algorithm from Theorem 4.23 in the
compendium. This exercise does not reduce the order of the DCT algorithms,
but we will see in Exercise 4.8 how the result can be used to achieve this.

a) Assume that x is a real signal. Equation (4.12) in the compendium, which
said that

yn = cos
(
π
n

2N

)
<((DFTNx(1))n) + sin

(
π
n

2N

)
=((DFTNx(1))n)

yN−n = sin
(
π
n

2N

)
<((DFTNx(1))n)− cos

(
π
n

2N

)
=((DFTNx(1))n)

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 59

for the n’th and N − n’th coefficient of the DCT. This can also be rewritten as

yn =
(
<((DFTNx(1))n) + =((DFTNx(1))n)

)
cos
(
π
n

2N

)
−=((DFTNx(1))n)(cos

(
π
n

2N

)
− sin

(
π
n

2N

)
)

yN−n = −
(
<((DFTNx(1))n) + =((DFTNx(1))n)

)
cos
(
π
n

2N

)
+ <((DFTNx(1))n)(sin

(
π
n

2N

)
+ cos

(
π
n

2N

)
).

Explain that the first two equations require 4 multiplications to compute yn and
yN−n, and that the last two equations require 3 multiplications to compute yn
and yN−n.

b) Explain why the trick in a) reduces the number of additional multiplications
in a DCT, from 2N to 3N/2.

c) Explain why the trick in a) can be used to reduce the number of additional
multiplications in an IDCT with the same number.

Hint. match the expression eπin/(2N)(yn − iyN−n) you encountered in the
IDCT with the rewriting you did in b.

d) Show that the penalty of the trick we here have used to reduce the number
of multiplications, is an increase in the number of additional additions from N
to 3N/2. Why can this trick still be useful?

Exercise 4.8: An efficient joint implementation of the DCT
and the FFT
In this exercise we will explain another joint implementation of the DFT and
the DCT, which has the benefit of a low multiplication count, at the expense
of a higher addition count. It also has the benefit that it is specialized to real
vectors, with a very structured implementation (this is not always the case for
the quickest FFT implementations. Not surprisingly, one often sacrifices clarity
of code when one pursues higher computational speed). a) of this exercise can be
skipped, as it is difficult and quite technical. For further details of the algorithm
the reader is refered to [?].

a) Let y = DFTNx be the N -point DFT of the real vector x. Show that

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 60

<(yn) =


<((DFTN/2x

(e))n) + (CN/4z)n 0 ≤ n ≤ N/4− 1
<((DFTN/2x

(e))n) n = N/4
<((DFTN/2x

(e))n)− (CN/4z)N/2−n N/4 + 1 ≤ n ≤ N/2− 1
(4.4)

=(yn) =


=((DFTN/2x

(e))n) n = 0
=((DFTN/2x

(e))n) + (CN/4w)N/4−n 1 ≤ n ≤ N/4− 1
=((DFTN/2x

(e))n) + (CN/4w)n−N/4 N/4 ≤ n ≤ N/2− 1
(4.5)

where x(e) is as defined in Theorem 2.31 in the compendium, where z,w ∈ RN/4

defined by

zk = x2k+1 + xN−2k−1 0 ≤ k ≤ N/4− 1,
wk = (−1)k(xN−2k−1 − x2k+1) 0 ≤ k ≤ N/4− 1,

Explain from this how you can make an algorithm which reduces an FFT of
length N to an FFT of length N/2 (on x(e)), and two DCT’s of length N/4 (on
z and w). We will call this algorithm the revised FFT algorithm.

Solution. Taking real and imaginary parts in Equation (2.13) in the com-
pendium for the FFT algorithm we obtain

<(yn) = <
(

(DFTN/2x
(e))n + <((DN/2DFTN/2x

(o))n
)

=(yn) = =
(

(DFTN/2x
(e))n + =((DN/2DFTN/2x

(o))n
)
,

These equations explain the first terms <((DFTN/2x
(e))n) and =((DFTN/2x

(e))n)
on the right hand sides in equations (2.13) in the compendium and (4.5) in the
compendium. It remains to rewrite <

(
(DN/2DFTN/2x

(o))n
)
and =

(
(DN/2DFTN/2x

(o))n
)

so that the remaining terms on the right hand sides can be seen. Let us first
consider the equation for the real part with 0 ≤ n ≤ N/4− 1. In this case we
can write

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 61

<((DN/2DFTN/2x
(o))n)

= <

e−2πin/N
N/2−1∑
k=0

(x(o))ke−2πink/(N/2)

 = <

N/2−1∑
k=0

(x(o))ke−2πin(k+ 1
2)/(N/2)


=
N/2−1∑
k=0

(x(o))k cos
(

2π
n(k + 1

2)
N/2

)

=
N/4−1∑
k=0

(x(o))k cos
(

2π
n(k + 1

2)
N/2

)

+
N/4−1∑
k=0

(x(o))N/2−1−k cos
(

2π
n(N/2− 1− k + 1

2)
N/2

)

=
N/4−1∑
k=0

((x(o))k + (x(o))N/2−1−k) cos
(

2π
n
(
k + 1

2
)

N/2

)

=
N/4−1∑
k=0

zk cos
(

2π
n
(
k + 1

2
)

N/2

)
,

where we have used that cos is periodic with period 2π, that cos is symmetric, and
where z is the vector defined in the text of the theorem. When 0 ≤ n ≤ N/4− 1
this can also be written as

N/4−1∑
k=0

(CN/4)n,kzk = (CN/4z)n,

This proves the first formula in Equation (4.4) in the compendium.
For N/4 + 1 ≤ n ≤ N/2 − 1, everything above is valid, except for that

cos(2πn(k + 1/2)/(N/2)) are not entries in the matrix CN/4, since n is outside
the legal range of the indices. However, N/2− n is now a legal index in CN/4,
and using that

cos
(

2π
n(k + 1

2)
N/2

)
= − cos

(
2π
(
N
2 − n

) (
k + 1

2
)

N/2

)
,

we arrive at −(CN/4z)N/2−n instead, and this proves the third formula in
Equation (4.4) in the compendium. For the case n = N

4 all the cosine entries
in the sum are zero, and this completes the proof of Equation (4.4) in the
compendium.

For the imaginary part, using that sin is periodic with period 2π, and that
sin is anti-symmetric, analogous calculations as above give

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 62

=((DN/2DFTN/2x
(o))n) =

N/4−1∑
k=0

((x(o))N/2−1−k − (x(o))k) sin
(

2π
n
(
k + 1

2
)

N/2

)
.

(4.6)
Using that

sin
(

2π
n(k + 1

2)
N/2

)
= cos

(
π

2 − 2π
n(k + 1

2)
N/2

)
= cos

(
2π

(N/4− n)(k + 1
2)

N/2 − kπ
)

= (−1)k cos
(

2π
(N/4− n)(k + 1

2)
N/2

)
,

Equation (4.6) in the compendium can be rewritten as

N/4−1∑
k=0

((x(o))N/2−1−k − (x(o))k)(−1)k cos
(

2π
(N/4− n)(k + 1

2)
N/2

)

=
N/4−1∑
k=0

wk cos
(

2π
(N/4− n)(k + 1

2)
N/2

)
,

where w is the vector defined as in the text of the theorem. When n = 0 this is 0
since all the cosines entries are zero. When 1 ≤ n ≤ N/4 this is (CN/4w)N/4−n,
since cos(2π(N/4 − n)(k + 1/2)/(N/2)) are entries in the matrix CN/4. This
proves the second formula in Equation (4.5) in the compendium.

For N/4 ≤ n ≤ N/2− 1 we can use that cos(2π(N/4−n)(k+ 1/2)/(N/2)) =
cos(2π(n − N/4)(k + 1/2)/(N/2)), which is an entry in the matrix DCTN/4
as well, so that we get (CN/4z)n−N/4. This also proves the third formula in
Equation (4.5) in the compendium, and the proof is done.

a) says nothing about the coefficients yn for n > N
2 . These are obtained in

the same way as before through symmetry. a. also says nothing about yN/2. This
can be obtained with the same formula as in Theorem 2.31 in the compendium.

Let us now compute the number of arithmetic operations our revised algorithm
needs. Denote by the number of real multiplications needed by the revised N -
point FFT algorithm

b) Explain from the algorithm in a) that

MN = 2(MN/4 + 3N/8) +MN/2 AN = 2(AN/4 + 3N/8) +AN/2 + 3N/2
(4.7)

Hint. 3N/8 should come from the extra additions/multiplications (see Exer-
cise 4.7) you need to compute when you run the algorithm from Theorem 4.23 in
the compendium for CN/4. Note also that the equations in a) require no extra
multiplications, but that there are xix equations involved, each needing N/4
additions, so that we need 6N/4 = 3N/2 extra additions.

CHAPTER 4. SYMMETRIC FILTERS AND THE DCT 63

c) Explain why xr = M2r is the solution to the difference equation

xr+2 − xr+1 − 2xr = 3× 2r,
and that xr = A2r is the solution to

xr+2 − xr+1 − 2xr = 9× 2r.
and show that the general solution to these are xr = 1

2r2
r + C2r +D(−1)r for

multiplications, and xr = 3
2r2

r + C2r +D(−1)r for additions.

d) Explain why, regardless of initial conditions to the difference equations,
MN = O

(1
2N log2 N

)
and AN = O

(3
2N log2 N

)
both for the revised FFT and

the revised DCT. The total number of operations is thus O(2N log2 N), i.e. half
the operation count of the split-radix algorithm. The orders of these algorithms
are thus the same, since we here have adapted to read data.

e) Explain that, if you had not employed the trick from Exercise 4.7, we would
instead have obtained MN = O

(2
3 log2 N

)
, and AN = O

(4
3 log2 N

)
, which

equal the orders for the number of multiplications/additions for the split-radix
algorithm. In particular, the order of the operation count remains the same,
but the trick from Exercise 4.7 turned a bigger percentage of the arithmetic
operations into additions.

The algorithm we here have developed thus is constructed from the beginning
to apply for real data only. Another advantage of the new algorithm is that it
can be used to compute both the DCT and the DFT.

Exercise 4.9: Implementation of the IFFT/IDCT
We did not write down corresponding algorithms for the revised IFFT and IDCT
algorithms. We will consider this in this exercise.

a) Using equations (2.13) in the compendium-(4.5) in the compendium, show
that

<(yn)−<(yN/2−n) = 2(CN/4z)n
=(yn) + =(yN/2−n) = 2(CN/4w)N/4−n

for 1 ≤ n ≤ N/4− 1. Explain how one can compute z and w from this using
two IDCT’s of length N/4.

b) Using equations (2.13) in the compendium-(4.5) in the compendium, show
that

<(yn) + <(yN/2−n) = <((DFTN/2x
(e))n)

=(yn)−=(yN/2−n) = =((DFTN/2x
(e))n),

and explain how one can compute x(e) from this using an IFFT of length N/2.

Chapter 5

Motivation for wavelets and
some simple examples

Exercise 5.1: Samples are the coordinate vector
Show that the coordinate vector for f ∈ V0 in the basis {φ0,0, φ0,1, . . . , φ0,N−1}
is (f(0), f(1),f(N − 1)).

Solution. We have that f(t) =
∑N−1
n=0 cnφ0,n, where cn are the coordinates of

f in the basis {φ0,0, φ0,1, . . . , φ0,N−1}. We now get that

f(k) =
N−1∑
n=0

cnφ0,n(k) = ck,

since φ0,n(k) = 0 when n 6= k. This shows that (f(0), f(1),f(N − 1)) are
the coordinates of f .

Exercise 5.2: Proposition 5.12 in the compendium
Prove Proposition 5.12 in the compendium.

Solution. Since f is constant and equal to f(n) on [n, n+ 1/2), and constant
and equal to f(n+ 1/2) on [n+ 1/2, n+ 1), we get that

64

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES65

〈f, φ0,n〉 =
∫ N

0
f(t)φ0,n(t)dt =

∫ n+1

n

f(t)dt

=
∫ n+1/2

n

f(t)dt+
∫ n+1

n+1/2
f(t)dt

=
∫ n+1/2

n

f(n)dt+
∫ n+1

n+1/2
f(n+ 1/2)dt

= f(n)/2 + f(n+ 1/2)/2 = (f(n) + f(n+ 1/2))/2.

The orthogonal decomposition theorem gives that

projV0f =
N−1∑
n=0
〈f, φ0,n〉φ0,n =

N−1∑
n=0

f(n) + f(n+ 1/2)
2 φ0,n.

Since φ0,n is 1 on [n, n+ 1) and 0 elsewhere, projV0f is the piecewise constant
function which is equal to (f(n) + f(n+ 1/2))/2 on [n, n+ 1).

Exercise 5.3: Computing projections
In this exercise we will consider the two projections from V1 onto V0 and W0.

a) Consider the projection projV0 of V1 onto V0. Use Lemma 5.11 in the
compendium to write down the matrix for projV0 relative to the bases φ1 and
φ0.

Solution. From Lemma 5.11 in the compendium it follows that

projV0(φ1,2n) = φ0,n/
√

2
projV0(φ1,2n+1) = φ0,n/

√
2

This means that

[projV0(φ1,2n)]φ0 = en/
√

2
[projV0(φ1,2n+1)]φ0 = en/

√
2.

These are the columns in the matrix for projV0 relative to the bases φ1 and φ0.
This matrix is thus

1√
2


1 1 0 0 0 · · · 0 0 0
0 0 1 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · 0 1 1

 .

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES66

b) Similarly, use Lemma 5.11 in the compendium to write down the matrix for
projW0 : V1 →W0 relative to the bases φ1 and ψ0.

Solution. From Lemma 5.11 in the compendium it follows that

projW0(φ1,2n) = ψ0,n/
√

2
projW0(φ1,2n+1) = −ψ0,n/

√
2

This means that

[projW0(φ1,2n)]ψ0 = en/
√

2
[projW0(φ1,2n+1)]ψ0 = −en/

√
2.

These are the columns in the matrix for projW0 relative to the bases φ1 and ψ0.
This matrix is thus

1√
2


1 −1 0 0 0 · · · 0 0 0
0 0 1 −1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · 0 1 −1

 .

Exercise 5.4: Computing projections 2
Consider again the projection projV0 of V1 onto V0.

a) Explain why projV0(φ) = φ and projV0(ψ) = 0.

Solution. Since φ ∈ V0 we must have that projV0(φ) = φ. Since ψ is in the
orthogonal complement of V0 in V1 we must have that projV0(ψ) = 0.

b) Show that the matrix of projV0 relative to (φ0,ψ0) is given by the diagonal
matrix where the first half of the entries on the diagonal are 1, the second half 0.

Solution. The first columns in the matrix of projV0 relative to (φ0,ψ0) are

[projV0(φ0,0)](φ0,ψ0) = [φ0,0](φ0,ψ0) = e0

[projV0(φ0,1)](φ0,ψ0) = [φ0,1](φ0,ψ0) = e1

...
...

The last columns in the matrix of projV0 relative to (φ0,ψ0) are

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES67

[projV0(ψ0,0)](φ0,ψ0) = [0](φ0,ψ0) = 0

[projV0(ψ0,1)](φ0,ψ0) = [0](φ0,ψ0) = 0

...
...

It follows that the matrix of projV0 relative to (φ0,ψ0) is given by the diagonal
matrix where the first half of the entries on the diagonal are 1, the second half 0.

c) Show in a similar way that the projection of V1 onto W0 has a matrix relative
to (φ0,ψ0) given by the diagonal matrix where the first half of the entries on
the diagonal are 0, the second half 1.

Solution. Follows in the same way as (b).

Exercise 5.5: Computing projections
Show that

projV0(f) =
N−1∑
n=0

(∫ n+1

n

f(t)dt
)
φ0,n(t) (5.1)

for any f . Show also that the first part of Proposition 5.12 in the compendium
follows from this.

Solution. We have that

projV0(f) =
N−1∑
n=0

(∫ N

0
f(t)φ0,n(t)dt

)
φ0,n =

N−1∑
n=0

(∫ n+1

n

f(t)dt
)
φ0,n,

where we have used the orthogonal decomposition formula. Note also that, if
f(t) ∈ V1, and fn,1 is the value f attains on [n, n+ 1/2), and fn,2 is the value f
attains on [n+ 1/2, n+ 1), we have that

projV0(f) =
N−1∑
n=0

(∫ n+1

n

f(t)dt
)
φ0,n(t)

=
N−1∑
n=0

(
1
2fn,1 + 1

2fn,2
)
φ0,n(t) =

N−1∑
n=0

fn,1 + fn,2
2 φ0,n(t),

which is the function which is (fn,1 + fn,2)/2 on [n, n+ 1). This proves the first
part of Proposition 5.12 in the compendium.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES68

Exercise 5.6: Finding the least squares error
Show that

‖
∑
n

(∫ n+1

n

f(t)dt
)
φ0,n(t)− f‖2 = 〈f, f〉 −

∑
n

(∫ n+1

n

f(t)dt
)2

.

This, together with the previous exercise, gives us an expression for the least-
squares error for f from V0 (at least after taking square roots). 2DO: Generalize
to m

Solution. We have that

‖f − projV0(f)‖2 = 〈f − projV0(f), f − projV0(f)〉
= 〈f, f〉 − 2〈f, projV0(f)〉+ 〈projV0(f),projV0(f)〉

Now, note that

〈projV0(f),projV0(f)〉 =
N−1∑
n=0

(∫ n+1

n

f(t)dt
)2

from what we just showed in Exercise 5.5 (use that the φ0,n are orthonormal).
This means that the above can be written

= 〈f, f〉 − 2
N−1∑
n=0

∫ N

0

(∫ n+1

n

f(s)ds
)
φ0,n(t)f(t)dt+

N−1∑
n=0

(∫ n+1

n

f(t)dt
)2

= 〈f, f〉 − 2
N−1∑
n=0

∫ n+1

n

(∫ n+1

n

f(s)ds
)
f(t)dt+

N−1∑
n=0

(∫ n+1

n

f(t)dt
)2

= 〈f, f〉 − 2
N−1∑
n=0

(∫ n+1

n

f(t)dt
)2

+
N−1∑
n=0

(∫ n+1

n

f(t)dt
)2

= 〈f, f〉 −
N−1∑
n=0

(∫ n+1

n

f(t)dt
)2

.

Exercise 5.7: Projecting on W0

Show that

projW0(f) =
N−1∑
n=0

(∫ n+1/2

n

f(t)dt−
∫ n+1

n+1/2
f(t)dt

)
ψ0,n(t) (5.2)

for any f . Show also that the second part of Proposition 5.12 in the compendium
follows from this.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES69

Solution. The orthogonal decomposition theorem gives that

projW0(f) =
N−1∑
n=0
〈f, ψ0,n〉ψ0,n(t) =

N−1∑
n=0

(∫ N

0
f(t)ψ0,n(t)dt

)
ψ0,n(t)

=
N−1∑
n=0

(∫ n+1

n

f(t)ψ0,n(t)dt
)
ψ0,n(t)

=
N−1∑
n=0

(∫ n+1/2

n

f(t)dt−
∫ n+1

n+1/2
f(t)dt

)
ψ0,n(t),

where we used that ψ0,n is nonzero only on [n, n+ 1), and is 1 on [n, n+ 1/2),
and −1 on [n+ 1/2, n+ 1). Note also that, if f(t) ∈ V1, and fn,1 is the value f
attains on [n, n+ 1/2), and fn,2 is the value f attains on [n+ 1/2, n+ 1), we
have that

projW0(f) =
N−1∑
n=0

(∫ n+1/2

n

f(t)dt−
∫ n+1

n+1/2
f(t)dt

)
ψ0,n(t)

=
N−1∑
n=0

(
1
2fn,1 −

1
2fn,2

)
ψ0,n(t) =

N−1∑
n=0

fn,1 − fn,2
2 ψ0,n(t),

which is the function which is (fn,1−fn,2)/2 on [n, n+1/2), and −(fn,1−fn,2)/2
on [n + 1/2, n + 1). This proves the second part of Proposition 5.12 in the
compendium.

Exercise 5.8: When N is odd
When N is odd, the (first stage in a) DWT is defined as the change of coordinates
from (φ1,0, φ1,1, . . . , φ1,N−1) to

(φ0,0, ψ0,0, φ0,1, ψ0,1, . . . , φ0,(N−1)/2, ψ(N−1)/2, φ0,(N+1)/2).

Since all functions are assumed to have period N , we have that

φ0,(N+1)/2 = 1√
2

(φ1,N−1 + φ1,N) = 1√
2

(φ1,0 + φ1,N−1).

From this relation one can find the last column in the change of coordinate
matrix from φ0 to (φ1,ψ1), i.e. the IDWT matrix. In particular, when N is
odd, we see that the last column in the IDWT matrix circulates to the upper
right corner. In terms of coordinates, we thus have that

c1,0 = 1√
2

(c0,0 + w0,0 + c0,(N+1)/2) c1,N−1 = 1√
2
c0,(N+1)/2. (5.3)

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES70

a) If N = 3, the DWT matrix equals 1√
2

1&1 1
1 −1&0

0&0 1

, and the inverse of

this is 1√
2

1&1 −1
1 −1 −1

0&0 2

. Explain from this that, when N is odd, the DWT

matrix can be constructed by adding a column on the form 1√
2 (−1,−1, 0, . . . , 0, 2)

to the DWT matrices we had for N even (in the last row zeros are also added).
In terms of the coordinates, we thus have the additional formulas

c0,0 = 1√
2

(c1,0+c1,1−c1,N−1) w0,0 = 1√
2

(c1,0−c1,1−c1,N−1) c0,(N+1)/2 = 1√
2

2c1,N−1.

(5.4)

b) Explain that the DWT matrix is orthogonal if and only if N is even. Also
explain that it is only the last column which spoils the orthogonality.

Exercise 5.9: Implement IDWT for The Haar wavelet
Write a function IDWTKernelHaar which uses the formulas (5.3) in the com-
pendium to implement the IDWT, similarly to how the function DWTKernelHaar
implemented the DWT using the formulas (5.4) in the compendium.

Solution. The following code can be used:

function x = IDWTKernelHaar(x, symm, dual)
x = x/sqrt(2);
N = size(x, 1);
if mod(N,2) == 1

x(1:2, :) = [x(1, :) + x(2, :) + x(N, :); x(1, :) - x(2, :)];
else

x(1:2, :) = [x(1, :) + x(2, :); x(1, :) - x(2, :)];
end
for k = 3:2:(N-1)

x(k:(k+1), :) = [x(k, :) + x(k+1, :); x(k, :) - x(k+1, :)];
end

Exercise 5.10: Computing projections
Generalize Exercise 5.4 to the projections from Vm+1 onto Vm and Wm.

Solution. Since φm,n ∈ Vm we must have that T (φm,n) = φm,n. Since ψm,n
is in the orthogonal complement of Vm in Vm+1 we must have that T (ψm,n) = 0.
The first half of the columns in the matrix of projVm

relative to (φm,ψm) are

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES71

[projVm
(φm,0)](φm,ψm) = [φm,0](φm,ψm) = e0

[projVm
(φm,1)](φm,ψm) = [φm,1](φm,ψm) = e1

...
....

The second half of the columns are

[T (ψm,0)](φm,ψm) = [0](φm,ψm) = 0

[T (ψm,1)](φm,ψm) = [0](φm,ψm) = 0

...
....

Thus, as before, the matrix of projVm
relative to (φm,ψm) is given by the

diagonal matrix where the first half of the diagonal consists of 1’s, and the
second half consists of 0’s. (c) follows in the same way.

Exercise 5.11: Scaling a function
Show that f(t) ∈ Vm if and only if g(t) = f(2t) ∈ Vm+1.

Solution. If f ∈ Vm we can write f(t) =
∑2mN−1
n=0 cm,nφm,n(t). We now get

g(t) = f(2t) =
2mN−1∑
n=0

cm,nφm,n(2t) =
2mN−1∑
n=0

cm,n2m/2φ(2m2t− n)

=
2mN−1∑
n=0

cm,n2−1/22(m+1)/2φ(2m+1t− n) =
2mN−1∑
n=0

cm,n2−1/2φm+1,n(t).

This shows that g ∈ Vm+1. To prove the other way, assume that g(t) = f(2t) ∈
Vm+1. This means that we can write g(t) =

∑2m+1N−1
n=0 cm+1,nφm+1,n(t). We

now have

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES72

f(t) = g(t/2) =
2m+1N−1∑

n=0
cm+1,nφm+1,n(t/2) =

2m+1N−1∑
n=0

cm+1,n2(m+1)/2φ(2mt− n)

=
2mN−1∑
n=0

cm+1,n2(m+1)/2φ(2mt− n) +
2m+1N−1∑
n=2mN

cm+1,n2(m+1)/2φ(2mt− n)

=
2mN−1∑
n=0

cm+1,n2(m+1)/2φ(2mt− n) +
2mN−1∑
n=0

cm+1,n+2mN2(m+1)/2φ(2mt− n− 2mN)

=
2mN−1∑
n=0

cm+1,n2(m+1)/2φ(2mt− n) +
2mN−1∑
n=0

cm+1,n+2mN2(m+1)/2φ(2mt− n)

=
2mN−1∑
n=0

(cm+1,n + cm+1,n+2mN)21/22m/2φ(2mt− n)

=
2mN−1∑
n=0

(cm+1,n + cm+1,n+2mN)21/2φm,n(t) ∈ Vm

The thing which made this a bit difficult was that the range of the n-indices
here was outside [0, 2mN − 1] (which describe the legal indices in the basis Vm),
so that we had to use the periodicity of φ.

Exercise 5.12: Direct sums
Let C1, C2 . . . , Cn be independent vector spaces, and let Ti : Ci → Ci be linear
transformations. The direct sum of T1, T2,. . . ,Tn, written as T1 ⊕ T2 ⊕ . . .⊕ Tn,
denotes the linear transformation from C1 ⊕ C2 ⊕ · · · ⊕ Cn to itself defined by

T1 ⊕ T2 ⊕ . . .⊕ Tn(c1 + c2 + · · ·+ cn) = T1(c1) + T2(c2) + · · ·+ Tn(cn)

when c1 ∈ C1, c2 ∈ C2, . . . , cn ∈ Cn. Similarly, when A1, A2, . . . , An are square
matrices, A1 ⊕ A2 ⊕ · · · ⊕ An is defined as the block matrix where the blocks
along the diagonal are A1, A2, . . . , An, and where all other blocks are 0. Show
that, if Bi is a basis for Ci then

[T1 ⊕ T2 ⊕ . . .⊕ Tn](B1,B2,...,Bn) = [T1]B1 ⊕ [T2]B2 ⊕ · · · ⊕ [Tn]Bn ,

Here two new concepts are used: a direct sum of matrices, and a direct sum of
linear transformations.

Solution. By definition, [T1]B1 ⊕ [T2]B2 ⊕ · · · ⊕ [Tn]Bn is a block matrix where
the blocks on the diagonal are the matrices [T1]B1 , [T2]B2 , and so on. If bi are
the basis vectors in Bi, the columns in [Ti]Bi

are [T (bj)]Bi
. This means that

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES73

[T1]B1 ⊕ [T2]B2 ⊕ · · · ⊕ [Tn]Bn has [T (bj)]Bi in the j’th block, and 0 elsewhere.
This means that we can write it as

0⊕ · · ·0⊕ [T (bj)]Bi
⊕ 0 · · ·0.

On the other hand, [T1 ⊕ T2 ⊕ . . .⊕ Tn](B1,B2,...,Bn) is a matrix of the same
size, and the corresponding column to that of the above is

[(T1 ⊕ T2 ⊕ . . .⊕ Tn)(0⊕ · · ·0⊕ bj ⊕ 0 · · ·0)](B1,B2,...,Bn)

= [0⊕ · · ·0⊕ T (bj)⊕ 0 · · ·0](B1,B2,...,Bn)

= 0⊕ · · ·0⊕ [T (bj)]Bi
⊕ 0 · · ·0.

Here bj occurs as the i’th summand. This is clearly the same as what we
computed for the right hand side above.

Exercise 5.13: Eigenvectors of direct sums
Assume that T1 and T2 are matrices, and that the eigenvalues of T1 are equal
to those of T2. What are the eigenvalues of T1 ⊕ T2? Can you express the
eigenvectors of T1 ⊕ T2 in terms of those of T1 and T2?

Solution. Assume that λ is an eigenvalue common to both T1 and T2. Then
there exists a vector v1 so that T1v1 = λv1, and a vector v2 so that T2v2 = λv2.
We now have that

(T1 ⊕ T2)(v1 ⊕ v2) =
(
T1 0
0 T2

)(
v1
v2

)
=
(
T1v1
T2v2

)
=
(
λv1
λv2

)
= λ

(
v1
v2

)
= λ(v1 ⊕ v2).

This shows that λ is an eigenvalue for λ also, and that v1⊕v2 is a corresponding
eigenvector.

Exercise 5.14: Invertibility of direct sums
Assume that A and B are square matrices which are invertible. Show that A⊕B
is invertible, and that (A⊕B)−1 = A−1 ⊕B−1.

Solution. We have that

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES74

(A⊕B)(A−1 ⊕B−1) =
(
A 0
0 B

)(
A−1 0

0 B−1

)
=
(
AA−1 0

0 BB−1

)
=
(
I 0
0 I

)
= I

where we have multiplied as block matrices. This proves that A⊕B is invertible,
and states what the inverse is.

Exercise 5.15: Multiplying direct sums
Let A,B,C,D be square matrices of the same dimensions. Show that (A ⊕
B)(C ⊕D) = (AC)⊕ (BD).

Solution. We have that

(A⊕B)(C ⊕D) =
(
A 0
0 B

)(
C 0
0 D

)
=
(
AC 0
0 BD

)
= (AC)⊕ (BD)

where we again have multiplied as block matrices.

Exercise 5.16: Finding N

Assume that you run an m-level DWT on a vector of length r. What value of
N does this correspond to? Note that an m-level DWT performs a change of
coordinates from φm to (φ0,ψ0,ψ1, . . . ,ψm−2,ψm−1).

Exercise 5.17: Different DWTs for similar vectors
In Figure 5.1 we have plotted the DWT’s of two vectors x1 and x2. In both
vectors we have 16 ones followed by 16 zeros, and this pattern repeats cyclically
so that the length of both vectors is 256. The only difference is that the second
vector is obtained by delaying the first vector with one element.

You see that the two DWT’s are very different: For the first vector we see
that there is much detail present (the second part of the plot), while for the
second vector there is no detail present. Attempt to explain why this is the case.
Based on your answer, also attempt to explain what can happen if you change
the point of discontinuity for the piecewise constant function in Figure 5.20(a)
in the compendium to something else.

Exercise 5.18: Plotting the DWT on a sound
Run a 2-level DWT on the first 217 sound samples of the audio file castanets.wav,
and plot the values of the resulting DWT-coefficients. Compare the values of
the coefficients from V0 with those from W0 and W1.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES75

50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

1.2

50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 5.1: 2 vectors x1 and x2 which seem equal, but where the DWT’s are
very different.

Solution. The following code achieves this:

[x, fs] = audioread(’sounds/castanets.wav’);
newx = DWTImpl(x(1:2^17,1), 2, @DWTKernelHaar);
plot(newx(1:2^17,1))
axis([0 2^17 -1 1]);

The values from V0 corresponds to the first 1/4 values in the plot, the values
from W0 corresponds to the next 1/4 values in the plot, while the values from
W1 correspond to the last 1/2 of the values in the plot.

Exercise 5.19: Zeroing out DWT coefficients
In this exercise we will experiment with applying an m-level DWT to a sound
file.

a) Write a function playDWT which takes m, a DWT kernel f, an IDWT kernel
invf, and a variable lowres as input, and

• reads the audio file castanets.wav,

• performs an m-level DWT to the first 217 sound samples of x using the
function DWTImpl with DWT kernel f,

• sets all wavelet coefficients representing detail to zero if lowres is true
(i.e. keep only the coordinates from φ0 in the basis (φ0,ψ0,ψ1, . . . ,ψm−2,ψm−1)),

• sets all low-resolution coefficients to zero if lowres is false (i.e. zero out
the coordinates from φ0 and keep the others),

• performs an IDWT on the resulting coefficients using the function IDWTImpl
with IDWT kernel invf,

• plays the resulting sound.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES76

b) Do the sound samples returned by playDWT lie in [−1, 1]?

Solution. There is no reason to believe that sound samples returned by the
function lie in [−1, 1]. you can check this by printing the maximum value in the
returned array on screen inside this method.

c) Run the function playDWT with DWTKernelHaar and IDWTKernelHaar as
inputs, and for different values of m, with ‘lowres‘ set to true (i.e. with the low-
resolution approximation chosen). For which m can you hear that the sound gets
degraded? How does it get degraded? Compare with what you heard through
the function playDFT in Example 2.27 in the compendium, where you performed
a DFT on the sound sample instead, and set some of the DFT coefficients to
zero.

Solution. For m = 2 we clearly hear a degradation in the sound. For m = 4
and above most of the sound is unrecognizable.

d) Repeat the listening experiment from c., but this time with lowres set to
false (i.e. keep only the detail from W0, W1, What kind of sound do you
hear? Can you recognize the original sound in what you hear?

Solution. The following code achieves the task

function playDWT(m, f, invf, lowres)
[x fs] = audioread(’sounds/castanets.wav’);
N=2^17;
x = DWTImpl(x(1:N,:), m, f);
if lowres

x((N/2^m+1):N, :) = 0;
else

x(1:(N/2^m), :) = 0;
end
x = IDWTImpl(x, m, invf);
playerobj = audioplayer(x, fs);
playblocking(playerobj);

Exercise 5.20: Construct a sound
Attempt to construct a (nonzero) sound where the function playDWT form the
previous exercise does not change the sound for m = 1, 2.

Exercise 5.21: Exact computation of wavelet coefficients 1
Compute the wavelet detail coefficients analytically for the functions in Exam-
ple 5.20 in the compendium, i.e. compute the quantities wm,n =

∫ N
0 f(t)ψm,n(t)dt

similarly to how this was done in Example 5.21 in the compendium.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES77

Solution. Note first that, similarly to the computation in Exercise 5.7, we
have that

∫ N

0
f(t)ψm,n(t)dt = 2m/2

(∫ (n+1/2)2−m

n2−m

f(t)dt−
∫ (n+1)2−m

(n+1/2)2−m

f(t)dt
)
.

With f(t) = 1 − 2|1/2 − t/N | we have two possibilities: when n < N2m−1

we have that [n2−m, (n+ 1)2−m) ⊂ [0, N/2], so that f(t) = 2t/N , and we get

wm,n = 2m/2

(∫ (n+1/2)2−m

n2−m

2t/Ndt−
∫ (n+1)2−m

(n+1/2)2−m

2t/Ndt
)

= 2m/2[t2/N](n+1/2)2−m

n2−m − 2m/2[t2/N](n+1)2−m

(n+1/2)2−m

= 2−3m/2

N

(
2(n+ 1/2)2 − n2 − (n+ 1)2) = −2−3m/2−1

N
.

When n ≥ N2m−1 we have that f(t) = 2−2t/N , and using that
∫ N

0 ψm,n(t)dt = 0
we must get that wm,n = 2−3m/2−1

N .
For f(t) = 1/2 + cos(2πt/N)/2, note first that this has the same coefficients

as cos(2πt/N)/2, since
∫ N

0 ψm,n(t)dt = 0. We now get

wm,n = 2m/2

(∫ (n+1/2)2−m

n2−m

cos(2πt/N)/2dt−
∫ (n+1)2−m

(n+1/2)2−m

cos(2πt/N)/2dt
)

= 2m/2[N sin(2πt/N)/(4π)](n+1/2)2−m

n2−m − 2m/2[N sin(2πt/N)/(4π)](n+1)2−m

(n+1/2)2−m

= 2m/2−2N

π

(
2 sin(2π(n+ 1/2)2−m/N)− sin(2πn2−m/N)− sin(2π(n+ 1)2−m/N)

)
.

There seems to be no more possibilities for simplification here.

Exercise 5.22: Exact compution of wavelet coefficients 2

Compute the wavelet detail coefficients analytically for the functions f(t) =
(
t
N

)k,
i.e. compute the quantities wm,n =

∫ N
0
(
t
N

)k
ψm,n(t)dt similarly to how this was

done in Example 5.21 in the compendium. How do these compare with the
coefficients from the Exercise 5.21?

Solution. We get

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES78

wm,n = 2m/2

(∫ (n+1/2)2−m

n2−m

(t/N)kdt−
∫ (n+1)2−m

(n+1/2)2−m

(t/N)kdt
)

= 2m/2[tk+1/((k + 1)Nk)](n+1/2)2−m

n2−m − 2m/2[tk+1/((k + 1)Nk)](n+1)2−m

(n+1/2)2−m

= 2−m(k+1/2)

(k + 1)Nk

(
2(n+ 1/2)k+1 − nk+1 − (n+ 1)k+1) .

The leading term nk+1 will here cancel, but the others will not, so there is no
room for further simplification here.

Exercise 5.23: Computing the DWT of a simple vector
Suppose that we have the vector x with length 210 = 1024, defined by xn = 1
for n even, xn = −1 for n odd. What will be the result if you run a 10-level
DWT on x? Use the function DWTImpl to verify what you have found.

Hint. We defined ψ by ψ(t) = (φ1,0(t)− φ1,1(t))/
√

2. From this connection it
follows that ψ9,n = (φ10,2n−φ10,2n+1)/

√
2, and thus φ10,2n−φ10,2n+1 =

√
2ψ9,n.

Try to couple this identity with the alternating sign you see in x.

Solution. The vector x is the coordinate vector of the function f(t) =∑1023
n=0 (−1)nφ10,n in the basis φ10 for V10. Since φ10,2n − φ10,2n+1 =

√
2ψ9,n,

we can write f(t) =
∑1023
n=0
√

2ψ9,n. Since a 10-level-DWT gives as a result the
coordinate vector of f in

(φ0,ψ0,ψ1,ψ2,ψ3,ψ4,ψ5,ψ6,ψ7,ψ8,ψ9),

(the DWT is nothing but the change of coordinates from φ10 to this basis), and
since f(t) =

∑1023
n=0
√

2ψ9,n, it is clear that the coordinate vector of f in this
basis has

√
2 in the second part (the ψ9-coordinates), and 0 elsewhere. The

10-level DWT of x therefore gives the vector of length 1024 which is 0 on the
first half, and equal to

√
2 on the second half. m = 10 is here arbitrarily chosen:

The result would have been the same for m = 1,m = 2, and so on. The following
code verifies the result:

DWTImpl(repmat([1; -1],512,1), 10, @DWTKernelHaar)

Exercise 5.24: The Haar wavelet when N is odd
Use the results from Exercise 5.8 to rewrite the implementations DWTKernelHaar
and IDWTKernelHaar so that they also work in the case when N is odd.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES79

Solution. The following code can be used.

function x = DWTKernelHaar(x)
x = x/sqrt(2);
N = size(x, 1);
if mod(N,2) == 1

x(1:2, :) = [x(1, :) + x(2, :) - x(N, :); x(1, :) - x(2, :) - x(N, :)];
x(N, :) = 2*x(N, :);

else
x(1:2, :) = [x(1, :) + x(2, :); x(1, :) - x(2, :)];

end
for k = 3:2:(N-1)

x(k:(k+1), :) = [x(k, :) + x(k+1, :); x(k, :) - x(k+1, :)];
end

Exercise 5.25: in-place DWT
Show that the coordinates in φm after an in-place m-level DWT end up at
indices k2m, k = 0, 1, 2, Show similarly that the coordinates in ψm after an
in-place m-level DWT end up at indices 2m−1 + k2m, k = 0, 1, 2, Find these
indices in the code for the function reorganize_coefficients.

Exercise 5.26: The sample values are coordinates
Show that, for f ∈ V0 we have that [f]φ0 = (f(0), f(1), . . . , f(N − 1)). This
generalizes the result for piecewise constant functions.

Solution. Let us write f(t) =
∑N−1
n=0 cnφ0,n(t). If k is an integer we have that

f(k) =
N−1∑
n=0

cnφ0,n(k) =
N−1∑
n=0

cnφ(k − n).

Clearly the only integer for which φ(s) 6= 0 is s = 0 (since φ(0) = 1), so that the
only n which contributes in the sum is n = k. This means that f(k) = ck, so
that [f]φ0 = (f(0), f(1), . . . , f(N − 1)).

Exercise 5.27: Computing projections
In this exercise we will show how the projection of φ1,1 onto V0 can be computed.
We will see from this that it is nonzero, and that its support is the entire [0, N].
Let f = projV0φ1,1, and let xn = f(n) for 0 ≤ n < N . This means that, on
(n, n+ 1), f(t) = xn + (xn+1 − xn)(t− n).

a) Show that
∫ n+1
n

f(t)2dt = (x2
n + xnxn+1 + x2

n+1)/3.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES80

Solution. We have that

∫ n+1

n

f(t)2dt =
∫ n+1

n

(xn + (xn+1 − xn)(t− n))2dt =
∫ 1

0
(xn + (xn+1 − xn)t)2dt

=
∫ 1

0
(x2
n + 2xn(xn+1 − xn)t+ (xn+1 − xn)2t2)dt

=
[
x2
nt+ xn(xn+1 − xn)t2 + (xn+1 − xn)2t3/3

]1
0

= x2
n + xn(xn+1 − xn) + (xn+1 − xn)2/3 = 1

3(x2
n + xnxn+1 + x2

n+1).

b) Show that

∫ 1/2

0
(x0 + (x1 − x0)t)φ1,1(t)dt = 2

√
2
(

1
12x0 + 1

24x1

)
∫ 1

1/2
(x0 + (x1 − x0)t)φ1,1(t)dt = 2

√
2
(

1
24x0 + 1

12x1

)
.

Solution. We have that

∫ 1/2

0
(x0 + (x1 − x0)t)φ1,1(t)dt

=
∫ 1/2

0
(x0 + (x1 − x0)t)2

√
2tdt = 2

√
2
∫ 1/2

0
(x0t+ (x1 − x0)t2)dt

= 2
√

2
[

1
2x0t

2 + 1
3(x1 − x0)t3

]1/2

0
= 2
√

2
(

1
8x0 + 1

24(x1 − x0))
)

= 2
√

2
(

1
12x0 + 1

24x1

)
.

In the same way

∫ 1

1/2
(x0 + (x1 − x0)t)φ1,1(t)dt

=
∫ 1

1/2
(x0 + (x1 − x0)t)2

√
2(1− t)tdt = 2

√
2
∫ 1

1/2
(x0 + (x1 − 2x0)t− (x1 − x0)t2)tdt

= 2
√

2
[
x0t+ 1

2(x1 − 2x0)t2 − 1
3(x1 − x0)t3

]1

1/2
= 2
√

2
(

1
2x0 + 3

8(x1 − 2x0)− 7
24(x1 − x0)

)
= 2
√

2
(

1
24x0 + 1

12x1

)
.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES81

c) Use the fact that

∫ N

0
(φ1,1(t)−

N−1∑
n=0

xnφ0,n(t))2dt

=
∫ 1

0
φ1,1(t)2dt− 2

∫ 1/2

0
(x0 + (x1 − x0)t)φ1,1(t)dt− 2

∫ 1

1/2
(x0 + (x1 − x0)t)φ1,1(t)dt

+
N−1∑
n=0

∫ n+1

n

(xn + (xn−1 − xn)t)2dt

and a) and b) to find an expression for ‖φ1,1(t)−
∑N−1
n=0 xnφ0,n(t)‖2.

Solution. Using a) and b) we see that the above can be written as

2
3 +

N−1∑
n=0

1
3(x2

n + xnxn+1 + x2
n+1)− 2

(
2
√

2
(

1
12x0 + 1

24x1

)
− 2
√

2
(

1
24x0 + 1

12x1

))

= 2
3 + 2

3

N−1∑
n=0

x2
n + 1

3

N−1∑
n=0

xnxn+1 −
√

2
2 (x0 + x1).

d) To find the minimum least squares error, we can set the gradient of the
expression in c. to zero, and thus find the expression for the projection of φ1,1
onto V0. Show that the values {xn}N−1

n=0 can be found by solving the equation
Sx = b, where S = 1

3{1, 4, 1} is an N ×N symmetric filter, and b is the vector
with components b0 = b1 =

√
2/2, and bk = 0 for k ≥ 2.

Solution. We see that the partial derivatives of the function in c. are

∂f

∂x0
= 1

3xN−1 + 4
3x0 + 1

3x1 −
√

2
2

∂f

∂x1
= 1

3x0 + 4
3x1 + 1

3x1 −
√

2
2

∂f

∂xi
= 1

3xi−1 + 4
3xi + 1

3xi+1 2 ≤ i < N − 1

∂f

∂xN−1
= 1

3xN−2 + 4
3xN−1 + 1

3x0.

Moving the two terms
√

2
2 over to the right hand side, setting the gradient equal

to zero is the same as solving the system Sx = b which we stated.

e) Solve the system in d. for some values of N to verify that the projection of
φ1,1 onto V0 is nonzero, and that its support covers the entire [0, N].

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES82

Solution. The following code can be used

N = 16;
S=zeros(N);
S(1,N)=1/3; S(1,1)=4/3; S(1,2)=1/3; % First row
for k=2:(N-1)

S(k,(k-1):(k+1)) = [1/3 4/3 1/3];
end
S(N,N-1)=1/3; S(N,N)=4/3; S(N,1)=1/3; % Last row
b=zeros(N,1); b(1)=sqrt(2)/2; b(2)=sqrt(2)/2;
plot(0:(N-1),S\b) %Plots the projection

Exercise 5.28: Non-orthogonality for the piecewise linear
wavelet
Show that

〈φ0,n, φ0,n〉 = 2
3 〈φ0,n, φ0,n±1〉 = 1

6 〈φ0,n, φ0,n±k〉 = 0 for k > 1.

As a consequence, the {φ0,n}n are neither orthogonal, nor have norm 1.

Solution. We have that

〈φ0,n, φ0,n〉 =
∫ n+1

n−1
(1− |t− n|)2dt

=
∫ n+1

n−1

(
1− 2|t− n|+ (t− n)2) dt

= 2− 2 +
[

1
3(t− n)3

]n+1

n−1
= 2

3 .

We also have

〈φ0,n, φ0,n+1 =
∫ n+1

n

(1− (t− n))(1 + (t− n− 1))dt =
∫ 1

0
(1− u)(1 + u− 1)du

=
∫ 1

0
(t− t2)dt = 1

2 −
1
3 = 1

6 .

Finally, the supports of φ0,n and φ0,n±k are disjoint for k > 1, so that we must
have 〈φ0,n, φ0,n±k〉 = 0 in that case.

Exercise 5.29: Wavelets based on polynomials
The convolution of two functions defined on (−∞,∞) is defined by

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES83

(f ∗ g)(x) =
∫ ∞
−∞

f(t)g(x− t)dt.

Show that we can obtain the piecewise linear φ we have defined as φ = χ[−1/2,1/2)∗
χ[−1/2,1/2) (recall that χ[−1/2,1/2) is the function which is 1 on [−1/2, 1/2) and
0 elsewhere). This gives us a nice connection between the piecewise constant
scaling function (which is similar to χ[−1/2,1/2)) and the piecewise linear scaling
function in terms of convolution.

Solution. We have that

χ[−1/2,1/2) ∗ χ[−1/2,1/2)(x) =
∫ ∞
−∞

χ[−1/2,1/2)(t)χ[−1/2,1/2)(x− t)dt.

The integrand here is 1 when −1/2 < t < 1/2 and −1/2 < x − t < 1/2, or
in other words when max(−1/2,−1/2 + x) < t < min(1/2, 1/2 + x) (else it is
0). When x > 0 this happens when −1/2 + x < t < 1/2, and when x < 0 this
happens when −1/2 < t < 1/2 + x. This means that

χ[−1/2,1/2) ∗ χ[−1/2,1/2)(x) =
{∫ 1/2
−1/2+x dt = 1− x , x > 0∫ 1/2+x
−1/2 dt = 1 + x , x < 0.

But this is by definition φ.

Exercise 5.30: Two vanishing moments
In this exercise we will show that there is a unique function on the form fiven by
Equation (5.36) in the compendium which has two vanishing moments.

a) Show that, when ψ̂ is defined by Equation (5.36) in the compendium, we
have that

ψ̂(t) =



−αt− α for − 1 ≤ t < 0
(2 + α− β)t− α for 0 ≤ t < 1/2
(α− β − 2)t− α+ 2 for 1/2 ≤ t < 1
βt− 2β for 1 ≤ t < 2
0 for all other t

Solution. The function ψ̂ is a sum of the functions ψ = φ1,1, φ, and φ0,1
(i.e. we have set n = 0 in Equation (5.36) in the compendium). All these are
continuous and piecewise linear, and we can write

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES84

φ1,1(t) =


2t 0 ≤ t < 1/2
2− 2t 1/2 ≤ t < 1
0 elsewhere

φ(t)(t) =


1 + t −1 ≤ t < 0
1− t 0 ≤ t < 1
0 elsewhere

φ0,1(t) =


t 0 ≤ t < 1
2− t 1 ≤ t < 2
0 elsewhere

.

It follows that ψ̂(t) = φ1,1(t)− αφ(t)− βφ1,1 is piecewise linear, and linear on
the segments [−1, 0], [0, 1/2], [1/2, 1], [1, 2].

On the segment [−1, 0] only the function φ is seen to be nonzero, and since
φ(t) = 1 + t here, we have that ψ̂(t) = −α(1 + t) = −α− αt here.

On the segment [0, 1/2] all three functions are nonzero, and

φ1,1(t) = 2t
φ(t)(t) = 1− t
φ0,1(t) = t

on this interval. This means that ψ̂(t) = 2t− α(1− t)− βt = (2 + α− β)t− α
on [0, 1/2].

On the segment [0, 1/2] all three functions are nonzero, and

φ1,1(t) = 2− 2t
φ(t)(t) = 1− t
φ0,1(t) = t

on this interval. This means that ψ̂(t) = 2−2t−α(1−t)−βt = (α−β−2)t−α+2
on [1/2, 1].

On the segment [1, 2] only the function φ0,1 is seen to be nonzero, and since
φ0,1(t) = 2− t here, we have that ψ̂(t) = −β(2− t) = βt− 2β here. For all other
values of t, ψ̂ is zero. This proves the formulas for ψ̂ on the different intervals.

b) Show that

∫ N

0
ψ̂(t)dt = 1

2 − α− β,
∫ N

0
tψ̂(t)dt = 1

4 − β.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES85

Solution. We can write

∫ N

0
ψ̂(t)dt =

∫ 2

−1
ψ̂(t)dt =

∫ 0

−1
ψ̂(t)dt+

∫ 1/2

0
ψ̂(t)dt+

∫ 1

1/2
ψ̂(t)dt+

∫ 2

1
ψ̂(t)dt

=
∫ 0

−1
(−α− αt)dt+

∫ 1/2

0
(2 + α− β)t− α)dt

+
∫ 1

1/2
((α− β − 2)t− α+ 2)dt+

∫ 2

1
(βt− 2β)dt

=
[
−αt− 1

2αt
2
]0

−1
+
[

1
2(2 + α− β)t2 − αt

]1/2

0

+
[

1
2(α− β − 2)t2 + (2− α)t

]1

1/2
+
[

1
2βt

2 − 2βt
]2

1

= −α+ 1
2α+ 1

8(2 + α− β)− 1
2α+ 3

8(α− β − 2) + 1
2(2− α) + 3

2β − 2β

= 1
2 − α− β,∫ N

0 tψ̂(t)dt is computed similarly, so that we in the end arrive at 1
4 − β.

c) Explain why there is a unique function on the form given by Equation (5.36)
in the compendium which has two vanishing moments, and that this function is
given by Equation (5.38) in the compendium.

Solution. The equation system

1
2 − α− β = 0

1
4 − β = 0

has the unique solution α = β = 1
4 , which we already have found.

Exercise 5.31: Implement finding ψ with vanishing mo-
ments
In the previous exercise we ended up with a lot of calculations to find α, β in
Equation (5.36) in the compendium. Let us try to make a program which does
this for us, and which also makes us able to generalize the result.

a) Define

ak =
∫ 1

−1
tk(1− |t|)dt, bk =

∫ 2

0
tk(1− |t− 1|)dt, ek =

∫ 1

0
tk(1− 2|t− 1/2|)dt,

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES86

for k ≥ 0. Explain why finding α, β so that we have two vanishing moments
in Equation (5.36) in the compendium is equivalent to solving the following
equation: (

a0 b0
a1 b1

)(
α
β

)
=
(
e0
e1

)
Write a program which sets up and solves this system of equations, and use this
program to verify the values for α, β we previously have found.

Hint. you can integrate functions in Matlab with the function quad. As an
example, the function φ(t), which is nonzero only on [−1, 1], can be integrated
as follows:

quad(@(t)t.^k.*(1-abs(t)),-1,1)

Solution. In order for ψ to have vanishing moments we must have that∫
ψ̂(t)dt =

∫
tψ̂(t)dt = 0 Substituting ψ̂ = ψ − αφ0,0 − βφ0,1 we see that,

for k = 0, 1, ∫
tk (αφ0,0 + βφ0,1) dt =

∫
tkψ(t)dt.

The left hand side can here be written

∫
tk (αφ0,0 + βφ0,1) dt = α

∫
tkφ0,0dt+ β

∫
tkφ0,1(t)dt

= α

∫ 1

−1
tk(1− |t|)dt+ β

∫ 2

0
tk(1− |t− 1|)dt = αak + βbk.

The right hand side is∫
tkψ(t)dt =

∫
tkφ1,1(t)dt =

∫ 1

0
(1− 2|t− 1/2|)dt = ek.

The following program sets up the corresponding equation systems, and solves it
by finding α, β.

A = zeros(2);
b = zeros(2, 1);
for k = 0:1

A(k + 1, :) = [quad(@(t)t.^k.*(1 - abs(t)), -1, 1)...
quad(@(t)t.^k.*(1 - abs(t - 1)), 0, 2)];

b(k + 1) = quad(@(t)t.^k.*(1 - 2*abs(t - 1/2)), 0, 1);
end
A\b;

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES87

b) The procedure where we set up a matrix equation in a) allows for generaliza-
tion to more vanishing moments. Define

ψ̂ = ψ0,0 − αφ0,0 − βφ0,1 − γφ0,−1 − δφ0,2. (5.5)
We would like to choose α, β, γ, δ so that we have 4 vanishing moments. Define
also

gk =
∫ 0

−2
tk(1− |t+ 1|)dt, dk =

∫ 3

1
tk(1− |t− 2|)dt

for k ≥ 0. Show that α, β, γ, δ must solve the equation
a0 b0 g0 d0
a1 b1 g1 d1
a2 b2 g2 d2
a3 b3 g3 d3



α
β
γ
δ

 =


e0
e1
e2
e3

 ,

and solve this with your computer.

Solution. Similarly to a), Equation (5.5) in the compendium gives that∫
tk (αφ0,0 + βφ0,1 + γφ0,−1 + δφ0,2) dt =

∫
tkψ(t)dt.

The correspodning equation system is deduced exactly as in a). The following
program sets up the corresponding equation systems, and solves it by finding
α, β, γ, δ.

A = zeros(4);
b = zeros(4, 1);
for k = 0:3

A(k + 1, :) = [quad(@(t)t.^k.*(1 - abs(t)), - 1, 1)...
quad(@(t)t.^k.*(1 - abs(t - 1)), 0, 2)...
quad(@(t)t.^k.*(1 - abs(t + 1)), -2, 0)...
quad(@(t)t.^k.*(1 - abs(t - 2)), 1, 3)];

b(k + 1) = quad(@(t)t.^k.*(1 - 2*abs(t - 1/2)), 0, 1);
end
coeffs=A\b;

c) Plot the function defined by (5.5) in the compendium, which you found in b.

Hint. If t is the vector of t-values, and you write

(t >= 0).*(t <= 1).*(1-2*abs(t-0.5))

you get the points φ1,1(t).

Solution. The function ψ̂ now is supported on [−2, 3], and can be plotted as
follows:

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES88

t=linspace(-2,3,100);
plot(t, (t>= 0).*(t <= 1).*(1-2*abs(t - 0.5)) ...

-coeffs(1)*(t >= -1).*(t <= 1).*(1 - abs(t))...
-coeffs(2)*(t >= 0).*(t <= 2).*(1 - abs(t - 1))...
-coeffs(3)*(t >= -2).*(t <= 0).*(1 - abs(t + 1))...
-coeffs(4)*(t >= 1).*(t <= 3).*(1 - abs(t - 2)))

% Exercise 6.1.10a
g1=IDWTImpl([-coeffs(1);-coeffs(2);-coeffs(4);0;0;0;0;-coeffs(3);...

1; 0; 0; 0; 0; 0; 0; 0], 1, @IDWTKernelpwl0, 0);
g1 = [g1(14:16); g1(1:6)]; % Compact filter notation

d) Explain why the coordinate vector of ψ̂ in the basis (φ0,ψ0) is

[ψ̂](φ0,ψ0) = (−α,−β,−δ, 0, . . . , 0− γ)⊕ (1, 0, . . . , 0).

Hint. You can also compare with Equation (5.41) in the compendium here.
The placement of −γ may seem a bit strange here, and has to with that φ0,−1 is
not one of the basis functions {φ0,n}N−1

n=0 . However, we have that φ0,−1 = φ0,N−1,
i.e. φ(t+ 1) = φ(t−N + 1), since we always assume that the functions we work
with have period N .

e) Sketch a more general procedure than the one you found in b., which can be
used to find wavelet bases where we have even more vanishing moments.

Solution. If we define

ψ̂ = ψ0,0 −
K∑
k=0

(αkφ0,−k − βkφ0,k+1) ,

we have 2k unknowns. These can be determined if we require 2k vanishing
moments.

Exercise 5.32: ψ for the Haar wavelet with two vanishing
moments
Let φ(t) be the function we used when we defined the Haar-wavelet.

a) Compute projV0(f(t)), where f(t) = t2, and where f is defined on [0, N).

b) Find constants α, β so that ψ̂(t) = ψ(t)−αφ0,0(t)−βφ0,1(t) has two vanishing
moments, i.e. so that 〈ψ̂, 1〉 = 0, and 〈ψ̂, t〉 = 0. Plot also the function ψ̂.

Hint. Start with computing the integrals
∫
ψ(t)dt,

∫
tψ(t)dt,

∫
φ0,0(t)dt,

∫
φ0,1(t)dt,

and
∫
tφ0,0(t)dt,

∫
tφ0,1(t)dt.

c) Express φ and ψ̂ with the help of functions from φ1, and use this to write
down the change of coordinate matrix from (φ0, ψ̂0) to φ1.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES89

Exercise 5.33: More vanishing moments for the Haar wavelet
It is also possible to add more vanishing moments to the Haar wavelet. Define

ψ̂ = ψ0,0 − a0φ0,0 − · · · − ak−1φ0,k−1.

Define also cr,l =
∫ l+1
l

trdt, and er =
∫ 1

0 t
rψ(t)dt.

a) Show that ψ̂ has k vanishing moments if and only if a0, . . . , ak−1 solves the
equation 

c0,0 c0,1 · · · c0,k−1
c1,0 c1,1 · · · c1,k−1
...

...
...

...
ck−1,0 ck−1,1 · · · ck−1,k−1




a0
a1
...

ak−1

 =


e0
e1
...

ek−1

 (5.6)

b) Write a function vanishingmomshaar which takes k as input, solves Equation
(5.6) in the compendium, and returns the vector a = (a0, a1, . . . , ak−1).

Exercise 5.34: Listening experiments
Run the function playDWT for different m for the Haar wavelet, the piecewise
linear wavelet, and the alternative piecewise linear wavelet, but listen to the
detail components W0⊕W1⊕· · ·⊕Wm−1 instead. Describe the sounds you hear
for different m, and try to explain why the sound seems to get louder when you
increase m.

Solution. The following code can be used:

playDWT(m, @DWTKernelHaar, @IDWTKernelHaar, 0);
playDWT(m, @DWTKernelpwl0, @IDWTKernelpwl0, 0);
playDWT(m, @DWTKernelpwl2, @IDWTKernelpwl2, 0);

Exercise 5.35: Prove expression for Sr

Prove Theorem 5.43 in the compendium. Use the proof of Theorem 4.9 in the
compendium as a guide.

Solution. We compute

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES90

Srx =
(
S1 S2

)


x0
...

xN−2
xN−1
xN−2

...
x1


= S1

 x0
...

xN−1

+ S2

xN−2
...
x1

 = S1

 x0
...

xN−1

+ (S2)f

 x1
...

xN−2



= S1

 x0
...

xN−1

+
(
0 (S2)f 0

) x0
...

xN−1

 = (S1 +
(
0 (S2)f 0

)
)x,

so that Sr = S1 +
(
0 (S2)f&0

)
.

Exercise 5.36: Orthonormal basis for the symmetric exten-
sions
In this exercise we will establish an orthonormal basis for the symmetric ex-
tensions, as defined by Definition 5.42 in the compendium. This parallels
Theorem 4.6 in the compendium.

a) Explain why, if x ∈ R2N−2 is a symmetric extension (according to Defini-
tion 4.1 in the compendium), then (x̂)n = zne

−πin, where z is a real vectors
which satisfies zn = z2N−2−n

Solution. Using Theorem 4.3 in the compendium with d = N − 1 and with
2N − 2 for N , we obtain that

(x̂)n = zne
−2πidn/(2N−2) = zne

−2πi(N−1)n/(2N−2) = zne
−πin,

where z is a real vectors which satisfies zn = z2N−2−n.

b) Show that {
e0,

{
1√
2

(ei + e2N−2−i)
}N−2

n=1
, eN−1

}
(5.7)

is an orthonormal basis for the vectors on the form x̂ with x ∈ R2N−2 a
symmetric extension.

Solution. Clearly these vectors are an orthonormal basis for the set of vectors
where zn = z2N−2−n. The vectors from a) are obtained by multiplying these
with e−πin. But the orthonormality of these vectors are not affected when we
multiply with e−πin, so we may skip this.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES91

c) Show that

1√
2N − 2

cos
(

2π 0
2N − 2k

)
{

1√
N − 1

cos
(

2π n

2N − 2k
)}N−2

n=1
1√

2N − 2
cos
(

2π N − 1
2N − 2k

)
(5.8)

is an orthonormal basis for the symmetric extensions in R2N−2.

Solution. We compute the IDFT for all vectors in (b). Since the IDFT is
unitary, this will give us an orthonormal basis for the symmetric vectors in
R2N−2. Since (FN)Hφn = en we get that

(FN)He0 = φ0 = 1√
2N − 2

cos
(

2π 0
2N − 2k

)
(FN)H

(
1√
2

(en + e2N−2−n)
)

= 1√
2

(φn + φ2N−2−n)

= 1√
2

1√
2N − 2

(
e2πikn/(2N−2) + e−2πikn/(2N−2)

)
= 1√

N − 1
cos
(

2π n

2N − 2k
)

(FN)HeN−1 = φN−1 = 1√
2N − 2

cos
(

2π N − 1
2N − 2k

)
.

These coincide with the vectors listed in the exercise.

d) Assume that S is symmetric. Show that the vectors listed in (5.8) in the
compendium are eigenvectors for Sr, when the vectors are viewed as vectors in
RN , and that they are linearly independent. This shows that Sr is diagonalizable.

Solution. Since S is symmetric, it preserves vectors which are symmetric
around N − 1. In the frequency domain, applying S to a vector listed in (5.8) in
the compendium corresponds to multiplying the vectors listed in Equation (5.7)
in the compendium with the frequency response. Since this does not introduce
any more components, it is clear that the new vector must be a multiplum of the
same vector, so that these vectors indeed are eigenvectors. But then the vectors
restricted to RN are also eigenvectors for Sr, since this is simply S when viewed
on the first N elements. Since the vectors in R2N−2 are linearly independent, it
is imemdiate that the corresponding vectors in RN also are linearly independent,
since the second part of the vectors mirror the first part.

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES92

Exercise 5.37: Diagonalizing Sr

Let us explain how the matrix Sr can be diagonalized, similarly to how we
previously diagonalized using the DCT. In Exercise 5.36 we showed that the
vectors

{
cos
(

2π n

2N − 2k
)}N−1

n=0
(5.9)

in RN is a basis of eigenvectors for Sr when S is symmetric. Sr itself is not
symmetric, however, so that this basis can not possibly be orthogonal (S is
symmetric if and only if it is orthogonally digonalizable). However, when the
vectors are viewed in R2N−2 we showed in Exercise 5.36c) an orthogonality
statement which can be written as

2N−3∑
k=0

cos
(

2π n1

2N − 2k
)

cos
(

2π n2

2N − 2k
)

= (N − 1)×


2 if n1 = n2 ∈ {0, N − 1}
1 if n1 = n2 6∈ {0, N − 1}
0 if n1 6= n2

.

(5.10)

a) Show that

(N − 1)×


1 if n1 = n2 ∈ {0, N − 1}
1
2 if n1 = n2 6∈ {0, N − 1}
0 if n1 6= n2

= 1√
2

cos
(

2π n1

2N − 2 · 0
)

1√
2

cos
(

2π n2

2N − 2 · 0
)

+
N−2∑
k=1

cos
(

2π n1

2N − 2k
)

cos
(

2π n2

2N − 2k
)

+ 1√
2

cos
(

2π n1

2N − 2(N − 1)
)

1√
2

cos
(

2π n2

2N − 2(N − 1)
)
.

Hint. Use that cosx = cos(2π − x) to pair the summands k and 2N − 2− k.

Solution. Using that cosx = cos(2π − x) we can here pair the summands k
and 2N − 2− k to obtain

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES93

2N−3∑
k=0

cos
(

2π n1

2N − 2k
)

cos
(

2π n2

2N − 2k
)

= cos
(

2π n1

2N − 2 · 0
)

cos
(

2π n2

2N − 2 · 0
)

+ 2
N−2∑
k=1

cos
(

2π n1

2N − 2k
)

cos
(

2π n2

2N − 2k
)

+ cos
(

2π n1

2N − 2(N − 1)
)

cos
(

2π n2

2N − 2(N − 1)
)
.

If we divide by 2 and combine these equations we get the result.
Now, define the vector d(I)

n as

dn,N

(
1√
2

cos
(

2π n

2N − 2 · 0
)
,

{
cos
(

2π n

2N − 2k
)}N−2

k=1
,

1√
2

cos
(

2π n

2N − 2(N − 1)
))

,

and define d(I)
0,N = d

(I)
N−1,N = 1/

√
N − 1, and d(I)

n,N =
√

2/(N − 1) when n > 1.
The orthogonal N × N matrix where the rows are d(I)

n is called the DCT-I,
and we will denote it by D(I)

N . DCT-I is also much used, just as the DCT-II of
Chapter 4 in the compendium. The main difference from the previous cosine
vectors is that 2N has been replaced by 2N − 2.

b) Explain that the vectors d(I)
n are orthonormal, and that the matrix

√
2

N − 1


1/
√

2 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/

√
2


(

cos
(

2π n
2N−2k

))


1/
√

2 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/

√
2


is orthogonal.

c) Explain from b. that
(

cos
(

2π n
2N−2k

))−1
can be written as

2
N − 1


1/2 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/2


(

cos
(

2π n
2N−2k

))


1/2 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/2


With the expression we found in c., Sr can now be diagonalized as

CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES94

(
cos
(

2π n
2N−2k

))
D
(

cos
(

2π n
2N−2k

))−1
.

Chapter 6

The filter representation of
wavelets

Exercise 6.1: Compute filters and frequency responses 1
Write down the corresponding filters G0 og G1 for Exercise 5.32. Plot their
frequency responses, and characterize the filters as lowpass- or highpass filters.

Exercise 6.2: Symmetry of MRA matrices vs. symmetry of
filters 1
Find two symmetric filters, so that the corresponding MRA-matrix, constructed
with alternating rows from these two filters, is not a symmetric matrix.

Solution. You can set for instance H0 = {1/4, 1/2, 1/4}, and H1 = {1} (when
you write down the corresponding matrix you will see that A0,1 = 1/2, A1,0 = 0,
so that the matrix is not symmetric)

Exercise 6.3: Symmetry of MRA matrices vs. symmetry of
filters 2
Assume that an MRA-matrix is symmetric. Are the corresponding filters H0,
H1, G0, G1 also symmetric? If not, find a counterexample.

Solution. The Haar wavelet is a counterexample.

Exercise 6.4: Finding H0, H1 from the H
Assume that one stage in a DWT is given by the MRA-matrix

95

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 96

H =


1/5 1/5 1/5 0 0 0 · · · 0 1/5 1/5
−1/3 1/3 −1/3 0 0 0 · · · 0 0 0
1/5 1/5 1/5 1/5 1/5 0 · · · 0 0 0
0 0 −1/3 1/3 −1/3 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...


Write down the compact form for the corresponding filters H0, H1, and compute
and plot the frequency responses. Are the filters symmetric?

Solution. We have that H0 = 1
5{1, 1, 1, 1, 1}, and H1 = 1

3{−1, 1,−1}. The
frequency responses are

λH0(ω) = 1
5e

2iω + 1
5e

iω + 1
5 + 1

5e
−iω 1

5e
−2iω

= 2
5 cos(2ω) + 2

5 cosω + 1
5

λH1(ω) = −1
3e

iω + 1
3 −

1
3e
−iω = −2

3 cosω + 1
3 .

Both filters are symmetric.

Exercise 6.5: Finding G0, G1 from the G
Assume that one stage in the IDWT is given by the MRA-matrix

G =



1/2 −1/4 0 0 · · ·
1/4 3/8 1/4 1/16 · · ·
0 −1/4 1/2 −1/4 · · ·
0 1/16 1/4 3/8 · · ·
0 0 0 −1/4 · · ·
0 0 0 1/16 · · ·
0 0 0 0 · · ·
...

...
...

...
...

0 0 0 0 · · ·
1/4 1/16 0 0 · · ·


Write down the compact form for the filters G0, G1, and compute and plot the
frequency responses. Are the filters symmetric?

Solution. We have thatG0 = {1/4, 1/2, 1/4}, andG1 = {1/16,−1/4, 3/8,−1/4, 1/16}.
The frequency responses are

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 97

λG0(ω) = 1
4e

iω + 1
2 + 1

4e
−iω

= 1
2 cos(ω) + 1

2
λG1(ω) = 1

16e
2iω − 1

4e
iω + 3

8 −
1
4e
−iω 1

16e
−2iω

= 1
8 cos(2ω)− 1

2 cosω + 3
8 .

Both filters are symmetric.

Exercise 6.6: Finding H from H0, H1

Assume that H0 = {1/16, 1/4, 3/8, 1/4, 1/16}, and H1 = {−1/4, 1/2,−1/4}.
Plot the frequency responses of H0 and H1, and verify that H0 is a lowpass
filter, and that H1 is a highpass filter. Also write down the change of coordinate
matrix PC1←φ1 for the wavelet corresponding to these filters.

Solution. The frequency responses are

λH0(ω) = 1
16e

2iω + 1
4e

iω + 3
8 + 1

4e
−iω 1

16e
−2iω

= 1
8 cos(2ω) + 1

2 cosω + 3
8

λH1(ω) = −1
4e

iω + 1
2 −

1
4e
−iω

= −1
2 cos(ω) + 1

2 .

The two first rows in PC1←φ1 are(
3/8 1/4 1/16 0 · · · 1/16 1/4
−1/4 1/2 −1/4 0 · · · 0 0

)
The remaining rows are obtained by translating these in alternating order.

Exercise 6.7: Finding G from G0, G1

Assume that G0 = 1
3{1, 1, 1}, and G1 = 1

5{1,−1, 1,−1, 1}. Plot the frequency
responses of G0 and G1, and verify that G0 is a lowpass filter, and that G1 is a
highpass filter. Also write down the change of coordinate matrix Pφ1←C1 for the
wavelet corresponding to these filters.

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 98

Solution. The frequency responses are

λG0(ω) = 1
3e

iω + 1
3 + 1

3e
−iω = 2

3 cosω + 1
3

λG1(ω) = 1
5e

2iω − 1
5e

iω + 1
5 −

1
5e
−iω 1

5e
−2iω

= 2
5 cos(2ω)− 2

5 cosω + 1
5

The two first columns in Pφ1←C1 are

1/3 −1/5
1/3 1/5
0 −1/5
0 1/5
0 0
...

...
0 0

1/3 1/5


The remaining columns are obtained by translating these in alternating order.

Exercise 6.8: Computing by hand
In Exercise 5.17 we computed the DWT of two very simple vectors x1 and x2,
using the Haar wavelet.

a) Compute H0x1, H1x1, H0x2, and H1x2, where H0 and H1 are the filters
used by the Haar wavelet.

b) Compare the odd-indexed elements in H1x1 with the odd-indexed elements
in H1x2. From this comparison, attempt to find an explanation to why the two
vectors have very different detail components.

Exercise 6.9: Comment code
Suppose that we run the following algorithm on the sound represented by the
vector x:

N=size(x,1);
c = (x(1:2:N, :) + x(2:2:N, :))/sqrt(2);
w = (x(1:2:N, :) - x(2:2:N, :))/sqrt(2);

newx = [c; w];
newx = newx/max(abs(newx));
playerobj=audioplayer(newx,44100);
playblocking(playerobj)

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 99

a) Comment the code and explain what happens. Which wavelet is used? What
do the vectors c and w represent? Describe the sound you believe you will hear.

Solution. c and w represent the coordinates in the wavelet bases φ0 and ψ0.
The code runs a Haar wavelet transform. The sound is normalized so that the
sound samples lie in the range between −1 and 1, and the resulting sound is
played. The sound is split into two parts, and c represents a low-resolution
version of the sound (with half the number of samples), so that we first will
hear the sound played at double pace. After this we will hear the detail w in
the sound, also played at double pace. We should also be able to recognize the
sound from this detail.

b) Assume that we add lines in the code above which sets the elements in the
vector w to 0 before we compute the inverse operation. What will you hear if
you play the new sound you then get?

Solution. This corresponds to reconstructing a low-resolution approximation
of the sound.

Exercise 6.10: Computing filters and frequency responses
1
Let us return to the piecewise linear wavelet from Exercise 5.31.

a) With ψ̂ as defined as in Exercise 5.31b), compute the coordinates of ψ̂ in the
basis φ1 (i.e. [ψ̂]φ1) with N = 8, i.e. compute the IDWT of

[ψ̂](φ0,ψ0) = (−α,−β,−δ, 0, 0, 0, 0,−γ)⊕ (1, 0, 0, 0, 0, 0, 0, 0),

which is the coordinate vector you computed in Exercise 5.31d). For this, you
should use the function IDWTImpl, with the kernel of the piecewise linear wavelet
without symmetric extension as input. Explain that this gives you the filter
coefficients of G1.

Solution. The code which can be used looks like this:

g1=IDWTImpl([-coeffs(1);-coeffs(2);-coeffs(4);0;0;0;0;-coeffs(3);...
1; 0; 0; 0; 0; 0; 0; 0], 1, @IDWTKernelpwl0, 0);

g1 = [g1(14:16); g1(1:6)]; % Compact filter notation

Note that we have used a kernel which does not make symmetric extensions.

b) Plot the frequency response of G1.

Solution. The code can look as follows:

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 100

omega = linspace(0,2*pi,100);
plot(omega, g1(5) + g1(6)*2*cos(omega) + g1(7)*2*cos(2*omega)...

+ g1(8)*2*cos(3*omega) + g1(9)*2*cos(4*omega))

Exercise 6.11: Computing filters and frequency responses
2
Repeat the previous exercise for the Haar wavelet as in Exercise 5.33, and plot
the corresponding frequency responses for k = 2, 4, 6.

Exercise 6.12: Implementing with symmetric extension
In Exercise 3.6 we implemented a symmetric filter applied to a vector, i.e. when a
periodic extension is assumed. The corresponding function was called filterS(t,
x), and used the function conv.

a) Reimplement the function filterS so that it also takes a third parameter
symm. If symm is false a periodic extension of x should be performed (i.e. filtering
as we have defined it, and as the previous version of filterS performs it). If
symm is true, symmetric extensions should be used (as given by Definition 5.42
in the compendium).

Solution. The code can look like this:

function y=filterS(t, x, symm)
tlen = length(t); N0 = (tlen - 1)/2;
N = size(x, 1);
n = size(x, 2);

if symm
y = [x((N0+1):(-1):2, :) ; x; x((N-1):(-1):(N - N0), :)];

else
y = [x((N - N0 + 1):N, :); x; x(1:N0, :)];

end
for k=1:n

z = conv(t, y(:,k));
x(:,k) = z((2*N0+1):(length(z)-2*N0));

end
y = x;

b) Implement functions DWTKernelFilters(H0, H1, G0, G1, x, symm, dual)
and IDWTKernelFilters(H0, H1, G0, G1, x, symm, dual) which compute
the DWT and IDWT kernels using theorems 5.42 in the compendium and 6.5 in
the compendium, respectively. This function thus bases itself on that the filters
of the wavelet are known. The functions should call the function filterS from
a). Recall also the definition of the parameter dual from this section.

Solution. The code can look like this:

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 101

function x=DWTKernelFilters(H0, H1, G0, G1, x, symm, dual)
f0 = H0; f1 = H1;
if dual

f0 = G0; f1 = G1;
end
N = length(x);
x0 = filterS(f0, x, symm);
x1 = filterS(f1, x, symm);
x(1:2:N) = x0(1:2:N);
x(2:2:N) = x1(2:2:N);

function x=IDWTKernelFilters(H0, H1, G0, G1, x, symm, dual)
f0 = G0; f1 = G1;
if dual

f0 = H0; f1 = H1;
end
N = length(x);
x0 = x; x0(2:2:N) = 0;
x1 = x; x1(1:2:N) = 0;
x0 = filterS(f0, x0, symm);
x1 = filterS(f1, x1, symm);
x = x0 + x1;

With the functions defined in b. you can now define standard DWT and
IDWT kernels in the following way, once the filters are known.

f = @(x, symm, dual) DWTKernelFilters(H0,H1,G0,G1,x,symm,dual);
invf = @(x, symm, dual) IDWTKernelFilters(H0,H1,G0,G1,x,symm,dual);

Exercise 6.13: Finding FIR filters
Show that it is impossible to find a non-trivial FIR-filter which satisfies Equation
(6.28) in the compendium.

Exercise 6.14: The Haar wavelet as an alternative QMF
filter bank
Show that the Haar wavelet satisfies λH1(ω) = −λH0(ω + π), and G0 = (H0)T ,
G1 = (H1)T . The Haar wavelet can thus be considered as an alternative QMF
filter bank.

Exercise 6.15: Plotting frequency responses
The values Cq, Dq can be found by calling the functions mp3ctable, mp3dtable
which can be found on the book’s webpage.

a) Use your computer to verify the connection we stated between the tables C
and D, i.e. that Di = 32Ci for all i.

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 102

b) Plot the frequency responses of the corresponding prototype filters, and verify
that they both are lowpass filters. Use the connection from Theorem (6.26) in
the compendium to find the prototype filter coefficients from the Cq.

Exercise 6.16: Implementing forward and reverse filter bank
transforms
It is not too difficult to make implementations of the forward and reverse steps
as explained in the MP3 standard. In this exercise we will experiment with this.
In your code you can for simplicity assume that the input and output vectors to
your methods all have lengths which are multiples of 32. Also, use the functions
mp3ctable, mp3dtable mentioned in the previous exercise.

a) Write a function mp3forwardfbt which implements the steps in the forward
direction of the MP3 standard.

b) Write also a function mp3reversefbt which implements the steps in the
reverse direction.

Solution. The code can look as follows:

function z = mp3forwardfbt(x)
N = length(x);
z = zeros(N,1);
C = mp3ctable(); % The analysis window;
x = flipud(x);
x = [x; zeros(512-32,1)];
% The 32x64 matrix M
M = cos((2*((0:31)’)+1)*((0:63)-16)*pi/64);

start = length(x) - 511;
n = 1;
for n = 1:(N/32)

X = x(start:(start + 511));
Z = C.*X;
Y = zeros(64, 1);
for j = 0:7

Y = Y + Z((64*j + 1):(64*(j + 1)));
end
z((1+(n-1)*32):(n*32)) = M*Y;
start = start - 32;

end

function x = mp3reversefbt(z)
Ns = length(z)/32;
x = zeros(32*Ns, 1);
D = mp3dtable(); % The reconstruction window.
V = zeros(1024,1);
% The 64x32 matrix N
N = cos((16+((0:63)’))*(2*(0:31)+1)*pi/64);

U = zeros(512,1);
for n = 1:Ns;

CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 103

V(65:1024) = V(1:(1024-64));
V(1:64) = N*z((1+(n-1)*32):(n*32));
for i = 0:7

U((i*64 + 1):(i*64 + 32)) = V((i*128 + 1):(i*128 + 32));
U((i*64 + 33):((i + 1)*64)) = V((i*128 + 97):((i+1)*128));

end
W = U.*D;
for i = 0:15

x(((n-1)*32 + 1):(n*32)) = x(((n-1)*32 + 1):(n*32)) + W((32*i + 1):(32*(i + 1)));
end

end

Chapter 7

Constructing interesting
wavelets

Exercise 7.1: Implementation of the cascade algorithm
Let us consider the following code, which shows how the cascade algorithm can
be used to plot the scaling functions and the mother wavelet of a wavelet and
its dual wavelet with given kernels, over the interval [a, b].

function plotwaveletfunctions(invf,a,b)
% Plot scaling functions and mother wavelets (dual or not),...
% using the cascade algorithm.
nres = 10;
t=linspace(a,b,(b-a)*2^nres);

coordsvm = zeros((b-a)*2^nres, 1);
coordsvm(1) = 1;
coordsvm = 2^(nres/2)*IDWTImpl(coordsvm, nres, invf, 0, 0);
subplot(2, 2, 1);
plot(t,coordsvm([(b*2^nres+1):((b-a)*2^nres) 1:(b*2^nres)]))
title(’\phi’)

coordsvm = zeros((b-a)*2^nres, 1);
coordsvm(b - a + 1) = 1;
coordsvm = 2^(nres/2)*IDWTImpl(coordsvm, nres, invf, 0, 0);
subplot(2, 2, 2);
plot(t,coordsvm([(b*2^nres+1):((b-a)*2^nres) 1:(b*2^nres)]))
title(’\psi’)

coordsvm = zeros((b-a)*2^nres, 1);
coordsvm(1) = 1;
coordsvm = 2^(nres/2)*IDWTImpl(coordsvm, nres, invf, 0, 1);
subplot(2, 2, 3);
plot(t,coordsvm([(b*2^nres+1):((b-a)*2^nres) 1:(b*2^nres)]))
title(’\phi~’)

coordsvm = zeros((b-a)*2^nres, 1);
coordsvm(b - a + 1) = 1;
coordsvm = 2^(nres/2)*IDWTImpl(coordsvm, nres, invf, 0, 1);
subplot(2, 2, 4);

104

CHAPTER 7. CONSTRUCTING INTERESTING WAVELETS 105

plot(t,coordsvm([(b*2^nres+1):((b-a)*2^nres) 1:(b*2^nres)]))
title(’\psi~’)

a) Run the function plotwaveletfunctions with the three different kernels
IDWTKernelHaar, IDWTKernelpwl0, and ‘IDWTKernelpwl2‘ to plot all scaling
functions and mother wavelets for the Haar wavelet and the two piecewise linear
wavelets we have encountered. This should verify the different plots for these we
have seen previously in the book.

Solution. The code can look as follows:

plotwaveletfunctions(@IDWTKernelHaar, -2, 6)
plotwaveletfunctions(@IDWTKernelpwl0, -2, 6)
plotwaveletfunctions(@IDWTKernelpwl2, -2, 6)

b) Explain that the input to IDWTImpl in the code above are the coordinates of
φ0,0, ψ0,0, φ̃0,0, and ψ̃0,0 in the basis (φ0,ψ0,ψ1,ψ2, · · · ,ψm−1), respectively.

c) In the code above, we wanted the functions to be plotted on [a, b]. Explain
from this why the coordsvm-vector have been rearranged as on the line where
the plot-command is called.

d) In the code above, we turned off symmetric extensions (the symm-argument is
0). Attempt to use symmetric extensions instead, and observe the new plots you
obtain. Can you explain why these new plots do not show the correct functions,
while the previous plots are correct?

e) In the code you see that all values are scaled with the factor 2m/2 before
they are plotted. Can you think out an explanation to why this is done?

Exercise 7.2: Using the cascade algorithm
In Exercise 6.10 we constructed a new mother wavelet ψ̂ for piecewise linear
functions by finding constants α, β, γ, δ so that

ψ̂ = ψ − αφ0,0 − βφ0,1 − δφ0,2 − γφ0,N−1.

Use the cascade algorithm to plot ψ̂. Do this by using the wavelet kernel for
the piecewise linear wavelet (do not use the code above, since we have not
implemented kernels for this wavelet yet).

Solution. Assuming that the vector coeffs has been set as in Exercise 6.10,
the code can look as follows

CHAPTER 7. CONSTRUCTING INTERESTING WAVELETS 106

m = 10;
t = linspace(-2, 6, 8*2^m);
coordsvm=2^(m/2)*IDWTImpl([-coeffs(1); -coeffs(2); -coeffs(4); 0;...

0; 0; 0; -coeffs(3); 1; 0; 0; 0; 0; 0;...
0; 0; zeros(8*2^m-16, 1)], ...
m, @IDWTKernelpwl0, 0);

plot(t, coordsvm([(6*2^m+1):(8*2^m) 1:(6*2^m)]))

Exercise 7.3: Implementing the traspose transforms
Since the dual of a wavelet is constructed by transposing filters, one may suspect
that taking the dual is the same as taking the transpose. However, show that
the DWT, the dual DWT, the transpose of the DWT, and the transpose of the
dual DWT, can be computed as follows:

DWTImpl(x, m, DWTkernel, 1, 0); % DWT
DWTImpl(x, m, DWTkernel, 1, 1); % Dual DWT
IDWTImpl(x, m, IDWTkernel, 1, 1); % Transpose of the DWT
IDWTImpl(x, m, IDWTkernel, 1, 0); % Transpose of the dual DWT

Similar statements hold for the IDWT as well.

Solution. Assume that the kernel transformations of the DWT and the IDWT
are H and G, respectively. The formulas for the DWT and the dual DWT are
obvious. For the transpose the point is that, while the kernel transformations
of the DWT and the dual DWT are H and GT , we compose the kernel with a
permutation matrix when we compute the DWT. When we transpose, the order
of the kernel and the permutation changes, so the transpose must use an IDWT
implementation instead.
The kernel for the transpose of the DWT is HT , which is the kernel of the dual
IDWT. This explains the third line.
The kernel for the transpose of the dual DWT is (GT)T = G, which is the kernel
of the IDWT. This explains the fourth line.

Exercise 7.4: Compute filters
Compute the filters H0, G0 in Theorem 7.12 in the compendium when N =
N1 = N2 = 4, and Q1 = Q(4), Q2 = 1. Compute also filters H1, G1 so that we
have perfect reconstruction (note that these are not unique).

Solution. We have that

CHAPTER 7. CONSTRUCTING INTERESTING WAVELETS 107

λH0(ω) =
(

1
2(1 + cosω)

)N1/2
Q1

(
1
2(1− cosω)

)
=
(

1
2(1 + cosω)

)2
Q(4)

(
1
2(1− cosω)

)
λG0(ω) =

(
1
2(1 + cosω)

)N2/2
Q2

(
1
2(1− cosω)

)
=
(

1
2(1 + cosω)

)2

= 1
4

(
1 + 1

2e
iω + 1

2e
−iω
)2

= 1
16(e2iω + 4eiω + 6 + 4e−iω + e−2iω).

Therefore G0 = 1
16{1, 4, 6, 4, 1}. We do not recommend to compute H0 by hand.

With symbolic math toolbox in Matlab you can do as follows to compute H0.

syms x
expand(((1+x/2+1/(2*x))/2)^2*...

(2+8*((1-x/2-1/(2*x))/2)+20*((1-x/2-1/(2*x))/2)^2\
+40*((1-x/2-1/(2*x))/2)^3))

Here we have substituted x for eiω, 1/x for e−iω. The first part represents(1
2 (1 + cosω)

)2, the second part represents Q(4)(u) = 2 + 8u+ 20u2 + 40u3 with
u = 1

2 (1− cosω) = 1
2
(
1− 1

2e
iω − 1

2e
−iω). This gives

H0 = 1
128{−5, 20,−1,−96, 70, 280, 70,−96,−1, 20,−5}.

Using Theorem 6.16 in the compendium with α = 1, d = 0, we get

H1 = 1
16{1,−4, 6,−4, 1}

G1 = 1
128{5, 20, 1,−96,−70, 280,−70,−96, 1, 20, 5}

Exercise 7.5: Viewing the frequency response
In this exercise we will see how we can view the frequency responses, scaling
functions and mother wavelets for any spline wavelet.

a) Write a function which takes N1 and N2 as input, computes the filter coef-
ficients of H0 and G0 using equation (7.29) in the compendium, and plots the
frequency responses of G0 and H0. Recall that the frequency response can be
obtained from the filter coefficients by taking a DFT. You will have use for the
conv function here, and that the frequency response (1 + cosω)/2 corresponds
to the filter with coefficients {1/4, 1/2, 1/4}.

Solution. The following code can be used

CHAPTER 7. CONSTRUCTING INTERESTING WAVELETS 108

function plotsplinefreqresp(N1, N2)
N = (N1 + N2)/2;
h0 = computeQN(N);
for k=1:(N1/2)

h0 = conv(h0, [1/4 1/2 1/4]);
end
g0 = [1];
for k=1:(N2/2)

g0 = conv(g0, [1/4 1/2 1/4]);
end

L = 100;
h0 = [h0 zeros(1, L - length(h0))];
g0 = [g0 zeros(1, L - length(g0))];
omega = 2*pi*(0:(L-1))/L;

subplot(1,2,1);
plot(omega, abs(fft(h0)))
axis equal

subplot(1,2,2);
plot(omega, abs(fft(g0)))
axis equal

b) Recall that in Exercise 6.12 we implemented DWT and IDWT kernels, which
worked for any set of symmetric filters. Combine these kernels with your computa-
tion of the filter coefficients from a), and use the function plotwaveletfunctions
to plot the corresponding scaling functions and mother wavelets for different N1
and N2.

Exercise 7.6: Wavelets based on higher degree polynomials
Show that Br(t) = ∗rk=1χ[−1/2,1/2)(t) is r − 2 times differentiable, and equals a
polynomial of degree r − 1 on subintervals of the form [n, n+ 1]. Explain why
these functions can be used as basis for the spaces Vj of functions which are
piecewise polynomials of degree r−1 on intervals of the form [n2−m, (n+1)2−m],
and r − 2 times differentiable. Br is also called the B-spline of order r.

Exercise 7.7: Generate plots
Generate the plots from Figure 7.3 in the compendium using the cascade algo-
rithm. Reuse the code from Exercise 7.1 in order to achieve this.

Chapter 8

The polyphase
representation and wavelets

Exercise 8.1: The frequency responses of the polyphase
components
Let H and G be MRA-matrices for a DWT/IDWT, with corresponding filters
H0, H1, G0, G1, and polyphase components H(i,j), G(i,j).

a) Show that

λH0(ω) = λH(0,0)(2ω) + eiωλH(0,1)(2ω)
λH1(ω) = λH(1,1)(2ω) + e−iωλH(1,0)(2ω)
λG0(ω) = λG(0,0)(2ω) + e−iωλG(1,0)(2ω)
λG1(ω) = λG(1,1)(2ω) + eiωλG(0,1)(2ω).

Solution. G(0,0), G(1,1) are the even-indexed filter coefficients of G0, G1, re-
spectively, so that λG(0,0)(2ω), λG(1,1)(2ω) represents the half of λG0(ω), λG1(ω),
respectively, from the even filter coefficients. G(1,0) are the odd-indexed filter
coefficients of G0. Since coefficient 0 in G(1,0) equals coefficient 1 in G0, it is clear
that e−iωλG(1,0)(2ω) represents the half of λG0(ω) from the odd filter coefficients.
This proves the first formula. The second formula follows from the same kind of
reasoning.

If we transpose H (also in polyphase form), we get an MRA-matrix where the
columns are given by the filters (H0)T , (H1)T . Inserting these in the formulas
we just proved we get that

λ(H0)T (ω) = λ(H(0,0))T (2ω) + e−iωλ(H(0,1))T (2ω)
λ(H1)T (ω) = λ(H(1,1))T (2ω) + eiωλ(H(1,0))T (2ω).

109

CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS110

If we conjugate these expressions we get

λH0(ω) = λH(0,0)(2ω) + eiωλH(0,1)(2ω)
λH1(ω) = λH(1,1)(2ω) + e−iωλH(1,0)(2ω),

and the proof is done.

b) In the proof of the last part of Theorem 6.17 in the compendium, we
defered the last part, namely that equations 6.17 in the compendium-(8.3) in
the compendium follow from

(
G(0,0) G(0,1)

G(1,0) G(1,1)

)
=
(
αE−dH

(1,1) −αE−dH(0,1)

−αE−dH(1,0) αE−dH
(0,0)

)
.

Prove this based on the result from a).

Solution. The first column in the matrix on the left hand side gives the filter
G0. On the right hand side, a) states that the even-indexed columns are taken
from the filter with frequency response

λαE−dH(1,1)(2ω) + e−iωλ−αE−dH(1,0)(2ω)
= αλE−d

(2ω)
(
λH(1,1)(2ω)− e−iωλH(1,0)(2ω)

)
= αe2idω

(
λH(1,1)(2(ω + π)) + e−i(ω+π)λH(1,0)(2(ω + π))

)
= αe2idωλH1(ω + π).

This shows that λG0(ω) = αe2idωλH1(ω + π). We obtain Equation (8.2) in the
compendium easily from this. Now, the second column in the matrix on the left
hand side gives the filter coefficients of G1. On the right hand side, a) states
that the odd-indexed columns are taken from the filter with frequency response

λαE−dH(0,0)(2ω) + eiωλ−αE−dH(0,1)(2ω)
= αλE−d

(2ω)
(
λH(0,0)(2ω)− eiωλH(0,1)(2ω)

)
= αe2idω

(
λH(0,0)(2(ω + π)) + ei(ω+π)λH(0,1)(2(ω + π))

)
= αe2idωλH0(ω + π).

This shows that λG1(ω) = αe2idωλH0(ω + π), which is Equation (8.3) in the
compendium.

Exercise 8.2: Finding new filters
Let S be a filter. Show that

CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS111

a)

G

(
I 0
S I

)
is an MRA matrix with filters G̃0, G1, where

λG̃0
(ω) = λG0(ω) + λS(2ω)e−iωλG1(ω),

Solution. We have that(
G(0,0) G(0,1)

G(1,0) G(1,1)

)(
I 0
S I

)
=
(
G(0,0) + SG(0,1) G(0,1)

G(1,0) + SG(1,1) G(1,1)

)
.

Using Exercise 8.1a), the even-indexed columns in this matrix are taken from
the filter with frequency response

λG(0,0)+SG(0,1)(2ω) + e−iωλG(1,0)+SG(1,1)(2ω)
= λG(0,0)(2ω) + e−iωλG(1,0)(2ω) + λS(2ω)

(
λG(0,1)(2ω) + e−iωλG(1,1)(2ω)

)
= λG0(ω) + λS(2ω)e−iω

(
λG(1,1)(2ω) + eiωλG(0,1)(2ω)

)
= λG0(ω) + λS(2ω)e−iωλG1(ω).

b)

G

(
I S
0 I

)
is an MRA matrix with filters G0, G̃1, where

λG̃1
(ω) = λG1(ω) + λS(2ω)eiωλG0(ω),

Solution. We have that(
G(0,0) G(0,1)

G(1,0) G(1,1)

)(
I S
0 I

)
=
(
G(0,0) SG(0,0) +G(0,1)

G(1,0) SG(1,0) +G(1,1)

)
,

so that the odd-indexed columns in this matrix are taken from the filter with
frequency response

λSG(1,0)+G(1,1)(2ω) + eiωλSG(0,0)+G(0,1)(2ω)
= λG(1,1)(2ω) + eiωλG(0,1)(2ω) + λS(2ω)

(
λG(1,0)(2ω) + eiωλG(0,0)(2ω)

)
= λG1(ω) + λS(2ω)eiω

(
λG(0,0)(2ω) + e−iωλG(1,0)(2ω)

)
= λG1(ω) + λS(2ω)eiωλG0(ω).

CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS112

c) (
I 0
S I

)
H

is an MRA-matrix with filters H0, H̃1, where

λH̃1
(ω) = λH1(ω) + λS(2ω)e−iωλH0(ω).

Solution. We transpose the expression to obtain HT

(
I&ST

0 I

)
Since HT

has filters (H0)T and (H1)T in the columns, from b. it follows thatHT

(
I&ST

0 I

)
has columns given by (H0)T and the filter with frequency response

λ(H1)T (ω) + λST (2ω)eiωλ(H0)T (ω) = λH1(ω) + λS(2ω)e−iωλH0(ω),

so that
(

I 0
S&I

)
H has row filters H0 and a filter H̃1 with frequency response

λH̃1
(ω) = λH1(ω) + λS(2ω)e−iωλH0(ω).

d) (
I S
0 I

)
H

is an MRA-matrix with filters H̃0, H1, where

λH̃0
(ω) = λH0(ω) + λS(2ω)eiωλH1(ω).

Solution. We transpose the expression to obtain HT

(
I 0

ST&I

)
. Since HT

has filters (H0)T and (H1)T in the columns, using a) we see thatHT

(
I 0

ST&I

)
has columns given by the filter with frequency response

λ(H0)T (ω) + λST (2ω)e−iωλ(H1)T (ω) = λH0(ω) + λS(2ω)eiωλH1(ω),

and (H1)T , so that
(
I&S
0 I

)
H has a row filter H̃0 with frequency response

λH̃0
(ω) = λH0(ω) + λS(2ω)eiωλH1(ω),

and H1.
In summary, this exercise shows that one can think of the steps in the lifting

factorization as altering one of the filters of an MRA-matrix in alternating order.

CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS113

Exercise 8.3: Relating to the polyphase components
Show that S is a filter of length kM if and only if the entries {Si,j}M−1

i,j=0 in the
polyphase representation of S satisfy S(i+r) mod M,(j+r) mod M = Si,j . In other
words, S is a filter if and only if the polyphase representation of S is a “block-
circulant Toeplitz matrix”. This implies a fact that we will use: GH is a filter
(and thus provides alias cancellation) if blocks in the polyphase representations
repeat cyclically as in a Toeplitz matrix (in particular when the matrix is
block-diagonal with the same block repeating on the diagonal).

Solution. If S is a filter we have that S(i+r+s1M) mod kM,(j+r+s2M)kM =
S(i+s1M) mod M,(j+s2M) mod M , 0 ≤ i, j < M . But since S(i+s1M) mod kM,(j+s2M)kM =
S

(i,j)
s1,s2 , it follows that S

((i+r) mod M,(j+r) mod M)
s1,s2 = S

(i,j)
s1,s2 , so that S(i+r) mod M,(j+r) mod M =

Si,j .

Exercise 8.4: QMF filter banks
Recall from Definition 6.20 in the compendium that we defined a classical QMF
filter bank as one where M = 2, G0 = H0, G1 = H1, and λH1(ω) = λH0(ω + π).
Show that the forward and reverse filter bank transforms of a classical QMF
filter bank take the form

H = G =
(
A −B
B A

)
Exercise 8.5: Alternative QMF filter banks
Recall from Definition 6.21 in the compendium that we defined an alternative
QMF filter bank as one where M = 2, G0 = (H0)T , G1 = (H1)T , and λH1(ω) =
λH0(ω + π). Show that the forward and reverse filter bank transforms of an
alternative QMF filter bank take the form.

H =
(
AT BT

−B A

)
G =

(
A −BT
B AT

)
=
(
AT BT

−B A

)T
.

Exercise 8.6: Alternative QMF filter banks with additional
sign
Consider alternative QMF filter banks where we take in an additional sign, so
that λH1(ω) = −λH0(ω + π) (the Haar wavelet was an example of such a filter
bank). Show that the forward and reverse filter bank transforms now take the
form

H =
(
AT BT

B −A

)
G =

(
A BT

B −AT
)

=
(
AT BT

B −A

)T
.

CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS114

It is straightforward to check that also these satisfy the alias cancellation con-
dition, and that the perfect reconstruction condition also here takes the form
|λH0(ω)|2 + |λH0(ω + π)|2 = 2.

Exercise 8.7: Polyphase components for symetric filters
Assume that the filters H0, H1 of a wavelet are symmetric, and denote by S(i,j)

the polyphase components of the corresponding MRA-matrix H. Show that
S(0,0) and S(1,1) are symmetric filters, that the filter coefficients of S(1,0) has
symmetry about −1/2, and that S(0,1) has symmetry about 1/2. Also show a
similar statement for the MRA-matrix G of the inverse DWT.

Exercise 8.8: Implement elementary lifting steps
Write functions liftingstepevensymm and liftingstepoddsymm which take λ,
a vector x, and symm as input, and apply the elementary lifting matrices as in
Equation (8.13) in the compendium, respectively, to x. The parameter symm
should indicate whether symmetric extensions shall be applied. Your code should
handle both when N is odd, and when N is even (as noted previously, when
symmetric extensions are not applied, we assume that N is even). The function
should not perform matrix multiplication, and apply as few multiplications as
possible.

Solution. The code can look like this:

function x=liftingstepevensymm(lambda, x, symm)
N = size(x, 1);
if ~symm

assert(mod(N,2) == 0)
end
if symm

x(1, :) = x(1, :) + 2*lambda*x(2, :); % Symmetric extension
else

x(1, :) = lambda*(x(2, :) + x(N, :)) + x(1, :);
end
x(3:2:(N-1), :) = x(3:2:(N-1), :) + lambda*(x(2:2:(N-2), :) + x(4:2:N, :)); % This saves one multiplication
if mod(N,2) == 1 % last is odd

x(N, :) = x(N, :) + 2*lambda*x(N-1, :); % Symmetric extension
end

function x=liftingstepoddsymm(lambda, x, symm)
N = size(x, 1);
if ~symm

assert(mod(N,2) == 0)
end
x(2:2:(N-1), :) = x(2:2:(N-1), :) + lambda*(x(1:2:(N-2), :) + x(3:2:N, :)); % This saves one multiplication
if mod(N,2)==0 % last is even

if symm
x(N, :) = x(N, :) + 2*lambda*x(N-1, :); % Symmetric extension

else
x(N, :) = lambda*(x(1, :) + x(N-1, :)) + x(N, :);

end
end

CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS115

Exercise 8.9: Implementing kernels transformations using
lifting
Up to now in this chapter we have obtained lifting factorizations for four different
wavelets where the filters are symmetric. Let us now implement the kernel
transformations for these wavelets. Your functions should call the functions
from Exercise 8.8 in order to compute the individual lifting steps. Recall that
the kernel transformations should take the input vector x, symm (i.e. whether
symmetric extension should be applied), and dual (i.e. whether the dual wavelet
transform should be applied) as input. You will need equations (8.13) in the
compendium-(8.12) in the compendium here, in order to complete the kernels
for bot the transformations and the dual transformations.

a) Write the DWT and IDWT kernel transformations for the piecewise linear
wavelet. Your functions should use the lifting factorizations in (8.16) in the
compendium. Call your functions DWTKernelpwl0 and IDWTKernelpwl0.

Solution. The code can look like this:

function x = DWTKernelpwl0(x, symm, dual)
if dual

x = x/sqrt(2);
x = liftingstepevensymm(0.5, x, symm);

else
x = x*sqrt(2);
x = liftingstepoddsymm(-0.5, x, symm);

end

function x = IDWTKernelpwl0(x, symm, dual)
if dual

x = x*sqrt(2);
x = liftingstepevensymm(-0.5, x, symm);

else
x = x/sqrt(2);
x = liftingstepoddsymm(0.5, x, symm);

end

b) Write the DWT and IDWT kernel transformations for the alternative piece-
wise linear wavelet. The lifting factorizations are now given by (8.17) in the
compendium instead. Call your functions DWTKernelpwl2 and IDWTKernelpwl2.

Solution. The code can look like this:

function x = DWTKernelpwl2(x, symm, dual)
if dual

x = x/sqrt(2);
x = liftingstepevensymm(0.5, x, symm);
x = liftingstepoddsymm(-0.25, x, symm);

else
x = x*sqrt(2);

CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS116

x = liftingstepoddsymm(-0.5, x, symm);
x = liftingstepevensymm(0.25, x, symm);

end

function x = IDWTKernelpwl2(x, symm, dual)
if dual

x = x*sqrt(2);
x = liftingstepoddsymm(0.25, x, symm);
x = liftingstepevensymm(-0.5, x, symm);

else
x = x/sqrt(2);
x = liftingstepevensymm(-0.25, x, symm);
x = liftingstepoddsymm(0.5, x, symm);

end

c) Write the DWT and IDWT kernel transformations for the Spline 5/3 wavelet,
using the lifting factorization obtained in Example 8.14 in the compendium. Call
your functions DWTKernel53 and IDWTKernel53.

Solution. The code can look like this:

function x = DWTKernell53(x, symm, dual)
lambda1 = -1;
lambda2 = 0.125;
alpha = 2;
beta = 0.5;
N = size(x, 1);

if dual
x(1:2:N, :) = x(1:2:N, :)/alpha;
x(2:2:N, :) = x(2:2:N, :)/beta;
x = liftingstepevensymm(lambda2, x, symm);
x = liftingstepoddsymm(lambda1, x, symm);

else
x(1:2:N, :) = x(1:2:N, :)*alpha;
x(2:2:N, :) = x(2:2:N, :)*beta;
x = liftingstepoddsymm(-lambda2, x, symm);
x = liftingstepevensymm(-lambda1, x, symm);

end

function x = IDWTKernell53(x, symm, dual)
lambda1 = -1;
lambda2 = 0.125;
alpha = 2;
beta = 0.5;
N = size(x, 1);

if dual
x = liftingstepoddsymm(-lambda1, x, symm);
x = liftingstepevensymm(-lambda2, x, symm);
x(1:2:N, :) = x(1:2:N, :)*alpha;
x(2:2:N, :) = x(2:2:N, :)*beta;

else
x = liftingstepevensymm(lambda1, x, symm);

CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS117

x = liftingstepoddsymm(lambda2, x, symm);
x(1:2:N, :) = x(1:2:N, :)/alpha;
x(2:2:N, :) = x(2:2:N, :)/beta;

end

d) Write the DWT and IDWT kernel transformations for the CDF 9/7 wavelet,
using the lifting factorization obtained in Example 8.15 in the compendium. Call
your functions DWTKernel97 and IDWTKernel97.

Solution. The code can look like this:

function x = DWTKernel97(x,symm,dual)
lambda1 = -0.586134342059950;
lambda2 = -0.668067171029734;
lambda3 = 0.070018009414994;
lambda4 = 1.200171016244178;
alpha = -1.149604398860250;
beta = -0.869864451624777;
N = size(x, 1);

if dual
x(1:2:N, :) =x(1:2:N, :)/alpha;
x(2:2:N, :)=x(2:2:N, :)/beta;
x = liftingstepevensymm(lambda4, x, symm);
x = liftingstepoddsymm(lambda3, x, symm);
x = liftingstepevensymm(lambda2, x, symm);
x = liftingstepoddsymm(lambda1, x, symm);

else
x(1:2:N, :) = x(1:2:N, :)*alpha;
x(2:2:N, :) = x(2:2:N, :)*beta;
x = liftingstepoddsymm(-lambda4, x, symm);
x = liftingstepevensymm(-lambda3, x, symm);
x = liftingstepoddsymm(-lambda2, x, symm);
x = liftingstepevensymm(-lambda1, x, symm);

end

function x = IDWTKernel97(x, symm, dual)
lambda1 = -0.586134342059950;
lambda2 = -0.668067171029734;
lambda3 = 0.070018009414994;
lambda4 = 1.200171016244178;
alpha = -1.149604398860250;
beta = -0.869864451624777;
N = size(x, 1);

if dual
x = liftingstepoddsymm(-lambda1, x, symm);
x = liftingstepevensymm(-lambda2, x, symm);
x = liftingstepoddsymm(-lambda3, x, symm);
x = liftingstepevensymm(-lambda4, x, symm);
x(1:2:N, :) = x(1:2:N, :)*alpha;
x(2:2:N, :) = x(2:2:N, :)*beta;

else
x = liftingstepevensymm(lambda1, x, symm);
x = liftingstepoddsymm(lambda2, x, symm);
x = liftingstepevensymm(lambda3, x, symm);
x = liftingstepoddsymm(lambda4, x, symm);

CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS118

x(1:2:N, :) = x(1:2:N, :)/alpha;
x(2:2:N, :) = x(2:2:N, :)/beta;

end

e) In Chapter 5 in the compendium, we listened to the low-resolution approxi-
mations and detail components in sound for three different wavelets, using the
function playDWT. Repeat these experiments with the Spline 5/3 and the CDF
9/7 wavelet, using the new kernels we have implemented in this exercise.

Solution. The following code can be used for listening to the low-resolution
approximations for a given value of m.

playDWT(m, @DWTKernel53, @IDWTKernel53, 1);
playDWT(m, @DWTKernel97, @IDWTKernel97, 1);

f) Use the function plotwaveletfunctions from Exercise 7.1 to plot all scaling
functions and mother wavelets for the Spline 5/3 and the CDF 9/7 wavelets,
using the kernels you have implemented.

Solution. The code can look as follows.

plotwaveletfunctions(@IDWTKernel53, -4, 4)
plotwaveletfunctions(@IDWTKernel97, -4, 4)

In the plot for the CDF 9/7 wavelet, it is seen that the functions and their dual
counterparts are close to being equal. This reflects the fact that this wavelet is
close to being orthogonal.

Exercise 8.10: Lifting orthonormal wavelets
In this exercise we will implement the kernel transformations for orthonormal
wavelets.

a) Write functions liftingstepeven and liftingstepodd which take λ1, λ2
and a vector x as input, and apply the elementary lifting matrices (8.18) in the
compendium, respectively, to x. Assume that N is even.

Solution. The code can look like this:

function x = liftingstepeven(lambda1, lambda2, x)
N = size(x, 1);
assert(mod(N,2) == 0)
x(1, :) = lambda1*x(2, :) + x(1, :) + lambda2*x(N, :);
x(3:2:(N-1), :) = lambda1*x(4:2:N, :) + x(3:2:(N-1), :) + lambda2*x(2:2:(N-2), :);

CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS119

function x = liftingstepodd(lambda1, lambda2, x)
N = size(x, 1);
assert(mod(N,2) == 0)
x(2:2:(N-1), :) = lambda1*x(3:2:N, :) + x(2:2:(N-1), :) + lambda2*x(1:2:(N-2), :);
x(N, :) = lambda1*x(1, :) + x(N, :) + lambda2*x(N-1, :);

b) Write functions DWTKernelOrtho and IDWTKernelOrtho which take a vec-
tor x as input, and apply the DWT and IDWT kernel transformations for
orthonormal wavelets to x. You should call the functions liftingstepeven and
liftingstepodd. As mentioned, assume that global variables lambdas, alpha,
and beta have been set, so that the lifting factorization (8.8) in the compendium
holds, where lambdas is a n× 2-matrix so that the filter coefficients {λ1, λ2} or
{λ1, λ2} in the i’th lifting step is found in row i of lambdas. Recall that the last
lifting step was even.

Solution. The code can look like this:

function x = DWTKernelOrtho(x, symm, dual)
global lambdas alpha beta
N = size(x, 1);

if dual
x(1:2:N, :) = x(1:2:N, :)/alpha;
x(2:2:N, :)=x(2:2:N, :)/beta;
for stepnr = size(lambdas,1):(-2):2

x = liftingstepodd(lambdas(stepnr,2), lambdas(stepnr,1), x);
x = liftingstepeven(lambdas(stepnr-1,2), lambdas(stepnr-1,1), x);

end

if stepnr == 3
x = liftingstepodd(lambdas(1,2), lambdas(1,1), x);

end
else

x(1:2:N, :) = x(1:2:N, :)*alpha;
x(2:2:N, :) = x(2:2:N, :)*beta;
for stepnr = size(lambdas,1):(-2):2

x = liftingstepeven(-lambdas(stepnr,1), -lambdas(stepnr,2), x);
x = liftingstepodd(-lambdas(stepnr-1,1), -lambdas(stepnr-1,2), x);

end

if stepnr == 3
x = liftingstepeven(-lambdas(1,1), -lambdas(1,2), x);

end
end

function x = IDWTKernelOrtho(x, symm, dual)
global lambdas alpha beta
N = size(x, 1);

if dual
stepnr = 1;
if mod(size(lambdas, 1), 2) == 1

x = liftingstepodd(-lambdas(stepnr, 2), -lambdas(stepnr, 1), x);
stepnr = stepnr + 1;

CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS120

end

while stepnr < size(lambdas, 1)
x = liftingstepeven(-lambdas(stepnr, 2), -lambdas(stepnr, 1), x);
stepnr = stepnr + 1;
x = liftingstepodd(-lambdas(stepnr, 2), -lambdas(stepnr, 1), x);
stepnr = stepnr + 1;

end

x(1:2:N, :) = x(1:2:N, :)*alpha;
x(2:2:N, :) = x(2:2:N, :)*beta;

else
stepnr = 1;
if mod(size(lambdas, 1), 2) == 1

x = liftingstepeven(lambdas(stepnr, 1), lambdas(stepnr, 2), x);
stepnr = stepnr + 1;

end

while stepnr < size(lambdas, 1)
x = liftingstepodd(lambdas(stepnr, 1), lambdas(stepnr, 2), x);
stepnr = stepnr + 1;
x = liftingstepeven(lambdas(stepnr, 1), lambdas(stepnr, 2), x);
stepnr = stepnr + 1;

end

x(1:2:N, :)=x(1:2:N, :)/alpha;
x(2:2:N, :)=x(2:2:N, :)/beta;

end

c) Listen to the low-resolution approximations and detail components in sound
for orthonormal wavelets for N = 1, 2, 3, 4, again using the function playDWT.
You need to call the function liftingfactortho in order to set the kernel for
the different values of N .

Solution. The following code can be used for listening to the low-resolution
approximations for a given value of m.

liftingfactortho(2);
playDWT(m, @DWTKernelOrtho, @IDWTKernelOrtho, 1);

liftingfactortho(3);
playDWT(m, @DWTKernelOrtho, @IDWTKernelOrtho, 1);

liftingfactortho(4);
playDWT(m, @DWTKernelOrtho, @IDWTKernelOrtho, 1);

d) Use the function plotwaveletfunctions from Exercise 7.1 to plot all scaling
functions and mother wavelets for orthonormal wavelets for N = 1, 2, 3, 4. Since
the wavelets are orthonormal, we should have that φ = φ̃, and ψ = ψ̃. In other
words, you should see that the bottom plots equal the upper plots.

Solution. The code can look as follows.

CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS121

liftingfactortho(2)
plotwaveletfunctions(@IDWTKernelOrtho, -4, 4)

liftingfactortho(3)
plotwaveletfunctions(@IDWTKernelOrtho, -4, 4)

liftingfactortho(4)
plotwaveletfunctions(@IDWTKernelOrtho, -4, 4)

Exercise 8.11: 4 vanishing moments
In Exercise 5.31 we found constants α, β, γ, δ which give the coordinates of ψ̂ in
(φ1, ψ̂1), where ψ̂ had four vanishing moments, and where we worked with the
multiresolution analysis of piecewise constant functions.

a) Show that the polyphase representation of G when ψ̂ is used as mother
wavelet can be factored as

1√
2

(
I 0

{1/2, 1/2} I

)(
I {−γ,−α,−β,−δ}
0 I

)
. (8.1)

You here need to reconstruct what you did in the lifting factorization for the
alternative piecewise linear wavelet, i.e. write

PD1←(φ1,ψ̂1) = PD1←(φ1,ψ1)P(φ1,ψ1)←(φ1,ψ̂1).

By inversion, find also a lifting factorization of H.

Solution. We have found constants α, βγδ so that

[ψ̂](φ0,ψ0) = (−α,−β,−δ, 0, 0, 0, 0,−γ)⊕ (1, 0, 0, 0, 0, 0, 0, 0),

From this it is clear that

P(φ1,ψ1)←(φ1,ψ̂1) =
(
I S2
0 I

)
where S2 = {−γ,−α,−β,−δ} This gives as before the lifting factorization

PD1←(φ1,ψ̂1) = 1√
2

(
I 0
S1 I

)(
I {−γ,−α,−β,−δ}
0 I

)
. (8.2)

where S1 = {1/2, 1/2} as before.

Exercise 8.12: Wavelet based on piecewise quadratic scaling
function
In Exercise 7.4 you should have found the filters

CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS122

H0 = 1
128{−5, 20,−1,−96, 70, 280, 70,−96,−1, 20,−5}

H1 = 1
16{1,−4, 6,−4, 1}

G0 = 1
16{1, 4, 6, 4, 1}

G1 = 1
128{5, 20, 1,−96,−70, 280,−70,−96, 1, 20, 5}.

a) Show that

(
I − 1

128{5,−29,−29, 5}
0 I

)(
I 0

−{1, 1} I

)(
I − 1

4{1, 1}
0 I

)
G =

(1
4 0
0 4

)
.

From this we can easily derive the lifting factorization of G.

Solution. The polyphase factorization of the IDWT is(1
16{1, 6, 1}

1
128{5, 1,−70,−70, 1, 5}

1
16{4, 4}

1
128{20,−96, 280,−96, 20}

)
.

We can first apply an even lifting step:

(
I − 1

4{1, 1}
0 I

)(1
16{1, 6, 1}

1
128{5, 1,−70,−70, 1, 5}

1
16{4, 4}

1
128{20,−96, 280,−96, 20}

)
=
(1

16{4}
1

128{20,−116,−116, 20}
1

16{4, 4}
1

128{20,−96, 280,−96, 20}

)
.

We can now apply an odd lifting step

(
I 0

−{1, 1} I

)(1
16{4}

1
128{20,−116,−116, 20}

1
16{4, 4}

1
128{20,−96, 280,−96, 20}

)
=
(1

4
1

128{20,−116,−116, 20}
0 4

)
Since

(
I − 1

512{20,−116,−116, 20}
0 I

)(1
4

1
128{20,−116,−116, 20}

0 4

)
=
(1

4 0
0 4

)
,

it follows that

(
I − 1

128{5,−29,−29, 5}
0 I

)(
I 0

−{1, 1} I

)(
I − 1

4{1, 1}
0 I

)
G =

(1
4 0
0 4

)
.

b) Implement the kernels of the wavelet of this exercise using what you did in
Exercise 6.12.

CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS123

H0 = [-5 20 -1 -96 70 280 70 -96 -1 20 -5]/128;
H1 = [1 -4 6 -4 1]/16;
G0 = [1 4 6 4 1]/16;
G1 = [5 20 1 -96 -70 280 -70 -96 1 20 5]/128;
f = @(x, symm, dual) DWTKernelFilters(H0,H1,G0,G1,x,symm,dual);
invf = @(x, symm, dual) IDWTKernelFilters(H0,H1,G0,G1,x,symm,dual);

Solution.

c) Listen to the low-resolution approximations and detail components in sound
for this wavelet.

Solution. The following code can be used for listening to the low-resolution
approximations for a given value of m.

playDWT(m, f, invf, 1)

d) Use the function plotwaveletfunctions from Exercise 7.1 to plot all scaling
functions and mother wavelets for this wavelet.

Solution. The code can look as follows.

plotwaveletfunctions(invf, -4, 4)

Exercise 8.13: Run forward and reverse transform
Run the forward and then the reverse transform from Exercise 6.16 on the vector
(1, 2, 3, . . . , 8192). Verify that there seems to be a delay on 481 elements, as
promised by Therorem 8.20 in the compendium. Do you get the exact same
result back?

Solution. The following code can be used:

x = (1:8192)’;
x = mp3reversefbt(mp3forwardfbt(x));
plot(x)

There are some small errors from the original vector in the resulting vector, when
one compensates for the delay of 481 elements.

Exercise 8.14: Verify statement of filters
Use your computer to verify the symmetries we have stated for the symmetries
in the prototype filters, i.e. that

Ci =
{
−C512−i i 6= 64, 128, . . . , 448
C512−i i = 64, 128, . . . , 448.

CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS124

Explain also that this implies that hi = h512−i for i = 1, . . . , 511. In other words,
the prototype filter has symmetry around (511 + 1)/2 = 256, so that it has linear
phase.

Exercise 8.15: Lifting
We mentioned that we could use the lifting factorization to construct filters on
the form stated in Equation (8.21) in the compendium, so that the matrices on
the form given by Equation (8.25) in the compendium, i.e.(

V (32−i) V (i)

−V (64−i) V (32+i)

)
,

are invertible. Let us see what kind of lifting steps produce such matrices.

a) Show that the lifting steps(
I λE2
0 I

)
and

(
I 0
λI I

)
applied in alternating order to a matrix on the form given by Equation (8.25)
in the compendium, where the filters are on the from given by Equation (8.21)
in the compendium, again produces matrices and filters on these forms. This
explains how we can parametrize a larger number of such matrices with the help
of lifting steps.It also explain why the inverse matrix is on the form stated in
Equation (8.25) in the compendium with filters on the same form, since the
inverse lifting steps are of the same type.

b) Explain that 16 numbers {λi}16
i=1 are needed (together with what we start

with on the diagonal in the lifting construction), in order to construct filters so
that the prototype filter has 512 coefficients. Since there are 15 submatrices,
this gives 240 optimization variables.

Lifting gives the following strategy for finding a corresponding synthesis
prototype filter which gives perfect reconstruction: First compute matrices V,W
which are inverses of oneanother using lifting (using the lifting steps of this
exercise ensures that all filters will be on the form stated in Equation (8.21) in
the compendium), and write

VW =
(
V (1) V (2)

−V (3) V (4)

)(
W (1) −W (3)

W (2) W (4)

)
=
(
V (1) V (2)

−V (3) V (4)

)(
(W (1))T (W (2))T
−(W (3))T (W (4))T

)T
=
(
V (1) V (2)

−V (3) V (4)

)(
E15(W (1))T E15(W (2))T
−E15(W (3))T E15(W (4))T

)T (
E15 0
0 E15

)
= I.

Now, the matrices U (i) = E15(W (i))T are on the form stated in Equation (8.21)
in the compendium, and we have that(

V (1) V (2)

−V (3) V (4)

)(
U (1) U (2)

−U (3) U (4)

)
=
(
E−15 0
0 E−15

)

CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS125

We can now conclude from Theorem 8.19 in the compendium that if we define
the synthesis prototype filter as therein, and set c = 1, d = −15, we have that
GH = 16E481−32·15 = 16E1.

Chapter 9

Digital images

Exercise 9.1: Generate black and white images
Black and white images can be generated from greyscale images (with values
between 0 and 255) by replacing each pixel value with the one of 0 and 255
which is closest. Use this strategy to generate the black and white image shown
in Figure 9.2(b) in the compendium.

Solution. The code can be found in the notebook for generating the figures in
this chapter.

Exercise 9.2: Adjust contrast in images 1
Generate the right image in Figure 9.9 in the compendium on your own by
writing code which uses the function contrastadjust.

Solution. The code can be found in the notebook for generating the figures in
this chapter.

Exercise 9.3: Adjust contrast in images 2
Let us also consider the second way we mentioned for increasing the contrast.

a) Write a function contrastadjust0 which instead uses the function from
Equation (9.1) in the compendium to increase the contrast. n should be a
parameter to the function.

Solution. The code could look as follows:

function Z=contrastadjust0(X,n)
Z = X/255; % Maps the pixel values to [0,1]
Z = atan(n*(Z-1/2))/(2*atan(n/2)) + 1/2;
Z = Z*255; % Maps the values back to [0,255]

126

CHAPTER 9. DIGITAL IMAGES 127

b) Generate the left image in Figure 9.9 in the compendium on your own by using
your code from Exercise 9.2, and instead calling the function contrastadjust0.

Solution. The code can be found in the notebook for generating the figures in
this chapter.

Exercise 9.4: Adjust contrast in images 3
In this exercise we will look at another function for increasing the contrast of a
picture.

a) Show that the function f : R→ R given by

fn(x) = xn,

for all n maps the interval [0, 1]→ [0, 1], and that f ′(1)→∞ as n→∞.

b) The color image secret.jpg,shown in Figure 9.1, contains some information
that is nearly invisible to the naked eye on most computer monitors. Use the
function f(x), to reveal the secret message.

Figure 9.1: Secret message.

Hint. You will first need to convert the image to a greyscale image. You can
then use the function contrastadjust as a starting point for your own program.

Solution. The secret message is revealed in Figure 9.2.

CHAPTER 9. DIGITAL IMAGES 128

Figure 9.2: Secret message revealed!

Exercise 9.5: Implement a tensor product
Implement a function tensor_impl which takes a matrix X, and functions S1
and S2 as parameters, and applies S1 to the columns of X, and S2 to the rows of
X.

Solution. The following code can be used:

function X = tensor_impl(X, S1, S2)
M = size(X, 1); N = size(X, 2); sz = size(X);
sz1 = sz; sz1(1) = []; sz1 = [sz1 1];
sz2 = sz; sz2(2) = []; sz2 = [sz2 1];
Y1 = zeros(sz1);
Y2 = zeros(sz2);

for n = 1:N
Y2(:, :) = X(:, n, :);
X(:, n, :) = S1(Y2);

end
for m = 1:M

Y1(:, :) = X(m, :, :);
X(m, :, :) = S2(Y1);

end

Exercise 9.6: Generate images
Write code which calls the function tensor_impl with appropriate filters and
which generate the following images:

a) The right image in Figure 9.11 in the compendium.

b) The right image in Figure 9.13 in the compendium.

CHAPTER 9. DIGITAL IMAGES 129

c) The images in figures 9.14 in the compendium.

d) The images in Figure 9.15 in the compendium.

e) The images in Figure 9.16 in the compendium.

Solution. The code can be found in the notebook for generating the figures in
this chapter.

Exercise 9.7: Interpret tensor products
Let the filter S be defined by S = {−1, 1}.

a) Let X be a matrix which represents the pixel values in an image. What can
you say about how the new images (S ⊗ I)X og (I ⊗ S)X look? What are the
interpretations of these operations?

b) Write down the 4⊗ 4-matrix X = (1, 1, 1, 1)⊗ (0, 0, 1, 1). Compute (S⊗ I)X
by applying the filters to the corresponding rows/columns of X as we have learnt,
and interpret the result. Do the same for (I ⊗ S)X.

Exercise 9.8: Computational molecule of moving average
filter
Let S be the moving average filter of length 2L+1, i.e. T = 1

L{1, · · · , 1, 1, 1, · · · , 1︸ ︷︷ ︸
2L+1 times

}.

What is the computational molecule of S ⊗ S?

Exercise 9.9: Bilinearity of the tensor product
Show that the mapping F (x,y) = x⊗y is bi-linear, i.e. that F (αx1 +βx2,y) =
αF (x1,y) + βF (x2,y), and F (x, αy1 + βy2) = αF (x,y1) + βF (x,y2).

Solution. We have that

F (αx1 + βx2,y) = (αx1 + βx2)⊗ y = (αx1 + βx2)yT

= αx1y
T + βx2y

T = α(x1 ⊗ y) + β(x⊗ y)
= αF (x1,y) + βF (x1,y).

The second statement follows similarly.

Exercise 9.10: Attempt to write as tensor product
Attempt to find matrices S1 : RM → RM and S2 : RN → RN so that the
following mappings from LM,N (R) to LM,N (R) can be written on the form
X → S1X(S2)T = (S1 ⊗ S2)X. In all the cases, it may be that no such S1, S2
can be found. If this is the case, prove it.

CHAPTER 9. DIGITAL IMAGES 130

a) The mapping which reverses the order of the rows in a matrix.

Solution. Multiplicaton with the matrix

S =


0 0 0 · · · 0 0 1
0 0 0 · · · 0 1 0
...

...
...

...
...

...
...

0 1 0 · · · 0 0 0
1 0 0 · · · 0 0 0


reverses the elements in a vector. This means that

((S ⊗ I)(x⊗ y))i,j = ((Sx)⊗ y)i,j = (Sx)iyj = xM−1−iyj = (x⊗ y)M−1−i,j .

This means that also ((S ⊗ I)X)i,j = XM−1−i,j for all X, so that S ⊗ I reverses
rows, and thus is a solution to a).

b) The mapping which reverses the order of the columns in a matrix.

Solution. Similarly one shows that I ⊗ S reverses columns, and is thus a
solution to b..

c) The mapping which transposes a matrix.

Solution. It turns out that it is impossible to find S1 and S2 so that transposing
a matrix X corresponds to computing (S1⊗S2)X. To see why, S1 and S2 would
need to fulfill

(S1 ⊗ S2)(ei ⊗ ej) = (S1ei)⊗ (S2ej) = ej ⊗ ei,

since ej ⊗ ei is the transpose of ei ⊗ ej . This would require that S1ei = ej for
all i, j, which is impossible.

Exercise 9.11: Computational molecules
Let the filter S be defined by S = {1, 2, 1}.

a) Write down the computational molecule of S ⊗ S.

Solution. The computational molecule of S ⊗ S is

(1, 2, 1)⊗ (1, 2, 1) = (1, 2, 1)⊗ (1, 2, 1) =

1
2
1

(1 2 1
)

=

1 2 1
2 4 2
1 2 1

 .

b) Let us define x = (1, 2, 3), y = (3, 2, 1), z = (2, 2, 2), and w = (1, 4, 2).
Compute the matrix A = x⊗ y + z ⊗w.

CHAPTER 9. DIGITAL IMAGES 131

Solution. We get that

A =

1
2
3

(3 2 1
)

+

2
2
2

(1 4 2
)

=

3 2 1
6 4 2
9 6 3

+

2 8 4
2 8 4
2 8 4

 =

 5 10 5
8 12 6
11 14 7

 .

c) Compute (S ⊗ S)A by applying the filter S to every row and column in the
matrix the way we have learnt. If the matrix A was more generally an image,
what can you say about how the new image will look?

Solution. We need to compute (S ⊗ S)A = SAST , which corresponds to first
applying S to every column in the image, and then applying S to every row in
the resulting image. If we apply S to every column in the image we first get

the matrix SA =

29&46&23
32&48&24
35&50&25

. If we apply the filter to the rows here we get

SAST =

127&144&121
136&152&128
145&160&135

. Since the filter which is applied is a lowpass filter,

the new image should look a bit more smooth than the original image.

Exercise 9.12: Computational molecules
Let S = 1

4{1, 2, 1} be a filter.

a) What is the effect of applying the tensor products S ⊗ I, I ⊗ S, and S ⊗ S
on an image represented by the matrix X?

Solution. Note forst that the filter is a smoothing filter (a lowpass filter). We
know that S⊗ I corresponds to applying S to the columns of the matrix, so that
we get the result by applying the smoothing filter to the columns of the matrix.
The result of this is that horizontal edges are smoothed. Similarly, the tensor
product I ⊗ S corresponds to applying S to the rows of the matrix, so that
vertical edges are smoothed. Finally, S⊗S corresponds to applying S first to the
columns of the matrix, then to the rows. The result is that both horizontal and
vertical edges are smoothed. You could also have computed the computational
molecules for S ⊗ I, I ⊗ S, and S ⊗ S, by taking the tensor product of the filter
coefficients 1

4{1, 2, 1} with itself. From these molecules it is also clear that they
either work on the columns, the rows, or on both rows and columns.

b) Compute (S ⊗ S)(x⊗ y), where x = (4, 8, 8, 4), y = (8, 4, 8, 4) (i.e. both x
and y are column vectors).

CHAPTER 9. DIGITAL IMAGES 132

Solution. A 4× 4 circulant Toeplitz matrix for S is

1
4


2 1 0 1
1 2 1 0
0 1 2 1
1 0 1 2

 .

From this we can quickly compute that

Sx = 1
4


2 1 0 1
1 2 1 0
0 1 2 1
1 0 1 2




4
8
8
4

 =


2 + 2 + 1
4 + 2 + 1
4 + 2 + 1
2 + 2 + 1

 =


5
7
7
5



Sy = 1
4


2 1 0 1
1 2 1 0
0 1 2 1
1 0 1 2




8
4
8
4

 =


4 + 1 + 1
2 + 2 + 2
4 + 1 + 1
2 + 2 + 2

 =


6
6
6
6

 .

From this it is clear that

(S ⊗ S)(x⊗ y) = (Sx)(Sy)T =


5
7
7
5

(6 6 6 6
)

=


30 30 30 30
42 42 42 42
42 42 42 42
30 30 30 30

 .

Exercise 9.13: Comment on code
Suppose that we have an image given by the M ×N -matrix X, and consider the
following code:

for n=1:N
X(1, n) = 0.25*X(N, n) + 0.5*X(1, n) + 0.25*X(2, n);
X(2:(N-1), n) = 0.25*X(1:(N-2), n) + 0.5*X(2:(N-1), n) ...

+ 0.25*X(3:N, n);
X(N, n) = 0.25*X(N-1, n) + 0.5*X(N, n) + 0.25*X(1, n);

end
for m=1:M

X(m, 1) = 0.25*X(m, M) + 0.5*X(m, 1) + 0.25*X(m, 2);
X(m, 2:(M-1)) = 0.25*X(m, 1:(M-2)) + 0.5*X(m, 2:(M-1),) ...

+ 0.25*X(m, 3:M);
X(m, M) = 0.25*X(m, M-1) + 0.5*X(m, M) + 0.25*X(m, 1);

end

Which tensor product is applied to the image? Comment what the code does, in
particular the first and third line in the inner for-loop. What effect does the
code have on the image?

CHAPTER 9. DIGITAL IMAGES 133

Solution. In the code the filter S = {1/4, 1/2, 1/4} is applied to the clumns
and the rows in the image. We have learnt that this corresponds to applying the
tensor product S ⊗ S to the image. k=1 in the outer for-loop corresponds to
applying S on the columns, k=2 corresponds to applying S on the rows. The
first and last lines in the inner for-loop are necessary since we apply S to the
periodic extension of the image. Since S is a smoothing filter, the effect will be
that the image is smoothed vertically and horizontally.

Exercise 9.14: Eigenvectors of tensor products
Let vA be an eigenvector of A with eigenvalue λA, and vB an eigenvector of
B with eigenvalue λB. Show that vA ⊗ vB is an eigenvector of A ⊗ B with
eigenvalue λAλB . Explain from this why ‖A⊗B‖ = ‖A‖‖B‖, where ‖ ·‖ denotes
the operator norm of a matrix.

Exercise 9.15: The Kronecker product
The Kronecker tensor product of two matrices A and B, written A ⊗k B, is
defined as

A⊗k B =


a1,1B a1,2B · · · a1,MB
a2,1B a2,2B · · · a2,MB

...
...

. . .
...

ap,1B ap,2B · · · ap,MB

 ,

where the entries of A are ai,j . The tensor product of a p×M -matrix, and a
q ×N -matrix is thus a (pq)× (MN)-matrix. Note that this tensor product in
particular gives meaning for vectors: if x ∈ RM , y ∈ RN are column vectors,
then x⊗k y ∈ RMN is also a column vector. In this exercise we will investigate
how the Kronecker tensor product is related to tensor products as we have
defined them in this section.

a) Explain that, if x ∈ RM , y ∈ RN are column vectors, then x ⊗k y is the
column vector where the rows of x ⊗ y have first been stacked into one large
row vector, and this vector transposed. The linear extension of the operation
defined by

x⊗ y ∈ RM,N → x⊗k y ∈ RMN

thus stacks the rows of the input matrix into one large row vector, and transposes
the result.

b) Show that (A ⊗k B)(x ⊗k y) = (Ax) ⊗k (By). We can thus use any of
the defined tensor products ⊗, ⊗k to produce the same result, i.e. we have the
commutative diagram shown in Figure 9.3, where the vertical arrows represent
stacking the rows in the matrix, and transposing, and the horizontal arrows
represent the two tensor product linear transformations we have defined. In
particular, we can compute the tensor product in terms of vectors, or in terms

CHAPTER 9. DIGITAL IMAGES 134

of matrices, and it is clear that the Kronecker tensor product gives the matrix
of tensor product operations.

x⊗ y A⊗B//

��

(Ax)⊗ (By)

��
x⊗k y

A⊗kB// (Ax)⊗k (By),

Figure 9.3: Tensor products

Solution. We have that

(A⊗k B)(x⊗k y)

=


a11B a12B · · · a1MB
a21B a22B · · · a2MB
...

...
. . .

...
ap1B ap2B · · · apMB



x1y
x2y
...

xMy

 =


(a11x1 + . . .+ a1Mxm)By
(a21x1 + . . .+ a2Mxm)By

...
(ap1x1 + . . .+ apMxm)By



=


(Ax)1By
(Ax)2By

...
(Ax)pBy

 = (Ax)⊗k (By).

c) Using the Euclidean inner product on L(M,N) = RMN , i.e.

〈X,Y 〉 =
M−1∑
i=0

N−1∑
j=0

Xi,jYi,j .

and the correspondence in a) we can define the inner product of x1 ⊗ y1 and
x2 ⊗ y2 by

〈x1 ⊗ y1,x2 ⊗ y2〉 = 〈x1 ⊗k y1,x2 ⊗k y2〉.

Show that

〈x1 ⊗ y1,x2 ⊗ y2〉 = 〈x1,x2〉〈y1,y2〉.

Clearly this extends linearly to an inner product on LM,N .

Solution. We have that

CHAPTER 9. DIGITAL IMAGES 135

〈x1 ⊗ y1,x2 ⊗ y2〉 =
〈 (x1)0y1

...
(x1)M−1y1

 ,

 (x2)0y2
...

(x2)M−1y2

〉 =
M−1∑
i=0

(x1)i(x2)i〈y1,y2〉

= 〈y1,y2〉
M−1∑
i=0

(x1)i(x2)i = 〈x1,x2〉〈y1,y2〉.

d) Show that the FFT factorization can be written as(
FN/2 DN/2FN/2
FN/2 −DN/2FN/2

)
=
(
IN/2 DN/2
IN/2 −DN/2

)
(I2 ⊗k FN/2).

Also rewrite the sparse matrix factorization for the FFT from Equation (2.18)
in the compendium in terms of tensor products.

Exercise 9.16: Implement DFT and DCT on blocks
In this section we have used functions which apply the DCT and the DFT either
to subblocks of size 8×8, or to the full image. Implement functions which applies
the DFT, IDFT, DCT, and IDCT, to consecutive segments of length 8.

function x = DFTImpl8(x)
N = size(x, 1);
for n = 1:8:N

x(n:(n+7), :) = fft(x(n:(n+7), :));
end

function x = IDFTImpl8(x)
N = size(x, 1);
for n = 1:8:N

x(n:(n+7), :) = ifft(x(n:(n+7), :));
end

function x = DCTImpl8(x)
N = size(x, 1);
for n = 1:8:N

x(n:(n+7), :) = dct(x(n:(n+7), :));
end

function x = IDCTImpl8(x)
N = size(x, 1);
for n = 1:8:N

x(n:(n+7), :) = idct(x(n:(n+7), :));
end

Solution.

Exercise 9.17: Implement two-dimensional FFT and DCT
Write down code for running FFT2, IFFT2, DCT2, and IDCT2 on an image,
using the function tensor_impl.

CHAPTER 9. DIGITAL IMAGES 136

Solution. The following code can be used.

X = tensor_impl(img, @fft, @fft);
X = tensor_impl(img, @ifft, @ifft);
X = tensor_impl(img, @dct, @dct);
X = tensor_impl(img, @idct, @idct);

Exercise 9.18: Zeroing out DCT coefficients
The following function showDCThigher applies the DCT to an image in the same
way as the JPEG standard does. The function takes a threshold parameter, and
sets DCT coefficients below this value to zero:

function showDCThigher(threshold)
img = double(imread(’images/lena.png’, ’png’));
zeroedout = 0;
img = tensor_impl(img, @DCTImpl8, @DCTImpl8);
thresholdmatr = (abs(img) >= threshold);
zeroedout = zeroedout + prod(size(img)) ...

- sum(sum(sum(thresholdmatr)));
img = tensor_impl(img.*thresholdmatr, @IDCTImpl8, @IDCTImpl8);
imshow(uint8(255*mapto01(img)));
fprintf(’%i percent of samples zeroed out\n’, ...

100*zeroedout/prod(size(img)));

function x = DCTImpl8(x)
N = size(x, 1);
for n = 1:8:N

x(n:(n+7), :) = DCTImpl(x(n:(n+7), :));
end

function x = IDCTImpl8(x)
N = size(x, 1);
for n = 1:8:N

x(n:(n+7), :) = IDCTImpl(x(n:(n+7), :));
end

a) Explain this code line by line.

b) Run showDCThigher for different threshold parameters, and check that this
reproduces the test images of this section, and prints the correct numbers of
values which have been neglected (i.e. which are below the threshold) on screen.

Exercise 9.19: Comment code
Suppose that we have given an image by the matrix X. Consider the following
code:

threshold = 30;
[M, N] = size(X);
for n = 1:N

X(:, n) = FFTImpl(X(:, n), @FFTKernelStandard);
end
for m = 1:M

CHAPTER 9. DIGITAL IMAGES 137

X(m, :) = FFTImpl((X(m, :))’, @FFTKernelStandard);
end

X = X.*(abs(X) >= threshold);

for n = 1:N
X(:, n) = FFTImpl(X(:, n), @FFTKernelStandard, 0);

end
for m = 1:M

X(m, :) = FFTImpl((X(m, :))’, @FFTKernelStandard, 0);
end

Comment what the code does. Comment in particular on the meaning of the
parameter threshold, and what effect this has on the image.

Solution. In the first part of the code one makes a change of coordinates with
the DFT. More precisely, this is a change of coordinates on a tensor product,
as we have defined it. In the last part the change of coordinates is performed
the opposite way. Both these change of coordinates is performed is performed
the way we have described them, first on the rows in the matrix, then on the
columns. The parameter threshold is used to neglect DFT-coefficients which
are below a certain value. We have seen that this can give various visual artefacts
in the image, even though the main contents of the image still may be visible. If
we increase threshold, these artefacts will be more dominating since we then
neglect many DFT-coefficients.

Chapter 10

Using tensor products to
apply wavelets to images

Exercise 10.1: Implement two-dimensional DWT
Implement functions DW2TImpl and IDW2TImpl which perform them-level DWT2
and the IDWT2, respectively, on an image. The functions should take the
same input as DWTImpl and IDWTImpl, with the input vector replaced with a
two-dimensional object. The functions should at each stage call DWTImpl and
IDWTImpl with m = 1, and each call to these functions should alter the appropri-
ate upper left submatrix in the coordinate matrix. If the image has several color
components, the functions should be applied to each color component. There
are three color components in the test image ’lena.png’.

Solution. The following code can be used:

function X = DWT2Impl(X, nres, f, symmarg, dualarg)
symm = 1;
if nargin >= 4

symm = symmarg;
end
dual = 0;
if nargin >= 5

dual = dualarg;
end
M = size(X, 1); N = size(X, 2); sz = size(X);
M0 = size(X, 1); N0 = size(X, 2);
sz1 = sz; sz1(1) = [];
sz2 = sz; sz2(2) = [];
for res = 0:(nres - 1)

sz2(1) = M; Y2 = zeros(sz2);
sz1(1) = N; Y1 = zeros(sz1);
if length(sz1)==1

Y1=zeros(sz1, 1); Y2=zeros(sz2, 1);
end
for n = 1:2^res:N0

Y2(:, :) = X(1:2^res:M0, n, :);
X(1:2^res:M0, n, :) = f(Y2, symm, dual);

138

CHAPTER 10. USING TENSOR PRODUCTS TO APPLY WAVELETS TO IMAGES139

end
for m = 1:2^res:M0

Y1(:, :) = X(m, 1:2^res:N0, :);
X(m, 1:2^res:N0, :) = f(Y1, symm, dual);

end
M = ceil(M/2); N = ceil(N/2);

end

X = reorganize_coefficients2(X, nres, 1);

function X=IDWT2Impl(X, nres, f, symmarg, dualarg)
symm = 1;
if nargin >= 4

symm = symmarg;
end
dual = 0;
if nargin >= 5

dual = dualarg;
end

X = reorganize_coefficients2(X, nres, 0);

M = size(X, 1); N = size(X, 2); sz = size(X);
sz1 = sz; sz1(1) = [];
sz2 = sz; sz2(2) = [];
for res = (nres - 1):(-1):0

sz1(1) = length(1:2^res:N); sz2(1) = length(1:2^res:M);
Y1 = zeros(sz1); Y2 = zeros(sz2);
if length(sz1)==1

Y1=zeros(sz1, 1); Y2=zeros(sz2, 1);
end
for n = 1:2^res:N

Y2(:, :) = X(1:2^res:M, n, :);
X(1:2^res:M, n, :) = f(Y2(:, :), symm, dual);

end
for m = 1:2^res:M

Y1(:, :) = X(m, 1:2^res:N, :);
X(m, 1:2^res:N, :) = f(Y1(:, :), symm, dual);

end
end

Exercise 10.2: Comment code
Assume that we have an image represented by the M ×N -matrix X, and consider
the following code:

for n = 1:N
c = (X(1:2:M, n) + X(2:2:M, n))/sqrt(2);
w = (X(1:2:M, n) - X(2:2:M, n))/sqrt(2);
X(:, n) = [c; w];

for m = 1:M
c = (X(m, 1:2:N) + X(m, 2:2:N))/sqrt(2);
w = (X(m, 1:2:N) - X(m, 2:2:N))/sqrt(2);
X(m, :) = [c w];

CHAPTER 10. USING TENSOR PRODUCTS TO APPLY WAVELETS TO IMAGES140

a) Comment what the code does, and explain what you will see if you display X
as an image after the code has run.

Solution. The code runs a DWT over one level, and the Haar wavelet is
used. Inside the for-loops the DWT is applied to every row and column in the
image. k=1 i the for-loop corresponds to applying the DWT to the columns,
k=2 corresponds to applying the DWT to the rows. In the upper left corner we
will see a low-resolution version of the image. In the other three corners you will
see different tyoes of detail: In the upper right corner you will see detail which
corresponds to quick vertical changes, in the lower left corner you will see detail
which corresponds to quick horizontal changes, and in the lower right corner
you will see points where quick changes both vertically and horizontally occur
simultaneously.

b) The code above has an inverse transformation, which reproduce the original
image from the transformed values which we obtained. Assume that you zero
out the values in the lower left and the upper right corner of the matrix X after
the code above has run, and that you then reproduce the image by applying this
inverse transformation. What changes can you then expect in the image?

Solution. By zeroing out the two corners you remove detail which correpond
to quick horizontal and vertical changes. But since we keep the lower right
corner, we keep detail which corresponds to simultaneous changes vertically and
horizontally. The result after the inverse transformation is that most edges have
been smoothed, but we see no smoothing effect in points where quick changes
occur both horizontally and vertically. In Example 10.14 in the compendium,
this corresponds to that we emphasize the gridpoints in the chess pattern, mut
that we smooth out the horizontal and vertical edges in the chess pattern.

Exercise 10.3: Comment code
In this exercise we will use the filters G0 = {1, 1}, G1 = {1,−1}.

a) Let X be a matrix which represents the pixel values in an image. Define
x = (1, 0, 1, 0) and y = (0, 1, 0, 1). Compute (G0 ⊗G0)(x⊗ y).

b) For a general image X, describe how the images (G0 ⊗G0)X, (G0 ⊗G1)X,
(G1 ⊗G0)X, and (G1 ⊗G1)X may look.

c) Assume that we run the following code on an image represented by the matrix
X:

[M, N]=size(X);
for n=1:N

c = X(1:2:M, n) + X(2:2:M, n);
w = X(1:2:M, n) - X(2:2:M, n);
X(:, n) = [c; w];

end

CHAPTER 10. USING TENSOR PRODUCTS TO APPLY WAVELETS TO IMAGES141

for m=1:M
c = X(m, 1:2:N) + X(m, 2:2:N);
w = X(m, 1:2:N) - X(m, 2:2:N);
X(m, :) = [c w];

end

Comment the code. Describe what will be shown in the upper left corner of
X after the code has run. Do the same for the lower left corner of the matrix.
What is the connection with the images (G0 ⊗G0)X, (G0 ⊗G1)X, (G1 ⊗G0)X,
and (G1 ⊗G1)X?

Exercise 10.4: Zeroint out DWT coefficients
In this exercise we will experiment with applying the m-level DWT2 to an image.

a) Write a function showDWT, which takes m, a DWT kernel f, an IDWT kernel
invf, and a variable lowres as input, and

• reads the image file lena.png,

• performs an m-level DWT2 on the image samples using the function
DW2TImpl, with DWT kernel f

• sets all wavelet coefficients representing detail to zero if lowres is true
(i.e. keep only the low-resolution coordinates from φ0 ⊗ φ0),

• sets all low-resolution coordinates to zero if lowres is false (i.e. keep only
the detail coordinates),

• performs an IDWT2 on the resulting coefficients using the function IDW2TImpl,
with IDWT kernel invf,

• displays the resulting image.

Solution. The following code achieves the task:

function showDWT(m, f, invf, lowres)
img = double(imread(’images/lena.png’, ’png’));
img = DWT2Impl(img, m, f);
if lowres

M =size(img, 1); N = size(img, 2);
tokeep=img(1:(M/(2^m)), 1:(N/(2^m)), :);
img=zeros(size(img));
img(1:(M/(2^m)), 1:(N/(2^m)), :)=tokeep;

else
sz = size(img);
sz(1) = sz(1)/2^m; sz(2) = sz(2)/2^m;
img(1:sz(1), 1:sz(2), :) = 0;

end
img = IDWT2Impl(img, m, invf);
imshow(uint8(255*mapto01(img)));

CHAPTER 10. USING TENSOR PRODUCTS TO APPLY WAVELETS TO IMAGES142

b) Do the image samples returned by showDWT lie in [0, 255]?

Solution. There is no reason to believe that image samples returned by the
function lie in [0, 255]. You can check this by printing the maximum value in
the returned array on screen inside this method.

c) Run the function showDWT for different values of m for the Haar wavelet, with
lowres set to true. Describe what you see for different m. For which m can
you see that the image gets degraded? How does it get degraded? Compare
with what you saw with the function showDCThigher in Exercise 9.18, where
you performed a DCT on the image samples instead, and set DCT coefficients
below a given threshold to zero.

d) Repeat what you did in c., but this time with lowres set to false instead.
What kind of image do you see now? Can you recognize the original image in
what you see? Try to explain why the images seem to get clearer when you
increase m.

e) In the code in Example 10.17 in the compendium, set lowres to false in the
call to showDWT also for the other wavelets. and repeat what you did in d..

Solution. After the replacements we get the following code.

showDWT(m, @DWTKernelHaar, @IDWTKernelHaar, 0);
showDWT(m, @DWTKernel53, @IDWTKernel53, 0);
showDWT(m, @DWTKernel97, @IDWTKernel97, 0);

Exercise 10.5: Experiments on a test image
In Figure 10.1 we have applied the DWT2 with the Haar wavelet to an image
very similar to the one you see in Figure 10.6 in the compendium. You see here,
however, that there seems to be no detail components, which is very different
from Figure 10.6 in the compendium, even though the images are very similar.
Attempt to explain what causes this to happen.

Hint. Compare with Exercise 5.17.

Solution. In Figure 10.6 in the compendium, the borders in the chess pattern
was chosen so that they occur at odd numbers. This means that the image can
not be represented exactly in Vm−1 ⊗ Vm−1, so that there is detail present in
the image at all the borders in the chess pattern. In Figure 10.1, the borders in
the chess pattern was chosen so that they occur at even numbers. This means
that the image can be represented exactly in Vm−1 ⊗ Vm−1, so that there is no
detail components present in the image.

CHAPTER 10. USING TENSOR PRODUCTS TO APPLY WAVELETS TO IMAGES143

Figure 10.1: A simple image before and after one level of the DWT2. The Haar
wavelet was used.

Exercise 10.6: Implement the fingerprint compression scheme
Write code which generates the images shown in figures 10.6 in the compendium,
10.6 in the compendium, and 10.23 in the compendium. Use the functions
DW2TImpl and IDW2TImpl with the CDF 9/7 wavelet kernel functions as input.

Appendix A

Basic Linear Algebra

144

Appendix B

Signal processing and linear
algebra: a translation guide

145

	Preface
	Sound and Fourier series
	Digital sound and Discrete Fourier analysis
	Operations on digital sound: digital filters
	Symmetric filters and the DCT
	Motivation for wavelets and some simple examples
	The filter representation of wavelets
	Constructing interesting wavelets
	The polyphase representation and wavelets
	Digital images
	Using tensor products to apply wavelets to images
	Basic Linear Algebra
	Signal processing and linear algebra: a translation guide

