MAT4300 - FALL 2009 - MANDATORY ASSIGNMENT
Solution (the easy parts 1b) and 1c) are only sketched)

Problem 1
a) Let p, f € MT and A € A. Then

(*) /fdupz/fpdu'
A A
We consider first f =1, E € A. Then

/AlEd,up:/lAmE dpy, = pp(ANE)

_/ pdu—/lEdea
ANE A

so (%) holds in this case.

Next, assume that f € E(A)T = {E(A)|f > 0}. Write f =377, y;1p; for
some y; € RT | E; € A. Linearity of the integral clearly passes over to
linearity of the integral over A. Using this and the first step, we get

/AfdeZ/A(;ylej) dupzjz_;yj(AIEjdup)

=j;yj(/AlEjpdu)ZA(;ylej)pduzAfpdu,

so (*) also holds in this case.
Finally, we consider f € M*. Using Thm 8.8, we pick an increasing
sequence f; in £(A)T converging pointwise to f, i.e. f; T f. Then 14 f;

and 14 f; p are sequences in M(A)" such that 14 f; T f, Lafjp 1 fp.
Hence, using B. Lévi’s MCT (twice) and the second step, we get

/Afdﬂp:/1Afd/1«p:jlilgo/1.4fjdup

—tim [ 1afypdu= [t vasipdu= [ fodn.
j—o0 j—00 A
which shows that () holds.



b) Let p € M+ and f € M. Then
fe Cl(up) if and only if fp € LY (1), in which case we have

/fd,up:/fpdu forall Ac A.
A A

Indeed, this follows easily by noticing that (f p)* = f* p (since p > 0) and
using a) on f*, together with the definitions of integrability and of the
integral. We skip the details.

c) Assume p= >_521¢jpj for some sequences {c;}jen C (0,00] and
{pj}jen CT M™T. Then

pp(A) = ch pp; (A), forall Ae A.
j=1

This is a simple consequence of Cor. 9.9. We skip the details.
d) Let p € M™T. Assume f,g € M. Then

f=g p-ae = f=g py-ae.

Give also an example showing that the converse implication is not
necessarily true in general.

Assume f = g p-a.e.; that is, u(N) =0, where N = {f # g}.
Then p,(N) = [y pdp = [ 1y pdp =0 (see Thm 10.9 (i) and its proof).
Hence, f = g pp-a.e..

To see that the converse is not necessarily true, one may of course consider
the "trivial” case where p = 0, so p, is the zero measure. But the converse
can fail even if p # 0: consider f.ex.

X=R, A=B[R),p=Nand p=1jyy, [ =111, 9=1pg.
Then N = {f # g} = [-1,0) U (1, 2], so p1p(N) = p(N N[0, 1]) = p(0) = 0,

while p(IN) =2 # 0.
Hence f = g pp-a.e., while it is not true that f =g p-a.e..

e) Assume (X, A, u) = (R, B(R), A) and p: R — [0,00) is continuous.
Let F(x) = [; p(t)dt, x € R, and let vp be the associated Stieljes measure
on B(R).



Thenvp =p- X and [ fdvp= [ fpd\ forall fe M.
For all a,b € R, a < b, we have

b a b
vr((a.h) = FO=Pla) = [ o= [0yt = [“pie)ar = /[a’b)pdxzxpua?b))

Since the family J = {[a,b) |a,b € R, a < b} generates B(R), is stable
under finite intersections, and the exhausting sequence [—k, k) TR in J
satisfies vp([—k, k)) = F(k) — F(—k) < oo for all k € N, Thm 5.7 (or 6.1)
applies and gives that vp = A\, = p- A. The final assertion follows then
from la).

f) Assume A =P(X). Let uu be the counting measure on A, p € M* and
Aec A, i.e. AC X. Then

1p(A) = Z p(x).

z€EA

Since p,(A) = [ dup, = [ 14 pdp, we have to show that

() [Lapdn=3 o).

€A

Assume first there exists some g € A such that p(zg) = oc.
Then, by definition, we have ), p(z) = oo (cf. Extra-Exercise 1).

On the other hand, let h,, € ET(A) be given by h, =n 14201, n € N. Then
for each n € N we have h,, < 14 p; therefore

n:n/ du:/hndugsup{/hdu\h€5+(A),hSlAp}:/lApdu.
{zo}

This implies that [ 14 pdu = co. Hence we see that (x*) holds in this case.

Next, we assume that p(x) < oo for all x € A.
Let B = {z1, -+ ,zx} be a finite subset of A.
Set g = Z?:l p(25) 1z,3 € ET(A). Then g < 14p, so

k
T) = xj) = du < [ 1apdu.
> p(x) ;p() /gu /Apu

3



Taking the supremum over all such B’s, we get
> plx) < /1Apdu-
€A

Especially, if > . 4 p(z) = oo, then this implies that
> plx) = /1APdM = 00

€A
and (%) holds.
Thus to show that (#x) always holds, it remains only to check that

(kx%)  [Lapdp <3 c4p(x) whenever Y- 4 p(z) < 0.

So assume now that ), p(z) < co.
Set Ag={z € A|p(z) >0}, Ay ={z € A|p(z) >1/k}, ke N.

Then Ag = UrenAyg is countable, as each Ay is finite: indeed, if Ay is
infinite for some k& € N, then

1

dop@)= Y plw) =2 > 1=00,

T€EA TEAL TEAL
contradicting our assumption.
Note also that p is zero on A\ Ay, by definition of Ajy.
If Ag is finite, then trivially

/lApdu = /1A0pdu = plx)=>_ p(z)
x€Ap z€EA

and (xx) holds.

If A is countably infinite, let {a1, a2, -} be an enumeration of the
elements of Ag and set p, =37 p(a;) (4,3, n € N. Then {p,} T 1ap,
and B. Lévi’s MCT gives

/1Apdu = Jilglo/pndu = lim > pla;) <) plx).
=1 zeA

Hence (x * *) holds (actually one can easily show that we have equality
above), and this finishes the proof.



Problem 2.

a) Let T: X -Y,BCY and set A=T"1(B)C X.
Then T(A) = BNT(X). If T is injective and X is finite, then
#(I1(B)) = #(BNT(X)).

Since A = {x € X |T(z) € B} we have
T(A)={T(z) |z e X, T(z)e B} ={yeT(X)|lye B} =T(X)NB.

If T is injective, then x — T'(x) gives a bijection from A onto T'(A), so A
and T'(A) have the same cardinality. Now cardinality of a finite set may be
interpreted as the number of elements in the set. Hence, if T is injective
and X is finite, we get #(T1(B)) = #(A) = #(T(A)) = #(BNT(X)).

For each n € N, set X,, = {0,1}" and pu,(A) = #, ACX,.

Further, let T, (a1,az2,- - ,a,) :al'%+a2-2%+-~-+an~
(ar,a2, - ,an) € Xp, and set Ay = Ty (i) (= pn 0 T L),

2% when

b) Let B C [0,1], n € N. Then \y(B) = 5 - #(B N Dy, ), where

_ 1 2 3 2n—1
Dn_{oaginagirugin?”'a on .

Note that

1 1 1
Tn(Xn):{a1'§+a2'27+"'+an'27 | (a17a27"'7an)€Xn}

1
= {2—71[a1-2”71+a2-2"72+-~+an_1‘21+an‘20} ’ (al,ag,--' ,an) S Xn}

1
={—m|meZ,0<m<2"—-1}=D,
27’L

since every every integer m from 0 to 2" — 1 may be (uniquely) written as
ar-2" 4 ag-2" 2 - an_1 -2  +ay, - 20 for some (ay, a2, ,an) € Xp;
the string ajas - - - an—1a, is then the base 2 representation of m.

Hence, using a), we get

M(B) = pin(TH(B)) = pn(B N To(Xn)) = 2% #(BND,).

¢) Let u. denote the counting measure on P([0,1]). Let n € N and
f:[0,1] = R.



Then A\, = Q%IDTL e , €LY and

2n—1 .
[ a5 X s@ =5 X I
x€Dy, 7=0

Let B C [0,1]. Using b) we get

1 1
An(B):Qin#(BmDn) 2n /BQD dﬂc—/ 1Dnd:U’c

This shows that A\, = —n 1p, - M-

Trivially, f is measurable. Further, using la) and 1f), we get

[ = [ 1= o= [ Pane= 5 Y e <o

IGDn

since D,, is finite. This shows that f € £!(),). Further we then get

[t =[5t [ ane= 50 > 1@ - 5 3 1 @)

J?EDn $6Dn
1 n—1
LY @)= =3,
xEDn 7=0

as desired.

d) Let f be a bounded, Riemann integrable function on [0,1]. Then

lim [ fd\, = /1 f(z)dx
0

n—oo

For each n we consider the regular partition

— 1 2 3
Po={0< 5w < 55 < 50 <:---

of [0,1].

The Riemann sum associated to f by choosing as intermediate points the
left endpoint of each of the subintervals [ , 32#] ,j=0,1,--- ,n—1,1is
then given by



As the mesh of P,, which is equal to 27", goes to zero as n — oo, the
Riemann integrability of f implies that lim, o R, (f) = f[o 1 f(x)dx
(cf. Appendix E. 6). The assertion clearly follows.

e) Let A denote the Lebesgue measure on [0,1] and 0 <a <b < 1.
Then
lim Ay, ([a,b]) = A([a,b]).

n—oo

As the function 1j, is Riemann integrable, d) gives:

1
lim A, ([a,b]) = lim [ 1f,4dA, = / Ly p dz = / Liap) dA = A([a, b)) -
0 [0,1]

n—o0 n—oo

f) The formula

lim [ fd\, = / fdX
does not hold for all f € LY(N).
Indeed, let f be the restriction of 1g to [0, 1].

Then f(4)=1forall j=0,1,---,n—1, and all n € N.
Using c) we get

1 — 2m
/fd)‘n—zn' 21:27:1
7=0
for all n € N. Hence lim,, . [ f d\, = 1.

On the other hand, f =0 A-a.e. (since QN [0, 1] is countable).
So fe LY(N) and [ fd\=0# limy oo [ f dp.



