MAT4300 - FALL 2009 - MANDATORY ASSIGNMENT

Solution (the easy parts 1b) and 1c) are only sketched)

Problem 1

a) Let $\rho, f \in \overline{\mathcal{M}}^{+}$and $A \in \mathcal{A}$. Then

$$
(*) \quad \int_{A} f d \mu_{\rho}=\int_{A} f \rho d \mu
$$

We consider first $f=\mathbf{1}_{E}, E \in \mathcal{A}$. Then

$$
\begin{gathered}
\int_{A} \mathbf{1}_{E} d \mu_{\rho}=\int \mathbf{1}_{A \cap E} d \mu_{\rho}=\mu_{\rho}(A \cap E) \\
=\int_{A \cap E} \rho d \mu=\int_{A} \mathbf{1}_{E} \rho d \mu
\end{gathered}
$$

so $(*)$ holds in this case.
Next, assume that $f \in \mathcal{E}(\mathcal{A})^{+}=\{\mathcal{E}(\mathcal{A}) \mid f \geq 0\}$. Write $f=\sum_{j=1}^{n} y_{j} \mathbf{1}_{E_{j}}$ for some $y_{j} \in \mathbb{R}^{+}, E_{j} \in \mathcal{A}$. Linearity of the integral clearly passes over to linearity of the integral over A. Using this and the first step, we get

$$
\begin{aligned}
& \int_{A} f d \mu_{\rho}=\int_{A}\left(\sum_{j=1}^{n} y_{j} \mathbf{1}_{E_{j}}\right) d \mu_{\rho}=\sum_{j=1}^{n} y_{j}\left(\int_{A} \mathbf{1}_{E_{j}} d \mu_{\rho}\right) \\
= & \sum_{j=1}^{n} y_{j}\left(\int_{A} \mathbf{1}_{E_{j}} \rho d \mu\right)=\int_{A}\left(\sum_{j=1}^{n} y_{j} \mathbf{1}_{E_{j}}\right) \rho d \mu=\int_{A} f \rho d \mu,
\end{aligned}
$$

so $(*)$ also holds in this case.
Finally, we consider $f \in \overline{\mathcal{M}}^{+}$. Using Thm 8.8, we pick an increasing sequence f_{j} in $\mathcal{E}(\mathcal{A})^{+}$converging pointwise to f, i.e. $f_{j} \uparrow f$. Then $\mathbf{1}_{A} f_{j}$ and $\mathbf{1}_{A} f_{j} \rho$ are sequences in $\overline{\mathcal{M}}(\mathcal{A})^{+}$such that $\mathbf{1}_{A} f_{j} \uparrow f, \mathbf{1}_{A} f_{j} \rho \uparrow f \rho$. Hence, using B. Lévi's MCT (twice) and the second step, we get

$$
\begin{gathered}
\int_{A} f d \mu_{\rho}=\int \mathbf{1}_{A} f d \mu_{\rho}=\lim _{j \rightarrow \infty} \int \mathbf{1}_{A} f_{j} d \mu_{\rho} \\
=\lim _{j \rightarrow \infty} \int \mathbf{1}_{A} f_{j} \rho d \mu=\int \lim _{j \rightarrow \infty} \mathbf{1}_{A} f_{j} \rho d \mu=\int_{A} f \rho d \mu,
\end{gathered}
$$

which shows that $(*)$ holds.
b) Let $\rho \in \overline{\mathcal{M}}^{+}$and $f \in \mathcal{M}$. Then
$f \in \mathcal{L}^{1}\left(\mu_{\rho}\right)$ if and only if $f \rho \in \overline{\mathcal{L}}^{1}(\mu)$, in which case we have

$$
\int_{A} f d \mu_{\rho}=\int_{A} f \rho d \mu \quad \text { for all } A \in \mathcal{A}
$$

Indeed, this follows easily by noticing that $(f \rho)^{ \pm}=f^{ \pm} \rho$ (since $\rho \geq 0$) and using a) on $f^{ \pm}$, together with the definitions of integrability and of the integral. We skip the details.
c) Assume $\rho=\sum_{j=1}^{\infty} c_{j} \rho_{j}$ for some sequences $\left\{c_{j}\right\}_{j \in \mathbb{N}} \subset(0, \infty]$ and $\left\{\rho_{j}\right\}_{j \in \mathbb{N}} \subset \overline{\mathcal{M}}^{+}$. Then

$$
\mu_{\rho}(A)=\sum_{j=1}^{\infty} c_{j} \mu_{\rho_{j}}(A), \text { for all } A \in \mathcal{A}
$$

This is a simple consequence of Cor. 9.9. We skip the details.
d) Let $\rho \in \overline{\mathcal{M}}^{+}$. Assume $f, g \in \overline{\mathcal{M}}$. Then

$$
f=g \quad \mu \text {-a.e. } \Rightarrow f=g \quad \mu_{\rho}-a . e .
$$

Give also an example showing that the converse implication is not necessarily true in general.

Assume $f=g \mu$-a.e.; that is, $\mu(N)=0$, where $N=\{f \neq g\}$.
Then $\mu_{\rho}(N)=\int_{N} \rho d \mu=\int \mathbf{1}_{N} \rho d \mu=0$ (see Thm 10.9 (ii) and its proof).
Hence, $f=g \mu_{\rho}$-a.e..
To see that the converse is not necessarily true, one may of course consider the "trivial" case where $\rho=0$, so μ_{ρ} is the zero measure. But the converse can fail even if $\rho \neq 0$: consider f.ex.

$$
X=\mathbb{R}, \mathcal{A}=\mathcal{B}(\mathbb{R}), \mu=\lambda \text { and } \rho=\mathbf{1}_{[0,1]}, f=\mathbf{1}_{[-1,1]}, g=\mathbf{1}_{[0,2]}
$$

Then $N=\{f \neq g\}=[-1,0) \cup(1,2]$, so $\mu_{\rho}(N)=\mu(N \cap[0,1])=\mu(\emptyset)=0$, while $\mu(N)=2 \neq 0$.
Hence $f=g \mu_{\rho}$-a.e., while it is not true that $f=g \mu$-a.e..
e) Assume $(X, \mathcal{A}, \mu)=(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ and $\rho: \mathbb{R} \rightarrow[0, \infty)$ is continuous.

Let $F(x)=\int_{0}^{x} \rho(t) d t, x \in \mathbb{R}$, and let ν_{F} be the associated Stieljes measure on $\mathcal{B}(\mathbb{R})$.

Then $\nu_{F}=\rho \cdot \lambda$ and $\int f d \nu_{F}=\int f \rho d \lambda$ for all $f \in \overline{\mathcal{M}}^{+}$.
For all $a, b \in \mathbb{R}, a \leq b$, we have

$$
\nu_{F}([a, b))=F(b)-F(a)=\int_{0}^{b} \rho(t) d t-\int_{0}^{a} \rho(t) d t=\int_{a}^{b} \rho(t) d t=\int_{[a, b)} \rho d \lambda=\lambda_{\rho}([a, b))
$$

Since the family $\mathcal{J}=\{[a, b) \mid a, b \in \mathbb{R}, a \leq b\}$ generates $\mathcal{B}(\mathbb{R})$, is stable under finite intersections, and the exhausting sequence $[-k, k) \uparrow \mathbb{R}$ in \mathcal{J} satisfies $\nu_{F}([-k, k))=F(k)-F(-k)<\infty$ for all $k \in \mathbb{N}$, Thm 5.7 (or 6.1) applies and gives that $\nu_{F}=\lambda_{\rho}=\rho \cdot \lambda$. The final assertion follows then from 1a).
f) Assume $\mathcal{A}=\mathcal{P}(X)$. Let μ be the counting measure on \mathcal{A}, $\rho \in \overline{\mathcal{M}}^{+}$and $A \in \mathcal{A}$, i.e. $A \subset X$. Then

$$
\mu_{\rho}(A)=\sum_{x \in A} \rho(x)
$$

Since $\mu_{\rho}(A)=\int_{A} d \mu_{\rho}=\int \mathbf{1}_{A} \rho d \mu$, we have to show that

$$
(* *) \quad \int \mathbf{1}_{A} \rho d \mu=\sum_{x \in A} \rho(x)
$$

Assume first there exists some $x_{0} \in A$ such that $\rho\left(x_{0}\right)=\infty$.
Then, by definition, we have $\sum_{x \in A} \rho(x)=\infty$ (cf. Extra-Exercise 1).
On the other hand, let $h_{n} \in \mathcal{E}^{+}(\mathcal{A})$ be given by $h_{n}=n \mathbf{1}_{\left\{x_{0}\right\}}, n \in \mathbb{N}$. Then for each $n \in \mathbb{N}$ we have $h_{n} \leq \mathbf{1}_{A} \rho$; therefore
$n=n \int_{\left\{x_{0}\right\}} d \mu=\int h_{n} d \mu \leq \sup \left\{\int h d \mu \mid h \in \mathcal{E}^{+}(\mathcal{A}), h \leq \mathbf{1}_{A} \rho\right\}=\int \mathbf{1}_{A} \rho d \mu$.
This implies that $\int \mathbf{1}_{A} \rho d \mu=\infty$. Hence we see that $(* *)$ holds in this case.
Next, we assume that $\rho(x)<\infty$ for all $x \in A$.
Let $B=\left\{x_{1}, \cdots, x_{k}\right\}$ be a finite subset of A.
Set $g=\sum_{j=1}^{k} \rho\left(x_{j}\right) \mathbf{1}_{\left\{x_{j}\right\}} \in \mathcal{E}^{+}(\mathcal{A})$. Then $g \leq \mathbf{1}_{A} \rho$, so

$$
\sum_{x \in B} \rho(x)=\sum_{j=1}^{k} \rho\left(x_{j}\right)=\int g d \mu \leq \int \mathbf{1}_{A} \rho d \mu
$$

Taking the supremum over all such B 's, we get

$$
\sum_{x \in A} \rho(x) \leq \int \mathbf{1}_{A} \rho d \mu
$$

Especially, if $\sum_{x \in A} \rho(x)=\infty$, then this implies that

$$
\sum_{x \in A} \rho(x)=\int \mathbf{1}_{A} \rho d \mu=\infty
$$

and $(* *)$ holds.
Thus to show that $(* *)$ always holds, it remains only to check that

$$
(* * *) \quad \int \mathbf{1}_{A} \rho d \mu \leq \sum_{x \in A} \rho(x) \text { whenever } \sum_{x \in A} \rho(x)<\infty
$$

So assume now that $\sum_{x \in A} \rho(x)<\infty$.
Set $A_{0}=\{x \in A \mid \rho(x)>0\}, A_{k}=\{x \in A \mid \rho(x)>1 / k\}, k \in \mathbb{N}$.
Then $A_{0}=\cup_{k \in \mathbb{N}} A_{k}$ is countable, as each A_{k} is finite: indeed, if A_{k} is infinite for some $k \in \mathbb{N}$, then

$$
\sum_{x \in A} \rho(x) \geq \sum_{x \in A_{k}} \rho(x) \geq \frac{1}{k} \sum_{x \in A_{k}} 1=\infty
$$

contradicting our assumption.
Note also that ρ is zero on $A \backslash A_{0}$, by definition of A_{0}.
If A_{0} is finite, then trivially

$$
\int \mathbf{1}_{A} \rho d \mu=\int \mathbf{1}_{A_{0}} \rho d \mu=\sum_{x \in A_{0}} \rho(x)=\sum_{x \in A} \rho(x)
$$

and ($* *$) holds.
If A_{0} is countably infinite, let $\left\{a_{1}, a_{2}, \cdots\right\}$ be an enumeration of the elements of A_{0} and set $\rho_{n}=\sum_{j=1}^{n} \rho\left(a_{j}\right) \mathbf{1}_{\left\{a_{j}\right\}}, n \in \mathbb{N}$. Then $\left\{\rho_{n}\right\} \uparrow \mathbf{1}_{A} \rho$, and B. Lévi's MCT gives

$$
\int \mathbf{1}_{A} \rho d \mu=\lim _{n \rightarrow \infty} \int \rho_{n} d \mu=\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \rho\left(a_{j}\right) \leq \sum_{x \in A} \rho(x)
$$

Hence $(* * *)$ holds (actually one can easily show that we have equality above), and this finishes the proof.

Problem 2.

a) Let $T: X \rightarrow Y, B \subset Y$ and set $A=T^{-1}(B) \subset X$.

Then $T(A)=B \cap T(X)$. If T is injective and X is finite, then $\#\left(T^{-1}(B)\right)=\#(B \cap T(X))$.

Since $A=\{x \in X \mid T(x) \in B\}$ we have

$$
T(A)=\{T(x) \mid x \in X, T(x) \in B\}=\{y \in T(X) \mid y \in B\}=T(X) \cap B
$$

If T is injective, then $x \rightarrow T(x)$ gives a bijection from A onto $T(A)$, so A and $T(A)$ have the same cardinality. Now cardinality of a finite set may be interpreted as the number of elements in the set. Hence, if T is injective and X is finite, we get $\#\left(T^{-1}(B)\right)=\#(A)=\#(T(A))=\#(B \cap T(X))$.

For each $n \in \mathbb{N}$, set $X_{n}=\{0,1\}^{n}$ and $\mu_{n}(A)=\frac{\#(A)}{2^{n}}, A \subset X_{n}$.
Further, let $T_{n}\left(a_{1}, a_{2}, \cdots, a_{n}\right)=a_{1} \cdot \frac{1}{2}+a_{2} \cdot \frac{1}{2^{2}}+\cdots+a_{n} \cdot \frac{1}{2^{n}}$ when $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in X_{n}$, and set $\lambda_{n}=T_{n}\left(\mu_{n}\right)\left(=\mu_{n} \circ T_{n}^{-1}\right)$.
b) Let $B \subset[0,1], n \in \mathbb{N}$. Then $\lambda_{n}(B)=\frac{1}{2^{n}} \cdot \#\left(B \cap D_{n}\right)$, where $D_{n}=\left\{0, \frac{1}{2^{n}}, \frac{2}{2^{n}}, \frac{3}{2^{n}}, \cdots, \frac{2^{n}-1}{2^{n}}\right\}$.

Note that

$$
\begin{gathered}
T_{n}\left(X_{n}\right)=\left\{\left.a_{1} \cdot \frac{1}{2}+a_{2} \cdot \frac{1}{2^{2}}+\cdots+a_{n} \cdot \frac{1}{2^{n}} \right\rvert\,\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in X_{n}\right\} \\
=\left\{\left.\frac{1}{2^{n}}\left[a_{1} \cdot 2^{n-1}+a_{2} \cdot 2^{n-2}+\cdots+a_{n-1} \cdot 2^{1}+a_{n} \cdot 2^{0}\right] \right\rvert\,\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in X_{n}\right\} \\
=\left\{\left.\frac{1}{2^{n}} m \right\rvert\, m \in \mathbb{Z}, 0 \leq m \leq 2^{n}-1\right\}=D_{n}
\end{gathered}
$$

since every every integer m from 0 to $2^{n}-1$ may be (uniquely) written as $a_{1} \cdot 2^{n-1}+a_{2} \cdot 2^{n-2}+\cdots+a_{n-1} \cdot 2^{1}+a_{n} \cdot 2^{0}$ for some $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in X_{n}$; the string $a_{1} a_{2} \cdots a_{n-1} a_{n}$ is then the base 2 representation of m.

Hence, using a), we get

$$
\lambda_{n}(B)=\mu_{n}\left(T_{n}^{-1}(B)\right)=\mu_{n}\left(B \cap T_{n}\left(X_{n}\right)\right)=\frac{1}{2^{n}} \cdot \#\left(B \cap D_{n}\right)
$$

c) Let μ_{c} denote the counting measure on $\mathcal{P}([0,1])$. Let $n \in \mathbb{N}$ and $f:[0,1] \rightarrow \mathbb{R}$.

Then $\lambda_{n}=\frac{1}{2^{n}} \mathbf{1}_{D_{n}} \cdot \mu_{c}, f \in \mathcal{L}^{1}\left(\lambda_{n}\right)$ and

$$
\int f d \lambda_{n}=\frac{1}{2^{n}} \cdot \sum_{x \in D_{n}} f(x)=\frac{1}{2^{n}} \cdot \sum_{j=0}^{2^{n}-1} f\left(\frac{j}{2^{n}}\right) .
$$

Let $B \subset[0,1]$. Using b$)$ we get

$$
\lambda_{n}(B)=\frac{1}{2^{n}} \cdot \#\left(B \cap D_{n}\right)=\frac{1}{2^{n}} \int_{B \cap D_{n}} d \mu_{c}=\int_{B} \frac{1}{2^{n}} \mathbf{1}_{D_{n}} d \mu_{c}
$$

This shows that $\lambda_{n}=\frac{1}{2^{n}} \mathbf{1}_{D_{n}} \cdot \mu_{c}$.
Trivially, f is measurable. Further, using 1a) and 1f), we get

$$
\int f^{ \pm} d \mu_{n}=\int f^{ \pm} \frac{1}{2^{n}} \mathbf{1}_{D_{n}} d \mu_{c}=\frac{1}{2^{n}} \int_{D_{n}} f^{ \pm} d \mu_{c}=\frac{1}{2^{n}} \sum_{x \in D_{n}} f^{ \pm}(x)<\infty
$$

since D_{n} is finite. This shows that $f \in \mathcal{L}^{1}\left(\lambda_{n}\right)$. Further we then get

$$
\begin{gathered}
\int f d \mu_{n}=\int f^{+} d \mu_{c}-\int f^{-} d \mu_{c}=\frac{1}{2^{n}} \sum_{x \in D_{n}} f^{+}(x)-\frac{1}{2^{n}} \sum_{x \in D_{n}} f^{-}(x) \\
=\frac{1}{2^{n}} \sum_{x \in D_{n}} f(x)=\frac{1}{2^{n}} \sum_{j=0}^{n-1} f\left(j / 2^{n}\right),
\end{gathered}
$$

as desired.
d) Let f be a bounded, Riemann integrable function on $[0,1]$. Then

$$
\lim _{n \rightarrow \infty} \int f d \lambda_{n}=\int_{0}^{1} f(x) d x
$$

For each n we consider the regular partition

$$
P_{n}=\left\{0<\frac{1}{2^{n}}<\frac{2}{2^{n}}<\frac{3}{2^{n}}<\cdots<\frac{2^{n}-1}{2^{n}}<1\right\} \text { of }[0,1] .
$$

The Riemann sum associated to f by choosing as intermediate points the left endpoint of each of the subintervals $\left[\frac{j}{2^{n}}, \frac{j+1}{2^{n}}\right], j=0,1, \cdots, n-1$, is then given by

$$
R_{n}(f)=\sum_{j=0}^{n-1} f\left(j / 2^{n}\right) \frac{1}{2^{n}}=\int f d \mu_{n}
$$

As the mesh of P_{n}, which is equal to 2^{-n}, goes to zero as $n \rightarrow \infty$, the Riemann integrability of f implies that $\lim _{n \rightarrow \infty} R_{n}(f)=\int_{[0,1]} f(x) d x$ (cf. Appendix E. 6). The assertion clearly follows.
e) Let λ denote the Lebesgue measure on $[0,1]$ and $0 \leq a \leq b \leq 1$.

Then

$$
\lim _{n \rightarrow \infty} \lambda_{n}([a, b])=\lambda([a, b]) .
$$

As the function $\mathbf{1}_{[a, b]}$ is Riemann integrable, d) gives:
$\lim _{n \rightarrow \infty} \lambda_{n}([a, b])=\lim _{n \rightarrow \infty} \int \mathbf{1}_{[a, b]} d \lambda_{n}=\int_{0}^{1} \mathbf{1}_{[a, b]} d x=\int_{[0,1]} \mathbf{1}_{[a, b]} d \lambda=\lambda([a, b])$.
f) The formula

$$
\lim _{n \rightarrow \infty} \int f d \lambda_{n}=\int f d \lambda
$$

does not hold for all $f \in \mathcal{L}^{1}(\lambda)$.
Indeed, let f be the restriction of $\mathbf{1}_{\mathbb{Q}}$ to $[0,1]$.
Then $f\left(\frac{j}{2^{n}}\right)=1$ for all $j=0,1, \cdots, n-1$, and all $n \in \mathbb{N}$.
Using c) we get

$$
\int f d \lambda_{n}=\frac{1}{2^{n}} \cdot \sum_{j=0}^{2^{n}-1} 1=\frac{2^{n}}{2^{n}}=1
$$

for all $n \in \mathbb{N}$. Hence $\lim _{n \rightarrow \infty} \int f d \lambda_{n}=1$.
On the other hand, $f=0 \lambda$-a.e. (since $\mathbb{Q} \cap[0,1]$ is countable).
So $f \in \mathcal{L}^{1}(\lambda)$ and $\int f d \lambda=0 \neq \lim _{n \rightarrow \infty} \int f d \lambda_{n}$.

