
MAT4300 - FALL 2009 - MANDATORY ASSIGNMENT

Solution (the easy parts 1b) and 1c) are only sketched)

Problem 1

a) Let ρ, f ∈ M̄+ and A ∈ A. Then

(∗)
∫
A
f dµρ =

∫
A
f ρ dµ .

We consider first f = 1E , E ∈ A. Then∫
A

1E dµρ =
∫

1A∩E dµρ = µρ(A ∩ E)

=
∫
A∩E

ρ dµ =
∫
A

1E ρ dµ ,

so (∗) holds in this case.

Next, assume that f ∈ E(A)+ = {E(A) | f ≥ 0}. Write f =
∑n

j=1 yj1Ej for
some yj ∈ R+ , Ej ∈ A. Linearity of the integral clearly passes over to
linearity of the integral over A. Using this and the first step, we get∫

A
f dµρ =

∫
A

(
n∑
j=1

yj 1Ej ) dµρ =
n∑
j=1

yj (
∫
A

1Ej dµρ)

=
n∑
j=1

yj (
∫
A

1Ej ρ dµ) =
∫
A

(
n∑
j=1

yj 1Ej ) ρ dµ =
∫
A
f ρ dµ ,

so (∗) also holds in this case.

Finally, we consider f ∈ M̄+. Using Thm 8.8, we pick an increasing
sequence fj in E(A)+ converging pointwise to f , i.e. fj ↑ f . Then 1A fj
and 1A fj ρ are sequences in M̄(A)+ such that 1A fj ↑ f , 1A fj ρ ↑ f ρ.
Hence, using B. Lévi’s MCT (twice) and the second step, we get∫

A
f dµρ =

∫
1A f dµρ = lim

j→∞

∫
1A fj dµρ

= lim
j→∞

∫
1A fj ρ dµ =

∫
lim
j→∞

1A fj ρ dµ =
∫
A
f ρ dµ ,

which shows that (∗) holds.
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b) Let ρ ∈ M̄+ and f ∈M. Then

f ∈ L1(µρ) if and only if f ρ ∈ L̄1(µ), in which case we have∫
A
f dµρ =

∫
A
f ρ dµ for all A ∈ A .

Indeed, this follows easily by noticing that (f ρ)± = f± ρ (since ρ ≥ 0) and
using a) on f±, together with the definitions of integrability and of the
integral. We skip the details.

c) Assume ρ =
∑∞

j=1 cj ρj for some sequences {cj}j∈N ⊂ (0,∞] and
{ρj}j∈N ⊂ M̄+. Then

µρ(A) =
∞∑
j=1

cj µρj (A) , for all A ∈ A .

This is a simple consequence of Cor. 9.9. We skip the details.

d) Let ρ ∈ M̄+. Assume f, g ∈ M̄. Then

f = g µ-a.e. ⇒ f = g µρ-a.e.

Give also an example showing that the converse implication is not
necessarily true in general.

Assume f = g µ-a.e.; that is, µ(N) = 0, where N = {f 6= g}.
Then µρ(N) =

∫
N ρ dµ =

∫
1N ρ dµ = 0 (see Thm 10.9 (ii) and its proof).

Hence, f = g µρ-a.e..

To see that the converse is not necessarily true, one may of course consider
the ”trivial” case where ρ = 0, so µρ is the zero measure. But the converse
can fail even if ρ 6= 0: consider f.ex.

X = R , A = B(R) , µ = λ and ρ = 1[0,1] , f = 1[−1,1] , g = 1[0,2].

Then N = {f 6= g} = [−1, 0) ∪ (1, 2], so µρ(N) = µ(N ∩ [0, 1]) = µ(∅) = 0,
while µ(N) = 2 6= 0.
Hence f = g µρ-a.e., while it is not true that f = g µ-a.e..

e) Assume (X,A, µ) = (R, B(R), λ) and ρ : R→ [0,∞) is continuous.
Let F (x) =

∫ x
0 ρ(t)dt , x ∈ R, and let νF be the associated Stieljes measure

on B(R).
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Then νF = ρ · λ and
∫
f dνF =

∫
f ρ dλ for all f ∈ M̄+.

For all a, b ∈ R , a ≤ b, we have

νF ([a, b)) = F (b)−F (a) =
∫ b

0
ρ(t)dt−

∫ a

0
ρ(t)dt =

∫ b

a
ρ(t)dt =

∫
[a,b)

ρ dλ = λρ([a, b))

Since the family J = {[a, b) | a, b ∈ R , a ≤ b} generates B(R), is stable
under finite intersections, and the exhausting sequence [−k, k) ↑ R in J
satisfies νF ([−k, k)) = F (k)− F (−k) <∞ for all k ∈ N, Thm 5.7 (or 6.1)
applies and gives that νF = λρ = ρ · λ. The final assertion follows then
from 1a).

f) Assume A = P(X). Let µ be the counting measure on A, ρ ∈ M̄+ and
A ∈ A, i.e. A ⊂ X. Then

µρ(A) =
∑
x∈A

ρ(x) .

Since µρ(A) =
∫
A dµρ =

∫
1A ρ dµ, we have to show that

(∗∗)
∫

1A ρ dµ =
∑
x∈A

ρ(x) .

Assume first there exists some x0 ∈ A such that ρ(x0) =∞.
Then, by definition, we have

∑
x∈A ρ(x) =∞ (cf. Extra-Exercise 1).

On the other hand, let hn ∈ E+(A) be given by hn = n1{x0}, n ∈ N. Then
for each n ∈ N we have hn ≤ 1A ρ; therefore

n = n

∫
{x0}

dµ =
∫
hn dµ ≤ sup {

∫
h dµ |h ∈ E+(A), h ≤ 1A ρ} =

∫
1A ρ dµ .

This implies that
∫

1A ρ dµ =∞. Hence we see that (∗∗) holds in this case.

Next, we assume that ρ(x) <∞ for all x ∈ A.

Let B = {x1, · · · , xk} be a finite subset of A.

Set g =
∑k

j=1 ρ(xj) 1{xj} ∈ E+(A). Then g ≤ 1A ρ, so

∑
x∈B

ρ(x) =
k∑
j=1

ρ(xj) =
∫
g dµ ≤

∫
1A ρ dµ .
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Taking the supremum over all such B’s, we get∑
x∈A

ρ(x) ≤
∫

1A ρ dµ .

Especially, if
∑

x∈A ρ(x) =∞, then this implies that∑
x∈A

ρ(x) =
∫

1A ρ dµ =∞

and (∗∗) holds.

Thus to show that (∗∗) always holds, it remains only to check that

(∗ ∗ ∗)
∫

1A ρ dµ ≤
∑

x∈A ρ(x) whenever
∑

x∈A ρ(x) <∞ .

So assume now that
∑

x∈A ρ(x) <∞ .

Set A0 = {x ∈ A | ρ(x) > 0} , Ak = {x ∈ A | ρ(x) > 1/k} , k ∈ N.

Then A0 = ∪k∈NAk is countable, as each Ak is finite: indeed, if Ak is
infinite for some k ∈ N, then∑

x∈A
ρ(x) ≥

∑
x∈Ak

ρ(x) ≥ 1
k

∑
x∈Ak

1 =∞ ,

contradicting our assumption.

Note also that ρ is zero on A \A0, by definition of A0.

If A0 is finite, then trivially∫
1A ρ dµ =

∫
1A0 ρ dµ =

∑
x∈A0

ρ(x) =
∑
x∈A

ρ(x)

and (∗∗) holds.

If A0 is countably infinite, let {a1, a2, · · · } be an enumeration of the
elements of A0 and set ρn =

∑n
j=1 ρ(aj) 1{aj} , n ∈ N. Then {ρn} ↑ 1A ρ,

and B. Lévi’s MCT gives∫
1A ρ dµ = lim

n→∞

∫
ρn dµ = lim

n→∞

n∑
j=1

ρ(aj) ≤
∑
x∈A

ρ(x) .

Hence (∗ ∗ ∗) holds (actually one can easily show that we have equality
above), and this finishes the proof.
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Problem 2.

a) Let T : X → Y , B ⊂ Y and set A = T−1(B) ⊂ X.
Then T (A) = B ∩ T (X). If T is injective and X is finite, then
#(T−1(B)) = #(B ∩ T (X)) .

Since A = {x ∈ X |T (x) ∈ B} we have

T (A) = {T (x) |x ∈ X , T (x) ∈ B} = { y ∈ T (X) | y ∈ B} = T (X) ∩B .

If T is injective, then x→ T (x) gives a bijection from A onto T (A), so A
and T (A) have the same cardinality. Now cardinality of a finite set may be
interpreted as the number of elements in the set. Hence, if T is injective
and X is finite, we get #(T−1(B)) = #(A) = #(T (A)) = #(B ∩ T (X)) .

For each n ∈ N, set Xn = {0, 1}n and µn(A) = #(A)
2n , A ⊂ Xn .

Further, let Tn(a1, a2, · · · , an) = a1 · 1
2 + a2 · 1

22 + · · ·+ an · 1
2n when

(a1, a2, · · · , an) ∈ Xn , and set λn = Tn(µn) (= µn ◦ T−1
n ).

b) Let B ⊂ [0, 1] , n ∈ N. Then λn(B) = 1
2n ·#

(
B ∩Dn

)
, where

Dn =
{

0, 1
2n ,

2
2n ,

3
2n , · · · , 2n−1

2n

}
.

Note that

Tn(Xn) = {a1 ·
1
2

+ a2 ·
1
22

+ · · ·+ an ·
1
2n
| (a1, a2, · · · , an) ∈ Xn}

= { 1
2n
[
a1 ·2n−1 +a2 ·2n−2 + · · ·+an−1 ·21 +an ·20

]
| (a1, a2, · · · , an) ∈ Xn}

= { 1
2n
m |m ∈ Z , 0 ≤ m ≤ 2n − 1} = Dn

since every every integer m from 0 to 2n − 1 may be (uniquely) written as
a1 · 2n−1 + a2 · 2n−2 + · · ·+ an−1 · 21 + an · 20 for some (a1, a2, · · · , an) ∈ Xn;
the string a1a2 · · · an−1an is then the base 2 representation of m.

Hence, using a), we get

λn(B) = µn(T−1
n (B)) = µn(B ∩ Tn(Xn)) =

1
2n
·#
(
B ∩Dn

)
.

c) Let µc denote the counting measure on P([0, 1]). Let n ∈ N and
f : [0, 1]→ R.
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Then λn = 1
2n 1Dn · µc , f ∈ L1(λn) and

∫
f dλn =

1
2n
·
∑
x∈Dn

f(x) =
1
2n
·
2n−1∑
j=0

f
( j

2n
)
.

Let B ⊂ [0, 1]. Using b) we get

λn(B) =
1
2n
·#
(
B ∩Dn

)
=

1
2n

∫
B∩Dn

dµc =
∫
B

1
2n

1Dn dµc .

This shows that λn = 1
2n 1Dn · µc.

Trivially, f is measurable. Further, using 1a) and 1f), we get∫
f± dµn =

∫
f±

1
2n

1Dn dµc =
1
2n

∫
Dn

f± dµc =
1
2n

∑
x∈Dn

f±(x) <∞

since Dn is finite. This shows that f ∈ L1(λn). Further we then get∫
f dµn =

∫
f+ dµc −

∫
f− dµc =

1
2n

∑
x∈Dn

f+(x) − 1
2n

∑
x∈Dn

f−(x)

=
1
2n

∑
x∈Dn

f(x) =
1
2n

n−1∑
j=0

f(j/2n) ,

as desired.

d) Let f be a bounded, Riemann integrable function on [0, 1]. Then

lim
n→∞

∫
f dλn =

∫ 1

0
f(x) dx .

For each n we consider the regular partition

Pn = {0 < 1
2n <

2
2n <

3
2n < · · · < 2n−1

2n < 1} of [0, 1].

The Riemann sum associated to f by choosing as intermediate points the
left endpoint of each of the subintervals [ j2n ,

j+1
2n ] , j = 0, 1, · · · , n− 1 , is

then given by

Rn(f) =
n−1∑
j=0

f(j/2n)
1
2n

=
∫
f dµn .
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As the mesh of Pn, which is equal to 2−n, goes to zero as n→∞, the
Riemann integrability of f implies that limn→∞Rn(f) =

∫
[0,1] f(x) dx

(cf. Appendix E. 6). The assertion clearly follows.

e) Let λ denote the Lebesgue measure on [0, 1] and 0 ≤ a ≤ b ≤ 1.
Then

lim
n→∞

λn([a, b]) = λ([a, b]) .

As the function 1[a,b] is Riemann integrable, d) gives:

lim
n→∞

λn([a, b]) = lim
n→∞

∫
1[a,b] dλn =

∫ 1

0
1[a,b] dx =

∫
[0,1]

1[a,b] dλ = λ([a, b]) .

f) The formula

lim
n→∞

∫
f dλn =

∫
f dλ

does not hold for all f ∈ L1(λ).

Indeed, let f be the restriction of 1Q to [0, 1].
Then f

( j
2n ) = 1 for all j = 0, 1, · · · , n− 1, and all n ∈ N.

Using c) we get ∫
f dλn =

1
2n
·
2n−1∑
j=0

1 =
2n

2n
= 1

for all n ∈ N. Hence limn→∞
∫
f dλn = 1.

On the other hand, f = 0 λ-a.e. (since Q ∩ [0, 1] is countable).

So f ∈ L1(λ) and
∫
f dλ = 0 6= limn→∞

∫
f dλn.
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