MAT4300 - FALL 2009 - MANDATORY ASSIGNMENT Solution (the easy parts 1b) and 1c) are only sketched)

Problem 1

a) Let $\rho, f \in \overline{\mathcal{M}}^+$ and $A \in \mathcal{A}$. Then

$$(*) \qquad \int_A f \, d\mu_\rho = \int_A f \, \rho \, d\mu \, .$$

We consider first $f = \mathbf{1}_E, E \in \mathcal{A}$. Then

$$\int_{A} \mathbf{1}_{E} d\mu_{\rho} = \int \mathbf{1}_{A \cap E} d\mu_{\rho} = \mu_{\rho}(A \cap E)$$
$$= \int_{A \cap E} \rho d\mu = \int_{A} \mathbf{1}_{E} \rho d\mu ,$$

so (*) holds in this case.

Next, assume that $f \in \mathcal{E}(\mathcal{A})^+ = \{\mathcal{E}(\mathcal{A}) \mid f \ge 0\}$. Write $f = \sum_{j=1}^n y_j \mathbf{1}_{E_j}$ for some $y_j \in \mathbb{R}^+$, $E_j \in \mathcal{A}$. Linearity of the integral clearly passes over to linearity of the integral over \mathcal{A} . Using this and the first step, we get

$$\int_{A} f \, d\mu_{\rho} = \int_{A} (\sum_{j=1}^{n} y_{j} \, \mathbf{1}_{E_{j}}) \, d\mu_{\rho} = \sum_{j=1}^{n} y_{j} \left(\int_{A} \mathbf{1}_{E_{j}} \, d\mu_{\rho} \right)$$
$$= \sum_{j=1}^{n} y_{j} \left(\int_{A} \mathbf{1}_{E_{j}} \, \rho \, d\mu \right) = \int_{A} (\sum_{j=1}^{n} y_{j} \, \mathbf{1}_{E_{j}}) \, \rho \, d\mu = \int_{A} f \, \rho \, d\mu \,,$$

so (*) also holds in this case.

Finally, we consider $f \in \overline{\mathcal{M}}^+$. Using Thm 8.8, we pick an increasing sequence f_j in $\mathcal{E}(\mathcal{A})^+$ converging pointwise to f, i.e. $f_j \uparrow f$. Then $\mathbf{1}_A f_j$ and $\mathbf{1}_A f_j \rho$ are sequences in $\overline{\mathcal{M}}(\mathcal{A})^+$ such that $\mathbf{1}_A f_j \uparrow f$, $\mathbf{1}_A f_j \rho \uparrow f \rho$. Hence, using B. Lévi's MCT (twice) and the second step, we get

$$\int_{A} f \, d\mu_{\rho} = \int \mathbf{1}_{A} f \, d\mu_{\rho} = \lim_{j \to \infty} \int \mathbf{1}_{A} f_{j} \, d\mu_{\rho}$$
$$= \lim_{j \to \infty} \int \mathbf{1}_{A} f_{j} \, \rho \, d\mu = \int \lim_{j \to \infty} \mathbf{1}_{A} f_{j} \, \rho \, d\mu = \int_{A} f \, \rho \, d\mu \,,$$

which shows that (*) holds.

b) Let $\rho \in \overline{\mathcal{M}}^+$ and $f \in \mathcal{M}$. Then

 $f \in \mathcal{L}^1(\mu_{\rho})$ if and only if $f \rho \in \overline{\mathcal{L}}^1(\mu)$, in which case we have

$$\int_{A} f \, d\mu_{\rho} = \int_{A} f \, \rho \, d\mu \quad \text{for all } A \in \mathcal{A}.$$

Indeed, this follows easily by noticing that $(f \rho)^{\pm} = f^{\pm} \rho$ (since $\rho \ge 0$) and using a) on f^{\pm} , together with the definitions of integrability and of the integral. We skip the details.

c) Assume $\rho = \sum_{j=1}^{\infty} c_j \rho_j$ for some sequences $\{c_j\}_{j \in \mathbb{N}} \subset (0, \infty]$ and $\{\rho_j\}_{j \in \mathbb{N}} \subset \overline{\mathcal{M}}^+$. Then

$$\mu_{\rho}(A) = \sum_{j=1}^{\infty} c_j \, \mu_{\rho_j}(A) \,, \text{ for all } A \in \mathcal{A} \,.$$

This is a simple consequence of Cor. 9.9. We skip the details.

d) Let $\rho \in \overline{\mathcal{M}}^+$. Assume $f, g \in \overline{\mathcal{M}}$. Then

$$f = g \ \mu$$
-a.e. $\Rightarrow \ f = g \ \mu_{\rho}$ -a.e.

Give also an example showing that the converse implication is not necessarily true in general.

Assume $f = g \ \mu$ -a.e.; that is, $\mu(N) = 0$, where $N = \{f \neq g\}$. Then $\mu_{\rho}(N) = \int_{N} \rho \, d\mu = \int \mathbf{1}_{N} \rho \, d\mu = 0$ (see Thm 10.9 (ii) and its proof). Hence, $f = g \ \mu_{\rho}$ -a.e..

To see that the converse is not necessarily true, one may of course consider the "trivial" case where $\rho = 0$, so μ_{ρ} is the zero measure. But the converse can fail even if $\rho \neq 0$: consider f.ex.

$$X = \mathbb{R}, \ \mathcal{A} = \mathcal{B}(\mathbb{R}), \ \mu = \lambda \text{ and } \rho = \mathbf{1}_{[0,1]}, \ f = \mathbf{1}_{[-1,1]}, \ g = \mathbf{1}_{[0,2]}.$$

Then $N = \{f \neq g\} = [-1, 0) \cup (1, 2]$, so $\mu_{\rho}(N) = \mu(N \cap [0, 1]) = \mu(\emptyset) = 0$, while $\mu(N) = 2 \neq 0$.

Hence $f = g \ \mu_{\rho}$ -a.e., while it is not true that $f = g \ \mu$ -a.e..

e) Assume $(X, \mathcal{A}, \mu) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ and $\rho : \mathbb{R} \to [0, \infty)$ is continuous. Let $F(x) = \int_0^x \rho(t) dt$, $x \in \mathbb{R}$, and let ν_F be the associated Stieljes measure on $\mathcal{B}(\mathbb{R})$. Then $\nu_F = \rho \cdot \lambda$ and $\int f \, d\nu_F = \int f \, \rho \, d\lambda$ for all $f \in \overline{\mathcal{M}}^+$. For all $a, b \in \mathbb{R}$, $a \leq b$, we have

$$\nu_F([a,b)) = F(b) - F(a) = \int_0^b \rho(t) dt - \int_0^a \rho(t) dt = \int_a^b \rho(t) dt = \int_{[a,b)}^b \rho d\lambda = \lambda_\rho([a,b))$$

Since the family $\mathcal{J} = \{[a, b) \mid a, b \in \mathbb{R}, a \leq b\}$ generates $\mathcal{B}(\mathbb{R})$, is stable under finite intersections, and the exhausting sequence $[-k, k) \uparrow \mathbb{R}$ in \mathcal{J} satisfies $\nu_F([-k, k)) = F(k) - F(-k) < \infty$ for all $k \in \mathbb{N}$, Thm 5.7 (or 6.1) applies and gives that $\nu_F = \lambda_\rho = \rho \cdot \lambda$. The final assertion follows then from 1a).

f) Assume $\mathcal{A} = \mathcal{P}(X)$. Let μ be the counting measure on \mathcal{A} , $\rho \in \overline{\mathcal{M}}^+$ and $A \in \mathcal{A}$, i.e. $A \subset X$. Then

$$\mu_{\rho}(A) = \sum_{x \in A} \rho(x) \,.$$

Since $\mu_{\rho}(A) = \int_{A} d\mu_{\rho} = \int \mathbf{1}_{A} \rho d\mu$, we have to show that

(**)
$$\int \mathbf{1}_A \, \rho \, d\mu = \sum_{x \in A} \rho(x) \, .$$

Assume first there exists some $x_0 \in A$ such that $\rho(x_0) = \infty$.

Then, by definition, we have $\sum_{x \in A} \rho(x) = \infty$ (cf. Extra-Exercise 1). On the other hand, let $h_n \in \mathcal{E}^+(\mathcal{A})$ be given by $h_n = n \mathbf{1}_{\{x_0\}}, n \in \mathbb{N}$. Then for each $n \in \mathbb{N}$ we have $h_n \leq \mathbf{1}_A \rho$; therefore

$$n = n \int_{\{x_0\}} d\mu = \int h_n \, d\mu \leq \sup \left\{ \int h \, d\mu \, | \, h \in \mathcal{E}^+(\mathcal{A}), \, h \leq \mathbf{1}_A \, \rho \right\} = \int \mathbf{1}_A \, \rho \, d\mu$$

This implies that $\int \mathbf{1}_A \rho \, d\mu = \infty$. Hence we see that (**) holds in this case.

Next, we assume that $\rho(x) < \infty$ for all $x \in A$.

Let $B = \{x_1, \dots, x_k\}$ be a finite subset of A. Set $g = \sum_{j=1}^k \rho(x_j) \mathbf{1}_{\{x_j\}} \in \mathcal{E}^+(\mathcal{A})$. Then $g \leq \mathbf{1}_A \rho$, so

$$\sum_{x \in B} \rho(x) = \sum_{j=1}^{k} \rho(x_j) = \int g \, d\mu \le \int \mathbf{1}_A \, \rho \, d\mu$$

Taking the supremum over all such B's, we get

$$\sum_{x \in A} \rho(x) \le \int \mathbf{1}_A \, \rho \, d\mu \, .$$

Especially, if $\sum_{x \in A} \rho(x) = \infty$, then this implies that

$$\sum_{x \in A} \rho(x) = \int \mathbf{1}_A \, \rho \, d\mu \, = \infty$$

and (**) holds.

Thus to show that (**) always holds, it remains only to check that

(***)
$$\int \mathbf{1}_A \rho \, d\mu \leq \sum_{x \in A} \rho(x)$$
 whenever $\sum_{x \in A} \rho(x) < \infty$.

So assume now that $\sum_{x\in A}\rho(x)<\infty$.

Set
$$A_0 = \{x \in A \mid \rho(x) > 0\}, A_k = \{x \in A \mid \rho(x) > 1/k\}, k \in \mathbb{N}.$$

Then $A_0 = \bigcup_{k \in \mathbb{N}} A_k$ is countable, as each A_k is finite: indeed, if A_k is infinite for some $k \in \mathbb{N}$, then

$$\sum_{x \in A} \rho(x) \ge \sum_{x \in A_k} \rho(x) \ge \frac{1}{k} \sum_{x \in A_k} 1 = \infty,$$

contradicting our assumption.

Note also that ρ is zero on $A \setminus A_0$, by definition of A_0 .

If A_0 is finite, then trivially

$$\int \mathbf{1}_A \rho \, d\mu = \int \mathbf{1}_{A_0} \rho \, d\mu = \sum_{x \in A_0} \rho(x) = \sum_{x \in A} \rho(x)$$

and (**) holds.

If A_0 is countably infinite, let $\{a_1, a_2, \dots\}$ be an enumeration of the elements of A_0 and set $\rho_n = \sum_{j=1}^n \rho(a_j) \mathbf{1}_{\{a_j\}}$, $n \in \mathbb{N}$. Then $\{\rho_n\} \uparrow \mathbf{1}_A \rho$, and B. Lévi's MCT gives

$$\int \mathbf{1}_A \rho \, d\mu = \lim_{n \to \infty} \int \rho_n \, d\mu = \lim_{n \to \infty} \sum_{j=1}^n \rho(a_j) \le \sum_{x \in A} \rho(x) \, .$$

Hence (* * *) holds (actually one can easily show that we have equality above), and this finishes the proof.

Problem 2.

a) Let $T: X \to Y$, $B \subset Y$ and set $A = T^{-1}(B) \subset X$. Then $T(A) = B \cap T(X)$. If T is injective and X is finite, then $\#(T^{-1}(B)) = \#(B \cap T(X))$.

Since $A = \{x \in X \mid T(x) \in B\}$ we have

$$T(A) = \{T(x) \mid x \in X, T(x) \in B\} = \{y \in T(X) \mid y \in B\} = T(X) \cap B.$$

If T is injective, then $x \to T(x)$ gives a bijection from A onto T(A), so A and T(A) have the same cardinality. Now cardinality of a finite set may be interpreted as the number of elements in the set. Hence, if T is injective and X is finite, we get $\#(T^{-1}(B)) = \#(A) = \#(T(A)) = \#(B \cap T(X))$.

For each $n \in \mathbb{N}$, set $X_n = \{0,1\}^n$ and $\mu_n(A) = \frac{\#(A)}{2^n}$, $A \subset X_n$. Further, let $T_n(a_1, a_2, \dots, a_n) = a_1 \cdot \frac{1}{2} + a_2 \cdot \frac{1}{2^2} + \dots + a_n \cdot \frac{1}{2^n}$ when $(a_1, a_2, \dots, a_n) \in X_n$, and set $\lambda_n = T_n(\mu_n) \ (= \mu_n \circ T_n^{-1})$.

b) Let $B \subset [0,1]$, $n \in \mathbb{N}$. Then $\lambda_n(B) = \frac{1}{2^n} \cdot \# (B \cap D_n)$, where $D_n = \{0, \frac{1}{2^n}, \frac{2}{2^n}, \frac{3}{2^n}, \cdots, \frac{2^n-1}{2^n}\}.$

Note that

$$T_n(X_n) = \{a_1 \cdot \frac{1}{2} + a_2 \cdot \frac{1}{2^2} + \dots + a_n \cdot \frac{1}{2^n} \mid (a_1, a_2, \dots, a_n) \in X_n\}$$
$$= \{\frac{1}{2^n} [a_1 \cdot 2^{n-1} + a_2 \cdot 2^{n-2} + \dots + a_{n-1} \cdot 2^1 + a_n \cdot 2^0] \mid (a_1, a_2, \dots, a_n) \in X_n\}$$
$$= \{\frac{1}{2^n} m \mid m \in \mathbb{Z}, 0 \le m \le 2^n - 1\} = D_n$$

since every every integer m from 0 to $2^n - 1$ may be (uniquely) written as $a_1 \cdot 2^{n-1} + a_2 \cdot 2^{n-2} + \cdots + a_{n-1} \cdot 2^1 + a_n \cdot 2^0$ for some $(a_1, a_2, \cdots, a_n) \in X_n$; the string $a_1 a_2 \cdots a_{n-1} a_n$ is then the base 2 representation of m.

Hence, using a), we get

$$\lambda_n(B) = \mu_n(T_n^{-1}(B)) = \mu_n(B \cap T_n(X_n)) = \frac{1}{2^n} \cdot \#(B \cap D_n).$$

c) Let μ_c denote the counting measure on $\mathcal{P}([0,1])$. Let $n \in \mathbb{N}$ and $f:[0,1] \to \mathbb{R}$.

Then $\lambda_n = \frac{1}{2^n} \mathbf{1}_{D_n} \cdot \mu_c$, $f \in \mathcal{L}^1(\lambda_n)$ and

$$\int f \, d\lambda_n = \frac{1}{2^n} \cdot \sum_{x \in D_n} f(x) = \frac{1}{2^n} \cdot \sum_{j=0}^{2^n - 1} f\left(\frac{j}{2^n}\right).$$

Let $B \subset [0, 1]$. Using b) we get

$$\lambda_n(B) = \frac{1}{2^n} \cdot \# (B \cap D_n) = \frac{1}{2^n} \int_{B \cap D_n} d\mu_c = \int_B \frac{1}{2^n} \mathbf{1}_{D_n} d\mu_c.$$

This shows that $\lambda_n = \frac{1}{2^n} \mathbf{1}_{D_n} \cdot \mu_c$.

Trivially, f is measurable. Further, using 1a) and 1f), we get

$$\int f^{\pm} d\mu_n = \int f^{\pm} \frac{1}{2^n} \mathbf{1}_{D_n} d\mu_c = \frac{1}{2^n} \int_{D_n} f^{\pm} d\mu_c = \frac{1}{2^n} \sum_{x \in D_n} f^{\pm}(x) < \infty$$

since D_n is finite. This shows that $f \in \mathcal{L}^1(\lambda_n)$. Further we then get

$$\int f d\mu_n = \int f^+ d\mu_c - \int f^- d\mu_c = \frac{1}{2^n} \sum_{x \in D_n} f^+(x) - \frac{1}{2^n} \sum_{x \in D_n} f^-(x)$$
$$= \frac{1}{2^n} \sum_{x \in D_n} f(x) = \frac{1}{2^n} \sum_{j=0}^{n-1} f(j/2^n),$$

as desired.

d) Let f be a bounded, Riemann integrable function on [0, 1]. Then

$$\lim_{n \to \infty} \int f \, d\lambda_n = \int_0^1 f(x) \, dx \, .$$

For each n we consider the regular partition

 $P_n = \{0 < \frac{1}{2^n} < \frac{2}{2^n} < \frac{3}{2^n} < \dots < \frac{2^n - 1}{2^n} < 1\} \text{ of } [0, 1].$

The Riemann sum associated to f by choosing as intermediate points the left endpoint of each of the subintervals $\left[\frac{j}{2^n}, \frac{j+1}{2^n}\right], \ j = 0, 1, \cdots, n-1$, is then given by

$$R_n(f) = \sum_{j=0}^{n-1} f(j/2^n) \frac{1}{2^n} = \int f \, d\mu_n \, .$$

As the mesh of P_n , which is equal to 2^{-n} , goes to zero as $n \to \infty$, the Riemann integrability of f implies that $\lim_{n\to\infty} R_n(f) = \int_{[0,1]} f(x) dx$ (cf. Appendix E. 6). The assertion clearly follows.

e) Let λ denote the Lebesgue measure on [0,1] and $0\leq a\leq b\leq 1.$ Then

$$\lim_{n \to \infty} \lambda_n([a, b]) = \lambda([a, b]).$$

As the function $\mathbf{1}_{[a,b]}$ is Riemann integrable, d) gives:

$$\lim_{n \to \infty} \lambda_n([a,b]) = \lim_{n \to \infty} \int \mathbf{1}_{[a,b]} \, d\lambda_n = \int_0^1 \mathbf{1}_{[a,b]} \, dx = \int_{[0,1]} \mathbf{1}_{[a,b]} \, d\lambda = \lambda([a,b]) \, d\lambda$$

f) The formula

$$\lim_{n \to \infty} \int f \ d\lambda_n = \int f \ d\lambda$$

does not hold for all $f \in \mathcal{L}^1(\lambda)$.

Indeed, let f be the restriction of $\mathbf{1}_{\mathbb{Q}}$ to [0, 1]. Then $f(\frac{j}{2^n}) = 1$ for all $j = 0, 1, \dots, n-1$, and all $n \in \mathbb{N}$. Using c) we get

$$\int f \, d\lambda_n = \frac{1}{2^n} \cdot \sum_{j=0}^{2^n - 1} 1 = \frac{2^n}{2^n} = 1$$

for all $n \in \mathbb{N}$. Hence $\lim_{n\to\infty} \int f \ d\lambda_n = 1$. On the other hand, f = 0 λ -a.e. (since $\mathbb{Q} \cap [0, 1]$ is countable). So $f \in \mathcal{L}^1(\lambda)$ and $\int f \ d\lambda = 0 \neq \lim_{n\to\infty} \int f \ d\lambda_n$.