
MAT3300/4300 – Exam – Fall 09 – Solution.

Exercise 1

a) Since ∅ ∈ A′ and ∅ ∈ A′′ we have ∅ = ∅ ∪ ∅ ∈ A.

Next, let A ∈ A, so A = A′ ∪A′′ , where A′ ∈ A′ , A′′ ∈ A′′. Then the
complement of A in X, X \A, is also in A. (To avoid confusion, we don’t
use the usual notation for complement). Indeed, we have:

X\A = (X ′∪X ′′)\(A′∪A′′) = (X ′\(A′∪A′′))∪(X ′′\(A′∪A′′)) = (X ′\A′)∪(X ′′\A′)

As (X ′ \A′) ∈ A′ , (X ′′ \A′′) ∈ A′′, we have (X \A) ∈ A.

Assume now Aj ∈ A for each j ∈ N and write Aj = A′j ∪A′′j , where
A′j ∈ A′ , A′′j ∈ A′′. Then

∪∞j=1Aj = ∪∞j=1 (A′j ∪A′′j ) = (∪∞j=1A
′
j) ∪ (∪∞j=1A

′′
j ) ∈ A

since ∪j∈NA
′
j ∈ A′ ,∪j∈NA

′′
j ∈ A′′.

Thus we have shown that A is a σ-algebra in X, as desired.

Further, if A′ ∈ A′ then A′ = A′ ∪ ∅ ∈ A. So A′ ⊂ A. Similarly, A′′ ⊂ A′′.

Let now B be any σ-algebra in X which contains A′ and A′′. Let A ∈ A,
so A = A′ ∪A′′ , where A′ ∈ A′ , A′′ ∈ A′′. Then A′ ∈ B and A′′ ∈ B. So
A = A′ ∪A′′ ∈ B. This shows that A ⊂ B.
Hence A is the smallest σ-algebra in X which contains A′ and A′′, that is,
A = σ(A′ ∪ A′′), as desired.

b) We have µ(∅) = µ(∅ ∪ ∅) = µ′(∅) + µ′′(∅) = 0 + 0 = 0 .

Further, let {Aj}j∈N be a sequence in A of pairwise disjoint subsets of X.

For each j ∈ N, write Aj = A′j ∪A′′j , where A′j ∈ A′ , A′′j ∈ A′′.

Then, when j 6= k, we have A′j ∩A′k = ∅ and A′′j ∩A′′k = ∅ (otherwise
Aj ∩Ak would be nonempty). Hence, using the computation in a), we get

µ(∪∞j=1Aj) = µ
(
(∪∞j=1A

′
j) ∪ (∪∞j=1A

′′
j )
)

= µ′(∪∞j=1A
′
j) + µ′′(∪∞j=1A

′′
j )

=
∞∑

j=1

µ′(A′j) +
∞∑

j=1

µ′′(A′′j ) =
∞∑

j=1

(µ′(A′j) + µ′′(A′′j )) =
∞∑

j=1

µ(Aj) .

Hence, µ is a measure on A. If A′ ∈ A′, then

µ(A′) = µ(A′ ∪ ∅) = µ′(A′) + µ′′(∅) = µ′(A′) + 0 = µ′(A′) .
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So µ agrees with µ′ on A′. Similarly, µ agrees with µ′′ on A′′.

Finally, assume both µ′ and µ′′ are σ-finite.

Let {A′j}j∈N ⊂ A′ be such that A′j ↑ X ′ and µ′(A′j) <∞ for alle j.

Let also {A′′j }j∈N ⊂ A′′ such that A′′j ↑ X ′′ and µ′′(A′′j ) <∞ for alle j.

For each j, set Aj = A′j ∪A′′j ∈ A.

Then, clearly we have Aj ↑ (X ′ ∪X ′′) = X and

µ(Aj) = µ′(A′j) + µ′′(A′′j ) <∞ for all j ∈ N .

Hence, µ is σ-finite, as desired.

c) Note that if A ∈ A, so A = A′ ∪A′′ with A′ ∈ A′ , A′′ ∈ A′′, then
A ∩X ′ = A′ ∈ A′.

Now, for each B ∈ B(R), measurability of f means that f−1(B) ∈ A;
hence, we then get (f ′)−1(B) = f−1(B) ∩X ′ ∈ A′. Thus, f ′ ∈M+(A′).

Again, consider A = A′ ∪A′′ with A′ ∈ A′ , A′′ ∈ A′′.

Then, clearly, (1X
A )′ = 1X′

A′ and (1X
A )′′ = 1X′′

A′′ . Therefore we get∫
1X

A dµ = µ(A) = µ′(A′) + µ′′(A′′)

=
∫

1X′
A′ dµ′ +

∫
1X′′

A′′ dµ′′ =
∫

(1X
A )′ dµ′ +

∫
(1X

A )′′ dµ′′ ,

i.e. the desired formula holds for 1X
A . By linearity (of integrals), it also

holds for simple functions in M+(A), i.e. when f ∈ E +(A).

Now, (using Thm 8.8), we pick a sequence fn in E +(A) converging
pointwise on X to the given f ∈M+(A), i.e. fn ↑ f . Then (fn)′ is a
sequence in E +(A′) such that (fn)′ ↑ f ′, and similarly for (fn)′′.

Using B. Lévi’s MCT (three times), we get∫
f dµ = lim

n→∞

∫
fn dµ = lim

n→∞
(
∫

(fn)′dµ′ +
∫

(fn)′′dµ′′)

= lim
n→∞

∫
(fn)′dµ′ + lim

n→∞

∫
(fn)′′dµ′′ =

∫
f ′dµ′ +

∫
f ′′dµ′′ ,

as desired.
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Exercise 2.

a) Set B = {B ∈ B(R) |B ⊂ [0, 1]}. Being continuous, f is B/B(R)-measu-
rable . Since g is A/B(R)-measurable and takes values in [0, 1], g is A/B-
measurable. Being a product of A/B-measurable functions, each function
gn : x→ g(x)n is then A/B-measurable. Hence, each hn = f ◦ gn is
A/B(R)-measurable, that is, each hn ∈M(A).

Further, as f is continuous on the closed intervall [0, 1], f is bounded; that
is, |f(t)| ≤M for all t ∈ [0, 1] for some constant M > 0. Then we clearly
have |hn(x)| ≤M for all x ∈ X and all n ∈ N.
Setting H(x) = M , x ∈ X, we have H ∈ L1(µ) (since µ is finite). Since
|hn| ≤ H, it follows that each hn ∈ L1(µ).

Now, set E = {x ∈ X | g(x) = 1} ∈ A. Then limn→∞ hn(x) = f(1) for all
x ∈ E. Further, when x ∈ Ec = [0, 1] \ E, we have limn→∞ hn(x) = f(0).

Hence, limn→∞ hn(x) = f(1)1E + f(0)1Ec .

We can now apply Lebesgue’s DCT.

We get that f(1)1E + f(0)1Ec ∈ L1(µ) (which is obvious as µ is finite) and

lim
n→∞

∫
hn dµ =

∫
(f(1)1E + f(0)1Ec) dµ = f(1) · µ(E) + f(0) · µ(Ec) ∈ R .

b) In this case, using the notation introduced in a), we see that E = {1, 2},
so µ(E) = 2 and µ(Ec) = µ(X)− µ(E) = 10− 2 = 8.

From the formula above, we get limn→∞
∫
hn dµ = −4 · 2 + 1 · 8 = 0.

Exercise 3

We will first show that f − fN ∈ L1(µ). As f and fN are measurable,
f − fN is measurable. So it suffices to show that

∫
|f − fN | dµ <∞.

For each n ∈ N, we let gn ∈M+(A) be given by gn = |fn − fN |. We also
set A = {x ∈ X| limn→∞ fn(x) = f(x)}. Since limn→∞ fn = f µ-a.e., we
have A ∈ A and µ(Ac) = 0. This implies that∫

h dµ =
∫
A h dµ+

∫
Ac h dµ =

∫
A h dµ for all h ∈M+(A).

Using the the second assumption, we then get∫
A |fn − fN | dµ =

∫
|fn − fN | dµ = ‖fn − fN‖1 ≤ C for all n ∈ N.
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Hence infn≥k {
∫
A |fn − fN | dµ} ≤ C for all k ∈ N . So

lim inf
n→∞

∫
A
|fn − fN | dµ = sup

k∈N
inf
n≥k
{
∫

A
|fn − fN | dµ} ≤ C .

Using Fatou’s lemma, we get∫
|f−fN | dµ =

∫
A
|f−fN | dµ =

∫
lim

n→∞
1A |fn−fN | dµ =

∫
lim inf
n→∞

1A |fn−fN | dµ

≤ lim inf
n→∞

∫
1A |fn − fN | dµ = lim inf

n→∞

∫
A
|fn − fN | dµ ≤ C <∞ ,

as desired.

Now we know that both fN and f − fN are in L1(µ). As L1(µ) is vector
space, we get f = (f − fN ) + fN ∈ L1(µ), as was to be shown.

Exercise 4.

a) We have∫
|ϕ|pdν =

∫
|ϕ|p ρ dµ =

∫
1
xp/2

x

2
dµ(x) =

1
2

∫
1

x
p
2
−1

dµ .

As we know that the integral on the right is finite if and and only if
p
2 − 1 < 1, we get that

∫
|ϕ|p dν < ∞ ⇔ p < 4 , as desired.

b) Using Tonelli’s theorem, we get∫
|F | d(µ× µ) =

∫ ∫
x |f(y)|

y
1D(x, y) dµ(x) dµ(y)

=
∫
|f(y)|
y

∫
(0,y]

x dµ(x) dµ(y) =
∫
|f(y)|
y

y2

2
dµ(y)

=
∫
|f(y)| y

2
dµ(y) =

∫
|f(y)| dν(y) =

∫
|f | dν < ∞ .

c) Let x ∈ (0, 1]. Then 1
y2 ≤ 1

x2 for all y ∈ (x, 1]. Hence∫
(x,1]

|f(y)|
y

dµ(y) =
∫

(x,1]
2
|f(y)|
y2

1
2
y dµ(y)

≤ 2
x2

∫
(x,1]
|f(y)| 1

2
y dµ(y) ≤ 2

x2

∫
|f(y)| dν(y) <∞ .
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Consider now the (measurable) function given by

hx(y) = 2 · 1(x,1](y)
f(y)
y

, y ∈ (0, 1] .

We then have ∫
|hx| dµ(y) = 2

∫
(x,1]

|f(y)|
y

dµ(y) <∞ ,

so hx ∈ L1(µ). Thus, the integral∫
hx dµ = 2

∫
1(x,1](y)

f(y)
y

dµ(y)

makes sense and we may call it g(x), as wanted.

d) Being clearly continuous on (0, 1], g is A/B(R)-measurable. Further,
using Tonelli’s theorem and b), we get∫

|g| dν =
∫
| 2
∫

1(x,1](y)
f(y)
y

dµ(y) | ρ(x) dµ(x)

≤
∫

2
∫

(x,1]

|f(y)|
y

dµ(y)
x

2
dµ(x) =

∫ ∫
(x,1]

x
|f(y)|
y

dµ(y) dµ(x)

=
∫ ∫

x |f(y)|
y

1D(x, y) dµ(y) dµ(x) =
∫
|F | d(µ× µ) =

∫
|f | dν <∞ .

Hence g ∈ L1(ν).

Further, as
∫
|F | d(µ× µ) is finite, we may apply Fubini’s theorem. In the

same way, we get∫
F d(µ× µ) =

∫
f(y)
y

∫
(0,y]

x dµ(x) dµ(y) =
∫

f(y)
y

y2

2
dµ(y)

=
∫

f(y)
y

2
dµ(y) =

∫
f(y) dν(y) =

∫
f dν

and ∫
F d(µ× µ) =

∫
x

∫
1(x,1](y)

f(y)
y

dµ(y) dµ(x)

=
∫

x

2
g(x) dµ(x) =

∫
g dν ,

and the last assertion to be proved clearly follows.
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