MAT3300/4300 — Exam — Fall 09 — Solution.
Exercise 1
a) Since ) € A’ and ) € A” we have ) =0 U € A.

Next, let A€ A, so A=A UA", where A’ € A, A” € A”. Then the
complement of A in X, X \ A, is also in A. (To avoid confusion, we don’t
use the usual notation for complement). Indeed, we have:

X\A = (X'uXx"\(A'ud") = (X"\(AUA"NUX"\(AUA")) = (X"\AHu(x"\A")
As (X'\A) e A, (X"\A")e A" we have (X \ A) € A.
Assume now A; € A for each j € N and write A; = A, U A7, where
Al e A", AT € A”. Then
521 Aj = U2y (A U AY) = (U2, A7) U (UjZ, 4) € A
since Ujen A} € A", Ujeny A7 € A”.
Thus we have shown that A4 is a g-algebra in X, as desired.

Further, if A’ € A" then A’ = A" UD e A. So A" C A. Similarly, A” C A”.

Let now B be any o-algebra in X which contains A" and A”. Let A € A,
so A=A UA", where A’ e A, A” € A”. Then A’ € Band A” € B. So
A= A"UA" € B. This shows that A C B.

Hence A is the smallest o-algebra in X which contains A" and A”, that is,
A=0c(A'UA"), as desired.

b) We have  p(0) = p(0U0) = p/(0) + " (0) =04+0=0.

Further, let {A;};en be a sequence in A of pairwise disjoint subsets of X.
For each j € N, write A; = A} U A7, where A’ € A", AT € A"

Then, when j # k, we have A% N A} = () and A} N A} = 0 (otherwise

A; N Ay, would be nonempty). Hence, using the computation in a), we get

p(U32y Aj) = p((U52y A)) U (U2 AY)) = i/ (U52y A)) + 1" (U324 AF)

= ST + ST A = ST (AL + ' (AL) Zu
Hence, p is a measure on A. If A’ € A, then

(A" = p(A"U0) = p'(A) + p"(0) = W'(A) + 0 = p/(4).



So i agrees with u/ on A’. Similarly, p agrees with p” on A”.

Finally, assume both p’ and u” are o-finite.
Let {A’}jen C A’ be such that A} T X' and p/(A%) < oo for alle j.
Let also {A7}jen C A” such that A7 1 X" and p”(AY) < oo for alle j.
For each j, set A; = A} U AT € A
Then, clearly we have A; T (X' UX") =X and

n(Aj) = W' (A%) + p" (A7) < oo for all j e N.
Hence, p is o-finite, as desired.
c¢) Note that if A€ A, s0 A=A UA" with A’ e A, A” € A", then
ANX' =A e A.

Now, for each B € B(R), measurability of f means that f~1(B) € A;
hence, we then get (f/)"Y(B) = f~1(B)N X' € A’. Thus, f' € M (A).

Again, consider A = A’UA” with A/ e A, A" € A".

Then, clearly, (1)’ = 1% and (1%)” = 1%,,. Therefore we get
/154( dp = p(A) = p'(A") + p"(A”)

= /lf du'—l—/lﬁl dy’ = /(12()’d,u'+/(1§)”du",
i.e. the desired formula holds for 1%. By linearity (of integrals), it also
holds for simple functions in M T(A), i.e. when f € ET(A).

Now, (using Thm 8.8), we pick a sequence f, in & (A) converging
pointwise on X to the given f € MT(A), i.e. f, T f. Then (f,) is a
sequence in € T(A’) such that (f,) 1 f’, and similarly for (f,)".

Using B. Lévi’'s MCT (three times), we get
[ an= i [ godn =t [+ [ an)

— hm (fn)/d,Uzl + TLILII;O/(fn)//dM// — /f/dul + / f//d,Uz//,

n—oo

as desired.



Exercise 2.

a) Set B={B € B(R)|B C [0,1]}. Being continuous, f is B/B(R)-measu-
rable . Since g is A/B(R)-measurable and takes values in [0, 1], g is A/B-
measurable. Being a product of A/B-measurable functions, each function
gn : x — g(x)™ is then A/B-measurable. Hence, each h,, = f o g, is
A/B(R)-measurable, that is, each h,, € M(A).

Further, as f is continuous on the closed intervall [0, 1], f is bounded; that
is, | f(t)| < M for all t € [0, 1] for some constant M > 0. Then we clearly
have |h,(x)| < M for all z € X and all n € N.

Setting H(z) = M , v € X, we have H € £!(u) (since p is finite). Since
|h,| < H, it follows that each h, € L1 (u).

Now, set £ = {z € X |g(z) =1} € A. Then lim,_.o hy(z) = f(1) for all
x € E. Further, when z € E¢ = [0,1] \ E, we have lim,,_. hyn(z) = f(0).

Hence, lim,, o0 hn(z) = f(1)1g + f(0)1ge.
We can now apply Lebesgue’s DCT.
We get that f(1)1g + f(0)1ge € £ () (which is obvious as j is finite) and

i [ hodp = [ (FO)L+ FOLp) di= 1) 1(E) + F0) u(EY) € R.

n—oo

b) In this case, using the notation introduced in a), we see that £ = {1, 2},
so u(F) =2 and p(E°) = p(X) — pu(E) =10 -2 =8.

From the formula above, we get limy, oo [ hypdp=—4-2+1-8=0.

Exercise 3

We will first show that f — fy € £1(u). As f and fy are measurable,
f — fn is measurable. So it suffices to show that [ |f — fn|du < oco.

For each n € N, we let g, € M1 (A) be given by g, = |fn — fn|- We also
set A ={z € X|lim, .o fn(x) = f(x)}. Since lim,, o frn = f p-a.e., we
have A € A and pu(A€) = 0. This implies that

Jhdp= [, hdp+ [4chdp= [, hdufor all h € M (A).
Using the the second assumption, we then get

Jalfo = Inldp = [1fn = fnldp = || fo— fnl < C for alln e N.



Hence infu>p{ [, [fn — fn|du} < Cforall ke N. So

n—oo

liminf/ | frn — fN| dp = sup inf {/ |fn — [Nl dp} < C.
A keN n=k " J A
Using Fatou’s lemma, we get

/f—fNdﬂ—/A’f—fN’dM—/nlirgolA\fn—fNWM—/linIggf 14 |fn—fnldp

< 1iminf/1A|fn — fnldp = liminf/ |fo — fnldp < C < o0,
n—oo n—oo A
as desired.

Now we know that both fy and f — fy are in £(u). As £1(u) is vector
space, we get f = (f — fn) + fv € LY(p), as was to be shown.

Exercise 4.

a) We have

1 1
p — p —
[iopar= [l odu= [ 55 duw) =5 [~ du.

As we know that the integral on the right is finite if and and only if
B—1 < 1, we get that [|pPdr < co < p <4, as desired.

b) Using Tonelli’s theorem, we get

/IF\duXu // z 17y p(z,y) du(x) du(y)

2/ )l /’y] z dp(z) du(y)z/ ’(yy)’y;du(y)
/|f I*du /\f )| dv(y) /\f|dy<oo

c) Let = € (0,1]. Then y—12 < z% for all y € (x,1]. Hence

o )] 1
P duty) - /M‘Zyz v duy)

2
2

z /M £ 3udnt) < 5 [ 1)l dvly) < o0

<



Consider now the (measurable) function given by

he(y) =2 1 (v) ff) Lye (0.1,

We then have

[l duty) = 2 /( 1] YOl 400 < o0,

so hy € L'(u). Thus, the integral

/hx dp =2 /1(1,1](y) Tdu(y)

makes sense and we may call it g(x), as wanted.

d) Being clearly continuous on (0, 1], g is A/B(R)-measurable. Further,
using Tonelli’s theorem and b), we get

/\gldV=/ |2 /1(x,1](y)chjy)du(y)\p(x)du(w)

VO g T ey — [ [ 0 ,
3/2/@71] y du(y) 5 du(@) //(m ) du(y) du(x)

= [ [ ) dutg) dute) = [ 1FV k) = [ 1510 <.
Hence g € L'(v).

Further, as [ |F|d(p x p) is finite, we may apply Fubini’s theorem. In the
same way, we get

2
/Fdwxmz/f;”/w ]xdma:)du(y):/f;%du(y)

:/f(y)gdﬂ(y):/f(y)dy(y):/fdy
and

[rawxm= [+ [ 104622 dutw) auta)

:/zg(:c)du(:c)z/gd%

and the last assertion to be proved clearly follows.



