MAT3300/4300 - Exam - Fall 09 - Solution.

Exercise 1

a) Since $\emptyset \in \mathcal{A}^{\prime}$ and $\emptyset \in \mathcal{A}^{\prime \prime}$ we have $\emptyset=\emptyset \cup \emptyset \in \mathcal{A}$.

Next, let $A \in \mathcal{A}$, so $A=A^{\prime} \cup A^{\prime \prime}$, where $A^{\prime} \in \mathcal{A}^{\prime}, A^{\prime \prime} \in \mathcal{A}^{\prime \prime}$. Then the complement of A in $X, X \backslash A$, is also in \mathcal{A}. (To avoid confusion, we don't use the usual notation for complement). Indeed, we have:
$X \backslash A=\left(X^{\prime} \cup X^{\prime \prime}\right) \backslash\left(A^{\prime} \cup A^{\prime \prime}\right)=\left(X^{\prime} \backslash\left(A^{\prime} \cup A^{\prime \prime}\right)\right) \cup\left(X^{\prime \prime} \backslash\left(A^{\prime} \cup A^{\prime \prime}\right)\right)=\left(X^{\prime} \backslash A^{\prime}\right) \cup\left(X^{\prime \prime} \backslash A^{\prime}\right)$
As $\left(X^{\prime} \backslash A^{\prime}\right) \in \mathcal{A}^{\prime},\left(X^{\prime \prime} \backslash A^{\prime \prime}\right) \in \mathcal{A}^{\prime \prime}$, we have $(X \backslash A) \in \mathcal{A}$.
Assume now $A_{j} \in \mathcal{A}$ for each $j \in \mathbb{N}$ and write $A_{j}=A_{j}^{\prime} \cup A_{j}^{\prime \prime}$, where $A_{j}^{\prime} \in \mathcal{A}^{\prime}, A_{j}^{\prime \prime} \in \mathcal{A}^{\prime \prime}$. Then

$$
\cup_{j=1}^{\infty} A_{j}=\cup_{j=1}^{\infty}\left(A_{j}^{\prime} \cup A_{j}^{\prime \prime}\right)=\left(\cup_{j=1}^{\infty} A_{j}^{\prime}\right) \cup\left(\cup_{j=1}^{\infty} A_{j}^{\prime \prime}\right) \in \mathcal{A}
$$

since $\cup_{j \in \mathbb{N}} A_{j}^{\prime} \in \mathcal{A}^{\prime}, \cup_{j \in \mathbb{N}} A_{j}^{\prime \prime} \in \mathcal{A}^{\prime \prime}$.
Thus we have shown that \mathcal{A} is a σ-algebra in X, as desired.
Further, if $A^{\prime} \in \mathcal{A}^{\prime}$ then $A^{\prime}=A^{\prime} \cup \emptyset \in \mathcal{A}$. So $\mathcal{A}^{\prime} \subset \mathcal{A}$. Similarly, $\mathcal{A}^{\prime \prime} \subset \mathcal{A}^{\prime \prime}$.
Let now \mathcal{B} be any σ-algebra in X which contains \mathcal{A}^{\prime} and $\mathcal{A}^{\prime \prime}$. Let $A \in \mathcal{A}$, so $A=A^{\prime} \cup A^{\prime \prime}$, where $A^{\prime} \in \mathcal{A}^{\prime}, A^{\prime \prime} \in \mathcal{A}^{\prime \prime}$. Then $A^{\prime} \in \mathcal{B}$ and $A^{\prime \prime} \in \mathcal{B}$. So $A=A^{\prime} \cup A^{\prime \prime} \in \mathcal{B}$. This shows that $\mathcal{A} \subset \mathcal{B}$.
Hence \mathcal{A} is the smallest σ-algebra in X which contains \mathcal{A}^{\prime} and $\mathcal{A}^{\prime \prime}$, that is, $\mathcal{A}=\sigma\left(\mathcal{A}^{\prime} \cup \mathcal{A}^{\prime \prime}\right)$, as desired.
b) We have $\mu(\emptyset)=\mu(\emptyset \cup \emptyset)=\mu^{\prime}(\emptyset)+\mu^{\prime \prime}(\emptyset)=0+0=0$.

Further, let $\left\{\mathcal{A}_{j}\right\}_{j \in \mathbb{N}}$ be a sequence in \mathcal{A} of pairwise disjoint subsets of X.
For each $j \in \mathbb{N}$, write $A_{j}=A_{j}^{\prime} \cup A_{j}^{\prime \prime}$, where $A_{j}^{\prime} \in \mathcal{A}^{\prime}, A_{j}^{\prime \prime} \in \mathcal{A}^{\prime \prime}$.
Then, when $j \neq k$, we have $A_{j}^{\prime} \cap A_{k}^{\prime}=\emptyset$ and $A_{j}^{\prime \prime} \cap A_{k}^{\prime \prime}=\emptyset$ (otherwise $A_{j} \cap A_{k}$ would be nonempty). Hence, using the computation in a), we get

$$
\begin{gathered}
\mu\left(\cup_{j=1}^{\infty} A_{j}\right)=\mu\left(\left(\cup_{j=1}^{\infty} A_{j}^{\prime}\right) \cup\left(\cup_{j=1}^{\infty} A_{j}^{\prime \prime}\right)\right)=\mu^{\prime}\left(\cup_{j=1}^{\infty} A_{j}^{\prime}\right)+\mu^{\prime \prime}\left(\cup_{j=1}^{\infty} A_{j}^{\prime \prime}\right) \\
=\sum_{j=1}^{\infty} \mu^{\prime}\left(A_{j}^{\prime}\right)+\sum_{j=1}^{\infty} \mu^{\prime \prime}\left(A_{j}^{\prime \prime}\right)=\sum_{j=1}^{\infty}\left(\mu^{\prime}\left(A_{j}^{\prime}\right)+\mu^{\prime \prime}\left(A_{j}^{\prime \prime}\right)\right)=\sum_{j=1}^{\infty} \mu\left(A_{j}\right) .
\end{gathered}
$$

Hence, μ is a measure on \mathcal{A}. If $A^{\prime} \in \mathcal{A}^{\prime}$, then

$$
\mu\left(A^{\prime}\right)=\mu\left(A^{\prime} \cup \emptyset\right)=\mu^{\prime}\left(A^{\prime}\right)+\mu^{\prime \prime}(\emptyset)=\mu^{\prime}\left(A^{\prime}\right)+0=\mu^{\prime}\left(A^{\prime}\right) .
$$

So μ agrees with μ^{\prime} on \mathcal{A}^{\prime}. Similarly, μ agrees with $\mu^{\prime \prime}$ on $\mathcal{A}^{\prime \prime}$.
Finally, assume both μ^{\prime} and $\mu^{\prime \prime}$ are σ-finite.
Let $\left\{A_{j}^{\prime}\right\}_{j \in \mathbb{N}} \subset \mathcal{A}^{\prime}$ be such that $A_{j}^{\prime} \uparrow X^{\prime}$ and $\mu^{\prime}\left(A_{j}^{\prime}\right)<\infty$ for alle j.
Let also $\left\{A_{j}^{\prime \prime}\right\}_{j \in \mathbb{N}} \subset \mathcal{A}^{\prime \prime}$ such that $A_{j}^{\prime \prime} \uparrow X^{\prime \prime}$ and $\mu^{\prime \prime}\left(A_{j}^{\prime \prime}\right)<\infty$ for alle j.
For each j, set $A_{j}=A_{j}^{\prime} \cup A_{j}^{\prime \prime} \in \mathcal{A}$.
Then, clearly we have $A_{j} \uparrow\left(X^{\prime} \cup X^{\prime \prime}\right)=X$ and

$$
\mu\left(A_{j}\right)=\mu^{\prime}\left(A_{j}^{\prime}\right)+\mu^{\prime \prime}\left(A_{j}^{\prime \prime}\right)<\infty \text { for all } j \in \mathbb{N} .
$$

Hence, μ is σ-finite, as desired.
c) Note that if $A \in \mathcal{A}$, so $A=A^{\prime} \cup A^{\prime \prime}$ with $A^{\prime} \in \mathcal{A}^{\prime}, A^{\prime \prime} \in \mathcal{A}^{\prime \prime}$, then $A \cap X^{\prime}=A^{\prime} \in \mathcal{A}^{\prime}$.

Now, for each $B \in \mathcal{B}(\mathbb{R})$, measurability of f means that $f^{-1}(B) \in \mathcal{A}$; hence, we then get $\left(f^{\prime}\right)^{-1}(B)=f^{-1}(B) \cap X^{\prime} \in \mathcal{A}^{\prime}$. Thus, $f^{\prime} \in \mathcal{M}^{+}\left(\mathcal{A}^{\prime}\right)$.
Again, consider $A=A^{\prime} \cup A^{\prime \prime}$ with $A^{\prime} \in \mathcal{A}^{\prime}, A^{\prime \prime} \in \mathcal{A}^{\prime \prime}$.
Then, clearly, $\left(\mathbf{1}_{A}^{X}\right)^{\prime}=\mathbf{1}_{A^{\prime}}^{X^{\prime}}$ and $\left(\mathbf{1}_{A}^{X}\right)^{\prime \prime}=\mathbf{1}_{A^{\prime \prime}}^{X^{\prime \prime}}$. Therefore we get

$$
\begin{gathered}
\int \mathbf{1}_{A}^{X} d \mu=\mu(A)=\mu^{\prime}\left(A^{\prime}\right)+\mu^{\prime \prime}\left(\mathcal{A}^{\prime \prime}\right) \\
=\int \mathbf{1}_{A^{\prime}}^{X^{\prime}} d \mu^{\prime}+\int \mathbf{1}_{A^{\prime \prime}}^{X^{\prime \prime}} d \mu^{\prime \prime}=\int\left(\mathbf{1}_{A}^{X}\right)^{\prime} d \mu^{\prime}+\int\left(\mathbf{1}_{A}^{X}\right)^{\prime \prime} d \mu^{\prime \prime},
\end{gathered}
$$

i.e. the desired formula holds for $\mathbf{1}_{A}^{X}$. By linearity (of integrals), it also holds for simple functions in $\mathcal{M}^{+}(\mathcal{A})$, i.e. when $f \in \mathcal{E}^{+}(\mathcal{A})$.
Now, (using Thm 8.8), we pick a sequence f_{n} in $\mathcal{E}^{+}(\mathcal{A})$ converging pointwise on X to the given $f \in \mathcal{M}^{+}(\mathcal{A})$, i.e. $f_{n} \uparrow f$. Then $\left(f_{n}\right)^{\prime}$ is a sequence in $\mathcal{E}^{+}\left(\mathcal{A}^{\prime}\right)$ such that $\left(f_{n}\right)^{\prime} \uparrow f^{\prime}$, and similarly for $\left(f_{n}\right)^{\prime \prime}$.
Using B. Lévi's MCT (three times), we get

$$
\begin{aligned}
& \int f d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu=\lim _{n \rightarrow \infty}\left(\int\left(f_{n}\right)^{\prime} d \mu^{\prime}+\int\left(f_{n}\right)^{\prime \prime} d \mu^{\prime \prime}\right) \\
= & \lim _{n \rightarrow \infty} \int\left(f_{n}\right)^{\prime} d \mu^{\prime}+\lim _{n \rightarrow \infty} \int\left(f_{n}\right)^{\prime \prime} d \mu^{\prime \prime}=\int f^{\prime} d \mu^{\prime}+\int f^{\prime \prime} d \mu^{\prime \prime},
\end{aligned}
$$

as desired.

Exercise 2.

a) Set $\mathcal{B}=\{B \in \mathcal{B}(\mathbb{R}) \mid B \subset[0,1]\}$. Being continuous, f is $\mathcal{B} / \mathcal{B}(\mathbb{R})$-measurable . Since g is $\mathcal{A} / \mathcal{B}(\mathbb{R})$-measurable and takes values in $[0,1], g$ is $\mathcal{A} / \mathcal{B}$ measurable. Being a product of $\mathcal{A} / \mathcal{B}$-measurable functions, each function $g_{n}: x \rightarrow g(x)^{n}$ is then $\mathcal{A} / \mathcal{B}$-measurable. Hence, each $h_{n}=f \circ g_{n}$ is $\mathcal{A} / \mathcal{B}(\mathbb{R})$-measurable, that is, each $h_{n} \in \mathcal{M}(\mathcal{A})$.

Further, as f is continuous on the closed intervall $[0,1], f$ is bounded; that is, $|f(t)| \leq M$ for all $t \in[0,1]$ for some constant $M>0$. Then we clearly have $\left|h_{n}(x)\right| \leq M$ for all $x \in X$ and all $n \in \mathbb{N}$.
Setting $H(x)=M, x \in X$, we have $H \in \mathcal{L}^{1}(\mu)$ (since μ is finite). Since $\left|h_{n}\right| \leq H$, it follows that each $h_{n} \in \mathcal{L}^{1}(\mu)$.
Now, set $E=\{x \in X \mid g(x)=1\} \in \mathcal{A}$. Then $\lim _{n \rightarrow \infty} h_{n}(x)=f(1)$ for all $x \in E$. Further, when $x \in E^{c}=[0,1] \backslash E$, we have $\lim _{n \rightarrow \infty} h_{n}(x)=f(0)$.
Hence, $\lim _{n \rightarrow \infty} h_{n}(x)=f(1) \mathbf{1}_{E}+f(0) \mathbf{1}_{E^{c}}$.
We can now apply Lebesgue's DCT.
We get that $f(1) \mathbf{1}_{E}+f(0) \mathbf{1}_{E^{c}} \in \mathcal{L}^{1}(\mu)$ (which is obvious as μ is finite) and $\lim _{n \rightarrow \infty} \int h_{n} d \mu=\int\left(f(1) \mathbf{1}_{E}+f(0) \mathbf{1}_{E^{c}}\right) d \mu=f(1) \cdot \mu(E)+f(0) \cdot \mu\left(E^{c}\right) \in \mathbb{R}$.
b) In this case, using the notation introduced in a), we see that $E=\{1,2\}$, so $\mu(E)=2$ and $\mu\left(E^{c}\right)=\mu(X)-\mu(E)=10-2=8$.
From the formula above, we get $\lim _{n \rightarrow \infty} \int h_{n} d \mu=-4 \cdot 2+1 \cdot 8=0$.

Exercise 3

We will first show that $f-f_{N} \in \mathcal{L}^{1}(\mu)$. As f and f_{N} are measurable, $f-f_{N}$ is measurable. So it suffices to show that $\int\left|f-f_{N}\right| d \mu<\infty$.
For each $n \in \mathbb{N}$, we let $g_{n} \in \mathcal{M}^{+}(\mathcal{A})$ be given by $g_{n}=\left|f_{n}-f_{N}\right|$. We also set $A=\left\{x \in X \mid \lim _{n \rightarrow \infty} f_{n}(x)=f(x)\right\}$. Since $\lim _{n \rightarrow \infty} f_{n}=f \mu$-a.e., we have $A \in \mathcal{A}$ and $\mu\left(A^{c}\right)=0$. This implies that

$$
\int h d \mu=\int_{A} h d \mu+\int_{A^{c}} h d \mu=\int_{A} h d \mu \text { for all } h \in \mathcal{M}^{+}(\mathcal{A})
$$

Using the the second assumption, we then get

$$
\int_{A}\left|f_{n}-f_{N}\right| d \mu=\int\left|f_{n}-f_{N}\right| d \mu=\left\|f_{n}-f_{N}\right\|_{1} \leq C \text { for all } n \in \mathbb{N}
$$

Hence $\inf _{n \geq k}\left\{\int_{A}\left|f_{n}-f_{N}\right| d \mu\right\} \leq C$ for all $k \in \mathbb{N}$. So

$$
\liminf _{n \rightarrow \infty} \int_{A}\left|f_{n}-f_{N}\right| d \mu=\sup _{k \in \mathbb{N}} \inf _{n \geq k}\left\{\int_{A}\left|f_{n}-f_{N}\right| d \mu\right\} \leq C .
$$

Using Fatou's lemma, we get

$$
\begin{gathered}
\int\left|f-f_{N}\right| d \mu=\int_{A}\left|f-f_{N}\right| d \mu=\int \lim _{n \rightarrow \infty} \mathbf{1}_{A}\left|f_{n}-f_{N}\right| d \mu=\int \liminf _{n \rightarrow \infty} \mathbf{1}_{A}\left|f_{n}-f_{N}\right| d \mu \\
\leq \liminf _{n \rightarrow \infty} \int \mathbf{1}_{A}\left|f_{n}-f_{N}\right| d \mu=\liminf _{n \rightarrow \infty} \int_{A}\left|f_{n}-f_{N}\right| d \mu \leq C<\infty
\end{gathered}
$$

as desired.
Now we know that both f_{N} and $f-f_{N}$ are in $\mathcal{L}^{1}(\mu)$. As $\mathcal{L}^{1}(\mu)$ is vector space, we get $f=\left(f-f_{N}\right)+f_{N} \in \mathcal{L}^{1}(\mu)$, as was to be shown.

Exercise 4.

a) We have

$$
\int|\varphi|^{p} d \nu=\int|\varphi|^{p} \rho d \mu=\int \frac{1}{x^{p / 2}} \frac{x}{2} d \mu(x)=\frac{1}{2} \int \frac{1}{x^{\frac{p}{2}-1}} d \mu .
$$

As we know that the integral on the right is finite if and and only if $\frac{p}{2}-1<1$, we get that $\int|\varphi|^{p} d \nu<\infty \Leftrightarrow p<4$, as desired.
b) Using Tonelli's theorem, we get

$$
\begin{aligned}
& \int|F| d(\mu \times \mu)=\iint \frac{x|f(y)|}{y} \mathbf{1}_{D}(x, y) d \mu(x) d \mu(y) \\
= & \int \frac{|f(y)|}{y} \int_{(0, y]} x d \mu(x) d \mu(y)=\int \frac{|f(y)|}{y} \frac{y^{2}}{2} d \mu(y) \\
= & \int|f(y)| \frac{y}{2} d \mu(y)=\int|f(y)| d \nu(y)=\int|f| d \nu<\infty .
\end{aligned}
$$

c) Let $x \in(0,1]$. Then $\frac{1}{y^{2}} \leq \frac{1}{x^{2}}$ for all $y \in(x, 1]$. Hence

$$
\begin{gathered}
\int_{(x, 1]} \frac{|f(y)|}{y} d \mu(y)=\int_{(x, 1]} 2 \frac{|f(y)|}{y^{2}} \frac{1}{2} y d \mu(y) \\
\leq \frac{2}{x^{2}} \int_{(x, 1]}|f(y)| \frac{1}{2} y d \mu(y) \leq \frac{2}{x^{2}} \int|f(y)| d \nu(y)<\infty .
\end{gathered}
$$

Consider now the (measurable) function given by

$$
h_{x}(y)=2 \cdot \mathbf{1}_{(x, 1]}(y) \frac{f(y)}{y}, y \in(0,1] .
$$

We then have

$$
\int\left|h_{x}\right| d \mu(y)=2 \int_{(x, 1]} \frac{|f(y)|}{y} d \mu(y)<\infty,
$$

so $h_{x} \in \mathcal{L}^{1}(\mu)$. Thus, the integral

$$
\int h_{x} d \mu=2 \int \mathbf{1}_{(x, 1]}(y) \frac{f(y)}{y} d \mu(y)
$$

makes sense and we may call it $g(x)$, as wanted.
d) Being clearly continuous on $(0,1], g$ is $\mathcal{A} / \mathcal{B}(\mathbb{R})$-measurable. Further, using Tonelli's theorem and b), we get

$$
\begin{gathered}
\int|g| d \nu=\int\left|2 \int \mathbf{1}_{(x, 1]}(y) \frac{f(y)}{y} d \mu(y)\right| \rho(x) d \mu(x) \\
\leq \int 2 \int_{(x, 1]} \frac{|f(y)|}{y} d \mu(y) \frac{x}{2} d \mu(x)=\iint_{(x, 1]} x \frac{|f(y)|}{y} d \mu(y) d \mu(x) \\
=\iint \frac{x|f(y)|}{y} \mathbf{1}_{D}(x, y) d \mu(y) d \mu(x)=\int|F| d(\mu \times \mu)=\int|f| d \nu<\infty .
\end{gathered}
$$

Hence $g \in \mathcal{L}^{1}(\nu)$.
Further, as $\int|F| d(\mu \times \mu)$ is finite, we may apply Fubini's theorem. In the same way, we get

$$
\begin{gathered}
\int F d(\mu \times \mu)=\int \frac{f(y)}{y} \int_{(0, y]} x d \mu(x) d \mu(y)=\int \frac{f(y)}{y} \frac{y^{2}}{2} d \mu(y) \\
=\int f(y) \frac{y}{2} d \mu(y)=\int f(y) d \nu(y)=\int f d \nu
\end{gathered}
$$

and

$$
\begin{gathered}
\int F d(\mu \times \mu)=\int x \int \mathbf{1}_{(x, 1]}(y) \frac{f(y)}{y} d \mu(y) d \mu(x) \\
=\int \frac{x}{2} g(x) d \mu(x)=\int g d \nu,
\end{gathered}
$$

and the last assertion to be proved clearly follows.

