Neonatal medicine: Transition from intrauterine to extrauterine life
Thor Willy Ruud Hansen, MD, PhD, FAAP
Section on Neonatology, Department of Pediatrics, Rikshospitalet

Communicating in English
- Foreign visitor:
 - “So, how often do you have elections in China?”
- Chinese official, beaming happily:
 - “Evely molning!”

From intra- to extrauterine life
Dramatic events in the life of a human

- Conception
- Birth
- Death

From intra- to extrauterine life
Processes/functions
- Examples

- Energy metabolism
 - Cessation of glucose supply from mother
 - Initiation of lipolysis and gluconeogenesis

- General metabolism
 - Cessation of transplacental transport of waste products such as bilirubin
 - Induction of enzyme activities related to hepatic conjugation and clearance of bilirubin

- Respiration
 - End of respiration through placenta
 - Start of pulmonary respiration

- Circulation
 - Cessation of placental circulation
 - Step-up of pulmonary circulation
 - Closure of ductus arteriosus

- Energy metabolism
- General metabolism
- Hematologic transition
- Immunologic transition

- From fetal to adult hemoglobin
- Altered erythrocyte oxygen affinity
- In utero sterile environment
- Ex utero “all the world’s bugs”
From intra- to extrauterine life

Processes/functions
- Examples
• Thermal regulation
 - Fetal body temperature essentially maintained and regulated by maternal organism
 - “Radiator effect” of large body surface-to-volume ratio makes newborn vulnerable to hypothermia and necessitates initiation of thermogenesis

• Digestion
 - Enteral digestive enzymes and secretions largely dormant
 - Use of gut to receive nutrients, accompanied by induction of many enzymatic digestive processes

• Fluid balance
 - Accelerated reduction of extracellular water compartment
 - Shortly after birth intracellular water becomes largest fluid compartment

• Mineral/electrolyte balance
 - Cessation of active maternal-to-fetal transport of calcium
 - Mobilization of calcium stores

• Growth
 - Prenatal regulation through insulin, IGF1, and IGF2
 - Postnatal regulation through pituitary growth hormones

• Circadian rhythms
 - Diurnal rhythm found in fetus after 20 wk GA
 - Postnatal circadian rhythm takes 2-3 months to establish

• Gene activation
 - Many enzymes dormant in fetal life
 - Increased mRNA for many enzymes after birth

Lung development

A-C fetal lungs at 4 wks

D-E fetal lungs at 5 wks

Lung development

• Terminal airways at 24 wks gestation
 - Alveoli are few
 - Epithelium is cuboidal
 - Production of surfactant is low
 - Interstitium separates alveoli and capillaries
Lung development

- Terminal airways at term
 - 20-70 million alveoli are present
 - Surfactant is produced by type II pneumocytes
 - Close proximity alveoli-capillaries

- The neuromuscular control of breathing is established early
 - The fetus spends nearly 30% of its time in rapid, discoordinate panting associated with REM sleep
 - Near term up to 600 mL of amniotic fluid per day is inhaled through this activity - a lot of it is swallowed

Lung transition

- In utero lungs are fluid filled
- The alveoli are open and filled with fetal lung liquid
 - This liquid is produced by ultrafiltration of capillary blood and secretions from alveolar cells

- During passage through the birth canal the thoracic cage is compressed
 - Pressures can rise to 30-160 cm H₂O
 - This is accompanied by ejection of fluid from the trachea

- Recoil of the chest wall at delivery draws air into the airways
 - The pressure gradient generated during this process may be as high as 60-100 cm H₂O
 - Due to the tension inherent in the air-liquid interface, inflation with air requires more force than inflation with fluid

- During the next few breaths liquid in the airways is gradually replaced by air
 - Blood starts to enter the pulmonary circulation, filling the capillaries
Lung transition

- The air-liquid interface now being established in the alveoli generates a surface tension that would tend to collapse the lung were it not for the presence of surfactant in the alveolar lining.

Stimuli for breathing

- A multitude of stimuli meet the newborn during and after birth:
 - Cold
 - Hypoxia
 - Light
 - Acidosis
 - Noise
 - Hypercapnia
 - Gravity
 - Pain

Pulmonary adaptation

- Inadequate stimuli, e.g. Caesarean delivery without preceding labor, will often result in delayed clearance of lung fluid:
 - Pulmonary adaptation disturbance ("wet lung", "transient tachypnea of the newborn")

Circulatory adaptation

- The fetal circulation is characterized by
 - Low systemic vascular resistance
 - High pulmonary vascular resistance
- The post-natal circulation is characterized by
 - High systemic vascular resistance
 - Low pulmonary vascular resistance

Fetal circulation

- **In utero phase**
 - Pulmonary vascular resistance > systemic vascular resistance
 - RA and RV pressure > LA and LV pressure
 - >1/3 of oxygenated blood from placenta crosses through the foramen ovale to LA - LV and perfuses head/nose/upper trunk
 - Blood from SVC goes to RV - PA - ductus arteriosus - descending aorta, is mixed w/blood from RV = lower PO2 to the lower body
 - Only 8% of cardiac output perfuses the lungs

Circulatory adaptation

- **Immediate phase**
 - Occurs during the first 12-24 h after birth
 - Is responsible for the major part of reduction in pulmonary vascular resistance (PVR)
 - May be connected to production of vasodilating compounds (NO, prostacyclin, leukotrienes)
Circulatory adaptation

"Immediate phase"

- Air replaces fluid in lungs
- Mechanical distention of pulmonary vasculature results in rapid lowering of pulmonary vascular resistance
- Air in the alveoli increases oxygenation in pulmonary vessels, leading to further decrease of pulmonary vascular resistance

- In utero the placental vascular bed is a large low-resistance area
- When the umbilicus is cut this low-resistance vascular bed is immediately lost to the systemic circulation
- This results in a rapid increase in systemic vascular resistance

Circulatory adaptation

"Immediate phase"

Before birth
- RA - high pressure
- LA - low pressure
- Septum secundum
- Shunt
- Foramen ovale

After birth
- RA - lower pressure
- LA - higher pressure
- Septum secundum
- Septum primum

- This phase of transition is a vulnerable period
 - Several stimuli may cause shunt reversal
 - Asphyxia
 - Hypoxia
 - Infection
 - A fetal pattern of circulation may thus be reestablished
 - Persistent pulmonary hypertension of the newborn ("persistent fetal circulation")

Circulatory adaptation

"Final phase"

- Involves remodeling of pulmonary blood vessel musculature
- In the course of a few days vessel wall thickness is reduced in vessels of <250 um diameter
- In the course of a few months vessel wall thickness is reduced in vessels of 250-500 um diameter

Metabolic adaptation

Energy metabolism

- In utero the fetus receives a steady supply of glucose by active transport across the placenta
 - 4-6 mg/kg/min
- In late gestation ~50% of the glucose is converted to glycogen in liver and muscle, and to fat in liver and adipose tissue
 - Glucose storage is regulated by insulin and glucocorticoids
Metabolic adaptation

Energy metabolism

• When the cord is cut, blood glucose levels fall over the next 1-2 h
• This drop in blood glucose levels together with the surge in catecholamines induced by the stress of birth, stimulates important enzymes:
 – Hepatic phosphorylase is involved in glycogenolysis

Proteins

• Amino acids are transported across the placenta by
 – active transfer of essential AA
 – placental cytosolic synthesis of non-essential AA
• Some amino acids are essential to the fetus, but non-essential after birth
 – Due to immature enzyme systems

Lipids

• Supply of FFA to fetus occurs by
 – carrier-mediated transport
 – placental synthesis with release into the umbilical circulation
 – lipolysis of triglycerides, lipoproteins, or phospholipids from either maternal or fetal side

Metabolic adaptation

Lipids

• The activity of lipoprotein lipase is related to the degree of maturity
 – lower lipid-clearing ability in the premature infant
• High levels of FFA and glycerol soon after birth indicate onset of lipolysis and lipid oxidation
• Fatty acid oxidation increases significantly after birth

Bilirubin metabolism

• Bilirubin is the end product of heme catabolism
• Fetal erythrocytes have a shorter life-span than adult (35-90 vs 180 days)
 – More bilirubin is produced
• Some bilirubin is excreted into the fetal gut, but can then go no further
• Bilirubin from the fetus

Metabolic adaptation

Bilirubin metabolism

• After birth
 – Bilirubin production increases (8 mg/kg/d vs 4 mg/kg/d later)
 – Excretory capacity is low
 • Conjugating ability at <1% of adult
 – Bilirubin accumulates in serum, tissues and extra-cellular fluid, causing

Hematologic transition

- Fetal red cells contain hemoglobin F
 - Increased affinity for oxygen
 - Due to less binding of 2,3-diphosphoglycerate to HbF than HbA
- Production of red cells with adult type hemoglobin (HbA) starts late in gestation
- Production of HbF is switched off at birth

Hematologic transition

- Hemoglobin in the newborn is high
 - 16.5+/-.5 g/dL (mean +/-SD)
- After birth hemoglobin falls to a nadir
 - 11.4+/-.9 g/dL at 8-12 weeks
- This is due to
 - No longer need for high Hgb in high oxygen atmosphere
 - Decreased erythrocyte production
 - Decreased erythropoietin production
 - Short erythrocyte lifespan

Immunologic transition

- In utero the fetus is protected by the maternal organism
- The fetus is immunologically "naïve"
- Maternal antibodies are transferred to the fetus during the last part of pregnancy

Immunologic transition

- At birth the infant starts to be exposed to microorganisms
 - Pathogens
 - Commensals
- Skin/mucous membranes/large intestine are populated by microorganisms

Thermal regulation

- After birth body temperature may fall significantly
 - The infant has a large surface-to-volume ratio
 - The infant is wet
 - Radiation and evaporation cools the skin surface rapidly
- Thorough drying and then swaddling the newborn is necessary in order to prevent excessive heat loss!

Thermal regulation

- The term newborn can regulate body temperature by
 - Sweating
 - Increasing metabolic rate
 - Non-shivering thermogenesis
 - Triiodothyronine stimulates thermogenin which converts proton energy to heat
 - This mechanism may be ineffective in
 - Hypoxia
 - Nutritional depletion
Digestive tract
- The fetus swallows amniotic fluid from week 11-12 of gestation
- Non-nutritive sucking appears at 18-24 weeks
- By term the fetus swallows up to 500 mL of amniotic fluid per day

Digestive tract
- By term, sucking movements are followed by
 - Swallowing
 - Esophageal peristalsis
 - Relaxation of the lower esophageal sphincter
 - Relaxation of the gastric fundus

Digestive tract
- Coordination of breathing, sucking, and swallowing is a complex process
 - Failure at this is probably the most common reason why many borderline premature (34-36 weeks GA) infants remain in hospital vs going home

Digestive tract
- At birth the large intestine is filled with meconium, a very tenacious/sticky material containing:
 - Intestinal secretions
 - Dead mucosal cells
 - Bile and pancreatic juices
 - Bilirubin
 - Mucous, blood, lanugo, and vernix
 - 70-80% water

Digestive tract
- The fetus makes little demand on its gastrointestinal tract
- The situation changes dramatically at birth
 - Demand for enteral intake of nutrients necessitates rapid maturation of the alimentary tract

Fluid balance
- Total body water is divided into
 - Intracellular water
 - Plasma volume
 - Interstitial fluid
 - Extracellular water
 - Distribution of body water in a term infant

(From Bell & Ols: Fluid and electrolyte management, 1994)
Fluid balance

- Water constitutes 94% of the body in early fetal life.
- Total body water gradually decreases and is 78% of the body at term.
- Extracellular water decreases.
- Intracellular water increases.
- In the first days of life fluid loss > fluid intake.

(From Friis-Hansen: Changes in body water compartments during growth, 1957)

Insensible water loss (IWL) occurs by:
- Evaporation from skin (70%)
- Moisture in expired air (30%)

IWL starts at birth.
IWL is inversely proportional to body weight and gestational age.

(From Costarino et al: Controversies in fluid and electrolyte therapy for the premature infant, 1985)

Electrolyte balance

- Na+ is the dominant ion in extracellular fluid (ECF).
- When extracellular water is lost rapidly, Na+ concentration in ECF will increase.
- Hypermaturemia is common in extremely premature infants.

(From Bell EF, Oh W: Fluid and electrolyte management, 1994.)

Renal function

- At birth the kidney replaces the placenta at the major homeostatic organ for maintenance of fluid and electrolyte homeostasis.
- Renal blood flow increases rapidly.
- The glomerular filtration rate rises quickly and doubles by 2 weeks of age.

(From Bell EF, Oh W: Fluid and electrolyte management, 1994.)

Electrolyte balance

- Calcium is actively transported to the fetus by the placenta.
 - During the last trimester Ca stores quadruple.
- At birth the constant supply of Ca is interrupted.
 - S-Ca falls during the first hours after birth (S-niCa from 1.45 mmol/L at birth to 1.33 mmol/L at 2 h and 1.23 mmol/L at 24 h)

Renal function

- Most aspects of renal function are immature at birth - more so in the premature infant.
 - Glomerular and tubular functions increase with age.
 - The maximal concentration ability is less than in adults.
 - Newborns have less ability to handle a water load.
Growth

- Prenatal growth is dependent on insulin and insulin-like growth factors
- Postnatal growth is mainly regulated through pituitary growth hormones

Circadian rhythms

- Diurnal rhythms are found in the fetus from the 20th week of gestation
 - It is not clear how they are regulated
- Postnatally it takes 2-3 months before circadian rhythms of sleep and wakefulness and the concomitant hormonal variations are established

Gene activation

- Labor affects the mRNA coding for a number of enzymes
 - Tyrosine hydroxylase
 - Dopamine-\(\beta\)-hydroxylase
- mRNA for substance P increases several fold in the nucleus tractus solitarius during the first days of life
 - Substance P is involved in respiratory drive through peripheral chemoreceptors