Answers to the examination problems in ECON 3120/4120, 6 June 2006

Problem 1

The first and second order derivatives of f are

$$
\begin{aligned}
f_{1}^{\prime}(x, y) & =(2 x-a y) e^{y} \\
f_{2}^{\prime}(x, y) & =\left(x^{2}-a x y-a x\right) e^{y}=x(x-a y-a) e^{y} \\
f_{11}^{\prime \prime}(x, y) & =2 e^{y} \\
f_{12}^{\prime \prime}(x, y) & =(2 x-a y-a) e^{y} \\
f_{22}^{\prime \prime}(x, y) & =\left(x^{2}-a x y-2 a x\right) e^{y}=x(x-a y-2 a) e^{y} .
\end{aligned}
$$

The stationary points are the solutions of the following system:

$$
\begin{array}{r}
2 x-a y=0 \\
x(x-a y-a)=0 \tag{2}
\end{array}
$$

If $x=0$, then (1) gives $y=0$ (because $a \neq 0$). If $x \neq 0$, then (2) gives $x=a y+a$, and then (1) gives $a y+2 a=0$, i.e. $y=-2$, and so $x=a y+a=-a$.

Conclusion: There are two stationary points, $(0,0)$ and $(-a,-2)$.
(a) To determine the nature of a stationary point $\left(x_{0}, y_{0}\right)$ we use the secondderivative test, with $A=f_{11}^{\prime \prime}\left(x_{0}, y_{0}\right), B=f_{12}^{\prime \prime}\left(x_{0}, y_{0}\right)$, and $C=f_{22}^{\prime \prime}\left(x_{0}, y_{0}\right)$. The test gives

Point	A	B	C	$A C-B^{2}$	Result
$(0,0)$	2	$-a$	0	$-a^{2}$	Saddle point
$(-a,-2)$	$2 e^{-2}$	$-a e^{-2}$	$a^{2} e^{-2}$	$a^{2} e^{-4}$	Local min. pt.

(b) $\left(x^{*}, y^{*}\right)=(-a,-2)$, and therefore

$$
f^{*}(a)=f(-a,-2)=-a^{2} e^{-2} \quad \text { and } \quad d f^{*}(a) / d a=-2 a e^{-2}
$$

On the other hand, $\hat{f}(x, y, a)=\left(x^{2}-a x y\right) e^{y}$, and

$$
\hat{f}_{3}^{\prime}(x, y, a)=-x y e^{y} \quad \text { and } \quad \hat{f}_{3}^{\prime}\left(x^{*}, y^{*}, a\right)=-x^{*} y^{*} e^{y^{*}}=-2 a e^{-2}
$$

Thus the equation $\hat{f}_{3}^{\prime}(x, y, a)=d f^{*}(a) / d a$ is true (as the envelope theorem also tells us).

Problem 2

(a)

Gaussian elimination:

$$
\begin{aligned}
& \left(\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 2 \\
1 & t & -1 & 4
\end{array}\right) \stackrel{-2}{\leftarrow} \downarrow \stackrel{-1}{\leftarrow} \sim\left(\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
0 & -3 & -3 & -6 \\
0 & t-2 & -4 & 0
\end{array}\right) \times\left(-\frac{1}{3}\right) \\
& \sim\left(\begin{array}{ccrc}
1 & 2 & 3 & 4 \\
0 & 1 & 1 & 2 \\
0 & t-2 & -4 & 0
\end{array}\right) \stackrel{\leftrightarrows}{\leftrightarrows 2} \begin{array}{c}
\text {-2-t } \\
\leftarrow
\end{array} \sim\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 2 \\
0 & 0 & -t-2 & 4-2 t
\end{array}\right)
\end{aligned}
$$

The final matrix corresponds to the equation system

$$
\begin{aligned}
x+z & =0 \\
y+z & =2 \\
(-t-2) z & =4-2 t
\end{aligned}
$$

With $t=-2$, the last equation becomes $0=8$, which is impossible. Thus, there is no solution if $t=-2$.

If $t \neq-2$, then the system has a unique solution: The last equation gives

$$
z=\frac{4-2 t}{-t-2}=\frac{2 t-4}{t+2},
$$

and then

$$
y=2-z=\frac{2(t+2)-(2 t-4)}{t+2}=\frac{8}{t+2} \quad \text { and } \quad x=-z=\frac{4-2 t}{t+2} .
$$

(b) $\quad 2 x_{t} \geq y_{t} \Longleftrightarrow 2 x_{t}-y_{t} \geq 0 \Longleftrightarrow \frac{2(4-2 t)-8}{t+2} \geq 0 \Longleftrightarrow \frac{4 t}{t+2} \leq 0$.

A simple argument with a sign diagram shows that this inequality holds if and only if $-2<t \leq 0 . \quad(t=-2$ is excluded because the fractions are not defined there.)

Problem 3

(a) The equation is a linear first-order equation which can be written in standard form as $\dot{x}+a(t) x=b(t)$ with

$$
a(t)=\frac{1}{t(t-1)}=\frac{1}{t-1}-\frac{1}{t} \quad \text { and } \quad b(t)=\frac{t e^{t}}{t-1}
$$

The general solution can be found by means of formula (5.4.6) in FMEA or (1.4.6) in MA II. We shall need one indefinite integral of $a(t)$ (no arbitrary constant necessary):

$$
\begin{aligned}
A(t)=\int a(t) d t & =\int\left(\frac{1}{t-1}-\frac{1}{t}\right) d t \\
& =\ln |t-1|-\ln |t|=\ln (1-t)-\ln t=\ln \frac{1-t}{t}
\end{aligned}
$$

(Remember that t lies between 0 and 1.) Then

$$
e^{\int a(t) d t}=e^{A(t)}=\frac{1-t}{t} \quad \text { and } \quad e^{-\int a(t) d t}=\frac{t}{1-t}
$$

The solution formula in the book now yields the general solution:

$$
\underline{\underline{x(t)}}=\frac{t}{1-t}\left(C+\int \frac{1-t}{t} \frac{t e^{t}}{t-1} d t\right)=\frac{t}{1-t}\left(C-\int e^{t} d t\right)=\underline{\underline{\frac{t\left(C-e^{t}\right)}{1-t}}}
$$

(b) It is clear that $\lim _{t \rightarrow 0^{+}} x(t)=0$ for all values of C. But what about $\lim _{t \rightarrow 1^{-}} x(t)$? The expression for $x(t)$ is a fraction whose denominator, $1-t$, tends to 0 as a limit as $t \rightarrow 1^{-}$. Thus for $x(t)$ to tend to a limit, the numerator, $t\left(C-e^{t}\right)$, must also tend to 0 . That is, we must have $C=e$. With this value of C, we get

$$
x(t)=t \frac{e-e^{t}}{1-t}
$$

and by l'Hôpital's rule,

$$
\lim _{t \rightarrow 1^{-}} x(t)=1 \cdot \lim _{t \rightarrow 1^{-}} \frac{e-e^{t}}{1-t}=\frac{" 0 "}{0}=\lim _{t \rightarrow 1^{-}} \frac{-e^{t}}{-1}=e .
$$

Problem 4

(a) Integration gives

$$
\begin{aligned}
S & =\int_{0}^{T} e^{-r x}\left(e^{g T-g x}-1\right) d x=\int_{0}^{T} e^{g T-(r+g) x} d x-\int_{0}^{T} e^{-r x} d x \\
& =-\left.\right|_{0} ^{T} \frac{e^{g T-(r+g) x}}{r+g}+\left.\right|_{0} ^{T} \frac{e^{-r x}}{r}=\frac{e^{g T}-e^{-r T}}{r+g}+\frac{e^{-r T}-1}{r}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
r(r+g) S & =r\left(e^{g T}-e^{-r T}\right)+(r+g)\left(e^{-r T}-1\right) \\
& =r\left(e^{g T}-e^{-r T}\right)-(r+g)\left(1-e^{-r T}\right)
\end{aligned}
$$

(b) The given equation can be written as $F(r, g, S, T)=0$, where

$$
\begin{aligned}
F(r, g, S, T) & =r\left(e^{g T}-e^{-r T}\right)-(r+g)\left(1-e^{-r T}\right)-r(r+g) S \\
& =r e^{g T}-(r+g)+g e^{-r T}-r(r+g) S
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\frac{\partial T}{\partial g}=-\frac{\partial F / \partial g}{\partial F / \partial T}=-\frac{F_{2}^{\prime}(r, g, S, T)}{F_{4}^{\prime}(r, g, S, T)} & =-\frac{r T e^{g T}-1+e^{-r T}-r S}{r g e^{g T}-r g e^{-r T}} \\
& =\frac{r S+1-r T e^{g T}-e^{-r T}}{r g\left(e^{g T}-e^{-r T}\right)}
\end{aligned}
$$

