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There are 2 pages of problems to be solved.

All printed and written material may be used, as well as pocket calculators.

Give reasons for all your answers.

Grades given run from A (best) to E for passes, and F for fail.

Problem 1

Let f(x) = (x2 − a)e−bx, where a and b are constants, b 6= 0.

(a) Compute f ′(x) and f ′′(x).

(b) Put a = 5 and b = 1/2. Find the local and global extreme points of f , if any.

(c) Calculate

∫
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0

(x2 − 5)e−x/2 dx.

Problem 2

(a) Evaluate the determinant
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(b) For what values of the parameters a, b, and c will the equation system

x + y + z = c

x + 2y + az = 2c

x + 2y + bz = 2

have (i) a unique solution, (ii) several solutions, (iii) no solutions?

(Cont.)
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Problem 3

Consider the problem

(∗) maximize f(x, y, z) = x + 2y + ln(1 + z) subject to x2 + y2 − az = 0,

where a is a constant.

(a) Write down the necessary Lagrange conditions for a point (x, y, z) to solve
problem (∗).

(b) Solve problem (∗) when a = −3. (Assume that there exists a solution.)

(c) Show that (∗) does not have any solutions when (i) a = 0, (ii) a = 1.

Problem 4

(a) Show that, if α > 0, there is no 3 × 3 matrix C such that C2 = −αI3.

(b) Use the result in (a) to show that there is no 3 × 3 matrix B such that
B2 + B + I3 = 0.
(Hint: What is (B + 1

2
I3)

2 ?)
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