# ECON3120/4120 Mathematics 2 

Monday, 30 May 2005, 14.30-17.30
There are 2 pages of problems to be solved.
All printed and written material may be used, as well as pocket calculators.
Give reasons for all your answers.
Grades given run from A (best) to E for passes, and F for fail.

## Problem 1

Consider the function $f$ defined by

$$
f(x)=x(\ln x)^{2}, \quad x>0
$$

(a) Calculate $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(b) Determine where $f$ is increasing and where $f$ is decreasing. Does $f$ have any global extreme points?
(c) Show that $f(x) \rightarrow 0$ as $x \rightarrow 0^{+}$and that $f^{\prime}(x) \rightarrow \infty$ as $x \rightarrow 0^{+}$.

## Problem 2

(a) Find $\lim _{x \rightarrow 0} \frac{e^{x t}-1-x t}{x^{2}}$. ( $t$ is a constant.)
(b) Find $\int \frac{e^{4 x}}{e^{2 x}+1} d x$.
(c) Find $\int(\ln x)^{2} d x$.

## Problem 3

(a) Calculate the determinant of $\mathbf{A}_{t}=\left(\begin{array}{rrr}0 & t & 1 \\ 4 & -2 & 8 \\ 1 & 1 & 1\end{array}\right)$
(b) Find $x, y$ and $z$ such that

$$
\left(\begin{array}{rr}
2 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{ll}
x & y \\
z & 0
\end{array}\right)-\left(\begin{array}{ll}
x & y \\
z & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right)=\left(\begin{array}{rr}
5 & -2 \\
0 & 1
\end{array}\right)
$$

(Cont.)

## Problem 4

Consider the problem

$$
\text { minimize } \quad x^{2}+y^{2}+z \quad \text { subject to } \quad\left\{\begin{array}{l}
x^{2}+2 x y+y^{2}+z^{2}=a  \tag{*}\\
x+y+z=1
\end{array}\right.
$$

where $a$ is a constant.
(a) Use Lagrange's method to set up necessary conditions for a minimum.
(b) Find the solution of $(*)$ when $a=5 / 2$. (You can take it as given that the minimum exists.)
(c) The minimum value in problem $(*)$ depends on $a$, call it $V(a)$. What is $V^{\prime}(5 / 2)$ ?

